1
|
Horinouchi H, Cho BC, Camidge DR, Goto K, Tomasini P, Li Y, Vasilopoulos A, Brunsdon P, Hoffman D, Shi W, Bolotin E, Blot V, Goldman J. Results from a phase Ib study of telisotuzumab vedotin in combination with osimertinib in patients with c-Met protein-overexpressing, EGFR-mutated locally advanced/metastatic non-small-cell lung cancer (NSCLC) after progression on prior osimertinib. Ann Oncol 2025; 36:583-591. [PMID: 39805351 DOI: 10.1016/j.annonc.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/20/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Osimertinib is the standard first-line treatment for advanced epidermal growth factor receptor (EGFR)-mutated non-small-cell lung cancer (NSCLC). However, treatment resistance is inevitable and increased c-Met protein expression correlates with resistance. Telisotuzumab vedotin (Teliso-V) is an antibody-drug conjugate that targets c-Met protein overexpression. In this article, we report the results of a phase I/Ib trial evaluating Teliso-V plus osimertinib in patients with NSCLC after progression on osimertinib. PATIENTS AND METHODS This multicenter, open-label study (NCT02099058) enrolled patients with advanced EGFR-mutated, c-Met protein-overexpressing, non-squamous NSCLC that had progressed on prior osimertinib. Patients received Teliso-V (intravenously, every 2 weeks) plus osimertinib (orally, 80 mg once daily). Teliso-V was evaluated at 1.6 mg/kg in a safety lead-in phase and escalated to 1.9 mg/kg. Dose expansion included both doses. Endpoints included safety and tolerability, pharmacokinetics, objective response rate (ORR), duration of response (DOR), and progression-free survival (PFS). RESULTS A total of 38 patients received Teliso-V (1.6 mg/kg, n = 20; 1.9 mg/kg, n = 18) plus osimertinib and were included in this analysis. No dose-limiting toxicities were observed. Most frequent any-grade treatment-emergent adverse events (TEAEs) were peripheral sensory neuropathy (50%), peripheral edema (32%), and nausea (24%). Most common grade 3/4 TEAEs were anemia (11%) and pulmonary embolism (8%). Five TEAEs led to death; none were reported as being related to Teliso-V or osimertinib. The pharmacokinetic profile of Teliso-V plus osimertinib was similar to Teliso-V monotherapy. After a median follow-up of 7.4 months, the ORR was 50.0% per independent central review (ICR) (DOR not reached), and median PFS per ICR was 7.4 months (95% confidence interval 5.4 months-not reached). CONCLUSIONS Teliso-V plus osimertinib had promising activity and a manageable safety profile in patients with c-Met protein-overexpressing, EGFR-mutated non-squamous NSCLC after progression on osimertinib. This combination has the potential to address an unmet medical need in this patient population.
Collapse
Affiliation(s)
| | - B C Cho
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - D R Camidge
- Department of Medicine, University of Colorado Cancer Center, Aurora, USA
| | - K Goto
- National Cancer Center Hospital East, Kashiwa, Japan
| | - P Tomasini
- Multidisciplinary Oncology and Therapeutic Innovations Department, Aix Marseille University, APHM, INSERM, CNRS, CRCM, Hôpital Nord, Marseille, France
| | - Y Li
- AbbVie Inc, North Chicago, USA
| | | | | | | | - W Shi
- AbbVie Inc, North Chicago, USA
| | | | - V Blot
- AbbVie Inc, North Chicago, USA
| | - J Goldman
- David Geffen School of Medicine at UCLA, Los Angeles, USA.
| |
Collapse
|
2
|
Mokhtari RB, Sampath D, Eversole P, Yu Lin MO, Bosykh DA, Boopathy GTK, Sivakumar A, Wang CC, Kumar R, Sheng JYP, Karasik E, Foster BA, Yu H, Ling X, Wu W, Li F, Ohler ZW, Brainson CF, Goodrich DW, Hong W, Chakraborty S. An Agrin-YAP/TAZ Rigidity Sensing Module Drives EGFR-Addicted Lung Tumorigenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2413443. [PMID: 40165020 DOI: 10.1002/advs.202413443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/12/2025] [Indexed: 04/02/2025]
Abstract
Despite epidermal growth factor receptor (EGFR) is a pivotal oncogene for several cancers, including lung adenocarcinoma (LUAD), how it senses extracellular matrix (ECM) rigidity remain elusive in the context of the increasing role of tissue rigidity on various hallmarks of cancer development. Here it is shown that EGFR dictates tumorigenic agrin expression in lung cancer cell lines, genetically engineered EGFR-driven mouse models, and human specimens. Agrin expression confers substrate stiffness-dependent oncogenic attributes to EGFR-reliant cancer cells. Mechanistically, agrin mechanoactivates EGFR through epidermal growth factor (EGF)-dependent and independent modes, thereby sensitizing its activity toward localized cancer cell-ECM adherence and bulk rigidity by fostering interactions with integrin β1. Notably, a feed-forward loop linking agrin-EGFR rigidity response to YAP-TEAD mechanosensing is essential for tumorigenesis. Together, the combined inhibition of EGFR-YAP/TEAD may offer a strategy to reduce lung tumorigenesis by disrupting agrin-EGFR mechanotransduction, uncovering a therapeutic vulnerability for EGFR-addicted lung cancers.
Collapse
Affiliation(s)
- Reza Bayat Mokhtari
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Divyaleka Sampath
- Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Paige Eversole
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Melissa Ong Yu Lin
- Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Dmitriy A Bosykh
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Gandhi T K Boopathy
- Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Aravind Sivakumar
- Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Cheng-Chun Wang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Ramesh Kumar
- Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Joe Yeong Poh Sheng
- Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Ellen Karasik
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Barbara A Foster
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Han Yu
- Department of Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Xiang Ling
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Wenjie Wu
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Fengzhi Li
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Zoë Weaver Ohler
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-1088, USA
| | - Christine F Brainson
- Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - David W Goodrich
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Sayan Chakraborty
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Program of Developmental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| |
Collapse
|
3
|
Maroni G, Krishnan I, Alfieri R, Maymi VA, Pandell N, Csizmadia E, Zhang J, Weetall M, Branstrom A, Braccini G, Cabrera San Millán E, Storti B, Bizzarri R, Kocher O, Bassères DS, Welner RS, Magli MC, Merelli I, Clohessy JG, Ali A, Tenen DG, Levantini E. Tumor Microenvironment Landscapes Supporting EGFR-mutant NSCLC Are Modulated at the Single-cell Interaction Level by Unesbulin Treatment. CANCER RESEARCH COMMUNICATIONS 2024; 4:919-937. [PMID: 38546390 PMCID: PMC10964845 DOI: 10.1158/2767-9764.crc-23-0161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 01/26/2024] [Accepted: 03/12/2024] [Indexed: 11/03/2024]
Abstract
Lung cancer is the leading cause of cancer deaths. Lethal pulmonary adenocarcinomas (ADC) present with frequent mutations in the EGFR. Genetically engineered murine models of lung cancer expedited comprehension of the molecular mechanisms driving tumorigenesis and drug response. Here, we systematically analyzed the evolution of tumor heterogeneity in the context of dynamic interactions occurring with the intermingled tumor microenvironment (TME) by high-resolution transcriptomics. Our effort identified vulnerable tumor-specific epithelial cells, as well as their cross-talk with niche components (endothelial cells, fibroblasts, and tumor-infiltrating immune cells), whose symbiotic interface shapes tumor aggressiveness and is almost completely abolished by treatment with Unesbulin, a tubulin binding agent that reduces B cell-specific Moloney murine leukemia virus integration site 1 (BMI-1) activity. Simultaneous magnetic resonance imaging (MRI) analysis demonstrated decreased tumor growth, setting the stage for future investigations into the potential of novel therapeutic strategies for EGFR-mutant ADCs. SIGNIFICANCE Targeting the TME is an attractive strategy for treatment of solid tumors. Here we revealed how EGFR-mutant landscapes are affected at the single-cell resolution level during Unesbulin treatment. This novel drug, by targeting cancer cells and their interactions with crucial TME components, could be envisioned for future therapeutic advancements.
Collapse
Affiliation(s)
- Giorgia Maroni
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Harvard Medical School, Boston, Massachusetts
- Institute of Biomedical Technologies, National Research Council (CNR), Pisa, Italy
| | | | - Roberta Alfieri
- Institute of Biomedical Technologies, National Research Council (CNR), Pisa, Italy
| | - Valerie A. Maymi
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Preclinical Murine Pharmacogenetics Core, Beth Israel Deaconess Cancer Center, Dana-Farber/Harvard Cancer Center, Boston, Massachusetts
| | - Nicole Pandell
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Preclinical Murine Pharmacogenetics Core, Beth Israel Deaconess Cancer Center, Dana-Farber/Harvard Cancer Center, Boston, Massachusetts
| | - Eva Csizmadia
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Junyan Zhang
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | | | - Giulia Braccini
- Institute of Biomedical Technologies, National Research Council (CNR), Pisa, Italy
| | | | - Barbara Storti
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Pisa, Italy
| | - Ranieri Bizzarri
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Pisa, Italy
- Department of Surgical, Medical and Molecular Pathology, and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Olivier Kocher
- Harvard Medical School, Boston, Massachusetts
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Daniela S. Bassères
- Biochemistry Department, Chemistry Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Robert S. Welner
- Department of Medicine, Hemathology/Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Maria Cristina Magli
- Institute of Biomedical Technologies, National Research Council (CNR), Pisa, Italy
| | - Ivan Merelli
- Institute of Biomedical Technologies, National Research Council (CNR), Pisa, Italy
| | - John G. Clohessy
- Harvard Medical School, Boston, Massachusetts
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Preclinical Murine Pharmacogenetics Core, Beth Israel Deaconess Cancer Center, Dana-Farber/Harvard Cancer Center, Boston, Massachusetts
| | - Azhar Ali
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Daniel G. Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Cambridge, Massachusetts
| | - Elena Levantini
- Harvard Medical School, Boston, Massachusetts
- Institute of Biomedical Technologies, National Research Council (CNR), Pisa, Italy
- Harvard Stem Cell Institute, Cambridge, Massachusetts
| |
Collapse
|
4
|
Xie X, Laster KV, Li J, Nie W, Yi YW, Liu K, Seong YS, Dong Z, Kim DJ. OSGIN1 is a novel TUBB3 regulator that promotes tumor progression and gefitinib resistance in non-small cell lung cancer. Cell Mol Life Sci 2023; 80:272. [PMID: 37646890 PMCID: PMC11071769 DOI: 10.1007/s00018-023-04931-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/26/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Oxidative stress induced growth inhibitor 1 (OSGIN1) regulates cell death. The role and underlying molecular mechanism of OSGIN1 in non-small cell lung cancer (NSCLC) are uncharacterized. METHODS OSGIN1 expression in NSCLC samples was detected using immunohistochemistry and Western blotting. Growth of NSCLC cells and gefitinib-resistant cells expressing OSGIN1 or TUBB3 knockdown was determined by MTT, soft agar, and foci formation assays. The effect of OSGIN1 knockdown on in vivo tumor growth was assessed using NSCLC patient-derived xenograft models and gefitinib-resistant patient-derived xenograft models. Potentially interacting protein partners of OSGIN1 were identified using IP-MS/MS, immunoprecipitation, PLA, and Western blotting assays. Microtubule dynamics were explored by tubulin polymerization assay and immunofluorescence. Differential expression of signaling molecules in OSGIN1 knockdown cells was investigated using phospho-proteomics, KEGG analysis, and Western blotting. RESULTS We found that OSGIN1 is highly expressed in NSCLC tissues and is positively correlated with low survival rates and tumor size in lung cancer patients. OSGIN1 knockdown inhibited NSCLC cell growth and patient-derived NSCLC tumor growth in vivo. Knockdown of OSGIN1 strongly increased tubulin polymerization and re-established gefitinib sensitivity in vitro and in vivo. Additionally, knockdown of TUBB3 strongly inhibited NSCLC cell proliferation. Mechanistically, we found that OSGIN1 enhances DYRK1A-mediated TUBB3 phosphorylation, which is critical for inducing tubulin depolymerization. The results of phospho-proteomics and ontology analysis indicated that knockdown of OSGIN1 led to reduced propagation of the MKK3/6-p38 signaling axis. CONCLUSIONS We propose that OSGIN1 modulates microtubule dynamics by enhancing DYRK1A-mediated phosphorylation of TUBB3 at serine 172. Moreover, elevated OSGIN1 expression promotes NSCLC tumor growth and gefitinib resistance through the MKK3/6-p38 signaling pathway. Our findings unveil a new mechanism of OSGIN1 and provide a promising therapeutic target for NSCLC treatment in the clinic.
Collapse
Affiliation(s)
- Xiaomeng Xie
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, 450008, Henan, China
- China-US (Henan) Hormel Cancer Institute, No, 127 Dongming Road, Zhengzhou, 450008, Henan, China
| | - Kyle Vaughn Laster
- China-US (Henan) Hormel Cancer Institute, No, 127 Dongming Road, Zhengzhou, 450008, Henan, China
| | - Jian Li
- China-US (Henan) Hormel Cancer Institute, No, 127 Dongming Road, Zhengzhou, 450008, Henan, China
| | - Wenna Nie
- China-US (Henan) Hormel Cancer Institute, No, 127 Dongming Road, Zhengzhou, 450008, Henan, China
| | - Yong Weon Yi
- Department of Biochemistry, College of Medicine, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, 450008, Henan, China
- China-US (Henan) Hormel Cancer Institute, No, 127 Dongming Road, Zhengzhou, 450008, Henan, China
- The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, 450008, Henan, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450008, Henan, China
| | - Yeon-Sun Seong
- Department of Biochemistry, College of Medicine, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungcheongnam-do, 31116, Republic of Korea.
- Graduate School of Convergence Medical Science, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea.
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, 450008, Henan, China.
- China-US (Henan) Hormel Cancer Institute, No, 127 Dongming Road, Zhengzhou, 450008, Henan, China.
- The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, 450008, Henan, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450008, Henan, China.
- International Joint Research Center of Cancer Chemoprevention, Zhengzhou, China.
- The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450008, Henan, China.
| | - Dong Joon Kim
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, 450008, Henan, China.
- China-US (Henan) Hormel Cancer Institute, No, 127 Dongming Road, Zhengzhou, 450008, Henan, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450008, Henan, China.
- Department of Microbiology, College of Medicine, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungcheongnam-do, 31116, Republic of Korea.
| |
Collapse
|
5
|
Ohka S, Tan SH, Ishiyama E, Ogasawara K, Hanasaka T, Ishida K, Hagiwara K, Liu CC, Chong PCS, Hanaki KI, Schiavo G. The uncoating of EV71 in mature late endosomes requires CD-M6PR. Biol Open 2022; 11:276618. [PMID: 35929543 PMCID: PMC9493940 DOI: 10.1242/bio.059469] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022] Open
Abstract
Enterovirus 71 (EV71) is one of the causative agents of hand-foot-and-mouth disease, which in some circumstances could lead to severe neurological diseases. Despite of its importance for human health, little is known about the early stages of EV71 infection. EV71 starts uncoating with its receptor, human scavenger receptor B2 (hSCARB2), at low pH. We show that EV71 was not targeted to lysosomes in human rhabdomyosarcoma cells overexpressing hSCARB2 and that the autophagic pathway is not essential for EV71 productive uncoating. Instead, EV71 was efficiently uncoated 30 minutes after infection in late endosomes (LEs) containing hSCARB2, mannose-6-phosphate receptor (M6PR), RAB9, bis(monoacylglycero)phosphate and lysosomal associated membrane protein 2 (LAMP2). Furthering the notion that mature LEs are crucial for EV71 uncoating, cation-dependent (CD)-M6PR knockdown impairs EV71 infection. Since hSCARB2 interacts with cation-independent (CI)-M6PR through M6P-binding sites and CD-M6PR also harbor a M6P-binding site, CD-M6PR is likely to play important roles in EV71 uncoating in LEs.
Collapse
Affiliation(s)
- Seii Ohka
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Soon Hao Tan
- Department of Pathology, University of Malaya, Kuala Lumpur, Malaysia
| | - Eri Ishiyama
- Technical Support Center for Life Science Research, Iwate Medical University, Iwate, Japan
| | - Katsutoshi Ogasawara
- Technical Support Center for Life Science Research, Iwate Medical University, Iwate, Japan
| | - Tomohito Hanasaka
- Technical Support Center for Life Science Research, Iwate Medical University, Iwate, Japan
| | - Kinji Ishida
- Technical Support Center for Life Science Research, Iwate Medical University, Iwate, Japan
| | - Kyoji Hagiwara
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Chia-Chyi Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Pele Choi-Sing Chong
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Ken-Ichi Hanaki
- Technical Support Center for Life Science Research, Iwate Medical University, Iwate, Japan
| | - Giampietro Schiavo
- Queen Square Institute of Neurology, University College London, London, UK.,UK Dementia Research Institute at UCL, London, UK
| |
Collapse
|
6
|
EGFR signaling pathway as therapeutic target in human cancers. Semin Cancer Biol 2022; 85:253-275. [PMID: 35427766 DOI: 10.1016/j.semcancer.2022.04.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/12/2022] [Accepted: 04/04/2022] [Indexed: 02/08/2023]
Abstract
Epidermal Growth Factor Receptor (EGFR) enacts major roles in the maintenance of epithelial tissues. However, when EGFR signaling is altered, it becomes the grand orchestrator of epithelial transformation, and hence one of the most world-wide studied tyrosine kinase receptors involved in neoplasia, in several tissues. In the last decades, EGFR-targeted therapies shaped the new era of precision-oncology. Despite major advances, the dream of converting solid tumors into a chronic disease is still unfulfilled, and long-term remission eludes us. Studies investigating the function of this protein in solid malignancies have revealed numerous ways how tumor cells dysregulate EGFR function. Starting from preclinical models (cell lines, organoids, murine models) and validating in clinical specimens, EGFR-related oncogenic pathways, mechanisms of resistance, and novel avenues to inhibit tumor growth and metastatic spread enriching the therapeutic portfolios, were identified. Focusing on non-small cell lung cancer (NSCLC), where EGFR mutations are major players in the adenocarcinoma subtype, we will go over the most relevant discoveries that led us to understand EGFR and beyond, and highlight how they revolutionized cancer treatment by expanding the therapeutic arsenal at our disposal.
Collapse
|
7
|
Gudi RR, Janakiraman H, Howe PH, Palanisamy V, Vasu C. Loss of CPAP causes sustained EGFR signaling and epithelial-mesenchymal transition in oral cancer. Oncotarget 2021; 12:807-822. [PMID: 33889303 PMCID: PMC8057274 DOI: 10.18632/oncotarget.27932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/22/2021] [Indexed: 11/25/2022] Open
Abstract
Higher epidermal growth factor receptor (EGFR) signaling can contribute to tumor metastasis and resistance to therapies in oral squamous cell carcinoma (OSCC). EGFR signaling can promote epithelial-mesenchymal transition (EMT) in OSCC. EMT is a process by which epithelial cells acquire invasive properties and it can contribute to tumor metastasis. Not only do the abnormal functions of microtubule and microtubule-organizing centers (MTOC) such as centrosomes lead to cancers, but also the malignant tissues are characterized by aberrant centriolar features and amplified centrosomes. Microtubule inhibition therapies increase the sensitivity to EGFR targeting drugs in various cancers. In this study, we show that the loss of expression of a microtubule/tubulin binding protein, centrosomal protein 4.1-associated protein (CPAP), which is critical for centriole biogenesis and normal functioning of the centrosome, caused an increase in the EGFR levels and its signaling and, enhanced the EMT features and invasiveness of OSCC cells. Further, depletion of CPAP enhanced the tumorigenicity of these cells in a xeno-transplant model. Importantly, CPAP loss-associated EMT features and invasiveness of multiple OSCC cells were attenuated upon depletion of EGFR in them. On the other hand, we found that CPAP protein levels were higher in EGF treated OSCC cells as well as in oral cancer tissues, suggesting that the frequently reported aberrant centriolar features of tumors are potentially a consequence, but not the cause, of tumor progression. Overall, our novel observations show that, in addition to its known indispensable role in centrosome biogenesis, CPAP also plays a vital role in suppressing tumorigenesis in OSCC by facilitating EGFR homeostasis.
Collapse
Affiliation(s)
- Radhika R Gudi
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Philip H Howe
- Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Viswanathan Palanisamy
- Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Chenthamarakshan Vasu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|