1
|
Chen J, Liu T, Wang M, Lu B, Bai D, Shang J, Chen Y, Zhang J. Supramolecular oral delivery technologies for polypeptide-based drugs. J Control Release 2025; 381:113549. [PMID: 40058501 DOI: 10.1016/j.jconrel.2025.02.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/11/2025] [Accepted: 02/18/2025] [Indexed: 03/24/2025]
Abstract
Oral supramolecular drug delivery systems (SDDSs) have shown promising potential, along with a rapid increase in the development of polypeptide-based drugs. Biofriendly, biocompatible, and multistimulation-responsive SDDSs achieve their unique deliverability via noncovalent bonds, which can encapsulate drugs and release them at the target site along the oral tract. In this review, we analyze the oral tract from an anatomical perspective and explain the potential physical, microenvironmental, and systematic barriers, as well as the properties of drug delivery. After understanding the specific environment at different oral sites, the application of SDDSs to the mouth, stomach, small intestine, and cell targeting is summarized. Finally, this review summarizes the application of SDDSs for the successful delivery of drugs and describes how to overcome the barriers of SDDSs in drug delivery using a more biofriendly approach.
Collapse
Affiliation(s)
- Jiawen Chen
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China
| | - Tianqi Liu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China
| | - Mi Wang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China
| | - Beibei Lu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China
| | - De Bai
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China
| | - Jiaqi Shang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China
| | - Yingjun Chen
- Shenzhen JC innovation (Lazylab) Co., LTD., Shenzhen 518055, China
| | - Jiaheng Zhang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China.
| |
Collapse
|
2
|
Wang Y, Lan S, Zhang L, Li Y, Deng Z, Ye X, Pan H, Chen S. Mucus Barrier Weakens the Inhibitory Activity of Pyrogallol-Based Polyphenols Against α-Glucosidase. Mol Nutr Food Res 2025; 69:e202400838. [PMID: 40108930 DOI: 10.1002/mnfr.202400838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/04/2025] [Accepted: 01/23/2025] [Indexed: 03/22/2025]
Abstract
SCOPE Polyphenols reportedly possess strong in vitro α-glucosidase inhibitory activity, even higher than acarbose, but their in vivo regulation on postprandial hyperglycemia is poor. So far this typical problem of polyphenols remains unsolved, greatly hindering their application as α-glucosidase inhibitors. METHODS AND RESULTS Here, we identify the small intestinal mucus layer acts as a barrier to significantly reduce in vivo α-glucosidase inhibitory activity of epigallocatechin gallate, prodelphinidin B digallate (proDB DG), and proanthocyanidins from Chinese bayberry leaves. Multispectroscopy, rheology, solvent method, and molecular docking analysis showed that these pyrogallol-based polyphenols, especially proDB DG strongly interacted with small intestinal mucins through hydrogen bonding, hydrophobic interactions, and electrostatic interactions. These interactions block polyphenols from penetrating the mucus layer, resulting in their low binding rates with α-glucosidase in vivo. Besides, polyphenol-driven aggregation of the mucins enhanced the barrier function and reduced the permeability of the mucus layer, resulting in delayed digestion and absorption of carbohydrates. CONCLUSIONS The mucus barrier weakens the inhibitory activity of pyrogallol-based polyphenols against α-glucosidase. Hence, overcoming the mucus barrier is a promising strategy to improve the regulation of pyrogallol-based polyphenols against postprandial hyperglycemia in vivo, which helps them to become novel α-glucosidase inhibitors in the clinic.
Collapse
Affiliation(s)
- Yi Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, PR China
| | - Suqing Lan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, PR China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, PR China
| | - Laiming Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, PR China
| | - Yunxuan Li
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, PR China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, PR China
| | - Ziyang Deng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, PR China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, PR China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, PR China
- Zhejiang University Zhongyuan Institute, Zhengzhou, PR China
| | - Haibo Pan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, PR China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, PR China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, PR China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, PR China
- Zhejiang University Zhongyuan Institute, Zhengzhou, PR China
| |
Collapse
|
3
|
Hu Q, Huang G, Huang H. Extraction, structure, activity and application of konjac glucomannan. ULTRASONICS SONOCHEMISTRY 2025; 116:107315. [PMID: 40117876 PMCID: PMC11979519 DOI: 10.1016/j.ultsonch.2025.107315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/08/2025] [Accepted: 03/16/2025] [Indexed: 03/23/2025]
Abstract
Konjac is a perennial herbaceous plant from the Araceae family's Amorphophallus genus. It has high nutritional, health, and pharmacological values. It contains various bioactive components, the most notable of which is konjac glucomannan, which has several biological roles, including efficiently fighting diabetes, exerting prebiotic activity, containing antioxidant capacity, modulating immunological function, and demonstrating anti-cancer potential. Currently, the konjac glucomannan (KGM) research mainly focuses on packaging film, gel characteristics, efficacy, and evaluation. However, the extraction, underlying portrayal, derivatization, and action of KGM are seldom detailed. Herein, the utilization of konjac as an unrefined substance was surveyed, meaning to give extensive and orderly recombinant data on the extraction, decontamination, structure, natural movement, derivatization, and use of KGM to provide a full play to the interesting gelatinate, biocompatibility, high viscosity and other properties of KGM. It provided a theoretical basis for further developing the konjac glucomannan food industry, pharmaceutical field, and other fields.
Collapse
Affiliation(s)
- Qiurui Hu
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China.
| | - Hualiang Huang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Wuhan Institute of Technology, Wuhan 430074, China.
| |
Collapse
|
4
|
Li L, Chen M, Reis RL, Kundu SC, Xiao B, Shi X. Advancements of nanoscale drug formulations for combination treatment of colorectal cancer. Int J Pharm 2025; 674:125508. [PMID: 40132771 DOI: 10.1016/j.ijpharm.2025.125508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/10/2025] [Accepted: 03/21/2025] [Indexed: 03/27/2025]
Abstract
Combination chemotherapy is widely utilized in treating colorectal cancer (CRC), particularly for patients who are ineligible for surgery or those with metastatic CRC (mCRC). While this therapeutic method has demonstrated efficacy in managing CRC and mCRC, its broader clinical application is limited due to the unique physical properties, mechanisms of action, and pharmacokinetics of different chemotherapeutic drugs. Consequently, achieving satisfactory treatment outcomes proves to be challenging. Nanotechnology has given rise to innovative drug systems that are precise, controllable, and highly efficient in drug delivery. These nanoscale drug delivery systems can integrate the advantageous aspects of various therapeutic modalities, including chemotherapy, gene therapy, and immunotherapy. This review aims to explain the application of nano-drug delivery system in the treatment of colorectal cancer. Through its unique physical/chemical properties and biological functions, it can solve the limitations of traditional therapy and achieve more accurate, efficient and safe treatment. The advantages/disadvantages, physical and chemical characteristics of various drug delivery systems are described in detail, and suggestions on selecting reasonable NDDSs according to different drug combination methods are given to achieve the best therapeutic effect. This review paper presents an exhaustive summary of the diverse range of drugs utilized in chemotherapy, in addition to outlining strategies for effectively integrating chemotherapy with other treatment modalities. Furthermore, it delves into the principle of selecting carriers for various drug combinations.
Collapse
Affiliation(s)
- Liqi Li
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Maohua Chen
- Department of Pharmacy, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Rui L Reis
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetic, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimarães 4805-017, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães 4800-058, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetic, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimarães 4805-017, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães 4800-058, Portugal
| | - Bo Xiao
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Xiaoxiao Shi
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
5
|
Liang S, Zhao D, Liu X, Liu B, Li Y. The stomach, small intestine, and colon-specific gastrointestinal tract delivery systems for bioactive nutrients. Adv Colloid Interface Sci 2025; 341:103503. [PMID: 40209595 DOI: 10.1016/j.cis.2025.103503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 02/13/2025] [Accepted: 03/29/2025] [Indexed: 04/12/2025]
Abstract
Oral administration is a convenient way to deliver bioactive nutrients. However, the complex and dynamic environment of the gastrointestinal (GI) tract poses distinct challenges. These include the acidic environment of the stomach, limited transport across the GI mucosa, and the risk of enzymatic degradation, all of which can compromise the nutritional effectiveness of orally delivered nutrients. In response to these challenges, various GI tract delivery systems have been developed to target specific regions, such as the stomach, small intestine, or colon, to precisely control the release of bioactive nutrients and enhance their health-promoting benefits. This review critically examines the principles underlying stomach-, small intestine-, and colon-targeted delivery systems, highlighting the selection of appropriate wall materials and the interactions between delivery systems and the mucosal epithelial barrier. Moreover, we describe relevant biological models and quantitative analyses to measure these interactions. In particular, we emphasize the significant advantages offered by colon-targeted delivery systems in maintaining a healthy colonic microenvironment. This review aims to inspire novel concepts and stimulate further research into GI tract delivery systems, offering promising avenues for maximizing the therapeutic effects of bioactive nutrients in practical applications.
Collapse
Affiliation(s)
- Shuang Liang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; Central Laboratory, NMPA Key Laboratory for Dental Materials, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Dongyu Zhao
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiangyu Liu
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Bin Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yuan Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
6
|
Lee J, Kwak D, Kim H, Ullah M, Kim J, Naeem M, Hwang S, Im E, Yoon IS, Jung Y, Yoo JW. Elucidating a Tumor-Selective Nanoparticle Delivery Mechanism at the Colorectal Lumen-Tumor Interface for Precise Local Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409994. [PMID: 39828655 DOI: 10.1002/smll.202409994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/27/2024] [Indexed: 01/22/2025]
Abstract
Although various colorectal cancer (CRC)-targeted nanoparticles have been developed to selectively deliver anticancer agents to tumor tissues, severe off-target side effects still persist due to unwanted systemic nanoparticle distribution, limiting the therapeutic outcome. Here, by elucidating a tumor-selective nanoparticle delivery mechanism occurring at the colorectal lumen-tumor interface, an alternative CRC-targeted delivery route is proposed, which enables highly tumor-selective delivery without systemic distribution, through direct drug delivery from the outside of the body (colorectal lumen) to tumors in the colorectum. Owing to the presence of accessible tumor-specific receptors such as CD44 at the colorectal lumen-tumor interface, but not at the colorectal lumen-normal tissue interface, colorectal luminal surface (CLS)-targeting ligand-functionalized nanoparticles selectively accumulate in CRC tissues without systemic distribution, resulting in successful local CRC therapy. The findings suggest that CLS-targeted lumen-to-tumor delivery can be a suitable strategy for highly CRC-specific drug delivery for precise local CRC therapy.
Collapse
Affiliation(s)
- Juho Lee
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Dongmin Kwak
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyunwoo Kim
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Muneeb Ullah
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Jihyun Kim
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Muhammad Naeem
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Punjab, 46000, Pakistan
| | - Seonghwan Hwang
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Eunok Im
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - In-Soo Yoon
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Yunjin Jung
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Jin-Wook Yoo
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
7
|
Zheng B, Liu D, Qin X, Zhang D, Zhang P. Mucoadhesive-to-Mucopenetrating Nanoparticles for Mucosal Drug Delivery: A Mini Review. Int J Nanomedicine 2025; 20:2241-2252. [PMID: 39995958 PMCID: PMC11849417 DOI: 10.2147/ijn.s505427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/01/2025] [Indexed: 02/26/2025] Open
Abstract
Mucosal tissue acts as a barrier between the human body's internal environment and the external world. The mucosal tissue is shielded from injurious environmental chemicals, toxins, and pathogens by a mucus layer lining above the mucosal tissue, and meanwhile the periodic mucosal clearance accelerates the removal of mucoadhesive components. And therefore, transmucosal drug delivery is limited. Nanocarriers for mucosal drug delivery is recently developed to enhance either long retention of drugs within the mucus layer or rapid translocation of drugs across the mucus layer. Among all these types of drug delivery systems, mucoadhesive-to-mucopenetrating nanocarriers transport drugs most efficiently into targeted mucosal tissues. In this review, recent progress on the mucoadhesive-to-mucopenetrating drug delivery systems and their application are updated.
Collapse
Affiliation(s)
- Bin Zheng
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, People’s Republic of China
| | - Dingyi Liu
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiaowen Qin
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, 15008, People’s Republic of China
| | - Dahong Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Pu Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
8
|
Amparo TR, Almeida TC, Sousa LRD, Xavier VF, da Silva GN, Brandão GC, dos Santos ODH. Nanostructured Formulations for a Local Treatment of Cancer: A Mini Review About Challenges and Possibilities. Pharmaceutics 2025; 17:205. [PMID: 40006574 PMCID: PMC11859672 DOI: 10.3390/pharmaceutics17020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Cancer represents a significant societal, public health, and economic challenge. Conventional chemotherapy is based on systemic administration; however, it has current limitations, including poor bioavailability, high-dose requirements, adverse side effects, low therapeutic indices, and the development of multiple drug resistance. These factors underscore the need for innovative strategies to enhance drug delivery directly to tumours. However, local treatment also presents significant challenges, including the penetration of the drug through endothelial layers, tissue density in the tumour microenvironment, tumour interstitial fluid pressure, physiological conditions within the tumour, and permanence at the site of action. Nanotechnology represents a promising alternative for addressing these challenges. This narrative review elucidates the potential of nanostructured formulations for local cancer treatment, providing illustrative examples and an analysis of the advantages and challenges associated with this approach. Among the nanoformulations developed for the local treatment of breast, bladder, colorectal, oral, and melanoma cancer, polymeric nanoparticles, liposomes, lipid nanoparticles, and nanohydrogels have demonstrated particular efficacy. These systems permit mucoadhesion and enhanced tissue penetration, thereby increasing the drug concentration at the tumour site (bioavailability) and consequently improving anti-tumour efficacy and potentially reducing adverse effects. In addition to studies indicating chemotherapy, nanocarriers can be used as a theranostic approach and in combination with irradiation methods.
Collapse
Affiliation(s)
- Tatiane Roquete Amparo
- Department of Pharmacy, Federal University of Ouro Preto, Rua Professor Paulo Magalhães Gomes, 122-Bauxita, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (G.N.d.S.); (G.C.B.); (O.D.H.d.S.)
| | - Tamires Cunha Almeida
- Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brasil, 1500–Butantã, São Paulo 05503-900, Brazil;
| | - Lucas Resende Dutra Sousa
- Department of Pharmacy, Federal University of Ouro Preto, Rua Professor Paulo Magalhães Gomes, 122-Bauxita, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (G.N.d.S.); (G.C.B.); (O.D.H.d.S.)
| | - Viviane Flores Xavier
- Department of Pharmacy, Federal University of Ouro Preto, Rua Professor Paulo Magalhães Gomes, 122-Bauxita, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (G.N.d.S.); (G.C.B.); (O.D.H.d.S.)
| | - Glenda Nicioli da Silva
- Department of Pharmacy, Federal University of Ouro Preto, Rua Professor Paulo Magalhães Gomes, 122-Bauxita, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (G.N.d.S.); (G.C.B.); (O.D.H.d.S.)
| | - Geraldo Célio Brandão
- Department of Pharmacy, Federal University of Ouro Preto, Rua Professor Paulo Magalhães Gomes, 122-Bauxita, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (G.N.d.S.); (G.C.B.); (O.D.H.d.S.)
| | - Orlando David Henrique dos Santos
- Department of Pharmacy, Federal University of Ouro Preto, Rua Professor Paulo Magalhães Gomes, 122-Bauxita, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (G.N.d.S.); (G.C.B.); (O.D.H.d.S.)
| |
Collapse
|
9
|
Yi J, Kang L, Luo D, Fan Y. Enhanced solubility, stability, bioaccessibility, and antioxidant activity of curcumin with hydrolyzed pea protein-based nano-micelles: pH-driven method vs ethanol-induced method. Int J Biol Macromol 2025; 291:139106. [PMID: 39725114 DOI: 10.1016/j.ijbiomac.2024.139106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Pea protein nano-micelles gained with partial hydrolysis by a proteolytic enzyme (Protamex) were employed as nanocarriers to encapsulate and stabilize liable and hydrophobic curcumin (CUR) with two various methods (pH-driven method (PDM) and ethanol-induced method (EIM)). Both CUR-loaded pea protein hydrolysates (PPHs) nano-micelles by PDM and EIM exhibited spherical shapes, and uniform particle size distributions. Highest CUR loading amount (3.21 %) was gained with PPHs by PDM. The interaction between PPHs nano-micelles and curcumin was comprehensively examined with optical spectroscopy. These outcomes obviously demonstrated the water solubility, storage stability against UV light and heating, bioaccessibility and in vitro antioxidant activity of CUR can be pronouncedly enhanced with PPHs-based nanocarriers. Interestingly, PPHs-CUR nano-micelles fabricated with PDM have higher loading amount, light stability, and better bioaccessibility as well as antioxidant activity than those by EIM. These results clearly show that PDM may be a better method than EIM and provide useful information in nutraceuticals encapsulation with vegetable proteins-based delivery systems.
Collapse
Affiliation(s)
- Jiang Yi
- Shenzhen Key Laboratory of Food Macromolecules Science and Processing, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Ling Kang
- Shenzhen Key Laboratory of Food Macromolecules Science and Processing, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dixue Luo
- Shenzhen Key Laboratory of Food Macromolecules Science and Processing, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yuting Fan
- School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
10
|
Cai Z, Liu B, Cai Q, Gou J, Tang X. Advances in microsphere-based therapies for peritoneal carcinomatosis: challenges, innovations, and future prospects. Expert Opin Drug Deliv 2025; 22:31-46. [PMID: 39641971 DOI: 10.1080/17425247.2024.2439462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/09/2024] [Accepted: 12/04/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION Clinical outcomes for the treatment of peritoneal carcinomatosis (PC) have remained suboptimal. Microsphere-based intraperitoneal chemotherapy has shown considerable potential in preclinical studies. However, due to the complications associated with peritoneal adhesions, there has been a lack of comprehensive reviews focusing on the progress of microsphere applications in the treatment of PC. AREAS COVERED We provide an overview of the current clinical treatment strategies for PC and analyze the potential advantages of microspheres in this context. Regarding the issue of peritoneal adhesions induced by microspheres, we investigate the underlying mechanisms and propose possible solutions. Furthermore, we outline the future directions for the development of microsphere-based therapies in the treatment of PC. EXPERT OPINION Microspheres formulated with highly biocompatible materials to the peritoneum, such as sodium alginate, gelatin, or genipin, or with an optimal particle size (4 ~ 30 μm) and lower molecular weights (10 ~ 57 kDa), can prevent peritoneal adhesions and improve drug distribution. To further enhance the antitumor efficacy, enhancing the tumor penetration capability and specificity of microspheres, optimizing intraperitoneal distribution, and addressing tumor resistance have demonstrated significant potential in preclinical studies, offering new therapeutic prospects for the treatment of PC.
Collapse
Affiliation(s)
- Zhitao Cai
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Boyuan Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Qing Cai
- Department of Formulation, Zhuhai Livzon Microsphere Technology Co. Ltd, Zhuhai, China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
11
|
Zheng B, Zhang H, Wang J, Qin X, Xu W, Wang H, Liu Z, Liu Y, Mou Y, Lai WF, Shen Y, Zhang D, Zhang P. A mucoadhesive-to-penetrating nanomotors-in-hydrogel system for urothelium-oriented intravesical drug delivery. J Nanobiotechnology 2024; 22:560. [PMID: 39272197 PMCID: PMC11401290 DOI: 10.1186/s12951-024-02816-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Intravesical therapy (IT) is widely used to tackle various urological diseases. However, its clinical efficacy is decreased by the impermeability of various barriers presented on the bladder luminal surface, including the urinary mucus layer and the densely packed tissue barrier. In this study, we report a mucoadhesive-to-penetrating nanomotors-in-hydrogel system for urothelium-oriented intravesical drug delivery. Upon intravesical instillation, its poloxamer 407 (PLX) hydrogel gelated and adhered to the urothelium to prolong its intravesical retention. The urea afterwards diffused into the hydrogel, thus generating a concentration gradient. Urease-powered membrane nanomotors (UMN) without asymmetric surface engineering could catalyze the urea and migrate down this concentration gradient to deeply and unidirectionally penetrate the urothelial barrier. Moreover, the intravesical hybrid system-delivered gemcitabine could effectively inhibit the bladder tumor growth without inducing any side effect. Therefore, our mucoadhesive-to-penetrating nanomotors-in-hydrogel system could serve as an alternative to IT to meet the clinical need for more efficacious therapeutics for urological diseases.
Collapse
Affiliation(s)
- Bin Zheng
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Haibao Zhang
- Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Jinxue Wang
- Center for Rehabilitation Medicine, Department of Neuroelectrophysiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaowen Qin
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wentao Xu
- Cancer Center, Department of Interventional Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Heng Wang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhenghong Liu
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yang Liu
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yixuan Mou
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wing-Fu Lai
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310014, China.
| | - Dahong Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Pu Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
12
|
Zhao R, Zhang Y, Wang Q, Cao YM, Hou MX, Sun XQ, Yu ST, Chen YJ, Wang KK, Li JT. Generation of transgenic fish cell line with α-lactalbumin nanocarriers co-delivering Tol2 transposase mRNA and plasmids. iScience 2024; 27:110480. [PMID: 39156651 PMCID: PMC11326935 DOI: 10.1016/j.isci.2024.110480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/07/2024] [Accepted: 07/08/2024] [Indexed: 08/20/2024] Open
Abstract
Fish cells, such as grass carp (Ctenopharyngodon idella) kidney (CIK) cells, are harder to transfect than mammalian cells. There is a need for an efficient gene delivery system for fish cells. Here, we used CIK cell line as a model to develop a strategy to enhance RNA and plasmid DNA transfection efficiency using a nanocarrier generated from α-lactalbumin (α-NC). α-NC absorbed nucleic acid cargo efficiently and exhibited low cytotoxicity. Plasmid transfection was more efficient with α-NC than with liposomal transfection reagents. We used α-NC to co-transfect Tol2 transposase mRNA and a plasmid containing Cas9 and GFP, generating a stable transgenic CIK cell line. Genome and RNA sequencing revealed that the Cas9 and GFP fragments were successfully inserted into the genome of CIK cells and efficiently transcribed. In this study, we established an efficient transfection system for fish cells using α-NC, simplifying the process of generating stable transgenic fish cell lines.
Collapse
Affiliation(s)
- Ran Zhao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Yan Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Qi Wang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Yi-Ming Cao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Ming-Xi Hou
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Xiao-Qing Sun
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Shuang-Ting Yu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
- Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ying-Jie Chen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Kai-Kuo Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jiong-Tang Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| |
Collapse
|
13
|
Zhang Z, Chang R, Yue Q, Liu B, Li Z, Yuan Y, Liang S, Li Y. Nanoparticle delivery systems of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:51-88. [PMID: 39218508 DOI: 10.1016/bs.afnr.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Foodborne functional substances have received much attention for their functional benefits in health and disease. However, these substances are easily affected by the adverse environment during production, transportation, or storage. They will also be damaged by the gastric environment and limited by the mucosal barrier after entering the human body, thus affecting the bioavailability of functional substances in the body. The construction of nanoparticle delivery systems is helpful to protect the biological activity of functional substances and improve their solubility, stability, and absorption of substances. Responsive delivery systems help control the release of functional substances in specific environments and targeted sites to achieve nutritional intervention, disease prevention, and treatment. In this chapter, the main types of foodborne functional substances and their commonly used delivery systems were reviewed, and the application of delivery systems in precision nutrition was described from the aspects of environmental stimuli-responsive delivery systems, site-specific delivery systems, and disease-targeted delivery systems.
Collapse
Affiliation(s)
- Ziyi Zhang
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Ruxin Chang
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Qing Yue
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Bin Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, P.R. China
| | - Zekun Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Yu Yuan
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Shuang Liang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, P.R. China
| | - Yuan Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China.
| |
Collapse
|
14
|
Wang N, Chen L, Huang W, Gao Z, Jin M. Current Advances of Nanomaterial-Based Oral Drug Delivery for Colorectal Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:557. [PMID: 38607092 PMCID: PMC11013305 DOI: 10.3390/nano14070557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/10/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024]
Abstract
Colorectal cancer (CRC) is a common malignant tumor, and traditional treatments include surgical resection and radiotherapy. However, local recurrence, distal metastasis, and intestinal obstruction are significant problems. Oral nano-formulation is a promising treatment strategy for CRC. This study introduces physiological and environmental factors, the main challenges of CRC treatment, and the need for a novel oral colon-targeted drug delivery system (OCDDS). This study reviews the research progress of controlled-release, responsive, magnetic, targeted, and other oral nano-formulations in the direction of CRC treatment, in addition to the advantages of oral colon-targeted nano-formulations and concerns about the oral delivery of related therapeutic agents to inspire related research.
Collapse
Affiliation(s)
- Nuoya Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (N.W.); (L.C.); (W.H.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Pharmacy, Yanbian University, Yanji 133000, China
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (N.W.); (L.C.); (W.H.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (N.W.); (L.C.); (W.H.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (N.W.); (L.C.); (W.H.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (N.W.); (L.C.); (W.H.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
15
|
Chang R, Chen L, Qamar M, Wen Y, Li L, Zhang J, Li X, Assadpour E, Esatbeyoglu T, Kharazmi MS, Li Y, Jafari SM. The bioavailability, metabolism and microbial modulation of curcumin-loaded nanodelivery systems. Adv Colloid Interface Sci 2023; 318:102933. [PMID: 37301064 DOI: 10.1016/j.cis.2023.102933] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/01/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Curcumin (Cur), the major bioactive component of turmeric (Curcuma longa) possesses many health benefits. However, low solubility, stability and bioavailability restricts its applications in food. Recently, nanocarriers such as complex coacervates, nanocapsules, liposomes, nanoparticles, nanomicelles, have been used as novel strategies to solve these problems. In this review, we have focused on the delivery systems responsive to the environmental stimuli such as pH-responsive, enzyme-responsive, targeted-to-specific cells or tissues, mucus-penetrating and mucoadhesive carriers. Besides, the metabolites and their biodistribution of Cur and Cur delivery systems are discussed. Most importantly, the interaction between Cur and their carriers with gut microbiota and their effects of modulating the gut health synergistically were discussed comprehensively. In the end, the biocompatibility of Cur delivery systems and the feasibility of their application in food industry is discussed. This review provided a comprehensive review of Cur nanodelivery systems, the health impacts of Cur nanocarriers and an insight into the application of Cur nanocarriers in food industry.
Collapse
Affiliation(s)
- Ruxin Chang
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Liran Chen
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Muhammad Qamar
- Faculty of Food science and Nutrition, Department of Food Science and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Yanjun Wen
- Henan Provincial Key Laboratory of Natural Pigments, Henan Zhongda Hengyuan Biotechnology Stock Company Limited, Luohe 462600, PR China
| | - Linzheng Li
- Henan Provincial Key Laboratory of Natural Pigments, Henan Zhongda Hengyuan Biotechnology Stock Company Limited, Luohe 462600, PR China
| | - Jiayin Zhang
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xing Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
| | | | - Yuan Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
16
|
Farahani MK, Gharibshahian M, Rezvani A, Vaez A. Breast cancer brain metastasis: from etiology to state-of-the-art modeling. J Biol Eng 2023; 17:41. [PMID: 37386445 DOI: 10.1186/s13036-023-00352-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 05/02/2023] [Indexed: 07/01/2023] Open
Abstract
Currently, breast carcinoma is the most common form of malignancy and the main cause of cancer mortality in women worldwide. The metastasis of cancer cells from the primary tumor site to other organs in the body, notably the lungs, bones, brain, and liver, is what causes breast cancer to ultimately be fatal. Brain metastases occur in as many as 30% of patients with advanced breast cancer, and the 1-year survival rate of these patients is around 20%. Many researchers have focused on brain metastasis, but due to its complexities, many aspects of this process are still relatively unclear. To develop and test novel therapies for this fatal condition, pre-clinical models are required that can mimic the biological processes involved in breast cancer brain metastasis (BCBM). The application of many breakthroughs in the area of tissue engineering has resulted in the development of scaffold or matrix-based culture methods that more accurately imitate the original extracellular matrix (ECM) of metastatic tumors. Furthermore, specific cell lines are now being used to create three-dimensional (3D) cultures that can be used to model metastasis. These 3D cultures satisfy the requirement for in vitro methodologies that allow for a more accurate investigation of the molecular pathways as well as a more in-depth examination of the effects of the medication being tested. In this review, we talk about the latest advances in modeling BCBM using cell lines, animals, and tissue engineering methods.
Collapse
Affiliation(s)
| | - Maliheh Gharibshahian
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Alireza Rezvani
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
17
|
Sun Q, Chen J, Zhao Q, He Z, Tang L, Pu Y, He B. Bio-adhesive and ROS-scavenging hydrogel microspheres for targeted ulcerative colitis therapy. Int J Pharm 2023; 639:122962. [PMID: 37068716 DOI: 10.1016/j.ijpharm.2023.122962] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/24/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
Ulcerative colitis (UC) as an important type of inflammatory bowel disease is a chronic disease characterized by intestinal dyshomeostasis. The UC treatment is challenged by the insufficiency of drug delivery and retention. Herein, we fabricated an intrarectal formulation of olsalazine (Olsa)-loaded hydrogel microspheres (LDKT/Olsa) with good bio-adhesiveness and reactive oxygen species (ROS)-scavenging ability to enhance drug retention and therapeutic effect. Low methoxy pectin-dopamine conjugate/konjac glucomannan composite hydrogel microspheres (LDKT) with a size ranging from 10 to 100 μm were prepared by using Zn2+ and ROS-sensitive thioketal as crosslinkers. Upon intrarectal administration, the negatively charged and dopamine-functionalized hydrogel microspheres efficiently adhered to cationic surface of inflammatory mucosa, scavenging ROS and releasing Zn2+ and Olsa for antibacterial and anti-inflammatory effects. In the dextran sodium sulfate (DSS)-induced mouse UC model, the microspheres significantly reduced the levels of colonic ROS and pro-inflammatory cytokines, improved gut mucosal barrier integrity, and remarkably relieved colitis. Overall, the LDKT microspheres are promising carriers to deliver drugs for UC treatment.
Collapse
Affiliation(s)
- Qiqi Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Jun Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Quan Zhao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Ziyun He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Lei Tang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
18
|
Li ZY, Zhu YX, Chen JR, Chang X, Xie ZZ. The role of KLF transcription factor in the regulation of cancer progression. Biomed Pharmacother 2023; 162:114661. [PMID: 37068333 DOI: 10.1016/j.biopha.2023.114661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/19/2023] Open
Abstract
Kruppel-like factors (KLFs) are a family of zinc finger transcription factors that have been found to play an essential role in the development of various human tissues, including epithelial, teeth, and nerves. In addition to regulating normal physiological processes, KLFs have been implicated in promoting the onset of several cancers, such as gastric cancer, lung cancer, breast cancer, liver cancer, and colon cancer. To inhibit cancer progression, various existing medicines have been used to modulate the expression of KLFs, and anti-microRNA treatments have also emerged as a potential strategy for many cancers. Investigating the possibility of targeting KLFs in cancer therapy is urgently needed, as the roles of KLFs in cancer have not received enough attention in recent years. This review summarizes the factors that regulate KLF expression and function at both the transcriptional and posttranscriptional levels, which could aid in understanding the mechanisms of KLFs in cancer progression. We hope that this review will contribute to the development of more effective anti-cancer medicines targeting KLFs in the future.
Collapse
Affiliation(s)
- Zi-Yi Li
- College of Basic Medical, Nanchang University, Nanchang, Jiangxi 330006, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Yu-Xin Zhu
- College of Basic Medical, Nanchang University, Nanchang, Jiangxi 330006, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Jian-Rui Chen
- College of Basic Medical, Nanchang University, Nanchang, Jiangxi 330006, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Xu Chang
- College of Basic Medical, Nanchang University, Nanchang, Jiangxi 330006, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Zhen-Zhen Xie
- College of Basic Medical, Nanchang University, Nanchang, Jiangxi 330006, PR China; Experimental teaching center of Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
19
|
Li Y, Huang J, Wang J, Xia S, Ran H, Gao L, Feng C, Gui L, Zhou Z, Yuan J. Human umbilical cord-derived mesenchymal stem cell transplantation supplemented with curcumin improves the outcomes of ischemic stroke via AKT/GSK-3β/β-TrCP/Nrf2 axis. J Neuroinflammation 2023; 20:49. [PMID: 36829224 PMCID: PMC9951499 DOI: 10.1186/s12974-023-02738-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 02/16/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Human umbilical cord-derived mesenchymal stem cell (hUC-MSC) engraftment is a promising therapy for acute ischemic stroke (AIS). However, the harsh ischemic microenvironment limits the therapeutic efficacy of hUC-MSC therapy. Curcumin is an anti-inflammatory agent that could improve inflammatory microenvironment. However, whether it enhances the neuroprotective efficacy of hUC-MSC transplantation is still unknown. In the present study, we investigated the therapeutic efficacy and the possible mechanism of combined curcumin and hUC-MSC treatment in AIS. METHODS Middle cerebral artery occlusion (MCAO) mice and oxygen glucose deprivation (OGD) microglia were administrated hUC-MSCs with or without curcumin. Neurological deficits assessment, brain water content and TTC were used to assess the therapeutic effects of combined treatment. To elucidate the mechanism, MCAO mice and OGD microglia were treated with AKT inhibitor MK2206, GSK3β activator sodium nitroprusside (SNP), GSK3β inhibitor TDZD-8 and Nrf2 gene knockout were used. Immunofluorescence, flow cytometric analysis, WB and RT-PCR were used to evaluate the microglia polarization and the expression of typical oxidative mediators, inflammatory cytokines and the AKT/GSK-3β/β-TrCP/Nrf2 pathway protein. RESULTS Compared with the solo hUC-MSC-grafted or curcumin groups, combined curcumin-hUC-MSC therapy significantly improved the functional performance outcomes, diminished the infarct volumes and the cerebral edema. The combined treatment promoted anti-inflammatory microglia polarization via Nrf2 pathway and decreased the expression of ROS, oxidative mediators and pro-inflammatory cytokines, while elevating the expression of the anti-inflammatory cytokines. Nrf2 knockout abolished the antioxidant stress and anti-inflammation effects mediated with combined treatment. Moreover, the combined treatment enhanced the phosphorylation of AKT and GSK3β, inhibited the β-TrCP nucleus translocation, accompanied with Nrf2 activation in the nucleus. AKT inhibitor MK2206 activated GSK3β and β-TrCP and suppressed Nrf2 phosphorylation in nucleus, whereas MK2206 with the GSK3β inhibitor TDZD-8 reversed these phenomena. Furthermore, combined treatment followed by GSK3β inhibition with TDZD-8 restricted β-TrCP nucleus accumulation, which facilitated Nrf2 expression. CONCLUSIONS We have demonstrated that combined curcumin-hUC-MSC therapy exerts anti-inflammation and antioxidant stress efficacy mediated by anti-inflammatory microglia polarization via AKT/GSK-3β/β-TrCP/Nrf2 axis and an improved neurological function after AIS.
Collapse
Affiliation(s)
- Yuan Li
- grid.410570.70000 0004 1760 6682Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Chongqing, 400038 China
| | - Jialu Huang
- grid.410570.70000 0004 1760 6682Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Chongqing, 400038 China
| | - Jie Wang
- grid.410570.70000 0004 1760 6682Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Chongqing, 400038 China
| | - Simin Xia
- grid.410570.70000 0004 1760 6682Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Chongqing, 400038 China
| | - Hong Ran
- grid.410570.70000 0004 1760 6682Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Chongqing, 400038 China
| | - Lenyu Gao
- grid.410570.70000 0004 1760 6682Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Chongqing, 400038 China ,grid.410570.70000 0004 1760 6682Department of Traditional Chinese Medicine and Rheumatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Chengjian Feng
- Department of Medical Engineering, 958th Hospital of the People’s Liberation Army, Chongqing, 400038 China
| | - Li Gui
- grid.410570.70000 0004 1760 6682Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Chongqing, 400038 China
| | - Zhenhua Zhou
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Chongqing, 400038, China.
| | - Jichao Yuan
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Chongqing, 400038, China.
| |
Collapse
|
20
|
Zhang P, Wu G, Zhang D, Lai WF. Mechanisms and strategies to enhance penetration during intravesical drug therapy for bladder cancer. J Control Release 2023; 354:69-79. [PMID: 36603810 DOI: 10.1016/j.jconrel.2023.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/05/2023]
Abstract
Bladder cancer (BCa) is one of the most prevalent cancers worldwide. The effectiveness of intravesical therapy for bladder cancer, however, is limited due to the short dwell time and the presence of permeation barriers. Considering the histopathological features of BCa, the permeation barriers for drugs to transport across consist of a mucus layer and a nether tumor physiological barrier. Mucoadhesive delivery systems or mucus-penetrating delivery systems are developed to enhance their retention in or penetration across the mucus layer, but delivery systems that are capable of mucoadhesion-to-mucopenetration transition are more efficient to deliver drugs across the mucus layer. For the tumor physiological barrier, delivery systems mainly rely on four types of penetration mechanisms to cross it. This review summarizes the classical and latest approaches to intravesical drug delivery systems to penetrate BCa.
Collapse
Affiliation(s)
- Pu Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Guoqing Wu
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Dahong Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| | - Wing-Fu Lai
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Department of Food Science and Nutrition, Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
21
|
Qu J, Shao C, Ying Y, Wu Y, Liu W, Tian Y, Yin Z, Li X, Yu Z, Shuai J. The spring-like effect of microRNA-31 in balancing inflammatory and regenerative responses in colitis. Front Microbiol 2022; 13:1089729. [PMID: 36590397 PMCID: PMC9800619 DOI: 10.3389/fmicb.2022.1089729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders caused by the disruption of immune tolerance to the gut microbiota. MicroRNA-31 (MIR31) has been proven to be up-regulated in intestinal tissues from patients with IBDs and colitis-associated neoplasias. While the functional role of MIR31 in colitis and related diseases remain elusive. Combining mathematical modeling and experimental analysis, we systematically explored the regulatory mechanism of MIR31 in inflammatory and epithelial regeneration responses in colitis. Level of MIR31 presents an "adaptation" behavior in dextran sulfate sodium (DSS)-induced colitis, and the similar behavior is also observed for the key cytokines of p65 and STAT3. Simulation analysis predicts MIR31 suppresses the activation of p65 and STAT3 but accelerates the recovery of epithelia in colitis, which are validated by our experimental observations. Further analysis reveals that the number of proliferative epithelial cells, which characterizes the inflammatory process and the recovery of epithelia in colitis, is mainly determined by the inhibition of MIR31 on IL17RA. MIR31 promotes epithelial regeneration in low levels of DSS-induced colitis but inhibits inflammation with high DSS levels, which is dominated by the competition for MIR31 to either inhibit inflammation or promote epithelial regeneration by binding to different targets. The binding probability determines the functional transformation of MIR31, but the functional strength is determined by MIR31 levels. Thus, the role of MIR31 in the inflammatory response can be described as the "spring-like effect," where DSS, MIR31 action strength, and proliferative epithelial cell number are regarded as external force, intrinsic spring force, and spring length, respectively. Overall, our study uncovers the vital roles of MIR31 in balancing inflammation and the recovery of epithelia in colitis, providing potential clues for the development of therapeutic targets in drug design.
Collapse
Affiliation(s)
- Jing Qu
- Department of Physics, and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, China
| | - Chunlei Shao
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yongfa Ying
- Department of Physics, and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, China
| | - Yuning Wu
- Department of Mathematics and Physics, Fujian Jiangxia University, Fuzhou, China
| | - Wen Liu
- Department of Physics, and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, China
| | - Yuhua Tian
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhiyong Yin
- Department of Physics, and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, China
| | - Xiang Li
- Department of Physics, and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhengquan Yu
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jianwei Shuai
- Department of Physics, and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), University of Chinese Academy of Sciences, Wenzhou, China
- Wenzhou Institute, Wenzhou Key Laboratory of Biophysics, University of Chinese Academy of Sciences, Wenzhou, China
| |
Collapse
|
22
|
Ma J, Chen X, Zhang L, Ma L, Li J, Li J, Zang J. The stability and absorption of naturally occurring cAMP by its weak interactions with jujube polysaccharides were greatly improved. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Wang H, Tian W, Li Y, Yuan Y, Lv M, Cao Y, Xiao J. Intervention effects of multilayer core-shell particles on colitis amelioration mechanisms of capsaicin. J Control Release 2022; 351:324-340. [PMID: 36155206 DOI: 10.1016/j.jconrel.2022.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/15/2022]
Abstract
The intervention effects of delivery systems on the digestion and adsorption profiles and, thus, the pharmacological effects of bioactive compounds represent an intriguing scientific hypothesis that can be proven with research case studies. Delivery systems with tailor-made structures fabricating from the same building materials offer a new research strategy for deciphering the modulating effects of the digestive fate on the therapeutic efficacy of encapsulated bioactive compounds. Herein, we developed capsaicin-loaded core-shell nanoparticles (Cap NPs), microparticles (Cap MPs) and nano-in-micro particles (Cap NPs in MPs) and investigated their regulatory effects on the digestive fate and colitis-alleviating mechanisms of capsaicin. Results suggested that the small intestine dominant absorption of Cap NPs differed significantly with the colorectal dominated accumulation of Cap MPs and Cap NPs in MPs in terms of the colitis alleviating mechanisms. Cap NPs alleviated colitis mainly through promoting the colonization of short-chain fatty acid-producing bacteria, maintaining intestinal barrier homeostasis and partially inhibiting the activation of the NF-κB pro-inflammatory pathway. Whereas, better dietary intervention effects were achieved from Cap NPs in MPs via promoting the proliferation of mucus-related bacteria and enhanced triggering efficiency on the TRPV1-mucus-microbiotas cyclic cascade. This work confirmed that rationally designed biomaterial-based delivery vehicles can flexibly interfere with the therapeutic mechanisms of encapsulated cargos, representing a new horizon in the field of precise nutrition.
Collapse
Affiliation(s)
- Haonan Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Wenni Tian
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yuan Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yu Yuan
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Muwen Lv
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
24
|
Curcumin Targeting Non-Coding RNAs in Colorectal Cancer: Therapeutic and Biomarker Implications. Biomolecules 2022; 12:biom12101339. [PMID: 36291546 PMCID: PMC9599102 DOI: 10.3390/biom12101339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/12/2022] [Accepted: 09/18/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer is one of the most common gastrointestinal malignancies, with high incidence rates, a low rate of early diagnosis, and complex pathogenesis. In recent years, there has been progress made in its diagnosis and treatment methods, but tumor malignant proliferation and metastasis after treatment still seriously affect the survival and prognosis of patients. Therefore, it is an extremely urgent task of current medicine to find new anti-tumor drugs with high efficiency and safety and low toxicity. Curcumin has shown potent anti-tumor and anti-inflammatory effects and is considered a hot spot in the research and development of anti-tumor drugs due to its advantages of precise efficacy, lower toxic side effects, and less drug resistance. Recent studies have revealed that curcumin has anti-tumor effects exerted on the epigenetic regulation of tumor-promoting/tumor-suppressing gene expression through the alteration of expression levels of non-coding RNAs (e.g., lncRNAs, miRNAs, and circRNAs). Herein, we summarize the interaction between curcumin and non-coding RNAs on the occurrence and development of colorectal cancer. The information complied in this review will serve as a scientific and reliable basis and viewpoint for the clinical application of non-coding RNAs in colorectal cancer.
Collapse
|
25
|
Hu Y, Zhang S, Wen Z, Fu H, Hu J, Ye X, Kang L, Li X, Yang X. Oral delivery of curcumin via multi-bioresponsive polyvinyl alcohol and guar gum based double-membrane microgels for ulcerative colitis therapy. Int J Biol Macromol 2022; 221:806-820. [PMID: 36099999 DOI: 10.1016/j.ijbiomac.2022.09.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/21/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022]
Abstract
Anti-inflammatory drugs for ulcerative colitis (UC) treatment should specifically penetrate and accumulate in the colon tissue. Herein, a multi-bioresponsive anti-inflammatory drug (curcumin, CUR)-loaded heterogeneous double-membrane microgels (CUR@microgels) for oral administration was fabricated in this study, in which the inner core was derived from polyvinyl alcohol (PVA) and guar gum (GG) and the outer gel was decoration with alginate and chitosan by polyelectrolyte interactions. The structure and morphology of microgels were characterized. In vitro, the formulation exhibited good bio-responses at different pH conditions and sustained-release properties in simulated colon fluid with a drug-release rate of 84.6 % over 34 h. With the assistance of the outlayer gels, the microgels effectively delayed the premature drug release of CUR in the upper gastrointestinal tract. In vivo studies revealed that CUR@microgels specifically accumulated in the colon tissue for 24 h, which suggest that the interlayer gels were apt to reach colon lesion. As expected, the oral administration of microgels remarkably alleviated the symptoms of UC and protected the colon tissue in DSS-induced UC mice. The above results indicated that these facilely fabricated microgels which exhibited excellent biocompatibility and multi-bioresponsive drug release, had an apparent effect on the treatment of UC, which represents a promising drug delivery strategy for CUR in a clinical application.
Collapse
Affiliation(s)
- Yan Hu
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China.
| | - Shangwen Zhang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Zhijie Wen
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Hudie Fu
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Jie Hu
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Xuexin Ye
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Li Kang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Xiaojun Li
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China
| | - Xinzhou Yang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, China.
| |
Collapse
|
26
|
Yawalkar AN, Pawar MA, Vavia PR. Microspheres for targeted drug delivery- A review on recent applications. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Xiao J, Tian W, Abdullah, Wang H, Chen M, Huang Q, Zhang M, Lu M, Song M, Cao Y. Updated design strategies for oral delivery systems: maximized bioefficacy of dietary bioactive compounds achieved by inducing proper digestive fate and sensory attributes. Crit Rev Food Sci Nutr 2022; 64:817-836. [PMID: 35959723 DOI: 10.1080/10408398.2022.2109583] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Interest in the application of dietary bioactive compounds (DBC) in healthcare and pharmaceutical industries has motivated researchers to develop functional delivery systems (FDS) aiming to maximize their bioefficacy. As the direct and indirect health benefiting effects of DBC are acknowledged, traditional design principle of FDS aiming at improving the bioavailability of intact DBC is challenged by the updated one, where the maximized bioefficacy of DBC delivered by FDS will be achieved via rationally absorbed at target sites with proper metabolism pathways. This article briefly summarized the absorption and metabolic fates of orally digested DBC along with their direct and indirect mechanisms to perform health benefiting effects. Current strategies in designing the next generation FDS with an emphasis on their modulation effects on the distribution portion between the upper and lower digestive tract, portal vein and lymphatic absorption, human digestive and gut microbiota enzymatic mediated metabolism were highlighted. Updated research progresses of FDS in adjusting sensory attributes of food end products and inducing synergistic effects rooting from matrix materials and co-delivered cargos were also discussed. Challenges as well as future perspectives concerning the precise nutrition and the critical role of delivery systems in dietary intervention were proposed.
Collapse
Affiliation(s)
- Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Wenni Tian
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Abdullah
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Haonan Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Meimiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingrong Huang
- Department of Food Science, Rutgers, the State University of New Jersey, New Jersey, New Brunswick, USA
| | - Man Zhang
- Department of Food Science, Rutgers, the State University of New Jersey, New Jersey, New Brunswick, USA
| | - Muwen Lu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
28
|
Yuan Y, Liu Y, He Y, Zhang B, Zhao L, Tian S, Wang Q, Chen S, Li Z, Liang S, Hou G, Liu B, Li Y. Intestinal-targeted nanotubes-in-microgels composite carriers for capsaicin delivery and their effect for alleviation of Salmonella induced enteritis. Biomaterials 2022; 287:121613. [PMID: 35700621 DOI: 10.1016/j.biomaterials.2022.121613] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/05/2022] [Accepted: 05/30/2022] [Indexed: 02/09/2023]
Abstract
Salmonella is a word-wide food-borne pathogen, which can cause severe enteritis and intestinal microbiota imbalance. Capsaicin (Cap), a food-based bioactive ingredient, has antibacterial and anti-inflammatory properties. However, its low solubility, low bioavailability and the irritation to digestive tract greatly limit its applications. Here, an intestinal responsively "nanotubes-in-microgel" composite carrier was constructed by capturing α-lactalbumin (α-lac) nanotubes in low-methoxy pectin microgels (LMP-NT) (52 μm). Cap was loaded in such system via hydrophobic interaction with a loading capacity of 38.02 mg/g. The LMP microgels remained stable and protected NT/Cap from early releasing in the gastric condition. It showed an excellent mucoadhesive capacity, which can prolong the intestinal retention up to 12 h and control release NT/Cap in intestine. Afterward, NT/Cap could penetrate across the mucus layer deeply and enter the intestinal villi epithelial cells efficiently. LMP-NT microgels achieved a mucoadhesive-to-penetrating transition in response to intestinal pH, improving the epithelium absorption and the in vivo bioavailability of Cap. Oral administration of LMP-NT/Cap could effectively alleviate enteritis caused by Salmonella infection and maintain the homeostasis of gut microbiota. Overall, this work suggested that LMP-NT composite microgels were promising for intestine-targeted and oral delivery of hydrophobic bioactive food compounds.
Collapse
Affiliation(s)
- Yu Yuan
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ying Liu
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yang He
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing, 100193, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing, 100193, China
| | - Liang Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Simin Tian
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Qimeng Wang
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Shanan Chen
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Zekun Li
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Shuang Liang
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Guohua Hou
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Bin Liu
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Yuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
29
|
Tie S, Tan M. Current Advances in Multifunctional Nanocarriers Based on Marine Polysaccharides for Colon Delivery of Food Polyphenols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:903-915. [PMID: 35072455 DOI: 10.1021/acs.jafc.1c05012] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Inflammatory bowel disease (IBD) has been considered as a chronic disease that is difficult to cure and needs lifelong treatment. Marine polysaccharides with good biocompatibility and biodegradability, mucoadhesion, sensitivity to external stimuli, and targeting ability can be used as wall materials for oral colon-targeted delivery of polyphenols in nutrition intervention of IBD. This manuscript reviewed the latest progress in the design, preparation, and characterization of marine polysaccharides-derived multifunctional nanocarriers for polyphenol colon delivery. Chitosan, sodium alginate, chondroitin sulfate, and hyaluronic acid were discussed in the preparation of polyphenol delivery systems. The design strategy, synthesis methods, and structure characterization of multifunctional polyphenol carriers including stimuli-responsive nanocarriers, mucoadhesive and mucus-penetrating nanocarriers, colon targeted nanocarriers, and bioactive compounds codelivery nanocarriers were reviewed in the alleviation of IBD. The research perspectives in the preparation and characterization of delivery carriers using marine polysaccharide as materials were proposed for their potential application in food bioactive components.
Collapse
Affiliation(s)
- Shanshan Tie
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
30
|
Hou Y, Jin J, Duan H, Liu C, Chen L, Huang W, Gao Z, Jin M. Targeted therapeutic effects of oral inulin-modified double-layered nanoparticles containing chemotherapeutics on orthotopic colon cancer. Biomaterials 2022; 283:121440. [DOI: 10.1016/j.biomaterials.2022.121440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 12/15/2022]
|
31
|
The structure design and application of oxidized polysaccharides delivery systems for controlled uptake and release of food functional ingredients. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Liang D, Su W, Zhao X, Li J, Hua Z, Miao S, Tan M. Microfluidic Fabrication of pH-Responsive Nanoparticles for Encapsulation and Colon-Target Release of Fucoxanthin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:124-135. [PMID: 34963047 DOI: 10.1021/acs.jafc.1c05580] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Improving the stability of fucoxanthin in the gastrointestinal tract is an important approach to enhance its oral bioavailability. The study proposed a new microfluidic device allowing for the synthesis of a structurally well-defined nanoscale delivery system with a uniform size for encapsulation and colon-target release of fucoxanthin. The rapid mixing in the microfluidic channel ensured that the mixing time was shorter than the aggregation time, thus realizing the controllable control of the coprecipitation of fucoxanthin and shellac polymer. In vitro digestion tests showed that a pH stimulus-responsive release of fucoxanthin from FX/SH NPs was observed under alkaline pH conditions. The fluorescence colocalization imaging indicated that FX/SH NPs did not affect the intestine function and had a protective effect on Caco-2 cells damaged by H2O2 by enhancing their antioxidant capacity. Overall, this work illustrated the promise of using a microfluidic approach to fabricate the biomimetic nanodelivery system for better biocompatibility and targeting efficacy.
Collapse
Affiliation(s)
- Duo Liang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Wentao Su
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xue Zhao
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Jiaxuan Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Zheng Hua
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Song Miao
- Teagasc Food Research Centre Moorepark, Fermoy, Co. Cork P61C996, Ireland
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
33
|
Liu P, Li Y, Wang R, Ren F, Wang X. Oxidative Stress and Antioxidant Nanotherapeutic Approaches for Inflammatory Bowel Disease. Biomedicines 2021; 10:85. [PMID: 35052764 PMCID: PMC8773244 DOI: 10.3390/biomedicines10010085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress, caused by the accumulation of reactive species, is associated with the initiation and progress of inflammatory bowel disease (IBD). The investigation of antioxidants to target overexpressed reactive species and modulate oxidant stress pathways becomes an important therapeutic option. Nowadays, antioxidative nanotechnology has emerged as a novel strategy. The nanocarriers have shown many advantages in comparison with conventional antioxidants, owing to their on-site accumulation, stability of antioxidants, and most importantly, intrinsic multiple reactive species scavenging or catalyzing properties. This review concludes an up-to-date summary of IBD nanomedicines according to the classification of the delivered antioxidants. Moreover, the concerns and future perspectives in this study field are also discussed.
Collapse
Affiliation(s)
- Ping Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (P.L.); (Y.L.); (R.W.); (F.R.)
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (P.L.); (Y.L.); (R.W.); (F.R.)
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (P.L.); (Y.L.); (R.W.); (F.R.)
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (P.L.); (Y.L.); (R.W.); (F.R.)
| | - Xiaoyu Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (P.L.); (Y.L.); (R.W.); (F.R.)
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
34
|
Gu J, Sun R, Wang Q, Liu F, Tang D, Chang X. Standardized Astragalus Mongholicus Bunge- Curcuma Aromatica Salisb. Extract Efficiently Suppresses Colon Cancer Progression Through Gut Microbiota Modification in CT26-Bearing Mice. Front Pharmacol 2021; 12:714322. [PMID: 34531745 PMCID: PMC8438123 DOI: 10.3389/fphar.2021.714322] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022] Open
Abstract
Altered gut microbiota and a damaged colon mucosal barrier have been implicated in the development of colon cancer. Astragalus mongholicus Bunge-Curcuma aromatica Salisb. (ACE) is a common herbal drug pair that widely used clinically to treat cancer. However, whether the anti-cancer effect of ACE is related to gut microbiota remains unclear yet. We standardized ACE and investigated the effects of ACE on tumour suppression and analyze the related mechanisms on gut microbiota in CT26 colon cancer-bearing mice in the present study. Firstly, four flavonoids (calycosin-7-glucoside, ononin, calycosin, formononetin) and three astragalosides (astragaloside A, astragaloside II, astragaloside I) riched in Astragalus mongholicus Bunge, three curcumins (bisdemethoxycurcumin, demethoxycurcumin, curcumin) and four essential oils (curdione, curzerene, germacrone and β-elemene) from Curcuma aromatica Salisb., in concentrations from 0.08 to 2.07 mg/g, were examined in ACE. Then the results in vivo studies indicated that ACE inhibited solid tumours, liver and spleen metastases of colon cancer while simultaneously reducing pathological tissue damage. Additionally, ACE regulated gut microbiota dysbiosis and the short chain fatty acid content in the gut, repaired intestinal barrier damage. ACE treatment suppressed the overgrowth of conditional pathogenic gut bacteria, including Escherichia-Shigella, Streptococcus and Enterococcus, while the probiotic gut microbiota like Lactobacillus, Roseburia, Prevotellaceae_UCG-001 and Mucispirillum were increased. More interestingly, the content level of SCFAs such as propionic acid and butyric acid was increased after ACE administration, which further mediates intestinal SDF-1/CXCR4 signalling pathway to repair the integrity of the intestinal barrier, decrease Cyclin D1 and C-myc expressions, eventually suppress the tumor the growth and metastasis of colon cancer. To sum up, the present study demonstrated that ACE could efficiently suppress colon cancer progression through gut microbiota modification, which may provide a new explanation of the mechanism of ACE against colon cancer.
Collapse
Affiliation(s)
- Junfei Gu
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruolan Sun
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiaohan Wang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fuyan Liu
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Decai Tang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiangwei Chang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
35
|
Bhaskaran NA, Kumar L. Treating colon cancers with a non-conventional yet strategic approach: An overview of various nanoparticulate systems. J Control Release 2021; 336:16-39. [PMID: 34118336 DOI: 10.1016/j.jconrel.2021.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022]
Abstract
Regardless of progress in therapy management which are developed for colon cancer (CC), it remains the third most common cause of mortality due to cancers around the world. Conventional medicines pose side effects due to untoward action on non-target cells. Their inability to deliver drugs to the affected regions of the colon locally, in a reproducible manner raises a concern towards the efficacy of therapy. In this regard, nanoparticles emerged as a promising drug delivery system due to their flexibility in designing, drug release modulation and cancer cell targeting. Not only are nanoparticles making their way into colon cancer research in the revolution of conventional onco-therapeutics, but they also offer promising scope in the development of colon cancer vaccines and theranostic tools. However, there are challenges with respect to drug delivery using nanoparticles, which may hamper the delivery of these novel carriers to the colon. The present review addresses recent advents in nanotechnology for colon-specific drug delivery (CDDS) which may help to overcome the existing challenges and intends to recognize futuristic potentials in the treatment of CC with CDDS.
Collapse
Affiliation(s)
- N A Bhaskaran
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Udupi, Karnataka, India
| | - L Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Udupi, Karnataka, India.
| |
Collapse
|
36
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Zarrin V, Moghadam ER, Hashemi F, Makvandi P, Samarghandian S, Khan H, Hashemi F, Najafi M, Mirzaei H. Toward Regulatory Effects of Curcumin on Transforming Growth Factor-Beta Across Different Diseases: A Review. Front Pharmacol 2020; 11:585413. [PMID: 33381035 PMCID: PMC7767860 DOI: 10.3389/fphar.2020.585413] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Immune response, proliferation, migration and angiogenesis are juts a few of cellular events that are regulated by transforming growth factor-β (TGF-β) in cells. A number of studies have documented that TGF-β undergoes abnormal expression in different diseases, e.g., diabetes, cancer, fibrosis, asthma, arthritis, among others. This has led to great fascination into this signaling pathway and developing agents with modulatory impact on TGF-β. Curcumin, a natural-based compound, is obtained from rhizome and roots of turmeric plant. It has a number of pharmacological activities including antioxidant, anti-inflammatory, anti-tumor, anti-diabetes and so on. Noteworthy, it has been demonstrated that curcumin affects different molecular signaling pathways such as Wnt/β-catenin, Nrf2, AMPK, mitogen-activated protein kinase and so on. In the present review, we evaluate the potential of curcumin in regulation of TGF-β signaling pathway to corelate it with therapeutic impacts of curcumin. By modulation of TGF-β (both upregulation and down-regulation), curcumin ameliorates fibrosis, neurological disorders, liver disease, diabetes and asthma. Besides, curcumin targets TGF-β signaling pathway which is capable of suppressing proliferation of tumor cells and invading cancer cells.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Vahideh Zarrin
- Laboratory for Stem Cell Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Pooyan Makvandi
- Centre for Micro-BioRobotics, Istituto Italiano di Tecnologia, Pisa, Italy
| | | | - Haroon Khan
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fardin Hashemi
- Medical Technology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
37
|
Wu ZL, Zhao J, Xu R. Recent Advances in Oral Nano-Antibiotics for Bacterial Infection Therapy. Int J Nanomedicine 2020; 15:9587-9610. [PMID: 33293809 PMCID: PMC7719120 DOI: 10.2147/ijn.s279652] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022] Open
Abstract
Bacterial infections are the main infectious diseases and cause of death worldwide. Antibiotics are used to treat various infections ranging from minor to life-threatening ones. The dominant route to administer antibiotics is through oral delivery and subsequent gastrointestinal tract (GIT) absorption. However, the delivery efficiency is limited by many factors such as low drug solubility and/or permeability, gastrointestinal instability, and low antibacterial activity. Nanotechnology has emerged as a novel and efficient tool for targeting drug delivery, and a number of promising nanotherapeutic strategies have been widely explored to overcome these obstacles. In this review, we explore published studies to provide a comprehensive understanding of the recent progress in the area of orally deliverable nano-antibiotic formulations. The first part of this article discusses the functions and underlying mechanisms by which nanomedicines increase the oral absorption of antibiotics. The second part focuses on the classification of oral nano-antibiotics and summarizes the advantages, disadvantages and applications of nanoformulations including lipid, polymer, nanosuspension, carbon nanotubes and mesoporous silica nanoparticles in oral delivery of antibiotics. Lastly, the challenges and future perspective of oral nano-antibiotics for infection disease therapy are discussed. Overall, nanomedicines designed for oral drug delivery system have demonstrated the potential for the improvement and optimization of currently available antibiotic therapies.
Collapse
Affiliation(s)
- Ze-Liang Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jun Zhao
- Department of Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Rong Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, People's Republic of China
| |
Collapse
|
38
|
Zhang H, Shen Z, Zhou Y, Zhang Z, Wang Q, Zhang M, Jiang K, Wang S, Ye Y, Wang B. Downregulation of miR-654-3p in Colorectal Cancer Indicates Poor Prognosis and Promotes Cell Proliferation and Invasion by Targeting SRC. Front Genet 2020; 11:577948. [PMID: 33193697 PMCID: PMC7554538 DOI: 10.3389/fgene.2020.577948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/10/2020] [Indexed: 12/21/2022] Open
Abstract
Background MicroRNAs (miRNAs), such as miR-654-3p, regulate gene expression at the post-transcriptional level affecting malignant tumor behavior. However, the expression levels, function, and mechanism of miR-654-3p in colorectal cancer (CRC) are unknown. Methods The expression levels of miR-654-3p and SRC in 103 CRC tissues and matched normal colorectal tissues were detected by a quantitative real-time polymerase chain reaction (qRT-PCR). miR-654-3p was overexpressed by RNA mimics and SRC knockdown by siRNA. Function-based experiments were carried out to detect the proliferation and migration abilities in CRC cell lines. Flow cytometry assay was performed to evaluate the effect of miR-654-3p on cell apoptosis and cycle distribution. Xenograft tumor models in nude mice were utilized to evaluate miR-654-3p functions in vivo. Dual-fluorescence reporter assay was used to verify the direct binding between miR-654-3p and SRC. Results miR-654-3p was downregulated in CRC tissues as compared to matched normal colorectal tissues. The expression levels of miR-654-3p were closely associated with distant metastasis. In addition, elevated expression of miR-654-3p in CRC patients prolonged the overall survival. Upregulated miR-654-3p significantly suppressed the proliferation and migration capacity of CRC cells by enhancing apoptosis and promoting G0/G1 phase arrest. The direct binding between miR-654-3p and SRC was verified by the dual-luciferase reporter gene. Furthermore, the suppression of proliferation and migration capacity by elevated miR-654-3p level could be reversed by overexpressing SRC. Conclusion miR-654-3p acts as a tumor suppressor through regulating SRC. It might also serve as a diagnostic and prognostic indicator and a novel molecular target for CRC therapy.
Collapse
Affiliation(s)
- Haoran Zhang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Zhanlong Shen
- Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Beijing, China
| | - Yushi Zhou
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Zhen Zhang
- Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, China
| | - Quan Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Mengmeng Zhang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Kewei Jiang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Shan Wang
- Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Beijing, China
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Bo Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.,Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
39
|
Moghadam ER, Ang HL, Asnaf SE, Zabolian A, Saleki H, Yavari M, Esmaeili H, Zarrabi A, Ashrafizadeh M, Kumar AP. Broad-Spectrum Preclinical Antitumor Activity of Chrysin: Current Trends and Future Perspectives. Biomolecules 2020; 10:E1374. [PMID: 32992587 PMCID: PMC7600196 DOI: 10.3390/biom10101374] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Pharmacological profile of phytochemicals has attracted much attention to their use in disease therapy. Since cancer is a major problem for public health with high mortality and morbidity worldwide, experiments have focused on revealing the anti-tumor activity of natural products. Flavonoids comprise a large family of natural products with different categories. Chrysin is a hydroxylated flavonoid belonging to the flavone category. Chrysin has demonstrated great potential in treating different disorders, due to possessing biological and therapeutic activities, such as antioxidant, anti-inflammatory, hepatoprotective, neuroprotective, etc. Over recent years, the anti-tumor activity of chrysin has been investigated, and in the present review, we provide a mechanistic discussion of the inhibitory effect of chrysin on proliferation and invasion of different cancer cells. Molecular pathways, such as Notch1, microRNAs, signal transducer and activator of transcription 3 (STAT3), nuclear factor-kappaB (NF-κB), PI3K/Akt, MAPK, etc., as targets of chrysin are discussed. The efficiency of chrysin in promoting anti-tumor activity of chemotherapeutic agents and suppressing drug resistance is described. Moreover, poor bioavailability, as one of the drawbacks of chrysin, is improved using various nanocarriers, such as micelles, polymeric nanoparticles, etc. This updated review will provide a direction for further studies in evaluating the anti-tumor activity of chrysin.
Collapse
Affiliation(s)
- Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | - Hui Li Ang
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore;
| | - Sholeh Etehad Asnaf
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, IslamicAzad University, Tehran 165115331, Iran;
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Mohammad Yavari
- Nursing and Midwifery Department, Islamic Azad University, Tehran Medical Sciences Branch, Tehran 1916893813, Iran;
| | - Hossein Esmaeili
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Milad Ashrafizadeh
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore;
| |
Collapse
|
40
|
Shi X, Cheng Y, Wang J, Chen H, Wang X, Li X, Tan W, Tan Z. 3D printed intelligent scaffold prevents recurrence and distal metastasis of breast cancer. Theranostics 2020; 10:10652-10664. [PMID: 32929372 PMCID: PMC7482818 DOI: 10.7150/thno.47933] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023] Open
Abstract
Rationale: Tumors are commonly treated by resection, which usually leads to massive hemorrhage and tumor cell residues, thereby increasing the risk of local recurrence and distant metastasis. Methods: Herein, an intelligent 3D-printed poly(lactic-co-glycolic acid), gelatin, and chitosan scaffold loaded with anti-cancer drugs was prepared that showed hemostatic function and good pH sensitivity. Results: Following in situ implantation in wounds, the scaffolds absorbed hemorrhage and cell residues after surgery, and promoted wound healing. In an in vivo environment, the scaffold responded to the slightly acidic environment of the tumor to undergo sustained drug release to significantly inhibit the recurrence and growth of the tumor, and reduced drug toxicity, all without causing damage to healthy tissues and with good biocompatibility. Conclusions: The multifunctional intelligent scaffold represents an excellent treatment modality for breast cancer following resection, and provides great potential for efficient cancer therapy.
Collapse
|
41
|
M. Ways TM, Ng KW, Lau WM, Khutoryanskiy VV. Silica Nanoparticles in Transmucosal Drug Delivery. Pharmaceutics 2020; 12:E751. [PMID: 32785148 PMCID: PMC7465701 DOI: 10.3390/pharmaceutics12080751] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/27/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Transmucosal drug delivery includes the administration of drugs via various mucous membranes, such as gastrointestinal, nasal, ocular, and vaginal mucosa. The use of nanoparticles in transmucosal drug delivery has several advantages, including the protection of drugs against the harsh environment of the mucosal lumens and surfaces, increased drug residence time, and enhanced drug absorption. Due to their relatively simple synthetic methods for preparation, safety profile, and possibilities of surface functionalisation, silica nanoparticles are highly promising for transmucosal drug delivery. This review provides a description of silica nanoparticles and outlines the preparation methods for various core and surface-functionalised silica nanoparticles. The relationship between the functionalities of silica nanoparticles and their interactions with various mucous membranes are critically analysed. Applications of silica nanoparticles in transmucosal drug delivery are also discussed.
Collapse
Affiliation(s)
- Twana Mohammed M. Ways
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK;
- College of Pharmacy, University of Sulaimani, Sulaimani 46001, Iraq
| | - Keng Wooi Ng
- School of Pharmacy, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.W.N.); (W.M.L.)
| | - Wing Man Lau
- School of Pharmacy, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.W.N.); (W.M.L.)
| | | |
Collapse
|