1
|
Thapa P, Debnath S, Bedi A, Parashar M, Gonzalez P, Reus J, Hammers H, Sun X. Monovalent and Divalent Designs of Copper Radiotheranostics Targeting Fibroblast Activation Protein in Cancer. Cancers (Basel) 2024; 16:4180. [PMID: 39766079 PMCID: PMC11675001 DOI: 10.3390/cancers16244180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Fibroblast activation protein (FAP)-targeted theranostic radiopharmaceuticals have shown desired tumor-to-background organ selectivity due to the ubiquitous presence of FAP within the tumor microenvironment. However, suboptimal tumor retention and fast clearance have hindered their use to deliver effective cancer therapies. With well-documented FAP-targeting moieties and linkers appending them to optimal chelators, the development of copper radiopharmaceuticals has attracted considerable interest, given the fact that an ideal theranostic pair of copper radionuclides (64Cu: t1/2 = 12.7 h; 17.4% β+; Eβ+max = 653 keV and 67Cu: t1/2 = 2.58 d; 100% β-; Eβ-max = 562 keV) are available. Herein, we report our design, synthesis, and comparative evaluation of monovalent and divalent FAP-targeted theranostic conjugates constructed from our previously reported bifunctional chelator scaffold (BFS) based on 1,4,8,11-tetraaza-bicyclo [6.6.2]hexadecane-4,11-diacetic acid (CB-TE2A), which forms the most stable complex with Cu(II). Methods: After synthesis and characterization, the monovalent and divalent conjugates were radiolabeled with 64Cu for in vitro cell assays, followed by in vivo positron emission tomography (PET) imaging evaluation in relevant mouse models. Results: Both 64Cu-labeled conjugates showed high in vitro stability and anticipated FAP-mediated cell binding and internalization. The divalent one showed significantly higher FAP-specific tumor uptake than its monovalent counterpart. Conclusions: Our results demonstrate that the BFS-based multivalent approach can be practically used to generate FAP-targeted radiotheranostic agents for effective cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Pawan Thapa
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (P.T.); (S.D.); (A.B.); (P.G.)
| | - Sashi Debnath
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (P.T.); (S.D.); (A.B.); (P.G.)
| | - Anjan Bedi
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (P.T.); (S.D.); (A.B.); (P.G.)
| | - Madhuri Parashar
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (M.P.); (J.R.); (H.H.)
| | - Paulina Gonzalez
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (P.T.); (S.D.); (A.B.); (P.G.)
| | - Joshua Reus
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (M.P.); (J.R.); (H.H.)
| | - Hans Hammers
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (M.P.); (J.R.); (H.H.)
- Kidney Cancer Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (P.T.); (S.D.); (A.B.); (P.G.)
- Kidney Cancer Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
2
|
Morgan KA, Rudd SE, Noor A, Donnelly PS. Theranostic Nuclear Medicine with Gallium-68, Lutetium-177, Copper-64/67, Actinium-225, and Lead-212/203 Radionuclides. Chem Rev 2023; 123:12004-12035. [PMID: 37796539 DOI: 10.1021/acs.chemrev.3c00456] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Molecular changes in malignant tissue can lead to an increase in the expression levels of various proteins or receptors that can be used to target the disease. In oncology, diagnostic imaging and radiotherapy of tumors is possible by attaching an appropriate radionuclide to molecules that selectively bind to these target proteins. The term "theranostics" describes the use of a diagnostic tool to predict the efficacy of a therapeutic option. Molecules radiolabeled with γ-emitting or β+-emitting radionuclides can be used for diagnostic imaging using single photon emission computed tomography or positron emission tomography. Radionuclide therapy of disease sites is possible with either α-, β-, or Auger-emitting radionuclides that induce irreversible damage to DNA. This Focus Review centers on the chemistry of theranostic approaches using metal radionuclides for imaging and therapy. The use of tracers that contain β+-emitting gallium-68 and β-emitting lutetium-177 will be discussed in the context of agents in clinical use for the diagnostic imaging and therapy of neuroendocrine tumors and prostate cancer. A particular emphasis is then placed on the chemistry involved in the development of theranostic approaches that use copper-64 for imaging and copper-67 for therapy with functionalized sarcophagine cage amine ligands. Targeted therapy with radionuclides that emit α particles has potential to be of particular use in late-stage disease where there are limited options, and the role of actinium-225 and lead-212 in this area is also discussed. Finally, we highlight the challenges that impede further adoption of radiotheranostic concepts while highlighting exciting opportunities and prospects.
Collapse
Affiliation(s)
- Katherine A Morgan
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Stacey E Rudd
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Asif Noor
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| |
Collapse
|
3
|
Bartoli F, Eckelman WC, Boyd M, Mairs RJ, Erba PA. Principles of Molecular Targeting for Radionuclide Therapy. NUCLEAR ONCOLOGY 2022:41-93. [DOI: 10.1007/978-3-031-05494-5_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
McDonagh AW, McNeil BL, Patrick BO, Ramogida CF. Synthesis and Evaluation of Bifunctional [2.2.2]-Cryptands for Nuclear Medicine Applications. Inorg Chem 2021; 60:10030-10037. [PMID: 34159785 DOI: 10.1021/acs.inorgchem.1c01274] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
For the first time, synthesis of bifunctional [2.2.2]-cryptands (CRYPT) and demonstration of radiolabeling with lead(II) (Pb2+) isotopes are disclosed herein. The synthesis is convenient and high-yielding and gives access to three distinct bifunctional handles (azide (-N3), isothiocyanate (-NCS), and tetrazine (-Tz)) that can enable the construction of radioimmunoconjugates for targeted and pretargeted therapy. Proof-of-principle CRYPT radiolabeling was successful with lead-203 ([203Pb]Pb2+) and demonstrated complexation efficiency superior to that of DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) and efficiency comparable to that of the current industry standard TCMC (1,4,7,10-tetraaza-1,4,7,10-tetra-(2-carbamoylmethyl)-cyclododecane). In vitro human serum stability assays demonstrated excellent [203Pb]Pb-CRYPT stability over 72 h (91.7 ± 0.56%; n = 3). [203Pb]Pb-CRYPT-radioimmunoconjugates were synthesized from the corresponding CRYPT-immunoconjugate or by conjugating [203Pb]Pb-Tz-CRYPT to transcyclooctene modified trastuzumab (TCO-trastuzumab) via the inverse electron-demand Diels-Alder (IEEDA) reaction. This investigation reveals the potential for CRYPT ligands to become new industry standards for therapeutic and diagnostic radiometals in radiopharmaceutical elaboration.
Collapse
Affiliation(s)
- Anthony W McDonagh
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Brooke L McNeil
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.,Life Sciences Division, TRIUMF, Vancouver, BC V6T 2A3, Canada
| | - Brian O Patrick
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Caterina F Ramogida
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.,Life Sciences Division, TRIUMF, Vancouver, BC V6T 2A3, Canada
| |
Collapse
|
5
|
Bayoumi NA, El-Kolaly MT. Utilization of nanotechnology in targeted radionuclide cancer therapy: monotherapy, combined therapy and radiosensitization. RADIOCHIM ACTA 2021. [DOI: 10.1515/ract-2020-0098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
The rapid progress of nanomedicine field has a great influence on the different tumor therapeutic trends. It achieves a potential targeting of the therapeutic agent to the tumor site with neglectable exposure of the normal tissue. In nuclear medicine, nanocarriers have been employed for targeted delivery of therapeutic radioisotopes to the malignant tissues. This systemic radiotherapy is employed to overcome the external radiation therapy drawbacks. This review overviews studies concerned with investigation of different nanoparticles as promising carriers for targeted radiotherapy. It discusses the employment of different nanovehicles for achievement of the synergistic effect of targeted radiotherapy with other tumor therapeutic modalities such as hyperthermia and photodynamic therapy. Radiosensitization utilizing different nanosensitizer loaded nanoparticles has also been discussed briefly as one of the nanomedicine approach in radiotherapy.
Collapse
Affiliation(s)
- Noha Anwer Bayoumi
- Department of Radiolabeled Compounds , Hot Laboratories Center, Egyptian Atomic Energy Authority , Cairo , Egypt
| | - Mohamed Taha El-Kolaly
- Department of Radiolabeled Compounds , Hot Laboratories Center, Egyptian Atomic Energy Authority , Cairo , Egypt
| |
Collapse
|
6
|
Abstract
Studying the correlation between temperature-driven molecular structure and nuclear spin dynamics is essential to understanding fundamental design principles for thermometric nuclear magnetic resonance spin-based probes. Herein, we study the impact of progressively encapsulating ligands on temperature-dependent 59Co T 1 (spin-lattice) and T 2 (spin-spin) relaxation times in a set of Co(III) complexes: K3[Co(CN)6] (1); [Co(NH3)6]Cl3 (2); [Co(en)3]Cl3 (3), en = ethylenediamine); [Co(tn)3]Cl3 (4), tn = trimethylenediamine); [Co(tame)2]Cl3 (5), tame = triaminomethylethane); and [Co(dinosar)]Cl3 (6), dinosar = dinitrosarcophagine). Measurements indicate that 59Co T 1 and T 2 increase with temperature for 1-6 between 10 and 60 °C, with the greatest ΔT 1/ΔT and ΔT 2/ΔT temperature sensitivities found for 4 and 3, 5.3(3)%T 1/°C and 6(1)%T 2/°C, respectively. Temperature-dependent T 2* (dephasing time) analyses were also made, revealing the highest ΔT 2*/ΔT sensitivities in structures of greatest encapsulation, as high as 4.64%T 2*/°C for 6. Calculations of the temperature-dependent quadrupolar coupling parameter, Δe 2 qQ/ΔT, enable insight into the origins of the relative ΔT 1/ΔT values. These results suggest tunable quadrupolar coupling interactions as novel design principles for enhancing temperature sensitivity in nuclear spin-based probes.
Collapse
|
7
|
Klenner MA, Darwish T, Fraser BH, Massi M, Pascali G. Labeled Rhenium Complexes: Radiofluorination, α-MSH Cyclization, and Deuterium Substitutions. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mitchell A. Klenner
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, New South Wales, Australia 2234
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia 6102
| | - Tamim Darwish
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, New South Wales, Australia 2234
| | - Benjamin H. Fraser
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, New South Wales, Australia 2234
| | - Massimiliano Massi
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia 6102
| | - Giancarlo Pascali
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, New South Wales, Australia 2234
- Prince of Wales Hospital, Randwick, New South Wales, Australia 2031
- School of Chemistry, University of New South Wales (UNSW), Kensington, New South Wales, Australia 2052
| |
Collapse
|
8
|
Abrantes AM, Pires AS, Monteiro L, Teixo R, Neves AR, Tavares NT, Marques IA, Botelho MF. Tumour functional imaging by PET. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165717. [PMID: 32035103 DOI: 10.1016/j.bbadis.2020.165717] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/15/2020] [Accepted: 01/30/2020] [Indexed: 12/18/2022]
Abstract
Carcinogenesis is a complex multistep process, characterized by changes at different levels, both genetic and epigenetic, which alter cell metabolism. Positron emission tomography (PET) is a very sensitive image modality that allows to evaluate oncometabolism. PET functionalities are immense, since by labelling a molecule that specifically intervenes in a biochemical regulatory pathway of interest with a positron-emitting radionuclide, we can easily image that pathway. Thus, PET makes possible imaging several metabolic processes and assessing risk prediction, screening, diagnosis, response to therapy, metastization and recurrence. In this paper, we provide an overview of different radiopharmaceuticals developed for PET use in oncology, with a focus on brain tumours, breast cancer, hepatocellular carcinoma, neuroendocrine tumours, bladder cancer and prostate cancer because for these cancer types PET has been shown to be valuable. Most of the described tracers are just used in the research environment, with the aim to assess if these tracers could be able to offer an improvement concerning staging/restaging, characterization and stratification of different types of cancer, as well as therapeutic response assessment. In pursuit of personalized therapy, we briefly discuss the more established metabolic tracers and describe recent work on the development of new radiopharmaceuticals, aware that there will continue to exist diagnostic challenges to face modern cancer medicine.
Collapse
Affiliation(s)
- Ana Margarida Abrantes
- Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; CNC.IBILI Consortium/Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Ana Salomé Pires
- Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; CNC.IBILI Consortium/Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Lúcia Monteiro
- Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ricardo Teixo
- Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; CNC.IBILI Consortium/Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Rita Neves
- Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Project Development Office, Department of Mathematics and Computer Science, Eindhoven University of Technology (TU/e), NL-5612 AE Eindhoven, the Netherlands
| | - Nuno Tiago Tavares
- Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Inês Alexandra Marques
- Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; CNC.IBILI Consortium/Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria Filomena Botelho
- Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; CNC.IBILI Consortium/Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal.
| |
Collapse
|
9
|
Lejault P, Duskova K, Bernhard C, Valverde IE, Romieu A, Monchaud D. The Scope of Application of Macrocyclic Polyamines Beyond Metal Chelation. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900870] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Pauline Lejault
- CNRS UMR6302, Université Bourgogne Franche-Comté (UBFC); Institut de Chimie Moleculaire de l'Université de Bourgogne (ICMUB); 9, Avenue Alain Savary 21078 Dijon France
| | - Katerina Duskova
- CNRS UMR6302, Université Bourgogne Franche-Comté (UBFC); Institut de Chimie Moleculaire de l'Université de Bourgogne (ICMUB); 9, Avenue Alain Savary 21078 Dijon France
| | - Claire Bernhard
- CNRS UMR6302, Université Bourgogne Franche-Comté (UBFC); Institut de Chimie Moleculaire de l'Université de Bourgogne (ICMUB); 9, Avenue Alain Savary 21078 Dijon France
| | - Ibai E. Valverde
- CNRS UMR6302, Université Bourgogne Franche-Comté (UBFC); Institut de Chimie Moleculaire de l'Université de Bourgogne (ICMUB); 9, Avenue Alain Savary 21078 Dijon France
| | - Anthony Romieu
- CNRS UMR6302, Université Bourgogne Franche-Comté (UBFC); Institut de Chimie Moleculaire de l'Université de Bourgogne (ICMUB); 9, Avenue Alain Savary 21078 Dijon France
| | - David Monchaud
- CNRS UMR6302, Université Bourgogne Franche-Comté (UBFC); Institut de Chimie Moleculaire de l'Université de Bourgogne (ICMUB); 9, Avenue Alain Savary 21078 Dijon France
| |
Collapse
|
10
|
Okoye NC, Baumeister JE, Najafi Khosroshahi F, Hennkens HM, Jurisson SS. Chelators and metal complex stability for radiopharmaceutical applications. RADIOCHIM ACTA 2019. [DOI: 10.1515/ract-2018-3090] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Diagnostic and therapeutic nuclear medicine relies heavily on radiometal nuclides. The most widely used and well-known radionuclide is technetium-99m (99mTc), which has dominated diagnostic nuclear medicine since the advent of the 99Mo/99mTc generator in the 1960s. Since that time, many more radiometals have been developed and incorporated into potential radiopharmaceuticals. One critical aspect of radiometal-containing radiopharmaceuticals is their stability under in vivo conditions. The chelator that is coordinated to the radiometal is a key factor in determining radiometal complex stability. The chelators that have shown the most promise and are under investigation in the development of diagnostic and therapeutic radiopharmaceuticals over the last 5 years are discussed in this review.
Collapse
Affiliation(s)
| | | | | | - Heather M. Hennkens
- Department of Chemistry , University of Missouri , Columbia, MO 65211 , USA
- University of Missouri Research Reactor Center , Columbia, MO 65211 , USA
| | - Silvia S. Jurisson
- Department of Chemistry , University of Missouri , Columbia, MO 65211 , USA
| |
Collapse
|
11
|
Gutfilen B, Souza SA, Valentini G. Copper-64: a real theranostic agent. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3235-3245. [PMID: 30323557 PMCID: PMC6173185 DOI: 10.2147/dddt.s170879] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ongoing studies of physiological and pathological processes have led to a corresponding need for new radiopharmaceuticals, especially when studies are limited by the absence of a particular radiolabeled target. Thus, the development of new radioactive tracers is highly relevant and can represent a significant contribution to efforts to elucidate important phenomena in biology. Currently, theranostics represents a new frontier in the fields of medicine and nuclear medicine, with the same compound being used for both diagnosis and treatment. In the human body, copper (Cu) is the third most abundant metal and it plays a crucial role in many biological functions. Correspondingly, in various acquired and inherited pathological conditions, such as cancer and Alzheimer’s disease, alterations in Cu levels have been found. Moreover, a wide spectrum of neurodegenerative disorders are associated with higher or lower levels of Cu, as well as inappropriately bound or distributed levels of Cu in the brain. In human cells, the membrane protein, hCtr1, binds Cu in its Cu(I) oxidation state in an energy-dependent manner. Copper-64 (64Cu) is a cyclotron-produced radionuclide that has exhibited physical properties that are complementary for diagnosis and/or therapeutic purposes. To date, very few reports have described the clinical development of 64Cu as a radiotracer for cancer imaging. In this review, we highlight recent insights in our understanding and use of 64CuCl2 as a theranostic agent for various types of tumors. To the best of our knowledge, no adverse effects or clinically observable pharmacological effects have been described for 64CuCl2 in the literature. Thus, 64Cu represents a revolutionary radiopharmaceutical for positron emission tomography imaging and opens a new era in the theranostic field.
Collapse
Affiliation(s)
- Bianca Gutfilen
- Department of Radiology, School of Medicine, Laboratório de Marcação de Células e Moléculas (LMCM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil,
| | - Sergio Al Souza
- Department of Radiology, School of Medicine, Laboratório de Marcação de Células e Moléculas (LMCM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil,
| | | |
Collapse
|
12
|
Ahmedova A, Todorov B, Burdzhiev N, Goze C. Copper radiopharmaceuticals for theranostic applications. Eur J Med Chem 2018; 157:1406-1425. [DOI: 10.1016/j.ejmech.2018.08.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 08/15/2018] [Accepted: 08/18/2018] [Indexed: 12/12/2022]
|
13
|
Deng H, Wang H, Zhang H, Wang M, Giglio B, Ma X, Jiang G, Yuan H, Wu Z, Li Z. Imaging Neurotensin Receptor in Prostate Cancer With 64Cu-Labeled Neurotensin Analogs. Mol Imaging 2018; 16:1536012117711369. [PMID: 28849698 PMCID: PMC6081756 DOI: 10.1177/1536012117711369] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION Neurotensin receptor 1 (NTR-1) is expressed and activated in prostate cancer cells. In this study, we explore the NTR expression in normal mouse tissues and study the positron emission tomography (PET) imaging of NTR in prostate cancer models. MATERIALS AND METHODS Three 64Cu chelators (1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid [DOTA], 1,4,7-triazacyclononane-N,N',N″-triacetic acid [NOTA], or AmBaSar) were conjugated to an NT analog. Neurotensin receptor binding affinity was evaluated using cell binding assay. The imaging profile of radiolabeled probes was compared in well-established NTR+ HT-29 tumor model. Stability of the probes was tested. The selected agents were further evaluated in human prostate cancer PC3 xenografts. RESULTS All 3 NT conjugates retained the majority of NTR binding affinity. In HT-29 tumor, all agents demonstrated prominent tumor uptake. Although comparable stability was observed, 64Cu-NOTA-NT and 64Cu-AmBaSar-NT demonstrated improved tumor to background contrast compared with 64Cu-DOTA-NT. Positron emission tomography/computed tomography imaging of the NTR expression in PC-3 xenografts showed high tumor uptake of the probes, correlating with the in vitro Western blot results. Blocking experiments further confirmed receptor specificity. CONCLUSIONS Our results demonstrated that 64Cu-labeled neurotensin analogs are promising imaging agents for NTR-positive tumors. These agents may help us identify NTR-positive lesions and predict which patients and individual tumors are likely to respond to novel interventions targeting NTR-1.
Collapse
Affiliation(s)
- Huaifu Deng
- 1 Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,2 PET/CT Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hui Wang
- 1 Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - He Zhang
- 1 Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,3 Department of Radiology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Mengzhe Wang
- 1 Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ben Giglio
- 1 Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xiaofen Ma
- 1 Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,4 Department of Medical Imaging, Provincial People's Hospital, Guangzhou, China
| | - Guihua Jiang
- 4 Department of Medical Imaging, Provincial People's Hospital, Guangzhou, China
| | - Hong Yuan
- 1 Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhanhong Wu
- 1 Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zibo Li
- 1 Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
14
|
Jamier V, Mume E, Papamicaël C, Smith SV. Exploring the synthesis and metal complexation behavior of mono and bis substituted hexaazamacrocyclic cage derivatives. INORG CHEM COMMUN 2017. [DOI: 10.1016/j.inoche.2017.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Yin X, Wang M, Wang H, Deng H, He T, Tan Y, Zhu Z, Wu Z, Hu S, Li Z. Evaluation of neurotensin receptor 1 as a potential imaging target in pancreatic ductal adenocarcinoma. Amino Acids 2017; 49:1325-1335. [PMID: 28536844 PMCID: PMC5524142 DOI: 10.1007/s00726-017-2430-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/26/2017] [Indexed: 12/11/2022]
Abstract
Pancreatic cancer is one of the deadliest human malignancies and lack of effective diagnostic and therapeutic methods. Accumulating evidence suggests that the neurotensin (NT) and neurotensin receptors (NTRs) play key roles in pancreatic adenocarcinoma growth and survival. In this study, we not only evaluate the NTR1 expression in pancreatic cancer patient samples, but also explore the PET and fluorescence imaging of NTR1 expression in pancreatic cancer animal models. The NTR1 expression was evaluated by immunohistochemistry staining in clinical patient tissue samples with pancreatic ductal adenocarcinoma, insulinoma, and pancreatitis. The results showed 79.4% positive rate of NRT1 expression in pancreatic ductal adenocarcinoma, compared with 33.3 and 22.7% in insulinoma and pancreatitis samples, respectively. High NTR1 gene expression was also found in Panc-1 cells and confirmed by cell immunofluorescence. 64Cu-AmBaSar-NT and IRDye800-NT were synthesized as imaging probes and maintained the majority of NTR1-binding affinity. In vivo imaging demonstrated that 64Cu-AmBaSar-NT has prominent tumor uptake (3.76 ± 1.45 and 2.29 ± 0.10%ID/g at 1 and 4 h post-injection). NIR fluorescent imaging with IRDye800-NT demonstrated good tumor-to-background contrast (8.09 ± 0.38 × 108 and 6.67 ± 0.43 × 108 (p/s/cm2/sr)/(μW/cm2) at 30 and 60 min post-injection). Fluorescence guided surgery was also performed as a proof of principle experiment. In summary, our results indicated that NTR1 is a promising target for pancreatic ductal adenocarcinoma imaging and therapy. The imaging probes reported here may not only be considered for improved diagnosis of pancreatic ductal adenocarcinoma, but also has the potential to be fully integrated into patient screening and treatment monitoring of future NTR1 targeted therapies.
Collapse
Affiliation(s)
- Xiaoqin Yin
- PET Center of Xiangya Hospital, Central South University, Changsha, China
| | - Mengzhe Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hui Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Huaifu Deng
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tingting He
- PET Center of Xiangya Hospital, Central South University, Changsha, China
| | - Yue Tan
- PET Center of Xiangya Hospital, Central South University, Changsha, China
| | - Zehua Zhu
- PET Center of Xiangya Hospital, Central South University, Changsha, China
| | - Zhanhong Wu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shuo Hu
- PET Center of Xiangya Hospital, Central South University, Changsha, China.
| | - Zibo Li
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
16
|
Template synthesis and X-ray structure of the tris-glyoximate iron(II) clathrochelates with terminal reactive groups. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Satterlee AB, Huang L. Current and Future Theranostic Applications of the Lipid-Calcium-Phosphate Nanoparticle Platform. Theranostics 2016; 6:918-29. [PMID: 27217828 PMCID: PMC4876619 DOI: 10.7150/thno.14689] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/15/2016] [Indexed: 11/11/2022] Open
Abstract
Over the last four years, the Lipid-Calcium-Phosphate (LCP) nanoparticle platform has shown success in a wide range of treatment strategies, recently including theranostics. The high specific drug loading of radiometals into LCP, coupled with its ability to efficiently encapsulate many types of cytotoxic agents, allows a broad range of theranostic applications, many of which are yet unexplored. In addition to providing an overview of current medical imaging modalities, this review highlights the current theranostic applications for LCP using SPECT and PET, and discusses potential future uses of the platform by comparing it with both systemically and locally delivered clinical radiotherapy options as well as introducing its applications as an MRI contrast agent. Strengths and weaknesses of LCP and of nanoparticles in general are discussed, as well as caveats regarding the use of fluorescence to determine the accumulation or biodistribution of a probe.
Collapse
Affiliation(s)
- Andrew B. Satterlee
- 1. Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7571, USA
- 2. UNC and NCSU Joint Department of Biomedical Engineering, Chapel Hill, NC 27599
| | - Leaf Huang
- 1. Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7571, USA
- 2. UNC and NCSU Joint Department of Biomedical Engineering, Chapel Hill, NC 27599
| |
Collapse
|
18
|
Ramogida CF, Boros E, Patrick BO, Zeisler SK, Kumlin J, Adam MJ, Schaffer P, Orvig C. Evaluation of H2CHXdedpa, H2dedpa- and H2CHXdedpa-N,N′-propyl-2-NI ligands for 64Cu(ii) radiopharmaceuticals. Dalton Trans 2016; 45:13082-90. [DOI: 10.1039/c6dt00932h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hexadentate acyclic chelate H2CHXdedpa and related N,N′-alkylated ligands are radiolabeled with radioactive 64Cu(ii) under mild conditions forming kinetically inert complexes.
Collapse
Affiliation(s)
- Caterina F. Ramogida
- Medicinal Inorganic Chemistry Group
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - Eszter Boros
- Medicinal Inorganic Chemistry Group
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - Brian O. Patrick
- Medicinal Inorganic Chemistry Group
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | | | | | | | | | - Chris Orvig
- Medicinal Inorganic Chemistry Group
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
19
|
Paterson BM, Donnelly PS. Macrocyclic Bifunctional Chelators and Conjugation Strategies for Copper-64 Radiopharmaceuticals. ADVANCES IN INORGANIC CHEMISTRY 2016. [DOI: 10.1016/bs.adioch.2015.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Synthesis, structure and reactivity of iron(II) clathrochelates with terminal formyl (acetal) groups. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2015.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Li D, He L, Guo H, Chen H, Shan H. Targeting activated hepatic stellate cells (aHSCs) for liver fibrosis imaging. EJNMMI Res 2015; 5:71. [PMID: 26650603 PMCID: PMC4674461 DOI: 10.1186/s13550-015-0151-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/27/2015] [Indexed: 12/12/2022] Open
Abstract
Following injurious stimuli, quiescent hepatic stellate cells (qHSCs) transdifferentiate into activated HSCs (aHSCs). aHSCs play pivotal roles in the onset and progression of liver fibrosis. Therefore, molecular imaging of aHSCs in liver fibrosis will facilitate early diagnosis, prognosis prediction, and instruction and evaluation of aHSC-targeted treatment. To date, several receptors, such as integrin αvβ3, mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF-IIR), collagen type VI receptor (CVIR), platelet-derived growth factor receptor-β (PDGFR-β), vimentin, and desmin, have been identified as biomarkers of aHSCs. Corresponding ligands to these receptors have also been developed. This review will discuss strategies for developing aHSC-targeted imaging in liver fibrosis.
Collapse
Affiliation(s)
- Dan Li
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangzhou, 510630, China
| | - Li He
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Huizhuang Guo
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, 511400, China
| | - Hanwei Chen
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, 511400, China.
| | - Hong Shan
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China. .,Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangzhou, 510630, China. .,Interventional Radiology Institute of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
22
|
|
23
|
Voloshin YZ, Novikov VV, Nelyubina YV. Recent advances in biological applications of cage metal complexes. RSC Adv 2015. [DOI: 10.1039/c5ra10949c] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review highlights advances in biochemical and medical applications of cage metal complexes (clathrochelates) and related polyhedral compounds.
Collapse
Affiliation(s)
- Yan Z. Voloshin
- Nesmeyanov Institute of the Organoelement Compounds
- Russian Academy of Sciences
- Moscow
- Russia
| | - Valentin V. Novikov
- Nesmeyanov Institute of the Organoelement Compounds
- Russian Academy of Sciences
- Moscow
- Russia
| | - Yulia V. Nelyubina
- Nesmeyanov Institute of the Organoelement Compounds
- Russian Academy of Sciences
- Moscow
- Russia
| |
Collapse
|
24
|
Farahani BV, Bardajee GR, Rajabi FH, Hooshyar Z. Molecular Docking and Spectroscopic Study on the Interaction of Serum Albumin with Iron(III) Diamine Sarcophagine. Aust J Chem 2015. [DOI: 10.1071/ch14485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Iron(iii) diamine sarcophagine (DiAmsar) has attracted great attention in biological and medical applications. In particular, for any potential in vivo application, knowledge about the interaction of iron(iii) DiAmsar with serum albumin is crucial. As a step towards the elucidation of the fate of iron(iii) DiAmsar introduced into an organism, first, iron(iii) DiAmsar was synthesised and characterised. In the next step, interactions of iron(iii) DiAmsar with human serum albumin (HSA) and bovine serum albumin (BSA) were systematically investigated by various spectroscopic methods (Fourier-transform infrared, UV-visible, fluorescence) and cyclic voltammetry and molecular docking techniques under simulated physiological conditions. The fluorescence intensities of HSA and BSA decreased remarkably with increasing concentration of iron(iii) DiAmsar. The Stern–Volmer quenching constant KSV at different temperatures and corresponding thermodynamic parameters such as ΔHo, ΔGo, and ΔSo were calculated. The binding distance of iron(iii) DiAmsar with HSA and BSA was also determined using the theory of fluorescence energy transfer. Further, the conformational changes of HSA and BSA induced by iron(iii) DiAmsar were analysed by means of Fourier-transform (FT)-IR. In addition, molecular docking was performed to explore the possible binding sites and the microenvironment conditions around the bound iron(iii) DiAmsar.
Collapse
|
25
|
Hooshyar Z, Rezanejade Bardajee G, Kakavand N, Khanjari M, Dianatnejad N. Investigations on the interactions of DiAmsar with serum albumins: Insights from spectroscopic and molecular docking techniques. LUMINESCENCE 2014; 30:538-48. [DOI: 10.1002/bio.2773] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/24/2014] [Accepted: 08/25/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Zari Hooshyar
- Department of ChemistryPayame Noor University (PNU) P.O. BOX 19395‐3697 Tehran Iran
| | | | - Nahaleh Kakavand
- Department of ChemistryPayame Noor University (PNU) P.O. BOX 19395‐3697 Tehran Iran
| | - Mohaddeseh Khanjari
- Department of ChemistryPayame Noor University (PNU) P.O. BOX 19395‐3697 Tehran Iran
| | - Nastaran Dianatnejad
- Department of ChemistryPayame Noor University (PNU) P.O. BOX 19395‐3697 Tehran Iran
| |
Collapse
|
26
|
Li G, Wang X, Zong S, Wang J, Conti PS, Chen K. MicroPET imaging of CD13 expression using a (64)Cu-labeled dimeric NGR peptide based on sarcophagine cage. Mol Pharm 2014; 11:3938-46. [PMID: 25054774 DOI: 10.1021/mp500354x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CD13 receptor as a tumor vasculature biomarker has attracted great attention in cancer research. Through phage display screening, NGR-containing peptides have been characterized as specific ligands binding to CD13 receptor. In this study, a (64)Cu-labeled dimeric NGR peptide based on sarcophagine cage was synthesized and evaluated for micropositron emission tomography (PET) imaging of CD13 expression in vivo. Macrocyclic chelating agent (sarcophagine cage) was conjugated with two azide moieties, followed by mixing with an alkyne-containing NGR peptide to rapidly provide the Sar-NGR2 peptide by click chemistry. Radiolabeling of Sar-NGR2 with (64)Cu was achieved in >90% decay-corrected yield with radiochemical purity of >99%. The cell uptake study showed that (64)Cu-Sar-NGR2 binds to CD13-positive HT-1080 cells, but not to CD13-negative MCF-7 cells. MicroPET imaging results revealed that (64)Cu-Sar-NGR2 exhibits good tumor uptake in CD13-positive HT-1080 xenografts and significantly lower tumor uptake in CD13-negative MCF-7 xenografts. The CD13-specific binding of (64)Cu-Sar-NGR2 was further verified by significant reduction of tumor uptake in HT-1080 tumor xenografts with coinjection of a nonradiolabeled NGR peptide. The biodistribution results demonstrated good tumor/muscle ratio (8.28 ± 0.37) of (64)Cu-Sar-NGR2 at 24 h pi in HT-1080 tumor xenografts, which is in agreement with the quantitative analysis of microPET imaging. In conclusion, sarcophagine cage has been successfully applied to the construction of a (64)Cu-labeled dimeric NGR-containing peptide. In vitro and in vivo studies demonstrated that (64)Cu-Sar-NGR2 is a promising PET probe for imaging CD13 expression in living mice.
Collapse
Affiliation(s)
- Guoquan Li
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California , Los Angeles, California 90033, United States
| | | | | | | | | | | |
Collapse
|
27
|
Brand C, Abdel-Atti D, Zhang Y, Carlin S, Clardy SM, Keliher EJ, Weber WA, Lewis JS, Reiner T. In vivo imaging of GLP-1R with a targeted bimodal PET/fluorescence imaging agent. Bioconjug Chem 2014; 25:1323-30. [PMID: 24856928 PMCID: PMC4215873 DOI: 10.1021/bc500178d] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Accurate visualization and quantification of β-cell mass is critical for the improved understanding, diagnosis, and treatment of both type 1 diabetes (T1D) and insulinoma. Here, we describe the synthesis of a bimodal imaging probe (PET/fluorescence) for imaging GLP-1R expression in the pancreas and in pancreatic islet cell tumors. The conjugation of a bimodal imaging tag containing a near-infrared fluorescent dye, and the copper chelator sarcophagine to the GLP-1R targeting peptide exendin-4 provided the basis for the bimodal imaging probe. Conjugation was performed via a novel sequential one-pot synthetic procedure including (64)Cu radiolabeling and copper-catalyzed click-conjugation. The bimodal imaging agent (64)Cu-E4-Fl was synthesized in good radiochemical yield and specific activity (RCY = 36%, specific activity: 141 μCi/μg, >98% radiochemical purity). The agent showed good performance in vivo and ex vivo, visualizing small xenografts (<2 mm) with PET and pancreatic β-cell mass by phosphor autoradiography. Using the fluorescent properties of the probe, we were able to detect individual pancreatic islets, confirming specific binding to GLP-1R and surpassing the sensitivity of the radioactive label. The use of bimodal PET/fluorescent imaging probes is promising for preoperative imaging and fluorescence-assisted analysis of patient tissues. We believe that our procedure could become relevant as a protocol for the development of bimodal imaging agents.
Collapse
Affiliation(s)
- Christian Brand
- Radiochemistry and Imaging Sciences Service and §Molecular Imaging and Therapy Service, Department of Radiology, ∥Molecular Pharmacology and Chemistry Program, and ⊥Center for Molecular Imaging and Nanotechnology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wu Z, Liu S, Nair I, Omori K, Scott S, Todorov I, Shively JE, Conti PS, Li Z, Kandeel F. (64)Cu labeled sarcophagine exendin-4 for microPET imaging of glucagon like peptide-1 receptor expression. Am J Cancer Res 2014; 4:770-7. [PMID: 24955138 PMCID: PMC4063975 DOI: 10.7150/thno.7759] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 04/17/2014] [Indexed: 11/05/2022] Open
Abstract
The Glucagon-like peptide 1 receptor (GLP-1R) has become an important target for imaging due to its elevated expression profile in pancreatic islets, insulinoma, and the cardiovascular system. Because native GLP-1 is degraded rapidly by dipeptidyl peptidase-IV (DPP-IV), several studies have conjugated different chelators to a more stable analog of GLP-1 (such as exendin-4) as PET or SPECT imaging agents with various advantages and disadvantages. Based on the recently developed Sarcophagin chelator, here, we describe the construction of GLP-1R targeted PET probes containing monomeric and dimeric exendin-4 subunit. The in vitro binding affinity of BarMalSar-exendin-4 and Mal2Sar-(exendin-4)2 was evaluated in INS-1 cells, which over-express GLP-1R. Mal2Sar-(exendin-4)2 demonstrated around 3 times higher binding affinity compared with BaMalSar-exendin-4. After (64)Cu labeling, microPET imaging of (64)Cu-BaMalSar-exendin-4 and (64)Cu-Mal2Sar-(exendin-4)2 were performed on subcutaneous INS-1 tumors, which were clearly visualized with both probes. The tumor uptake of (64)Cu-Mal2Sar-(exendin-4)2 was significantly higher than that of (64)Cu-BaMaSarl-exendin-4, which could be caused by polyvalency effect. The receptor specificity of these probes was confirmed by effective blocking of the uptake in both tumor and normal positive organs with 20-fold excess of unlabeled exendin-4. In conclusion, sarcophagine cage conjugated exendin-4 demonstrated persistent and specific uptake in INS-1 insulinoma model. Dimerization of exendin-4 could successfully lead to increased tumor uptake in vivo. Both (64)Cu-BaMalSar-exendin-4 and (64)Cu-Mal2Sar-(exendin-4)2 hold a great potential for GLP-1R targeted imaging.
Collapse
|
29
|
Foerster C, Knight JC, Wuest M, Rowan B, Lapi SE, Amoroso AJ, Edwards PG, Wuest F. Synthesis, complex stability and small animal PET imaging of a novel 64Cu-labelled cryptand molecule. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00174e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The radiosynthesis and radiopharmacological evaluation including small animal PET imaging of a novel 64Cu-labelled cryptand molecule ([64Cu]CryptTM) possessing a tris-pyridyl/tris-amido set of donor atoms is described.
Collapse
Affiliation(s)
| | | | - Melinda Wuest
- Department of Oncology
- University of Alberta
- Edmonton, Canada
| | - Brendan Rowan
- Cardiff University of Wales – Department of Chemistry
- Cardiff, UK
| | - Suzanne E. Lapi
- Department of Radiology
- Washington University School of Medicine
- St. Louis, USA
| | | | - Peter G. Edwards
- Cardiff University of Wales – Department of Chemistry
- Cardiff, UK
| | - Frank Wuest
- Department of Oncology
- University of Alberta
- Edmonton, Canada
| |
Collapse
|
30
|
Lozza C, Navarro-Teulon I, Pèlegrin A, Pouget JP, Vivès E. Peptides in receptor-mediated radiotherapy: from design to the clinical application in cancers. Front Oncol 2013; 3:247. [PMID: 24093086 PMCID: PMC3782707 DOI: 10.3389/fonc.2013.00247] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 09/06/2013] [Indexed: 12/29/2022] Open
Abstract
Short peptides can show high affinity for specific receptors overexpressed on tumor cells. Some of these are already used in cancerology as diagnostic tools and others are in clinical trials for therapeutic applications. Therefore, peptides exhibit great potential as a diagnostic tool but also as an alternative or an additional antitumoral approach upon the covalent attachment of a therapeutic moiety such as a radionuclide or a cytotoxic drug. The chemistry offers flexibility to graft onto the targeting-peptide either fluorine or iodine directly, or metallic radionuclides through appropriate chelating agent. Since short peptides are straightforward to synthesize, there is an opportunity to further improve existing peptides or to design new ones for clinical applications. However, several considerations have to be taken into account to optimize the recognition properties of the targeting-peptide to its receptor, to improve its stability in the biological fluids and its residence in the body, or to increase its overall therapeutic effect. In this review, we highlight the different aspects which need to be considered for the development of an efficient peptide receptor-mediated radionuclide therapy in different neoplasms.
Collapse
Affiliation(s)
- Catherine Lozza
- Institut de Recherche en Cancérologie de Montpellier , Montpellier , France ; INSERM, U896 , Montpellier , France ; Université Montpellier 1 , Montpellier , France ; Institut Régional du Cancer Montpellier , Montpellier , France
| | | | | | | | | |
Collapse
|
31
|
Comba P, Hunoldt S, Morgen M, Pietzsch J, Stephan H, Wadepohl H. Optimization of Pentadentate Bispidines as Bifunctional Chelators for 64Cu Positron Emission Tomography (PET). Inorg Chem 2013; 52:8131-43. [DOI: 10.1021/ic4008685] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Peter Comba
- Anorganisch-Chemisches Institut, Universität Heidelberg, INF 270, D-69120 Heidelberg, Germany
| | - Sebastian Hunoldt
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, D-01314 Dresden, Germany
| | - Michael Morgen
- Anorganisch-Chemisches Institut, Universität Heidelberg, INF 270, D-69120 Heidelberg, Germany
| | - Jens Pietzsch
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, D-01314 Dresden, Germany
- Department of Chemistry and Food Chemistry, University of Technology Dresden, D-01062 Dresden, Germany
| | - Holger Stephan
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, D-01314 Dresden, Germany
| | - Hubert Wadepohl
- Anorganisch-Chemisches Institut, Universität Heidelberg, INF 270, D-69120 Heidelberg, Germany
| |
Collapse
|
32
|
Cai H, Conti PS. RGD-based PET tracers for imaging receptor integrin αv β3 expression. J Labelled Comp Radiopharm 2013; 56:264-79. [PMID: 24285371 DOI: 10.1002/jlcr.2999] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 11/02/2012] [Accepted: 11/06/2012] [Indexed: 12/20/2022]
Abstract
Positron emission tomography (PET) imaging of receptor integrin αv β3 expression may play a key role in the early detection of cancer and cardiovascular diseases, monitoring disease progression, evaluating therapeutic response, and aiding anti-angiogenic drugs discovery and development. The last decade has seen the development of new PET tracers for in vivo imaging of integrin αv β3 expression along with advances in PET chemistry. In this review, we will focus on the radiochemistry development of PET tracers based on arginine-glycine-aspartic acid (RGD) peptide, present an overview of general strategies for preparing RGD-based PET tracers, and review the recent advances in preparations of (18) F-labeled, (64) Cu-labeled, and (68) Ga-labeled RGD tracers, RGD-based PET multivalent probes, and RGD-based PET multimodality probes for imaging receptor integrin αv β3 expression.
Collapse
Affiliation(s)
- Hancheng Cai
- PET Center, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA; Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | | |
Collapse
|