1
|
Cao W, Hu Y, Yu X, Long T, Sun B, Lei S, Xie P, Yu W. Cynaroside: a potential therapeutic agent targeting arachidonate 15-lipoxygenase to mitigate cerebral ischemia/reperfusion injury. Front Neurol 2025; 15:1490640. [PMID: 40026597 PMCID: PMC11867947 DOI: 10.3389/fneur.2024.1490640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/11/2024] [Indexed: 03/05/2025] Open
Abstract
Introduction Due to the anti-inflammatory and antioxidant properties of cynaroside (Cyn), it may be useful in the treatment of cerebral ischemia/reperfusion injury (I/R). This study aims to evaluate the effect of Cyn on cerebral ischemia/reperfusion injury. Methods Transient middle cerebral artery occlusion model (tMCAO) and oxygen and glucose deprivation/reperfusion (OGD/R) microglia models were used to evaluate the effect of Cyn. The direct interaction between Cyn and Alox15 was investigated through bioinformatics, molecular docking and biolayer interferometry. Results tMCAO mice treated with Cyn show improved neurological deficits, reduced infarct volume and edema, and inhibition of microglial activation. In addition, Cyn inhibited tMCAO-induced Alox15 expression. Cyn significantly reduced the overproduction of the M1 microglia-regulated pro-inflammatory cytokines NLRP3, ASC, and cleaved caspase-1, as well as the overproduction of IL-1β and IL-18, induced by tMCAO or OGD/R. Cyn also inhibits the expression of Tfrc, COX2, and Acsl4 in tMCAO and OGD/R-treated mice and BV-2 cells. Discussion These results suggest that Cyn may attenuate cerebral ischemia/reperfusion injury by inhibiting Alox15 to reduce inflammation and reduce ferroptosis. This study reveals the underlying molecular mechanism of Cyn in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Wenpeng Cao
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, China
- Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang, China
- Key Laboratory of Molecular Biology, School of Basic Medical, Guizhou Medical University, Guiyang, China
| | - Yufeng Hu
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, China
- Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Xingyu Yu
- Class 5, Nursing, Grade 2023, Guizhou Medical University, Guiyang, China
| | - Tingting Long
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, China
- Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Baofei Sun
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, China
- Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Shan Lei
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Peng Xie
- Key Laboratory of Molecular Biology, School of Basic Medical, Guizhou Medical University, Guiyang, China
| | - Wenfeng Yu
- Key Laboratory of Molecular Biology, School of Basic Medical, Guizhou Medical University, Guiyang, China
| |
Collapse
|
2
|
Wang C, Sun H, Wang R, Ma X, Sun Y. FGL2: A new target molecule for coagulation and immune regulation in infectious disease. Int Immunopharmacol 2024; 143:113505. [PMID: 39488038 DOI: 10.1016/j.intimp.2024.113505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
Infectious diseases are complex inflammatory-immunologic host responses caused by various pathogens, such as viruses, bacteria, parasites, and fungi. In the process of infectious disease development, immune cells are activated, and a substantial number of inflammatory factors are released within the endothelium, which results in coagulation activation and the formation of intravascular thrombi. Furthermore, infection-induced hypercoagulability amplifies the inflammatory response and immune dysregulation. Emerging evidence suggests that fibrinogen-like protein 2 (FGL2) has a crucial role in facilitating procoagulant, pro-inflammatory, and immune-regulatory responses in various infectious diseases. This review illustrates the complex procoagulation and immunoregulatory roles of FGL2, suggesting it could be a target for novel immune interventions in intractable infectious diseases.
Collapse
Affiliation(s)
- Chaoyang Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - He Sun
- Department of Hepatobiliary Surgery and Transplantation, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Rui Wang
- Department of Pediatrics, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaochun Ma
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yini Sun
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Zhang M, Mi M, Hu Z, Li L, Chen Z, Gao X, Liu D, Xu B, Liu Y. Polydopamine-Based Biomaterials in Orthopedic Therapeutics: Properties, Applications, and Future Perspectives. Drug Des Devel Ther 2024; 18:3765-3790. [PMID: 39219693 PMCID: PMC11363944 DOI: 10.2147/dddt.s473007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
Polydopamine is a versatile and modifiable polymer, known for its excellent biocompatibility and adhesiveness. It can also be engineered into a variety of nanoparticles and biomaterials for drug delivery, functional modification, making it an excellent choice to enhance the prevention and treatment of orthopedic diseases. Currently, the application of polydopamine biomaterials in orthopedic disease prevention and treatment is in its early stages, despite some initial achievements. This article aims to review these applications to encourage further development of polydopamine for orthopedic therapeutic needs. We detail the properties of polydopamine and its biomaterial types, highlighting its superior performance in functional modification on nanoparticles and materials. Additionally, we also explore the challenges and future prospects in developing optimal polydopamine biomaterials for clinical use in orthopedic disease prevention and treatment.
Collapse
Affiliation(s)
- Min Zhang
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Man Mi
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Zilong Hu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Lixian Li
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Zhiping Chen
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Xiang Gao
- Stem Cell Research and Cellular Therapy Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People’s Republic of China
| | - Di Liu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Bilian Xu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Yanzhi Liu
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| |
Collapse
|
4
|
Jannati S, Patnaik R, Banerjee Y. Beyond Anticoagulation: A Comprehensive Review of Non-Vitamin K Oral Anticoagulants (NOACs) in Inflammation and Protease-Activated Receptor Signaling. Int J Mol Sci 2024; 25:8727. [PMID: 39201414 PMCID: PMC11355043 DOI: 10.3390/ijms25168727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/02/2024] Open
Abstract
Non-vitamin K oral anticoagulants (NOACs) have revolutionized anticoagulant therapy, offering improved safety and efficacy over traditional agents like warfarin. This review comprehensively examines the dual roles of NOACs-apixaban, rivaroxaban, edoxaban, and dabigatran-not only as anticoagulants, but also as modulators of inflammation via protease-activated receptor (PAR) signaling. We highlight the unique pharmacotherapeutic properties of each NOAC, supported by key clinical trials demonstrating their effectiveness in preventing thromboembolic events. Beyond their established anticoagulant roles, emerging research suggests that NOACs influence inflammation through PAR signaling pathways, implicating factors such as factor Xa (FXa) and thrombin in the modulation of inflammatory responses. This review synthesizes current evidence on the anti-inflammatory potential of NOACs, exploring their impact on inflammatory markers and conditions like atherosclerosis and diabetes. By delineating the mechanisms by which NOACs mediate anti-inflammatory effects, this work aims to expand their therapeutic utility, offering new perspectives for managing inflammatory diseases. Our findings underscore the broader clinical implications of NOACs, advocating for their consideration in therapeutic strategies aimed at addressing inflammation-related pathologies. This comprehensive synthesis not only enhances understanding of NOACs' multifaceted roles, but also paves the way for future research and clinical applications in inflammation and cardiovascular health.
Collapse
Affiliation(s)
- Shirin Jannati
- Yajnavalkaa Banerrji Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (S.J.); (R.P.)
| | - Rajashree Patnaik
- Yajnavalkaa Banerrji Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (S.J.); (R.P.)
| | - Yajnavalka Banerjee
- Yajnavalkaa Banerrji Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (S.J.); (R.P.)
- Centre for Medical Education, University of Dundee, Dundee DD1 4HN, UK
| |
Collapse
|
5
|
Chen J, Wu L, Li Y. FGL1 and FGL2: emerging regulators of liver health and disease. Biomark Res 2024; 12:53. [PMID: 38816776 PMCID: PMC11141035 DOI: 10.1186/s40364-024-00601-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
Liver disease is a complex group of diseases with high morbidity and mortality rates, emerging as a major global health concern. Recent studies have highlighted the involvement of fibrinogen-like proteins, specifically fibrinogen-like protein 1 (FGL1) and fibrinogen-like protein 2 (FGL2), in the regulation of various liver diseases. FGL1 plays a crucial role in promoting hepatocyte growth, regulating lipid metabolism, and influencing the tumor microenvironment (TME), contributing significantly to liver repair, non-alcoholic fatty liver disease (NAFLD), and liver cancer. On the other hand, FGL2 is a multifunctional protein known for its role in modulating prothrombin activity and inducing immune tolerance, impacting viral hepatitis, liver fibrosis, hepatocellular carcinoma (HCC), and liver transplantation. Understanding the functions and mechanisms of fibrinogen-like proteins is essential for the development of effective therapeutic approaches for liver diseases. Additionally, FGL1 has demonstrated potential as a disease biomarker in radiation and drug-induced liver injury as well as HCC, while FGL2 shows promise as a biomarker in viral hepatitis and liver transplantation. The expression levels of these molecules offer exciting prospects for disease assessment. This review provides an overview of the structure and roles of FGL1 and FGL2 in different liver conditions, emphasizing the intricate molecular regulatory processes and advancements in targeted therapies. Furthermore, it explores the potential benefits and challenges of targeting FGL1 and FGL2 for liver disease treatment and the prospects of fibrinogen-like proteins as biomarkers for liver disease, offering insights for future research in this field.
Collapse
Affiliation(s)
- Jiongming Chen
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Lei Wu
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400030, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Yongsheng Li
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400030, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
6
|
Vago JP, Zaidan I, Perucci LO, Brito LF, Teixeira LC, Silva CMS, Miranda TC, Melo EM, Bruno AS, Queiroz-Junior CM, Sugimoto MA, Tavares LP, Grossi LC, Borges IN, Schneider AH, Baik N, Schneider AH, Talvani A, Ferreira RG, Alves-Filho JC, Nobre V, Teixeira MM, Parmer RJ, Miles LA, Sousa LP. Plasmin and plasminogen prevent sepsis severity by reducing neutrophil extracellular traps and systemic inflammation. JCI Insight 2023; 8:e166044. [PMID: 36917195 PMCID: PMC10243804 DOI: 10.1172/jci.insight.166044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Sepsis is a lethal syndrome characterized by systemic inflammation and abnormal coagulation. Despite therapeutic advances, sepsis mortality remains substantially high. Herein, we investigated the role of the plasminogen/plasmin (Plg/Pla) system during sepsis. Plasma levels of Plg were significantly lower in mice subjected to severe compared with nonsevere sepsis, whereas systemic levels of IL-6, a marker of sepsis severity, were higher in severe sepsis. Plg levels correlated negatively with IL-6 in both septic mice and patients, whereas plasminogen activator inhibitor-1 levels correlated positively with IL-6. Plg deficiency render mice susceptible to nonsevere sepsis induced by cecal ligation and puncture (CLP), resulting in greater numbers of neutrophils and M1 macrophages, liver fibrin(ogen) deposition, lower efferocytosis, and increased IL-6 and neutrophil extracellular trap (NET) release associated with organ damage. Conversely, inflammatory features, fibrin(ogen), and organ damage were substantially reduced, and efferocytosis was increased by exogenous Pla given during CLP- and LPS-induced endotoxemia. Plg or Pla protected mice from sepsis-induced lethality and enhanced the protective effect of antibiotics. Mechanistically, Plg/Pla-afforded protection was associated with regulation of NET release, requiring Pla-protease activity and lysine binding sites. Plg/Pla are important host-protective players during sepsis, controlling local and systemic inflammation and collateral organ damage.
Collapse
Affiliation(s)
- Juliana P. Vago
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, and
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Isabella Zaidan
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, and
| | - Luiza O. Perucci
- Department of Biological Sciences, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Larissa Froede Brito
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, and
| | - Lívia C.R. Teixeira
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, and
| | - Camila Meirelles Souza Silva
- Department of Pharmacology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Thaís C. Miranda
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, and
| | - Eliza M. Melo
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alexandre S. Bruno
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Celso Martins Queiroz-Junior
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Michelle A. Sugimoto
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, and
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciana P. Tavares
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Laís C. Grossi
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, and
| | - Isabela N. Borges
- Hospital of Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ayda Henriques Schneider
- Department of Pharmacology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Nagyung Baik
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Ayda H. Schneider
- Department of Pharmacology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - André Talvani
- Department of Biological Sciences, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Raphael G. Ferreira
- Department of Pharmacology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - José C. Alves-Filho
- Department of Pharmacology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vandack Nobre
- Hospital of Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro M. Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Robert J. Parmer
- Department of Medicine, Veterans Administration San Diego Healthcare System and University of California, San Diego, California, USA
| | - Lindsey A. Miles
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Lirlândia P. Sousa
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, and
| |
Collapse
|
7
|
Fu L, Liu Z, Liu Y. Fibrinogen-like protein 2 in inflammatory diseases: A future therapeutic target. Int Immunopharmacol 2023; 116:109799. [PMID: 36764282 DOI: 10.1016/j.intimp.2023.109799] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/09/2022] [Accepted: 01/25/2023] [Indexed: 02/10/2023]
Abstract
Fibrinogen-like protein 2 (FGL2), a member of the fibrinogen family, exists as a membrane-bound protein with immune-associated coagulation activity and a soluble form possessing immunosuppressive functions. The immunomodulatory role of FGL2 is evident in fibrin deposition-associated inflammatory diseases and cancer, suggesting that FGL2 expression could be exploited as a disease biomarker and a therapeutic target. Recently, in vitro studies and knockout and transgenic animal FGL2 models have been used by us and others to reveal the involvement of FGL2 in the pathogenesis of various inflammatory diseases. This review summarizes our current knowledge of the immunomodulatory role of FGL2 in inflammatory diseases and examines the role of FGL2 as a potential therapeutic target.
Collapse
Affiliation(s)
- Li Fu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, China
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, China.
| | - Yang Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, China.
| |
Collapse
|
8
|
Sugimoto MA, Perucci LO, Tavares LP, Teixeira MM, Sousa LP. Fibrinolysis in COVID-19: Impact on Clot Lysis and Modulation of Inflammation. Curr Drug Targets 2022; 23:1578-1592. [PMID: 36221881 DOI: 10.2174/1389450123666221011102250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 01/25/2023]
Abstract
COVID-19 is a multisystem disease caused by SARS-CoV-2 and is associated with an imbalance between the coagulation and fibrinolytic systems. Overall, hypercoagulation, hypofibrinolysis and fibrin-clot resistance to fibrinolysis predispose patients to thrombotic and thromboembolic events. In the lungs, the virus triggers alveolar and interstitial fibrin deposition, endothelial dysfunction, and pulmonary intravascular coagulation, all events intrinsically associated with the activation of inflammation and organ injury. Adding to the pathogenesis of COVID-19, there is a positive feedback loop by which local fibrin deposition in the lungs can fuel inflammation and consequently dysregulates coagulation, a process known as immunothrombosis. Therefore, fibrinolysis plays a central role in maintaining hemostasis and tissue homeostasis during COVID-19 by cleaning fibrin clots and controlling feed-forward products of coagulation. In addition, components of the fibrinolytic system have important immunomodulatory roles, as evidenced by studies showing the contribution of Plasminogen/Plasmin (Plg/Pla) to the resolution of inflammation. Herein, we review clinical evidence for the dysregulation of the fibrinolytic system and discuss its contribution to thrombosis risk and exacerbated inflammation in severe COVID-19. We also discuss the current concept of an interplay between fibrinolysis and inflammation resolution, mirroring the well-known crosstalk between inflammation and coagulation. Finally, we consider the central role of the Plg/Pla system in resolving thromboinflammation, drawing attention to the overlooked consequences of COVID-19-associated fibrinolytic abnormalities to local and systemic inflammation.
Collapse
Affiliation(s)
- Michelle A Sugimoto
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Division of Medicine, University College London, London, UK.,Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luiza O Perucci
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Nucleus of Research on Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Luciana P Tavares
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mauro M Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Lirlândia P Sousa
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
9
|
Dyall SC, Balas L, Bazan NG, Brenna JT, Chiang N, da Costa Souza F, Dalli J, Durand T, Galano JM, Lein PJ, Serhan CN, Taha AY. Polyunsaturated fatty acids and fatty acid-derived lipid mediators: Recent advances in the understanding of their biosynthesis, structures, and functions. Prog Lipid Res 2022; 86:101165. [PMID: 35508275 PMCID: PMC9346631 DOI: 10.1016/j.plipres.2022.101165] [Citation(s) in RCA: 271] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/26/2022] [Accepted: 04/27/2022] [Indexed: 12/21/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are structural components of membrane phospholipids, and influence cellular function via effects on membrane properties, and also by acting as a precursor pool for lipid mediators. These lipid mediators are formed via activation of pathways involving at least one step of dioxygen-dependent oxidation, and are consequently called oxylipins. Their biosynthesis can be either enzymatically-dependent, utilising the promiscuous cyclooxygenase, lipoxygenase, or cytochrome P450 mixed function oxidase pathways, or nonenzymatic via free radical-catalyzed pathways. The oxylipins include the classical eicosanoids, comprising prostaglandins, thromboxanes, and leukotrienes, and also more recently identified lipid mediators. With the advent of new technologies there is growing interest in identifying these different lipid mediators and characterising their roles in health and disease. This review brings together contributions from some of those at the forefront of research into lipid mediators, who provide brief introductions and summaries of current understanding of the structure and functions of the main classes of nonclassical oxylipins. The topics covered include omega-3 and omega-6 PUFA biosynthesis pathways, focusing on the roles of the different fatty acid desaturase enzymes, oxidized linoleic acid metabolites, omega-3 PUFA-derived specialized pro-resolving mediators, elovanoids, nonenzymatically oxidized PUFAs, and fatty acid esters of hydroxy fatty acids.
Collapse
|
10
|
Lipidomics in Understanding Pathophysiology and Pharmacologic Effects in Inflammatory Diseases: Considerations for Drug Development. Metabolites 2022; 12:metabo12040333. [PMID: 35448520 PMCID: PMC9030008 DOI: 10.3390/metabo12040333] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 01/26/2023] Open
Abstract
The lipidome has a broad range of biological and signaling functions, including serving as a structural scaffold for membranes and initiating and resolving inflammation. To investigate the biological activity of phospholipids and their bioactive metabolites, precise analytical techniques are necessary to identify specific lipids and quantify their levels. Simultaneous quantification of a set of lipids can be achieved using high sensitivity mass spectrometry (MS) techniques, whose technological advancements have significantly improved over the last decade. This has unlocked the power of metabolomics/lipidomics allowing the dynamic characterization of metabolic systems. Lipidomics is a subset of metabolomics for multianalyte identification and quantification of endogenous lipids and their metabolites. Lipidomics-based technology has the potential to drive novel biomarker discovery and therapeutic development programs; however, appropriate standards have not been established for the field. Standardization would improve lipidomic analyses and accelerate the development of innovative therapies. This review aims to summarize considerations for lipidomic study designs including instrumentation, sample stabilization, data validation, and data analysis. In addition, this review highlights how lipidomics can be applied to biomarker discovery and drug mechanism dissection in various inflammatory diseases including cardiovascular disease, neurodegeneration, lung disease, and autoimmune disease.
Collapse
|