1
|
Limcharoen B, Wanichwecharungruang S, Banlunara W, Darvin ME. Seeing through the skin: Optical methods for visualizing transdermal drug delivery with microneedles. Adv Drug Deliv Rev 2025; 217:115478. [PMID: 39603387 DOI: 10.1016/j.addr.2024.115478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/08/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Optical methods play a pivotal role in advancing transdermal drug delivery research, particularly with the emergence of microneedle technology. This review presents a comprehensive analysis of optical methods used in studying transdermal drug delivery facilitated by microneedle technology. Beginning with an introduction to microneedle technology and skin anatomy and optical properties, the review explores the integration of optical methods for enhanced visualization. Optical imaging offers key advantages including real-time drug distribution visualization, non-invasive skin response monitoring, and quantitative drug penetration analysis. A spectrum of optical imaging modalities ranging from conventional dermoscopy and stereomicroscopy to advance techniques as fluorescence microscopy, laser scanning microscopy, in vivo imaging system, two-photon microscopy, fluorescence lifetime imaging microscopy, optical coherence tomography, Raman microspectroscopy, laser speckle contrast imaging, and photoacoustic microscopy is discussed. Challenges such as resolution and depth penetration limitations are addressed alongside potential breakthroughs and future directions in optical techniques development. The review underscores the importance of bridging the gap between preclinical and clinical studies, explores opportunities for integrating optical imaging and chemical sensing methods with drug delivery systems, and highlight the importance of non-invasive "optical biopsy" as a valuable alternative to conventional histology. Overall, this review provides insight into the role of optical methods in understanding transdermal drug delivery mechanisms with microneedles.
Collapse
Affiliation(s)
- Benchaphorn Limcharoen
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
| | - Supason Wanichwecharungruang
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Maxim E Darvin
- Fraunhofer Institute for Photonic Microsystems IPMS, Dresden 01109, Germany.
| |
Collapse
|
2
|
Yu T, Yang Q, Peng B, Gu Z, Zhu D. Vascularized organoid-on-a-chip: design, imaging, and analysis. Angiogenesis 2024; 27:147-172. [PMID: 38409567 DOI: 10.1007/s10456-024-09905-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/11/2024] [Indexed: 02/28/2024]
Abstract
Vascularized organoid-on-a-chip (VOoC) models achieve substance exchange in deep layers of organoids and provide a more physiologically relevant system in vitro. Common designs for VOoC primarily involve two categories: self-assembly of endothelial cells (ECs) to form microvessels and pre-patterned vessel lumens, both of which include the hydrogel region for EC growth and allow for controlled fluid perfusion on the chip. Characterizing the vasculature of VOoC often relies on high-resolution microscopic imaging. However, the high scattering of turbid tissues can limit optical imaging depth. To overcome this limitation, tissue optical clearing (TOC) techniques have emerged, allowing for 3D visualization of VOoC in conjunction with optical imaging techniques. The acquisition of large-scale imaging data, coupled with high-resolution imaging in whole-mount preparations, necessitates the development of highly efficient analysis methods. In this review, we provide an overview of the chip designs and culturing strategies employed for VOoC, as well as the applicable optical imaging and TOC methods. Furthermore, we summarize the vascular analysis techniques employed in VOoC, including deep learning. Finally, we discuss the existing challenges in VOoC and vascular analysis methods and provide an outlook for future development.
Collapse
Affiliation(s)
- Tingting Yu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Qihang Yang
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
- Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu, 215163, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
- Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| |
Collapse
|
3
|
Munisso MC, Saito S, Tsuge I, Morimoto N. Three-dimensional analysis of load-dependent changes in the orientation of dermal collagen fibers in human skin: A pilot study. J Mech Behav Biomed Mater 2023; 138:105585. [PMID: 36435035 DOI: 10.1016/j.jmbbm.2022.105585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/29/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
The availability of quantitative structural data on the orientation of collagen fibers is of crucial importance for understanding the behavior of connective tissues. These fibers can be visualized using a variety of imaging techniques, including second harmonic generation (SHG) microscopy. However, characterization of the collagen network requires the accurate extraction of parameters from imaging data. To this end, several automated processes have been developed to identify the preferred orientation of collagen fibers. Common methods include fast Fourier transforms and curvelet transforms, but these tools are mostly used to infer a single preferred orientation. The purpose of this pilot study was to develop an easy procedure for comprehensively comparing multiple human skin samples with the goal of analyzing load-dependent changes via SHG microscopy. We created a 3D model based upon 2D image stacks that provide fiber orientation data perpendicular and parallel to the plane of the epidermis. The SHG images were analyzed by CurveAlign to obtain angle histogram plots containing information about the multiple fiber orientations in each single image. Subsequently, contour plots of the angle histogram intensities were created to provide a useful visual plotting method to clearly show the anomalies in the angle histograms in all samples. Our results provided additional details on how the collagen network carries a load. In fact, analysis of SHG images indicated that increased stretch was accompanied by an increase in the alignment of fibers in the loading direction. Moreover, these images demonstrated that more than one type of preferred orientation is present. In particular, the 3D network of fibers appears to have two preferred orientations in the planes both perpendicular and parallel to the plane of the epidermis.
Collapse
Affiliation(s)
- Maria Chiara Munisso
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan.
| | - Susumu Saito
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan.
| | - Itaru Tsuge
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Naoki Morimoto
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Zhan YJ, Zhang SW, Zhu S, Jiang N. Tissue Clearing and Its Application in the Musculoskeletal System. ACS OMEGA 2023; 8:1739-1758. [PMID: 36687066 PMCID: PMC9850472 DOI: 10.1021/acsomega.2c05180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The musculoskeletal system is an integral part of the human body. Currently, most skeletal muscle research is conducted through conventional histological sections due to technological limitations and the structure of skeletal muscles. For studying and observing bones and muscles, there is an urgent need for three-dimensional, objective imaging technologies. Optical tissue-clearing technologies seem to offer a novel and accessible approach to research of the musculoskeletal system. Using this approach, the components which cause refraction or prevent light from penetrating into the tissue are physically and chemically eliminated; then the liquid in the tissue is replaced with high-refractive-index chemicals. This innovative method, which allows three-dimensional reconstruction at the cellular and subcellular scale, significantly improves imaging depth and resolution. Nonetheless, this technology was not originally developed to image bones or muscles. When compared with brain and nerve organs which have attracted considerable attention in this field, the musculoskeletal system contains fewer lipids and has high levels of hemoglobin, collagen fibers, and inorganic hydroxyapatite crystals. Currently, three-dimensional imaging methods are widely used in the diagnosis and treatment of skeletal and muscular illnesses. In this regard, it is vitally important to review and evaluate the optical tissue-clearing technologies currently employed in the musculoskeletal system, so that researchers may make an informed decision. In the meantime, this study offers guidelines and recommendations for expanding the use of this technology in the musculoskeletal system.
Collapse
Affiliation(s)
- Yan-Jing Zhan
- State
Key Laboratory of Oral Diseases & National Clinical Research Center
for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shi-Wen Zhang
- State
Key Laboratory of Oral Diseases & National Clinical Research Center
for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- West
China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - SongSong Zhu
- State
Key Laboratory of Oral Diseases & National Clinical Research Center
for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- West
China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Nan Jiang
- State
Key Laboratory of Oral Diseases & National Clinical Research Center
for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- West
China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Schneidereit D, Nübler S, Friedrich O. Second Harmonic Generation Morphometry of Muscle Cytoarchitecture in Living Cells. Methods Mol Biol 2023; 2644:267-285. [PMID: 37142928 DOI: 10.1007/978-1-0716-3052-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The architectural structure of cells is essential for the cells' function, which becomes especially apparent in the highly "structure functionally" tuned skeletal muscle cells. Here, structural changes in the microstructure can have a direct impact on performance parameters, such as isometric or tetanic force production. The microarchitecture of the actin-myosin lattice in muscle cells can be detected noninvasively in living cells and in 3D by using second harmonic generation (SHG) microscopy, forgoing the need to alter samples by introducing fluorescent probes into them. Here, we provide tools and step-by-step protocols to guide the processes of obtaining SHG microscopy image data from samples, as well as extracting characteristic values from the image data to quantify the cellular microarchitecture using characteristic patterns of myofibrillar lattice alignments.
Collapse
Affiliation(s)
- Dominik Schneidereit
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| | - Stefanie Nübler
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
6
|
Silva HF, Martins IS, Bogdanov AA, Tuchin VV, Oliveira LM. Characterization of optical clearing mechanisms in muscle during treatment with glycerol and gadobutrol solutions. JOURNAL OF BIOPHOTONICS 2023; 16:e202200205. [PMID: 36101493 DOI: 10.1002/jbio.202200205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/18/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
The recent increasing interest in the application of radiology contrasting agents to create transparency in biological tissues implies that the diffusion properties of those agents need evaluation. The comparison of those properties with the ones obtained for other optical clearing agents allows to perform an optimized agent selection to create optimized transparency in clinical applications. In this study, the evaluation and comparison of the diffusion properties of gadobutrol and glycerol in skeletal muscle was made, showing that although gadobutrol has a higher molar mass than glycerol, its low viscosity allows for a faster diffusion in the muscle. The characterization of the tissue dehydration and refractive index matching mechanisms of optical clearing was made in skeletal muscle, namely by the estimation of the diffusion coefficients for water, glycerol and gadobutrol. The estimated tortuosity values of glycerol (2.2) and of gadobutrol (1.7) showed a longer path-length for glycerol in the muscle.
Collapse
Affiliation(s)
- Hugo F Silva
- Centre of Innovation in Engineering and Industrial Technology (CIETI), Polytechnic of Porto, Porto, Portugal
| | - Inês S Martins
- Centre of Innovation in Engineering and Industrial Technology (CIETI), Polytechnic of Porto, Porto, Portugal
| | - Alexei A Bogdanov
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
- Department of Radiology, UMass Chan Medical School, Worcester, Massachusetts, USA
- Department of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russian Federation
| | - Valery V Tuchin
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
- Science Medical Center, Saratov State University, Saratov, Russian Federation
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russian Federation
- Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control, FRC "Saratov Research Centre of Russian Academy of Sciences,", Saratov, Russian Federation
| | - Luís M Oliveira
- Centre of Innovation in Engineering and Industrial Technology (CIETI), Polytechnic of Porto, Porto, Portugal
- Physics Department, School of Engineering, Polytechnic of Porto, Porto, Portugal
| |
Collapse
|
7
|
Kreiss L, Ganzleben I, Mühlberg A, Ritter P, Schneidereit D, Becker C, Neurath MF, Friedrich O, Schürmann S, Waldner M. Label-free analysis of inflammatory tissue remodeling in murine lung tissue based on multiphoton microscopy, Raman spectroscopy and machine learning. JOURNAL OF BIOPHOTONICS 2022; 15:e202200073. [PMID: 35611635 DOI: 10.1002/jbio.202200073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Inflammatory fibrotic tissue remodeling can lead to severe morbidity. Histopathology grading requires extraction of biopsies and elaborate tissue processing. Label-free optical technologies can provide diagnostic readout without preparation and artificial stainings and show potential for in vivo applications. Here, we present an integration of Raman spectroscopy (RS) and multiphoton microscopy for joint investigation of the bio-chemical composition and morphological features related to cellular components and connective tissue. Both modalities show that collagen signatures were significantly increased in a murine fibrosis model. Furthermore, autofluorescence signatures assigned to immune cells show high correlation with disease severity. RS indicates increased levels of elastin and lipids. Further, we investigated the effect of joint data sets on prediction performance in machine learning models. Although binary classification did not benefit from adding more features, multi-class classification was improved by integrated data sets.
Collapse
Affiliation(s)
- Lucas Kreiss
- Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ingo Ganzleben
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Ludwig Demling Center for Molecular Imaging, Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Alexander Mühlberg
- Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Paul Ritter
- Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Dominik Schneidereit
- Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Ludwig Demling Center for Molecular Imaging, Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian Schürmann
- Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Maximilian Waldner
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Ludwig Demling Center for Molecular Imaging, Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
8
|
Multiphoton Microscopy Reveals DAPK1-Dependent Extracellular Matrix Remodeling in a Chorioallantoic Membrane (CAM) Model. Cancers (Basel) 2022; 14:cancers14102364. [PMID: 35625969 PMCID: PMC9139596 DOI: 10.3390/cancers14102364] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The formation of metastasis is not only intricately orchestrated by cancer cells but is also affected by the surrounding extracellular matrix (ECM). The barrier function of the ECM represents an obstacle that cancer cells have to overcome to disseminate from the primary tumor to form metastasis in distant organs. Here, we demonstrate an approach to studying the remodeling of a collagen-rich ECM by colorectal tumor cells using multiphoton microscopy (MPM). This approach allows the analysis of the invasion front of tumors grown on the CAM in 3D. MPM is superior to conventional histology, which is limited to 2D analysis and needs extensive tissue preparation. Abstract Cancer cells facilitate tumor growth by creating favorable tumor micro-environments (TME), altering homeostasis and immune response in the extracellular matrix (ECM) of surrounding tissue. A potential factor that contributes to TME generation and ECM remodeling is the cytoskeleton-associated human death-associated protein kinase 1 (DAPK1). Increased tumor cell motility and de-adhesion (thus, promoting metastasis), as well as upregulated plasminogen-signaling, are shown when functionally analyzing the DAPK1 ko-related proteome. However, the systematic investigation of how tumor cells actively modulate the ECM at the tissue level is experimentally challenging since animal models do not allow direct experimental access while artificial in vitro scaffolds cannot simulate the entire complexity of tissue systems. Here, we used the chorioallantoic membrane (CAM) assay as a natural, collagen-rich tissue model in combination with all-optical experimental access by multiphoton microscopy (MPM) to study the ECM remodeling potential of colorectal tumor cells with and without DAPK1 in situ and even in vivo. This approach demonstrates the suitability of the CAM assay in combination with multiphoton microscopy for studying collagen remodeling during tumor growth. Our results indicate the high ECM remodeling potential of DAPK1 ko tumor cells at the tissue level and support our findings from proteomics.
Collapse
|
9
|
Ritter P, Cai A, Reischl B, Fiedler M, Prol G, Frie B, Kretzschmar E, Michael M, Hartmann K, Lesko C, Salti H, Arkudas A, Horch R, Paulsen F, Friedrich O, Haug M. MyoBio: An automated bioreactor system technology for standardized perfusion-decellularization of whole skeletal muscle. IEEE Trans Biomed Eng 2022; 69:2305-2313. [DOI: 10.1109/tbme.2022.3142317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|