1
|
Pal RS, Jawaid T, Rahman MA, Verma R, Patra PK, Vijaypal SV, Pal Y, Upadhyay R. Metformin's anticancer odyssey: Revealing multifaceted mechanisms across diverse neoplastic terrains- a critical review. Biochimie 2025; 233:109-121. [PMID: 40058683 DOI: 10.1016/j.biochi.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/10/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Metformin, initially prescribed as an oral hypoglycemic medication for type 2 diabetes, has recently gained attention for its potential anticancer effects. Its history dates to 1918, when guanidine, a component of the traditional European herb Galega officinalis, was found to reduce glycemia. This review precisely examines the mechanisms underlying Metformin's anticancer effects across various neoplastic conditions. This investigation explores the complex interactions between metformin and major signaling pathways associated with carcinogenesis, including AMP-activated protein kinase (AMPK), mTOR, and insulin-like growth factor (IGF) pathways. The review emphasizes Metformin's diverse effects on angiogenesis, inflammation, apoptosis, and cellular metabolism in cancer cells. Additionally, new data on metformin's capacity to alter the tumor microenvironment and enhance immune surveillance systems against cancer are examined. The review underscores Metformin's potential for repurposing in oncology, emphasizing its clinical relevance as an adjuvant therapy for various cancers. The review provides insightful information about the complex anticancer mechanisms of metformin by combining data from preclinical and clinical studies. These findings not only broaden our knowledge of the effects of metformin but also open new avenues for oncology research and treatment developments.
Collapse
Affiliation(s)
- Rashmi Saxena Pal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Talha Jawaid
- Department of Pharmacology, College of Medicine, Imam Muhammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - M A Rahman
- Teegala Krishna Reddy College of Pharmacy, Hyderabad, Telangana, India
| | - Rakesh Verma
- Department of Pharmacology, Institute of Medical Science, BHU, Varanasi, Uttar Pradesh, India
| | - Pratap Kumar Patra
- School of Pharmacy & Life Sciences, Centurion University of Technology & Management, Bhubaneswar, Odisha, India
| | | | - Yogendra Pal
- School of Pharmaceutical Science, RIMT University, Mandi Gobindgarh, Punjab, India
| | - Rohit Upadhyay
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
2
|
Shen Y, Lin J, Jiang T, Shen X, Li Y, Fu Y, Xu P, Fang L, Chen Z, Huang H, Xia Y, Xu Z, Wang L. GC-derived exosomal circMAN1A2 promotes cancer progression and suppresses T-cell antitumour immunity by inhibiting FBXW11-mediated SFPQ degradation. J Exp Clin Cancer Res 2025; 44:24. [PMID: 39856764 PMCID: PMC11762487 DOI: 10.1186/s13046-025-03288-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Exosomes, as extracellular membrane vesicles, play important roles in intercellular communication and can influence tumour progression. Circular RNAs (circRNAs) have been reported in various malignancies and are also important components of exosomes. However, the role of exosomal circRNAs in gastric cancer (GC) progression has not been completely clarified. METHODS The exosomal circRNAs enriched in GC were identified using exosomal circRNA sequencing. The biological function of circMAN1A2 in GC was investigated using a series of in vitro and in vivo experiments. PKH-67 staining was used to label the exosomes. The molecular mechanism of exosomal circMAN1A2 was investigated via mass spectrometry, immunoprecipitation, Western blot, and single-cell RNA-sequencing data analyses. RESULTS In our study, we determined that circMAN1A2 (hsa_circ_0000118) was enriched in GC-derived exosomes. Higher circMAN1A2 expression was related to poor survival in GC patients (HR = 2.917, p = 0.0120). Exosomal circMAN1A2 promoted GC progression in vitro and in vivo and suppressed the antitumour activity of T cells. Moreover, circMAN1A2 bound to SFPQ in GC cells and T cells, promoting the G1/S phase transition of the cell cycle in GC cells while inhibiting the activation of the T cell receptor signalling pathway in T cells to decrease antitumour activity. Mechanistically, circMAN1A2 competed with FBXW11 for binding to SFPQ, preventing FBXW11-mediated k48-linked ubiquitination and SFPQ protein degradation, thereby stabilizing SFPQ expression. CONCLUSIONS Our work confirms the critical role of exosomal circMAN1A2 in the progression and immunosuppression of GC. This novel axis of circMAN1A2-SFPQ provides new insights into exosomal circRNA-based GC diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Yikai Shen
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jie Lin
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Tianlu Jiang
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, Wuxi, Jiangsu Province, China
| | - Xusheng Shen
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ying Li
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yiwang Fu
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Penghui Xu
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lang Fang
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zetian Chen
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hongxin Huang
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yiwen Xia
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Zekuan Xu
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Linjun Wang
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
3
|
Li Y, Liu L, Li B. Role of ENO1 and its targeted therapy in tumors. J Transl Med 2024; 22:1025. [PMID: 39543641 PMCID: PMC11566422 DOI: 10.1186/s12967-024-05847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
ENO1, also called 2-phospho-D-glycerate hydrolase in cellular glycolysis, is an enzyme that converts 2-phosphoglycerate to phosphoenolpyruvate and plays an important role in the Warburg effect. In various tumors, ENO1 overexpression correlates with poor prognosis. ENO1 is a multifunctional oncoprotein that, when located on the cell surface, acts as a "moonlighting protein" to promote tumor invasion and metastasis. When located intracellularly, ENO1 facilitates glycolysis to dysregulate cellular energy and sustain tumor proliferation. Additionally, it promotes tumor progression by activating oncogenic signaling pathways. ENO1 is a tumor biomarker and represents a promising target for tumor therapy. This review summarizes recent advances from 2020 to 2024 in understanding the relationship between ENO1 and tumors and explores the latest targeted therapeutic strategies involving ENO1.
Collapse
Affiliation(s)
- Yafei Li
- Department of Oral Anatomy and Physiology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Lu Liu
- Department of Oral Anatomy and Physiology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Bo Li
- Department of Oral Anatomy and Physiology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| |
Collapse
|
4
|
Tian Y, Guo J, Mao L, Chen Z, Zhang X, Li Y, Zhang Y, Zha X, Luo OJ. Single-cell dissection reveals promotive role of ENO1 in leukemia stem cell self-renewal and chemoresistance in acute myeloid leukemia. Stem Cell Res Ther 2024; 15:347. [PMID: 39380054 PMCID: PMC11463110 DOI: 10.1186/s13287-024-03969-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Quiescent self-renewal of leukemia stem cells (LSCs) and resistance to conventional chemotherapy are the main factors leading to relapse of acute myeloid leukemia (AML). Alpha-enolase (ENO1), a key glycolytic enzyme, has been shown to regulate embryonic stem cell differentiation and promote self-renewal and malignant phenotypes in various cancer stem cells. Here, we sought to test whether and how ENO1 influences LSCs renewal and chemoresistance within the context of AML. METHODS We analyzed single-cell RNA sequencing data from bone marrow samples of 8 relapsed/refractory AML patients and 4 healthy controls using bioinformatics and machine learning algorithms. In addition, we compared ENO1 expression levels in the AML cohort with those in 37 control subjects and conducted survival analyses to correlate ENO1 expression with clinical outcomes. Furthermore, we performed functional studies involving ENO1 knockdown and inhibition in AML cell line. RESULTS We used machine learning to model and infer malignant cells in AML, finding more primitive malignant cells in the non-response (NR) group. The differentiation capacity of LSCs and progenitor malignant cells exhibited an inverse correlation with glycolysis levels. Trajectory analysis indicated delayed myeloid cell differentiation in NR group, with high ENO1-expressing LSCs at the initial stages of differentiation being preserved post-treatment. Simultaneously, ENO1 and stemness-related genes were upregulated and co-expressed in malignant cells during early differentiation. ENO1 level in our AML cohort was significantly higher than the controls, with higher levels in NR compared to those in complete remission. Knockdown of ENO1 in AML cell line resulted in the activation of LSCs, promoting cell differentiation and apoptosis, and inhibited proliferation. ENO1 inhibitor can impede the proliferation of AML cells. Furthermore, survival analyses associated higher ENO1 expression with poorer outcome in AML patients. CONCLUSIONS Our findings underscore the critical role of ENO1 as a plausible driver of LSC self-renewal, a potential target for AML target therapy and a biomarker for AML prognosis.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Phosphopyruvate Hydratase/metabolism
- Phosphopyruvate Hydratase/genetics
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Tumor Suppressor Proteins/metabolism
- Tumor Suppressor Proteins/genetics
- Female
- Drug Resistance, Neoplasm
- Single-Cell Analysis
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/genetics
- Male
- Middle Aged
- Cell Self Renewal
- Adult
- Cell Line, Tumor
- Cell Differentiation
- Aged
- Biomarkers, Tumor
Collapse
Affiliation(s)
- Yun Tian
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou, 510632, China
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jiafan Guo
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Department of Clinical Laboratory, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Lipeng Mao
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhixi Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou, 510632, China
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Xingwei Zhang
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Department of Clinical Laboratory, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou, 510632, China.
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| | - Yikai Zhang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou, 510632, China.
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China.
| | - Xianfeng Zha
- Department of Clinical Laboratory, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
5
|
Hou C, Yang Y, Wang P, Xie H, Jin S, Zhao L, Wu G, Xing H, Chen H, Liu B, Du C, Sun X, He L. CCDC113 promotes colorectal cancer tumorigenesis and metastasis via TGF-β signaling pathway. Cell Death Dis 2024; 15:666. [PMID: 39261464 PMCID: PMC11390942 DOI: 10.1038/s41419-024-07036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related mortality worldwide. Although CRC patients' survival is improved with surgical resection and immunotherapy, metastasis and recurrence remain major problems leading to poor prognosis. Therefore, exploring pathogenesis and identifying specific biomarkers are crucial for CRC early diagnosis and targeted therapy. CCDC113, a member of CCDC families, has been reported to play roles in ciliary assembly, ciliary activity, PSCI, asthma and early lung cancer diagnosis. However, the functions of CCDC113 in CRC still remain unclear. In this study, we find that CCDC113 is significantly highly expressed in CRC. High expression of CCDC113 is significantly correlated with CRC patients' poor prognosis. CCDC113 is required for CRC tumorigenesis and metastasis. RNA-seq and TCGA database analysis indicate that CCDC113 is positively correlated with TGF-β signaling pathway. TGF-β signaling pathway inhibitor galunisertib could reverse the increased proliferation and migration ability of CRC cells caused by CCDC113 overexpression in vitro and in vivo. These results indicate that CCDC113 promotes CRC tumorigenesis and metastasis via TGF-β signaling pathway. In conclusion, it is the first time to explore the functions and mechanisms of CCDC113 in CRC tumorigenesis and metastasis. And CCDC113 may be a potential biomarker and therapeutic target for CRC intervention.
Collapse
Affiliation(s)
- Chenying Hou
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanmei Yang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Peiwen Wang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huimin Xie
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shuiling Jin
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liangbo Zhao
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Guanghua Wu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hao Xing
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hong Chen
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Benyu Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chunyan Du
- Laboratory Animal Center, Zhengzhou University, Zhengzhou, China.
| | - Xiao Sun
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Luyun He
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
6
|
Wei X, Feng J, Chen L, Zhang C, Liu Y, Zhang Y, Xu Y, Zhang J, Wang J, Yang H, Han X, Wang G. METTL3-mediated m6A modification of LINC00520 confers glycolysis and chemoresistance in osteosarcoma via suppressing ubiquitination of ENO1. Cancer Lett 2024:217194. [PMID: 39168299 DOI: 10.1016/j.canlet.2024.217194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/20/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Chemoresistance remains the main obstacle limiting the treatment of osteosarcoma, seriously affecting the prognosis of adolescent patients with osteosarcoma. Recently, long non-coding RNAs (lncRNAs) were reported to be involved in chemoresistance, while the mechanisms of lncRNAs underlying osteosarcoma resistance to chemotherapy remain elusive. Here, LINC00520 was identified as a novel cisplatin resistance-related lncRNA in osteosarcoma, and its high expression was associated with poor prognosis of osteosarcoma patients. Functionally, LINC00520 could potentiate osteosarcoma resistance to cisplatin in vitro and in vivo. Mechanistically, LINC00520 bound to ENO1 and upregulated ENO1 protein expression by blocking FBXW7-mediated ENO1 ubiquitination and proteasomal degradation, thereby promoting glycolysis and ultimately inducing cisplatin resistance in osteosarcoma. Furthermore, METTL3 could stabilize and upregulate LINC00520 in an m6A-YTHDF2-dependent manner in osteosarcoma. This study proposes a novel lncRNA-driven mechanism for cisplatin resistance in osteosarcoma, and offers a promising therapeutic strategy for reversing chemoresistance in osteosarcoma by targeting the METTL3/LINC00520/ENO1/glycolysis axis.
Collapse
Affiliation(s)
- Xianfu Wei
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, People's Republic of China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Jinyan Feng
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, People's Republic of China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Long Chen
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, People's Republic of China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Chao Zhang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, People's Republic of China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Yongheng Liu
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, People's Republic of China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Yan Zhang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, People's Republic of China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Yao Xu
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, People's Republic of China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Jin Zhang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, People's Republic of China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Jinwu Wang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, People's Republic of China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Houzhi Yang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, People's Republic of China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Xiuxin Han
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, People's Republic of China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China.
| | - Guowen Wang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, People's Republic of China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China.
| |
Collapse
|
7
|
Wang K, Chen Y, Zhang M, Wang S, Yao S, Gong Z, Fei B, Huang Z. Metformin suppresses gastric cancer progression by disrupting the STAT1-PRMT1 axis. Biochem Pharmacol 2024; 226:116367. [PMID: 38876258 DOI: 10.1016/j.bcp.2024.116367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/24/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Gastric cancer (GC) is a common form of cancer and the leading cause of cancer-related deaths worldwide. Chemotherapy is the primary treatment for patients with unresectable or partially resectable GC. However, its adverse effects and chemoresistance greatly restrict its applicability and efficacy. Although HER2-targeted therapy and immunotherapy have been successfully used for GC treatment, their beneficial population is limited. To expand the range of cancer treatments, drug repurposing has emerged as a promising strategy. In this study, we evaluated the potential of Metformin, an oral anti-hyperglycemic agent, to suppress GC progression both in vivo and in vitro. Functional investigations showed that Metformin significantly inhibits GC proliferation and migration. Furthermore, we discovered that Metformin bound and disrupted STAT1 phosphorylation, inhibiting PRMT1 expression and consequently GC progression. In conclusion, our study not only provides further evidence for the anti-GC role of Metformin but also identifies the direct target mediating the tumor-inhibitory effects of Metformin in GC.
Collapse
Affiliation(s)
- Kaiqing Wang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China; Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu, China
| | - Yanyan Chen
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Meimei Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, China
| | - Suzeng Wang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China; Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu, China
| | - Surui Yao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zhicheng Gong
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Bojian Fei
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu, China.
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
8
|
Xiong Y, Zheng X, Deng H. Ropivacaine suppresses the progression of renal cell carcinoma through regulating the lncRNA RMRP/EZH2/CCDC65 axis. Daru 2024; 32:121-132. [PMID: 38008820 PMCID: PMC11087436 DOI: 10.1007/s40199-023-00492-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/06/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) is a common malignancy. Local anesthetics were displayed powerful effects against various cancers. This study aims to probe the functions and molecular mechanism of ropivacaine in RCC. METHODS Different concentrations of ropivacaine were performed to administrate RCC cells including 786-O and Caki-1 cells. Cell viability and cell apoptosis were examined using CCK-8 and flow cytometry, respectively. Cell migration and invasion were determined by transwell assay. RMRP and CCDC65 expression was firstly predicted using TCGA dataset and further validated in RCC cells using qRT-PCR and western blot. The interactions among RMRP, EZH2 and CCDC65 were verified by RNA immunoprecipitation (RIP) and chromatin immunoprecipitation (ChIP) assays. RESULTS Ropivacaine effectively suppressed RCC cell viability, migration and invasion and enhanced cell apoptosis rate. Aberrantly elevated RMRP expression in RCC tissues was predicted by TCGA database. Interestingly, overexpressed RMRP observed in RCC cells could be also blocked upon the administration of ropivacaine. Likewise, RMRP knockdown further strengthened ropivacaine-mediated tumor suppressive effects on RCC cells. In terms of mechanism, RMRP directly interacted with EZH2, thereby modulating the histone methylation of CCDC65 to silence its expression. Moreover, ropivacaine inhibited tumor growth in mice bearing RCC tumor through regulating RMRP/EZH2/CCDC65 axis. CONCLUSION In sum up, our work revealed that ropivacaine suppressed capacities of RCC cell viability, migration and invasion through modulating the RMRP/EZH2/CCDC65 axis, which laid the experimental foundation of ropivacaine for clinical application in the future.
Collapse
MESH Headings
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/metabolism
- Ropivacaine/pharmacology
- Ropivacaine/administration & dosage
- Enhancer of Zeste Homolog 2 Protein/genetics
- Enhancer of Zeste Homolog 2 Protein/metabolism
- Humans
- Kidney Neoplasms/genetics
- Kidney Neoplasms/drug therapy
- Kidney Neoplasms/metabolism
- Animals
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Cell Line, Tumor
- Mice
- Apoptosis/drug effects
- Cell Movement/drug effects
- Mice, Nude
- Gene Expression Regulation, Neoplastic/drug effects
- Cell Survival/drug effects
- Cell Proliferation/drug effects
- Disease Progression
- Xenograft Model Antitumor Assays
- Anesthetics, Local/pharmacology
- Mice, Inbred BALB C
Collapse
Affiliation(s)
- Yingfen Xiong
- Department of Anesthesiology, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Xiaolan Zheng
- Department of Anesthesiology, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Huangying Deng
- Department of Medical Oncology, Jiangxi Cancer Hospital, No. 519, Jingdong Road, Qingshanhu District, Nanchang, 330029, Jiangxi Province, People's Republic of China.
| |
Collapse
|
9
|
Li TF, Xu Z, Zhang K, Yang X, Thakur A, Zeng S, Yan Y, Liu W, Gao M. Effects and mechanisms of N6-methyladenosine RNA methylation in environmental pollutant-induced carcinogenesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116372. [PMID: 38669875 DOI: 10.1016/j.ecoenv.2024.116372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/20/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Environmental pollution, including air pollution, plastic contamination, and heavy metal exposure, is a pressing global issue. This crisis contributes significantly to pollution-related diseases and is a critical risk factor for chronic health conditions, including cancer. Mounting evidence underscores the pivotal role of N6-methyladenosine (m6A) as a crucial regulatory mechanism in pathological processes and cancer progression. Governed by m6A writers, erasers, and readers, m6A orchestrates alterations in target gene expression, consequently playing a vital role in a spectrum of RNA processes, covering mRNA processing, translation, degradation, splicing, nuclear export, and folding. Thus, there is a growing need to pinpoint specific m6A-regulated targets in environmental pollutant-induced carcinogenesis, an emerging area of research in cancer prevention. This review consolidates the understanding of m6A modification in environmental pollutant-induced tumorigenesis, explicitly examining its implications in lung, skin, and bladder cancer. We also investigate the biological mechanisms that underlie carcinogenesis originating from pollution. Specific m6A methylation pathways, such as the HIF1A/METTL3/IGF2BP3/BIRC5 network, METTL3/YTHDF1-mediated m6A modification of IL 24, METTL3/YTHDF2 dynamically catalyzed m6A modification of AKT1, METTL3-mediated m6A-modified oxidative stress, METTL16-mediated m6A modification, site-specific ATG13 methylation-mediated autophagy, and the role of m6A in up-regulating ribosome biogenesis, all come into play in this intricate process. Furthermore, we discuss the direction regarding the interplay between pollutants and RNA metabolism, particularly in immune response, providing new information on RNA modifications for future exploration.
Collapse
Affiliation(s)
- Tong-Fei Li
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Kui Zhang
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Xiaoxin Yang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Wangrui Liu
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Ming Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
10
|
Tan H, Liu J, Li Y, Mi Z, Liu B, Rong P. CCDC25 suppresses clear cell renal cell carcinoma progression by LATS1/YAP-mediated regulation of the hippo pathway. Cancer Cell Int 2024; 24:124. [PMID: 38570766 PMCID: PMC10988808 DOI: 10.1186/s12935-024-03318-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/29/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is one of the most prevalent renal cancers, and the molecular mechanisms underlying its progression are still not fully understood. The expression of CCDC25, a notably underexpressed gene in many tumors, has been understudied in ccRCC. This research aims to explore the role of CCDC25 in ccRCC's clinical outcomes and uncover the molecular pathways influenced by it. METHODS A multi-tiered approach was adopted involving bioinformatic analysis, tissue sample evaluation, in vitro and in vivo experiments. CCDC25 expression levels in tumor vs. normal tissues were quantified using Western blot and immunofluorescence studies. Cell proliferation and migration were analyzed using CCK8, EDU, Transwell assays, and wound healing assays. RNA sequencing was performed to elucidate the molecular pathways affected, followed by detailed protein-protein interaction studies and mouse xenograft models. RESULTS CCDC25 was predominantly underexpressed in ccRCC tumors and associated with advanced clinical stages and poor prognosis. Overexpression of CCDC25 in renal cancer cell lines resulted in reduced proliferation and migration. RNA sequencing revealed significant alterations in the Hippo pathway. Overexpression of CCDC25 inhibited the expression of downstream Hippo pathway proteins ITGA3 and CCND1 and promoted YAP phosphorylation. Mechanistic studies showed that CCDC25 interacts with YAP and influences YAP phosphorylation through LATS1. In vivo, CCDC25 overexpression inhibited tumor growth and promoted apoptosis. CONCLUSION CCDC25 acts as a potential tumor suppressor in ccRCC by inhibiting cell proliferation and migration, potentially through regulating the Hippo signaling pathway. These findings highlight the potential of CCDC25 as a therapeutic target in ccRCC treatment.
Collapse
Affiliation(s)
- Hongpei Tan
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Jiahao Liu
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Yanan Li
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Ze Mi
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Baiying Liu
- Department of Gastrointestinal Surgery, Third Xiangya Hospital, Central South University, Changsha, China.
| | - Pengfei Rong
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha, 410000, China.
| |
Collapse
|
11
|
Wu H, Geng Q, Shi W, Qiu C. Comprehensive pan-cancer analysis reveals CCDC58 as a carcinogenic factor related to immune infiltration. Apoptosis 2024; 29:536-555. [PMID: 38066393 DOI: 10.1007/s10495-023-01919-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 02/18/2024]
Abstract
CCDC58, a member of the CCDC protein family, has been primarily associated with the malignant progression of hepatocellular carcinoma (HCC) and breast cancer, with limited research conducted on its involvement in other tumor types. We aimed to assess the significance of CCDC58 in pan-cancer. We utilized the TCGA, GTEx, and UALCAN databases to perform the differential expression of CCDC58 at both mRNA and protein levels. Prognostic value was evaluated through univariate Cox regression and Kaplan-Meier methods. Mutation and methylation analyses were conducted using the cBioPortal and SMART databases. We identified genes interacting with and correlated to CCDC58 through STRING and GEPIA2, respectively. Subsequently, we performed GO and KEGG enrichment analyses. To gain insights into the functional status of CCDC58 at the single-cell level, we utilized CancerSEA. We explored the correlation between CCDC58 and immune infiltration as well as immunotherapy using the ESTIMATE package, TIMER2.0, TISIDB, TIDE, TIMSO, and TCIA. We examined the relationship between CCDC58 and tumor heterogeneity, stemness, DNA methyltransferases, and MMR genes. Lastly, we constructed a nomogram based on CCDC58 in HCC and investigated its association with drug sensitivity. CCDC58 expression was significantly upregulated and correlated with poor prognosis across various tumor types. The mutation frequency of CCDC58 was found to be increased in 25 tumors. We observed a negative correlation between CCDC58 expression and the methylation sites in the majority of tumors. CCDC58 showed negative correlations with immune and stromal scores, as well as with NK T cells, Tregs, CAFs, endothelial cells, and immunomodulators. Its value in immunotherapy was comparable to that of tumor mutational burden. CCDC58 exhibited positive correlations with tumor heterogeneity, stemness, DNA methyltransferase genes, and MMR genes. In HCC, CCDC58 was identified as an independent risk factor and demonstrated potential associations with multiple drugs. CCDC58 demonstrates significant clinical value as a prognostic marker and indicator of immune response across various tumor types. Its comprehensive analysis provides insights into its potential implications in pan-cancer research.
Collapse
Affiliation(s)
- Huili Wu
- Department of Endodontics, Zhonglou Hospital, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Qing Geng
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Wenxiang Shi
- Department of Pediatric Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chenjie Qiu
- Department of General Surgery, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China.
| |
Collapse
|
12
|
Shu X, Zhang HW, Liu SY, Sun LX, Zhang T, Ran YL. Anti-ENO1 antibody combined with metformin against tumor resistance: a novel antibody-based platform. PeerJ 2024; 12:e16817. [PMID: 38515460 PMCID: PMC10956521 DOI: 10.7717/peerj.16817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 12/30/2023] [Indexed: 03/23/2024] Open
Abstract
Background Antibody-based platforms (i.e., ADC) have emerged as one of the most encouraging tools for the cancer resistance caused by cancer stem cells (CSCs) enrichment. Our study might provide a promising therapeutic direction against drug resistance and serve as a potential precursor platform for screening ADC. Methods The cell migration, invasion, drug resistance, and self-renewal were assessed by the cell invasion and migration assay, wound healing assay, CCK-8 assay, colony formation assay, and sphere formation assay, respectively. The expression profiles of CSCs (ALDH+ and CD44+) subpopulations were screened by flow cytometry. The western blot and cell immunofluorescence assay were used to evaluate pathway-related protein expression in both anti-ENO1 antibody, MET combined with DPP/CTX-treated CSCs. Results In the present study, western blot and flow cytometry verified that anti-ENO1 antibody target the CD44+ subpopulation by inhibiting the PI3K/AKT pathway, while metformin might target the ALDH+ subpopulation through activation of the AMPK pathway and thus reverse drug resistance to varying degrees. Subsequently, in vitro investigation indicated that anti-ENO1 antibody, metformin combined with cisplatin/cetuximab could simultaneously target ALDH+ and CD44+ subpopulations. The combination also inhibited the CSCs proliferation, migration, invasion, and sphere formation; which may result in overcoming the drug resistance. Then, molecular mechanism exploration verified that the anti-ENO1 antibody, metformin combined with cisplatin/cetuximab inhibited the Wnt/β-catenin signaling. Conclusions The study preliminarily revealed anti-ENO1 antibody combined with metformin could overcome drug resistance against CSCs by inhibiting the Wnt//β-catenin pathway and might serve as a potential precursor platform for screening ADC. More importantly, it is reasonably believed that antibody-based drug combination therapy might function as an encouraging tool for oncotherapy.
Collapse
Affiliation(s)
- Xiong Shu
- National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing JiShuiTan Hospital, Beijing, China
| | - Hui Wen Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shi Ya Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Xin Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Zhang
- The Second People’s Hospital of Xining, Xining, China
| | - Yu Liang Ran
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
Shi L, Wang X, Guo S, Gou H, Shang H, Jiang X, Wei C, Wang J, Li C, Wang L, Zhao Z, Yu W, Yu J. TMEM65 promotes gastric tumorigenesis by targeting YWHAZ to activate PI3K-Akt-mTOR pathway and is a therapeutic target. Oncogene 2024; 43:931-943. [PMID: 38341472 PMCID: PMC10959749 DOI: 10.1038/s41388-024-02959-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 01/07/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
Copy number alterations are crucial for the development of gastric cancer (GC). Here, we identified Transmembrane Protein 65 (TMEM65) amplification by genomic hybridization microarray to profile copy-number variations in GC. TMEM65 mRNA level was significantly up-regulated in GC compared to adjacent normal tissues, and was positively associated with TMEM65 amplification. High TMEM65 expression or DNA copy number predicts poor prognosis (P < 0.05) in GC. Furtherly, GC patients with TMEM65 amplification (n = 129) or overexpression (n = 78) significantly associated with shortened survival. Ectopic expression of TMEM65 significantly promoted cell proliferation, cell cycle progression and cell migration/invasion ability, but inhibited apoptosis (all P < 0.05). Conversely, silencing of TMEM65 in GC cells showed opposite abilities on cell function in vitro and suppressed tumor growth and lung metastasis in vivo (all P < 0.01). Moreover, TMEM65 depletion by VNP-encapsulated TMEM65-siRNA significantly suppressed tumor growth in subcutaneous xenograft model. Mechanistically, TMEM65 exerted oncogenic effects through activating PI3K-Akt-mTOR signaling pathway, as evidenced of increased expression of key regulators (p-Akt, p-GSK-3β, p-mTOR) by Western blot. YWHAZ (Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase) was identified as a direct downstream effector of TMEM65. Direct binding of TMEM65 with YWHAZ in the cytoplasm inhibited ubiquitin-mediated degradation of YWHAZ. Moreover, oncogenic effect of TMEM65 was partly dependent on YWHAZ. In conclusion, TMEM65 promotes gastric tumorigenesis by activating PI3K-Akt-mTOR signaling via cooperating with YWHAZ. TMEM65 overexpression may serve as an independent new biomarker and is a therapeutic target in GC.
Collapse
Affiliation(s)
- Lingxue Shi
- Departments of Endoscopy Center, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
- The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaohong Wang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
- Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital and Institute, Beijing, China
| | - Shang Guo
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
- The First Hospital of Hebei Medical University, Shijiazhuang, China
- Gastrointestinal Disease Centre, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongyan Gou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Haiyun Shang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiaojia Jiang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chunxian Wei
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jia Wang
- The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chao Li
- Departments of Endoscopy Center, The First Hospital of Hebei Medical University, Shijiazhuang, China
- The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lihong Wang
- The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zengren Zhao
- The First Hospital of Hebei Medical University, Shijiazhuang, China.
- Gastrointestinal Disease Centre, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Weifang Yu
- Departments of Endoscopy Center, The First Hospital of Hebei Medical University, Shijiazhuang, China.
- The First Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
14
|
Chen H, Wu Y, Jiang Y, Chen Z, Zheng T. DKC1 aggravates gastric cancer cell migration and invasion through up-regulating the expression of TNFAIP6. Funct Integr Genomics 2024; 24:38. [PMID: 38376551 PMCID: PMC10879254 DOI: 10.1007/s10142-024-01313-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/19/2024] [Accepted: 02/10/2024] [Indexed: 02/21/2024]
Abstract
Gastric cancer (GC) is one hackneyed malignancy tumor accompanied by high death rate. DKC1 has been discovered to serve as a facilitator in several cancers. Additionally, it was discovered from one study that DKC1 displayed higher expression in GC tissues than in the normal tissues. Nevertheless, its role and regulatory mechanism in GC is yet to be illustrated. In this study, it was proved that DKC1 expression was upregulated in GC tissues through GEPIA and UALCAN databases. Moreover, we discovered that DKC1 exhibited higher expression in GC cells. Functional experiments testified that DKC1 accelerated cell proliferation, migration, and invasion in GC. Further investigation disclosed that the weakened cell proliferation, migration, and invasion stimulated by DKC1 knockdown can be reversed after TNFAIP6 overexpression. Lastly, through in vivo experiments, it was demonstrated that DKC1 strengthened tumor growth. In conclusion, our work uncovered that DKC1 aggravated GC cell migration and invasion through upregulating the expression of TNFAIP6. This discovery might highlight the function of DKC1 in GC treatment.
Collapse
Affiliation(s)
- Huihua Chen
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 248 East Street, Quanzhou, 362000, Fujian, China
| | - Yibo Wu
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 248 East Street, Quanzhou, 362000, Fujian, China.
| | - Yancheng Jiang
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 248 East Street, Quanzhou, 362000, Fujian, China
| | - Zixuan Chen
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 248 East Street, Quanzhou, 362000, Fujian, China
| | - Tingjin Zheng
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 248 East Street, Quanzhou, 362000, Fujian, China
| |
Collapse
|
15
|
Lv L, Du J, Wang D, Yan Z. A Comprehensive Study to Investigate the Tumor-Suppressive Role of Radix Bupleuri on Gastric Cancer with Network Pharmacology and Molecular Docking. Drug Des Devel Ther 2024; 18:375-394. [PMID: 38347958 PMCID: PMC10860608 DOI: 10.2147/dddt.s441126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/16/2024] [Indexed: 02/15/2024] Open
Abstract
Background Gastric cancer (GC) is a common fatal malignancy. The aim of this study was to explore and validate the tumor-suppressive role and mechanism of Radix Bupleuri in GC. Methods The active constituents of Radix Bupleuri were screened using TCMSP database. SwissTargetPrediction database was used to predict potential target genes of the compounds. GeneCards, TTD, DisGeNET, OMIM, and PharmGKB databases were used to search for GC-related targets. STRING database and Cytoscape 3.10 software were used for protein-protein interaction network construction and screening of core targets. DAVID database was used for GO and KEGG analyses. Core targets were validated using molecular docking. Cell proliferation and apoptosis were detected using CCK-8 and flow cytometry after GC cells were treated with isorhamnetin. The mRNA and protein expression levels of genes were detected using qRT PCR and Western blot. The metastasis potential of GC cells was evaluated in a nude mouse model. Results A total of 371 potential targets were retrieved by searching the intersection of Radix Bupleuri and GC targets. Petunidin, 3',4',5',3,5,6,7-Heptamethoxyflavone, quercetin, kaempferol, and isorhamnetin were identified as the main bioactive compounds in Radix Bupleuri. SRC, HSP90AA1, AKT1, and EGFR, were core targets through which Radix Bupleuri suppressed GC. The tumor-suppressive effect of Radix Bupleuri on GC was mediated by multiple pathways, including PI3K-AKT, cAMP, and TNF signaling. The key compounds of Radix Bupleuri had good binding affinity with the core target. Isorhamnetin, a key component of Radix Bupleuri, could inhibit proliferation and metastasis, and induces apoptosis of GC cells. In addition, isorhamnetin could also reduce the mRNA expression of core targets, and the activation of PI3K/AKT pathway. Conclusion This study identified potential targets and pathways of Radix Bupleuri against GC through network pharmacology and molecular docking, providing new insights into the pharmacological mechanisms of Radix Bupleuri in GC treatment.
Collapse
Affiliation(s)
- Long Lv
- Department of General Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, People’s Republic of China
| | - Jinghu Du
- Department of General Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, People’s Republic of China
| | - Daorong Wang
- Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, People’s Republic of China
| | - Zeqiang Yan
- Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, People’s Republic of China
| |
Collapse
|
16
|
Jiang T, Xia Y, Li Y, Lu C, Lin J, Shen Y, Lv J, Xie L, Gu C, Xu Z, Wang L. TRIM29 promotes antitumor immunity through enhancing IGF2BP1 ubiquitination and subsequent PD-L1 downregulation in gastric cancer. Cancer Lett 2024; 581:216510. [PMID: 38029830 DOI: 10.1016/j.canlet.2023.216510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/05/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Tripartite motif-containing protein 29 (TRIM29) is a member of TRIM family protein which has been reported to play a role in the progress of inflammatory and cancer diseases. However, its specific role in gastric cancer (GC) has yet to be fully understood. Here, we investigated the expression of TRIM29 in gastric cancer and its functions in the antitumor immunity. TRIM29 expression was lower in tumor tissues than that in paired normal tissues. Lower expression of TRIM29 was related to aberrant hypermethylation of CpG islands in TRIM29 gene. Comprehensive proteomics and immunoprecipitation analyses identified IGF2BP1 as TRIM29 interactors. TRIM29 interacted with IGF2BP1 and induced its ubiquitination at Lys440 and Lys450 site by K48-mediated linkage for protein degradation. IGF2BP1 promoted PD-L1 mRNA stability and expression in a 3'UTR and m6A-dependent manner. Functionally, TRIM29 enhanced antitumor T-cell immunity in gastric cancer dependent on the IGF2BP1/PD-L1 axis in vivo and in vitro. Clinical correlation analysis revealed that TRIM29 expression in patient samples was associated with CD8+ immune cell infiltration in the GC microenvironment and the overall survival rates of GC patients. Our findings revealed a crucial role of TRIM29 in regulating the antitumor T-cell immunity in GC. We also suggested that the TRIM29/IGF2BP1/PD-L1 axis could be used as a diagnostic and prognostic marker of gastric cancer and a promising target for GC immunotherapy.
Collapse
Affiliation(s)
- Tianlu Jiang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yiwen Xia
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ying Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chen Lu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jie Lin
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yikai Shen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jialun Lv
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li Xie
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chao Gu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Linjun Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
17
|
Zhang C, Pan G, Qin JJ. Role of F-box proteins in human upper gastrointestinal tumors. Biochim Biophys Acta Rev Cancer 2024; 1879:189035. [PMID: 38049014 DOI: 10.1016/j.bbcan.2023.189035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/06/2023]
Abstract
Protein ubiquitination and degradation is an essential physiological process in almost all organisms. As the key participants in this process, the E3 ubiquitin ligases have been widely studied and recognized. F-box proteins, a crucial component of E3 ubiquitin ligases that regulates diverse biological functions, including cell differentiation, proliferation, migration, and apoptosis by facilitating the degradation of substrate proteins. Currently, there is an increasing focus on studying the role of F-box proteins in cancer. In this review, we present a comprehensive overview of the significant contributions of F-box proteins to the development of upper gastrointestinal tumors, highlighting their dual roles as both carcinogens and tumor suppressors. We delve into the molecular mechanisms underlying the involvement of F-box proteins in upper gastrointestinal tumors, exploring their interactions with specific substrates and their cross-talks with other key signaling pathways. Furthermore, we discuss the implications of F-box proteins in radiotherapy resistance in the upper gastrointestinal tract, emphasizing their potential as clinical therapeutic and prognostic targets. Overall, this review provides an up-to-date understanding of the intricate involvement of F-box proteins in human upper gastrointestinal tumors, offering valuable insights for the identification of prognostic markers and the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Che Zhang
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guangzhao Pan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jiang-Jiang Qin
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| |
Collapse
|
18
|
Hashemi M, Aparviz R, Beickzade M, Paskeh MDA, Kheirabad SK, Koohpar ZK, Moravej A, Dehghani H, Saebfar H, Zandieh MA, Salimimoghadam S, Rashidi M, Taheriazam A, Entezari M, Samarghandian S. Advances in RNAi therapies for gastric cancer: Targeting drug resistance and nanoscale delivery. Biomed Pharmacother 2023; 169:115927. [PMID: 38006616 DOI: 10.1016/j.biopha.2023.115927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023] Open
Abstract
Gastric cancer poses a significant health challenge, and exploring innovative therapeutic strategies is imperative. RNA interference (RNAi) has employed as an important therapeutic strategy for diseases by selectively targeting key pathways involved in diseases pathogenesis. Small interfering RNA (siRNA), a potent RNAi tool, possesses the capability to silence genes and downregulate their expression. This review provides a comprehensive examination of the potential applications of small interfering RNA (siRNA) and short hairpin RNA (shRNA), supplemented by an in-depth analysis of nanoscale delivery systems, in the context of gastric cancer treatment. The potential of siRNA to markedly diminish the proliferation and invasion of gastric cancer cells through the modulation of critical molecular pathways, including PI3K, Akt, and EMT, is highlighted. Besides, siRNA demonstrates its efficacy in inducing chemosensitivity in gastric tumor cells, thus impeding tumor progression. However, the translational potential of unmodified siRNA faces challenges, particularly in vivo and during clinical trials. To address this, we underscore the pivotal role of nanostructures in facilitating the delivery of siRNA to gastric cancer cells, effectively suppressing their progression and enhancing gene silencing efficiency. These siRNA-loaded nanoparticles exhibit robust internalization into gastric cancer cells, showcasing their potential to significantly reduce tumor progression. The translation of these findings into clinical trials holds promise for advancing the treatment of gastric cancer patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rezvaneh Aparviz
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Marzie Beickzade
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Simin Khorsand Kheirabad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Amir Moravej
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Dehghani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Medical Laboratory Sciences, Islamic Azad University, Tehran Medical Sciences, Tehran, Iran
| | - Hamidreza Saebfar
- European University Association, League of European Research Universities, University of Milan, Italy
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
19
|
Che Y, Zhang H, Li H, Wu X. CIP2A interacts with AKT1 to promote the malignant biological behaviors of oral squamous cell carcinoma by upregulating the GSK‑3β/β‑catenin pathway. Exp Ther Med 2023; 26:514. [PMID: 37840566 PMCID: PMC10570767 DOI: 10.3892/etm.2023.12213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/18/2023] [Indexed: 10/17/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common malignancies worldwide, which is associated with a poor prognosis. The present study aimed to investigate the role of cancerous inhibitor of protein phosphatase 2A (CIP2A) in OSCC and its regulatory effect on AKT1. Firstly, CIP2A and AKT1 expression in OSCC cells was detected by western blotting. After silencing CIP2A, cell viability and cell proliferation were assessed using the Cell Counting Kit-8 assay and 5-ethynyl-2'-deoxyuridine staining. Cell apoptosis was evaluated by TUNEL staining and the expression of apoptosis-related proteins was assessed using western blotting. Wound healing, Transwell and tube formation assays were performed to evaluate CAL-27 cell migration, invasion and human umbilical vein endothelial cell (HUVEC) tube formation. The interaction between CIP2A and AKT1 was identified by co-immunoprecipitation (co-IP). In addition, AKT1 was overexpressed in CIP2A-silenced CAL-27 cells to perform rescue experiments to analyze the malignant biological functions of CAL-27 cells. Finally, the expression of proteins in the glycogen synthase kinase (GSK)-3β/β-catenin pathway was determined by western blot analysis. Markedly elevated CIP2A and AKT1 expression was observed in OSCC cells. CIP2A knockdown inhibited the viability, proliferation, migration and invasion, and promoted the apoptosis of CAL-27 cells. Concurrently, CIP2A loss-of-function attenuated tube formation. Results of Co-IP confirmed there was an interaction between CIP2A and AKT1. Rescue experiments suggested that AKT1 overexpression alleviated the inhibitory effects of CIP2A knockdown on the viability, proliferation, migration and invasion of CAL-27 cells, as well as tube formation in HUVECs . Additionally, CIP2A silencing significantly downregulated phosphorylated-GSK-3β and β-catenin expression, which was reversed by AKT1 overexpression. In conclusion, CIP2A could interact with AKT1 to promote the malignant biological behaviors of OSCC cells by upregulating the GSK-3β/β-catenin pathway. These findings may provide a targeted therapy for OSCC treatment.
Collapse
Affiliation(s)
- Yilei Che
- Department of Stomatology, Aerospace Center Hospital, Beijing 100049, P.R. China
| | - Hui Zhang
- Department of Stomatology, Aerospace Center Hospital, Beijing 100049, P.R. China
| | - Hui Li
- Department of Stomatology, Aerospace Center Hospital, Beijing 100049, P.R. China
| | - Xiaozhen Wu
- Department of Stomatology, Aerospace Center Hospital, Beijing 100049, P.R. China
| |
Collapse
|
20
|
Liu Z, Yan W, Liu S, Liu Z, Xu P, Fang W. Regulatory network and targeted interventions for CCDC family in tumor pathogenesis. Cancer Lett 2023; 565:216225. [PMID: 37182638 DOI: 10.1016/j.canlet.2023.216225] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
CCDC (coiled-coil domain-containing) is a coiled helix domain that exists in natural proteins. There are about 180 CCDC family genes, encoding proteins that are involved in intercellular transmembrane signal transduction and genetic signal transcription, among other functions. Alterations in expression, mutation, and DNA promoter methylation of CCDC family genes have been shown to be associated with the pathogenesis of many diseases, including primary ciliary dyskinesia, infertility, and tumors. In recent studies, CCDC family genes have been found to be involved in regulation of growth, invasion, metastasis, chemosensitivity, and other biological behaviors of malignant tumor cells in various cancer types, including nasopharyngeal carcinoma, lung cancer, colorectal cancer, and thyroid cancer. In this review, we summarize the involvement of CCDC family genes in tumor pathogenesis and the relevant upstream and downstream molecular mechanisms. In addition, we summarize the potential of CCDC family genes as tumor therapy targets. The findings discussed here help us to further understand the role and the therapeutic applications of CCDC family genes in tumors.
Collapse
Affiliation(s)
- Zhen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China.
| | - Weiwei Yan
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China
| | - Shaohua Liu
- Department of General Surgery, Pingxiang People's Hospital, Pingxiang, Jiangxi, 337000, China
| | - Zhan Liu
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, 410002, China
| | - Ping Xu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China; Respiratory Department, Peking University Shenzhen Hospital, Shenzhen, 518034, China.
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China.
| |
Collapse
|
21
|
Sun J, Bai YK, Fan ZG. Role of FBXW7 expression in gastric cancer: Meta‑analysis and bioinformatics analysis. Oncol Lett 2023; 25:184. [PMID: 37113395 PMCID: PMC10126736 DOI: 10.3892/ol.2023.13770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/24/2023] [Indexed: 04/29/2023] Open
Abstract
F-box/WD repeat domain-containing 7 (FBXW7, also known as CDC4) is a member of the F-box protein family, which is a component of the E3 ubiquitin ligase complex. There is an association between expression of FBXW7 and the prognosis of gastric cancer. Therefore, the search for novel tumor biomarkers is key to predict the occurrence, recurrence and metastasis of gastric cancer. In the present study, systematic meta-analysis and bioinformatics analysis were performed to determine the expression levels of prognostic marker FBXW7 in gastric cancer. A literature search was conducted on August 10, 2022, using PubMed, SinoMed, Wanfang data and China National Knowledge Infrastructure databases. The meta-analysis included six studies and showed that the expression of FBXW7 was significantly downregulated in gastric cancer compared with normal mucosal tissues (P<0.05). FBXW7 expression was positively associated with lymph node metastasis, TNM stage and differentiation (P<0.05). According to the Oncomine database, FBXW7 mRNA expression was higher in gastric cancer than in normal tissue (P<0.05). Kaplan-Meier plots showed that FBXW7 mRNA expression was positively associated with the overall and progression-free survival of patients with gastric cancer. According to the UALCAN and Gene Expression Profiling Interactive Analysis databases, FBXW7 expression was downregulated in gastric cancer compared with normal tissue. FBXW7 may be involved in the entire process of gastric carcinogenesis and its low expression may make it a potential marker for the prognosis of patients with gastric cancer.
Collapse
Affiliation(s)
- Jing Sun
- Department of Medical Oncology, Affiliated 3201 Hospital of Xi'an Jiaotong University, Hanzhong, Shaanxi 723000, P.R. China
| | - Yang-Kai Bai
- Department of Urology, Hanzhong Central Hospital, Hanzhong, Shaanxi 723000, P.R. China
| | - Zhi-Gang Fan
- Department of Medical Oncology, Affiliated 3201 Hospital of Xi'an Jiaotong University, Hanzhong, Shaanxi 723000, P.R. China
- Correspondence to: Professor Zhi-Gang Fan, Department of Medical Oncology, Affiliated 3201 Hospital of Xi'an Jiaotong University, 783 Tianhan Avenue, Hantai, Hanzhong, Shaanxi 723000, P.R. China, E-mail:
| |
Collapse
|
22
|
Liu L, Chen C, Liu P, Li J, Pang Z, Zhu J, Lin Z, Zhou H, Xie Y, Lan T, Chen ZS, Zeng Z, Fang W. MYH10 Combines with MYH9 to Recruit USP45 by Deubiquitinating Snail and Promotes Serous Ovarian Cancer Carcinogenesis, Progression, and Cisplatin Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203423. [PMID: 36929633 DOI: 10.1002/advs.202203423] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 01/24/2023] [Indexed: 05/18/2023]
Abstract
The poor prognosis of serous ovarian cancer (SOC) is due to its high invasive capacity and cisplatin resistance of SOC cells, whereas the molecular mechanisms remain poorly understood. In the present study, the expression and function of non-muscle myosin heavy chain IIB (MYH10) in SOC are identified by immunohistochemistry, in vitro, and in vivo studies, respectively. The mechanism of MYH10 is demonstrated by co-immunoprecipitation, GST pull-down, confocal laser assays, and so on. The results show that the knockdown of MYH10 suppressed SOC cell proliferation, migration, invasion, metastasis, and cisplatin resistance both in vivo and in vitro. Further studies confirm that the MYH10 protein functional domain combines with non-muscle myosin heavy chain IIA (MYH9) to recruit the deubiquitinating enzyme Ubiquitin-specific proteases 45 and deubiquitinates snail to inhibit snail degradation, eventually promoting tumorigenesis, progression, and cisplatin resistance in SOC. In clinical samples, MYH10 expression is significantly elevated in SOC samples compared to the paratumor samples. And the expression of MYH10 is positively correlated with MYH9 expression. MYH10+/MYH9+ co-expression is an independent prognostic factor for predicting SOC patient survival. These findings uncover a key role of the MYH10-MYH9-snail axis in SOC carcinogenesis, progression, and cisplatin resistance, and provide potential novel therapeutic targets for SOC intervention.
Collapse
Affiliation(s)
- Longyang Liu
- Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Chunlin Chen
- Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ping Liu
- Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jing Li
- Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhanjun Pang
- Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiayu Zhu
- Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhongqiu Lin
- Department of Gynecological Oncology, The Memorial Hospital of Sun Yat-sen University, Guangzhou, 510000, China
| | - Haixu Zhou
- Department of Neurosurgery, Graduate School of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Yingying Xie
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Tiancai Lan
- Department of Neurosurgery, Liuzhou City People's Hospital, Guangxi, 545000, China
| | - Zhe-Sheng Chen
- Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, NY, 11439, USA
| | - Zhaoyang Zeng
- Department of Gynecology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| |
Collapse
|
23
|
Wang N, Liang Y, Ma Q, Mi J, Xue Y, Yang Y, Wang L, Wu X. Mechanisms of ag85a/b DNA vaccine conferred immunotherapy and recovery from Mycobacterium tuberculosis-induced injury. Immun Inflamm Dis 2023; 11:e854. [PMID: 37249284 PMCID: PMC10187016 DOI: 10.1002/iid3.854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Our previous research developed a novel tuberculosis (TB) DNA vaccine ag85a/b that showed a significant therapeutic effect on the mouse tuberculosis model by intramuscular injection (IM) and electroporation (EP). However, the action mechanisms between these two vaccine immunization methods remain unclear. In a previous study, 96 Mycobacterium tuberculosis (MTB) H37 Rv-infected BALB/c mice were treated with phosphate-buffered saline, 10, 50, 100, and 200 μg ag85a/b DNA vaccine delivered by IM and EP three times at 2-week intervals, respectively. In this study, peripheral blood mononuclear cells (PBMCs) from three mice in each group were isolated to extract total RNA. The gene expression profiles were analyzed using gene microarray technology to obtain differentially expressed (DE) genes. Finally, DE genes were validated by real-time reverse transcription-quantitive polymerase chain reaction and the GEO database. After MTB infection, most of the upregulated DE genes were related to the digestion and absorption of nutrients or neuroendocrine (such as Iapp, Scg2, Chga, Amy2a5), and most of the downregulated DE genes were related to cellular structural and functional proteins, especially the structure and function proteins of the alveolar epithelial cell (such as Sftpc, Sftpd, Pdpn). Most of the abnormally upregulated or downregulated DE genes in the TB model group were recovered in the 100 and 200 μg ag85a/b DNA IM groups and four DNA EP groups. The pancreatic secretion pathway downregulated and the Rap1 signal pathway upregulated had particularly significant changes during the immunotherapy of the ag85a/b DNA vaccine on the mouse TB model. The action targets and mechanisms of IM and EP are highly consistent. Tuberculosis infection causes rapid catabolism and slow anabolism in mice. For the first time, we found that the effective dose of the ag85a/b DNA vaccine immunized whether by IM or EP could significantly up-regulate immune-related pathways and recover the metabolic disorder and the injury caused by MTB.
Collapse
Affiliation(s)
- Nan Wang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Yan Liang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Qianqian Ma
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Jie Mi
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Yong Xue
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Yourong Yang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Lan Wang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| |
Collapse
|
24
|
Shao X, Sun Y, Zhong K, Gu J, Yu Y, Hu T, Kuai X, Xing Y. TYRO3 promotes tumorigenesis and drug resistance in colorectal cancer by enhancing the epithelial-mesenchymal transition process. Aging (Albany NY) 2023; 15:3035-3051. [PMID: 37116196 DOI: 10.18632/aging.204656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/03/2023] [Indexed: 04/30/2023]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer mortality worldwide. Although considerable advances in CRC treatment have been achieved, effective treatment improvement has hit a bottleneck. This study demonstrated that TYRO3 expression was aberrantly increased in CRC tissues with prognosis association. The prediction model of prognosis for CRC patients was constructed based on TYRO3 expression. The model suggested that the TYRO3 level is crucial to the final prediction results. We observed that knockdown TYRO3 expression could inhibit the proliferation and migration ability and reverse the drug resistance by constructing drug-resistant CRC cell lines. In vivo experiments also confirmed this conclusion. Thus, targeting TYRO3 combined with 5-Fu treatment could provide a better therapeutic effect. Additionally, TYRO3 could inhibit the EMT process by down-regulating ENO1, which may be achieved by interfering with energy metabolism in cancer cells. Therefore, the current study provides a theoretical basis for TYRO3 in drug-resistance of CRC cells and highlights a new strategy for CRC-targeted therapy.
Collapse
Affiliation(s)
- Xinyu Shao
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215000, China
| | - Yibin Sun
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215000, China
| | - Kaiqiang Zhong
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Jinrong Gu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Yang Yu
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215000, China
| | - Tong Hu
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215000, China
| | - Xiaoyi Kuai
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215000, China
| | - Yechen Xing
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215000, China
| |
Collapse
|
25
|
Yang H, Ai H, Zhang J, Ma J, Liu K, Li Z. UPS: Opportunities and challenges for gastric cancer treatment. Front Oncol 2023; 13:1140452. [PMID: 37077823 PMCID: PMC10106573 DOI: 10.3389/fonc.2023.1140452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Gastric cancer remains the fourth most frequently diagnosed malignancy and the fifth leading cause of cancer-related mortality worldwide owning to the lack of efficient drugs and targets for therapy. Accumulating evidence indicates that UPS, which consists of E1, E2, and E3 enzymes and proteasome, plays an important role in the GC tumorigenesis. The imbalance of UPS impairs the protein homeostasis network during development of GC. Therefore, modulating these enzymes and proteasome may be a promising strategy for GC target therapy. Besides, PROTAC, a strategy using UPS to degrade the target protein, is an emerging tool for drug development. Thus far, more and more PROTAC drugs enter clinical trials for cancer therapy. Here, we will analyze the abnormal expression enzymes in UPS and summarize the E3 enzymes which can be developed in PROTAC so that it can contribute to the development of UPS modulator and PROTAC technology for GC therapy.
Collapse
Affiliation(s)
- Hang Yang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Huihan Ai
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Jialin Zhang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Jie Ma
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US Hormel (Henan) Cancer Institute, Zhengzhou, Henan, China
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Zhi Li, ; Kangdong Liu,
| | - Zhi Li
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Zhi Li, ; Kangdong Liu,
| |
Collapse
|
26
|
Huang H, Ke C, Zhang D, Wu J, Zhang P. Molecular mechanism study and tumor heterogeneity of Chinese angelica and Fructus aurantii in the treatment of colorectal cancer through computational and molecular dynamics. Funct Integr Genomics 2023; 23:106. [PMID: 36977932 DOI: 10.1007/s10142-023-01042-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023]
Abstract
OBJECTIVE Screening Chinese angelica (CHA) and Fructus aurantii (FRA) for ingredients with therapeutic effects on colorectal cancer (CRC) and discovering novel targets for the prevention or treatment of CRC. METHODS TCMSP database as a starting point for the initial selection of ingredients and targets, we screened and validated the ingredients and targets of CHA and FRA using tools such as Autodock Vina, R 4.2.0, and GROMACS. To obtain the pharmacokinetic information of the active ingredients, we performed ADMET prediction and consulted a large number of works related to CRC cell lines for the discussion and validation of the results. RESULTS Molecular dynamics simulation results showed the complexes formed between these components and targets can exist in a very stable tertiary structure under the human environment, and their side effects can be ignored. CONCLUSIONS Our study successfully explains the effective mechanism of CHA and FRA for improving CRC while predicting the potential targets PPARG, AKT1, RXRA, and PPARA of CHA and FRA for CRC treatment, which provides a new foundation for investigating the novel compounds of TCMs and a new direction for subsequent CRC research.
Collapse
Affiliation(s)
- He Huang
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Chunlian Ke
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Dongdong Zhang
- School of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Jiezhong Wu
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Peng Zhang
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
27
|
Harnessing epithelial-mesenchymal plasticity to boost cancer immunotherapy. Cell Mol Immunol 2023; 20:318-340. [PMID: 36823234 PMCID: PMC10066239 DOI: 10.1038/s41423-023-00980-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/17/2023] [Indexed: 02/25/2023] Open
Abstract
Immune checkpoint blockade (ICB) therapy is a powerful option for cancer treatment. Despite demonstrable progress, most patients fail to respond or achieve durable responses due to primary or acquired ICB resistance. Recently, tumor epithelial-to-mesenchymal plasticity (EMP) was identified as a critical determinant in regulating immune escape and immunotherapy resistance in cancer. In this review, we summarize the emerging role of tumor EMP in ICB resistance and the tumor-intrinsic or extrinsic mechanisms by which tumors exploit EMP to achieve immunosuppression and immune escape. We discuss strategies to modulate tumor EMP to alleviate immune resistance and to enhance the efficiency of ICB therapy. Our discussion provides new prospects to enhance the ICB response for therapeutic gain in cancer patients.
Collapse
|
28
|
Leite M, Seruca R, Gonçalves JM. Drug Repurposing in Gastric Cancer: Current Status and Future Perspectives. HEREDITARY GASTRIC AND BREAST CANCER SYNDROME 2023:281-320. [DOI: 10.1007/978-3-031-21317-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
29
|
Araújo D, Ribeiro E, Amorim I, Vale N. Repurposed Drugs in Gastric Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010319. [PMID: 36615513 PMCID: PMC9822219 DOI: 10.3390/molecules28010319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023]
Abstract
Gastric cancer (GC) is one of the major causes of death worldwide, ranking as the fifth most incident cancer in 2020 and the fourth leading cause of cancer mortality. The majority of GC patients are in an advanced stage at the time of diagnosis, presenting a poor prognosis and outcome. Current GC treatment approaches involve endoscopic detection, gastrectomy and chemotherapy or chemoradiotherapy in an adjuvant or neoadjuvant setting. Drug development approaches demand extreme effort to identify molecular mechanisms of action of new drug candidates. Drug repurposing is based on the research of new therapeutic indications of drugs approved for other pathologies. In this review, we explore GC and the different drugs repurposed for this disease.
Collapse
Affiliation(s)
- Diana Araújo
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Eduarda Ribeiro
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Irina Amorim
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Correspondence: ; Tel.: +351-220426537
| |
Collapse
|
30
|
Gu J, Zhong K, Wang L, Ni H, Zhao Y, Wang X, Yao Y, Jiang L, Wang B, Zhu X. ENO1 contributes to 5-fluorouracil resistance in colorectal cancer cells via EMT pathway. Front Oncol 2022; 12:1013035. [PMID: 36620599 PMCID: PMC9813957 DOI: 10.3389/fonc.2022.1013035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Chemoresistance is a major barrier in the treatment of colorectal cancer (CRC) and many other cancers. ENO1 has been associated with various biological characteristics of CRC. This study aimed to investigate the function of ENO1 in regulating 5-Fluorouracil (5-FU) resistance in CRC. Methods ENO1 level in 120 pairs of tumor tissues and adjacent normal tissues was examined by immunohistochemistry, and the correlation between ENO1 expression and prognosis was explored by survival analysis. Its role and potential mechanisms in regulating 5-FU resistance in CRC were studied by Western blotting, MTT assay, colony formation assay and transwell invasion assay. Murine xenograft assay was implied to verify the results in vivo. Results Our study indicated that ENO1 was elevated in CRC tissues and was associated with poor patient prognosis. High levels of ENO1 expression were detected as a significant influencing factor for overall survival. Furthermore, ENO1 expression was found to have increased in drug-resistant cells (HCT116/5-FU and SW620/5-FU) constructed by increasing concentrations of 5-FU. Knockdown of ENO1 markedly increased the drug susceptibility and inhibited the proliferation and migration ability of HCT116/5-FU and SW620/5-FU cells. It was found that down-regulation of ENO1 inhibited the epithelial-mesenchymal transformation (EMT) signaling process. Finally, a murine xenograft assay verified that the depletion of ENO1 alleviated 5-FU resistance. Conclusion This study identified that ENO1 regulated 5-FU resistance via the EMT pathway and may be a novel target in the prevention and treatment of 5-FUresistant CRC.
Collapse
Affiliation(s)
- Jinrong Gu
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Kaiqiang Zhong
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Longgang Wang
- Department of Emergency Medicine, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Haishun Ni
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yirui Zhao
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xuchao Wang
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yizhou Yao
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Linhua Jiang
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Bin Wang
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China,*Correspondence: Xinguo Zhu, ; Bin Wang,
| | - Xinguo Zhu
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China,*Correspondence: Xinguo Zhu, ; Bin Wang,
| |
Collapse
|
31
|
Liu J, Liu Z, Yan W, Yang H, Fang S, Deng S, Wen Y, Shen P, Li Y, Hou R, Liu X, Huang T, Li R, Zheng D, Liu Z, Fang W. ENKUR recruits FBXW7 to ubiquitinate and degrade MYH9 and further suppress MYH9-induced deubiquitination of β-catenin to block gastric cancer metastasis. MedComm (Beijing) 2022; 3:e185. [PMID: 36448053 PMCID: PMC9697592 DOI: 10.1002/mco2.185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/27/2022] Open
Abstract
ENKUR was shown as a suppressor in some tumors. However, the biological role of ENKUR on gastric cancer (GC) and its related molecular mechanisms is not clear. Here, we first observed that ENKUR significantly inhibited cell migration, invasion, and metastasis in GC. The molecular basis showed β-catenin-mediated epithelial-mesenchymal transition (EMT) signaling was inactivated in ENKUR-overexpressing GC cells. In addition, ENKUR knockdown markedly restored cell migration and invasion. Subsequently, ENKUR bound to MYH9 and decreased its protein expression by recruiting E3 ubiquitin ligase FBXW7 to form an ubiquitinated degradation complex. The downregulated MYH9 protein weakened the recruitment of the deubiquitinase USP2 and thus promoted the degradation of β-catenin protein, which finally suppressed EMT signaling. Finally, the oncogenic transcription factor c-Jun bound to ENKUR promoter and reduced its expression in GC. In clinical samples, decreased ENKUR expression promoted the unfavorable prognosis of GC. Our data proved the vital role of ENKUR on suppressing cell migration, invasion, and metastasis and demonstrated its potential as a therapeutic target for GC.
Collapse
Affiliation(s)
- Jiahao Liu
- Cancer Center, Integrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouP. R. China
| | - Zhan Liu
- Department of GastroenterologyHunan People's HospitalChangshaP.R. China
| | - Weiwei Yan
- Cancer Center, Integrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouP. R. China
| | - Huiling Yang
- School of PharmacyGuangdong Medical UniversityDongguanP.R. China
| | - Shiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouP. R. China
- School of Public HealthUniversity of South ChinaHengyangP. R. China
| | - Shuting Deng
- Cancer Center, Integrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouP. R. China
| | - Yinghao Wen
- Cancer Center, Integrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouP. R. China
| | - Peng Shen
- Oncology DepartmentNanfang HospitalSouthern Medical UniversityGuangzhouP.R. China
| | - Yonghao Li
- Cancer Center, Integrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouP. R. China
| | - Rentao Hou
- Cancer Center, Integrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouP. R. China
| | - Xiong Liu
- Oncology DepartmentNanfang HospitalSouthern Medical UniversityGuangzhouP.R. China
| | - Tao Huang
- Cancer Center, Integrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouP. R. China
| | - Rong Li
- Cancer Center, Integrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouP. R. China
| | - Dayong Zheng
- Cancer Center, Integrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouP. R. China
| | - Zhen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouP. R. China
- Key Laboratory of Protein Modification and DegradationBasic School of Guangzhou Medical UniversityGuangzhouP. R. China
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouP. R. China
| |
Collapse
|
32
|
Zhang Z, Xu P, Hu Z, Fu Z, Deng T, Deng X, Peng L, Xie Y, Long L, Zheng D, Shen P, Zhang M, Gong B, Zhu Z, Lin J, Chen R, Liu Z, Yang H, Li R, Fang W. CCDC65, a Gene Knockout that leads to Early Death of Mice, acts as a potentially Novel Tumor Suppressor in Lung Adenocarcinoma. Int J Biol Sci 2022; 18:4171-4186. [PMID: 35844805 PMCID: PMC9274497 DOI: 10.7150/ijbs.69332] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/06/2022] [Indexed: 01/06/2023] Open
Abstract
CCDC65 is a member of the coiled-coil domain-containing protein family and was only reported in gastric cancer by our group. We first observed that it is downregulated in lung adenocarcinoma based on the TCGA database. Reduced CCDC65 protein was shown as an unfavorable factor promoting the clinical progression in lung adenocarcinoma. Subsequently, CCDC65-/- mice were found possibly dead of hydrocephalus. Compared with the CCDC65+/+ mice, the downregulation of CCDC65 in CCDC65+/- mice significantly increased the formation ability of lung cancer induced by urethane. In the subsequent investigation, we observed that CCDC65 functions as a tumor suppressor repressing cell proliferation in vitro and in vivo. Molecular mechanism showed that CCDC65 recruited E3 ubiquitin ligase FBXW7 to induce the ubiquitination degradation of c-Myc, an oncogenic transcription factor in tumors, and reduced c-Myc binding to ENO1 promoter, which suppressed the transcription of ENO1. In addition, CCDC65 also recruited FBXW7 to degrade ENO1 protein by ubiquitinated modulation. The downregulated ENO1 further reduced the phosphorylation activation of AKT1, which thus inactivated the cell cycle signal. Our data demonstrated that CCDC65 is a potential tumor suppressor by recruiting FBWX7 to suppress c-Myc/ENO1-induced cell cycle signal in lung adenocarcinoma.
Collapse
Affiliation(s)
- Ziyan Zhang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Ping Xu
- Cancer Research Institute, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Respiratory Department, Peking University Shenzhen Hospital, Shenzhen, 518034, China
| | - Zhe Hu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Zhaojian Fu
- Department of Oncology, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan, 671000, China
| | - Tongyuan Deng
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Xiaojie Deng
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Lanzhu Peng
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Yingying Xie
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Lingzhi Long
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410000, China
| | - Dayong Zheng
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Peng Shen
- Department of Oncology, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Mengmin Zhang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Bin Gong
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Zhibo Zhu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Junhao Lin
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Rui Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University Guangzhou 510095, Guangdong, China
| | - Huilin Yang
- Cancer Research Institute, Southern Medical University, Guangzhou, Guangdong, 510515, China
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Rong Li
- Cancer Research Institute, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Department of Oncology, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| |
Collapse
|
33
|
Suwei D, Yanbin X, Jianqiang W, Xiang M, Zhuohui P, Jianping K, Yunqing W, Zhen L. Metformin inhibits melanoma cell metastasis by suppressing the miR-5100/SPINK5/STAT3 axis. Cell Mol Biol Lett 2022; 27:48. [PMID: 35705923 PMCID: PMC9199130 DOI: 10.1186/s11658-022-00353-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/31/2022] [Indexed: 02/06/2023] Open
Abstract
Melanoma is the most lethal skin cancer characterized by its high metastatic potential. It is urgent to find novel therapy strategies to overcome this feature. Metformin has been confirmed to suppress invasion and migration of various types of cancer. However, additional mechanisms underlying the antimetastatic effect of metformin on melanoma require further investigation. Here, we performed microarray analysis and uncovered an altered mRNA and miRNA expression profile between melanoma and nevus. Luciferase reporter assay confirmed that miR-5100 targets SPINK5 to activate STAT3 phosphorylation. Migration and wound healing assays showed that the miR-5100/SPINK5/STAT3 axis promotes melanoma cell metastasis; the mechanism was proven by initiation of epithelial–mesenchymal transition. Co-immunoprecipitation (Co-IP) further confirmed an indirect interaction between SPINK5 and STAT3. Furthermore, metformin dramatically inhibited miR-5100/SPINK5/STAT3 pathway, and decreased B16-F10 cell metastasis to lung in C57 mouse module. Intriguingly, pretreatment of metformin before melanoma cell injection improved this effect further. These findings exposed the underlying mechanisms of action of metformin and update the use of this drug to prevent metastasis in melanoma.
Collapse
Affiliation(s)
- Dong Suwei
- Department of Orthopaedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.,Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, People's Republic of China
| | - Xiao Yanbin
- Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, People's Republic of China. .,The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.
| | - Wang Jianqiang
- Department of Orthopaedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China
| | - Ma Xiang
- Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, People's Republic of China
| | - Peng Zhuohui
- Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, People's Republic of China
| | - Kang Jianping
- Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, People's Republic of China
| | - Wang Yunqing
- Department of Orthopaedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China. .,The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.
| | - Li Zhen
- Department of Medical Oncology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China. .,The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.
| |
Collapse
|
34
|
Liu S, Zhang Y, Cui S, Song D, Li B, Chen Q, Yao G, Gong B. NAP1L1 interacts with hepatoma-derived growth factor to recruit c-Jun inducing breast cancer growth. Cancer Cell Int 2021; 21:605. [PMID: 34774047 PMCID: PMC8590370 DOI: 10.1186/s12935-021-02301-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/26/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Breast cancer is a common cancer among women in the world. However, its pathogenesis is still to be determined. The role and molecular mechanism of Nucleosome Assembly Protein 1 Like 1 (NAP1L1) in breast cancer have not been reported. Elucidation of molecular mechanism might provide a novel therapeutic target for breast cancer treatment. METHODS A bioinformatics analysis was conducted to determine the differential expression of NAP1L1 in breast cancer and find the potential biomarker that interacts with NAP1L1 and hepatoma-derived growth factor (HDGF). The expression of NAP1L1 in tissues was detected by using immunohistochemistry. Breast cancer cells were transfected with the corresponding lentiviral particles and siRNA. The efficiency of transfection was measured by RT-qPCR and western blotting. Then, MTT, Edu, plate clone formation, and subcutaneous tumorigenesis in nude mice were used to detect the cell proliferation in breast cancer. Furthermore, coimmunoprecipitation (Co-IP) assay and confocal microscopy were performed to explore the detailed molecular mechanism of NAP1L1 in breast cancer. RESULTS In this study, NAP1L1 protein was upregulated based on the Clinical Proteomic Tumor Analysis Consortium (CPTAC) database. Consistent with the prediction, immunohistochemistry staining showed that NAP1L1 protein expression was significantly increased in breast cancer tissues. Its elevated expression was an unfavorable factor for breast cancer clinical progression and poor prognosis. Stably or transiently knocking down NAP1L1 reduced the cell growth in vivo and in vitro via repressing the cell cycle signal in breast cancer. Furthermore, the molecular basis of NAP1L1-induced cell cycle signal was further studied. NAP1L1 interacted with the HDGF, an oncogenic factor for tumors, and the latter subsequently recruited the key oncogenic transcription factor c-Jun, which finally induced the expression of cell cycle promoter Cyclin D1(CCND1) and thus the cell growth of breast cancer. CONCLUSIONS Our data demonstrated that NAP1L1 functions as a potential oncogene via interacting with HDGF to recruit c-Jun in breast cancer.
Collapse
Affiliation(s)
- Shu Liu
- Department of Breast Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, Guizhou, People's Republic of China. .,Guizhou Medical University, Guiyang, Guizhou, China.
| | - Yewei Zhang
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Shien Cui
- Breast Center, Department of General Surgery, Nanfang Hospital Southern Medical University, Guangzhou, China.,Breast Center, Department of General Surgery, Zhongshan City People's Hospital, Zhongshan, Guangzhou, China
| | - Dajiang Song
- Department of Oncology Plastic Surgery, Hunan Province Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bo Li
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Qian Chen
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Guangyu Yao
- Breast Center, Department of General Surgery, Nanfang Hospital Southern Medical University, Guangzhou, China.
| | - Bin Gong
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
35
|
Liu Y, Li X, Zhang Y, Tang Y, Fang W, Liu X, Liu Z. NAP1L1 targeting suppresses the proliferation of nasopharyngeal carcinoma. Biomed Pharmacother 2021; 143:112096. [PMID: 34563951 DOI: 10.1016/j.biopha.2021.112096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/07/2021] [Accepted: 08/20/2021] [Indexed: 12/15/2022] Open
Abstract
Nucleosome assembly protein 1-like 1 (NAP1L1) is significantly involved in the development of various cancers. However, its role in the molecular mechanism of nasopharyngeal carcinoma (NPC) remains undetermined. In this study, we detected the upregulated expression of NAP1L1 mRNA and protein levels by quantitative polymerase chain reaction and Western blot analysis in NPC cell lines. Results of the immunohistochemistry analysis of NPC tissue biopsies showed that upregulated NAP1L1 protein expression promoted NPC progression and negatively correlated with poor prognosis in NPC patients. Suppression of NAP1L1 expression by small interfering RNA (siRNA) or small hairpin RNA (shRNA) methods significantly decreased cell proliferation in vivo and in vitro. Mechanism analysis revealed that the regulation of cell growth was enriched by Gene Set Enrichment Analysis based on RNA sequencing data. Cell cycle-induced genes CCND1 and E2F1 were downregulated in NAP1L1 knockdown NPC cells. Reduced NAP1L1 suppressed the recruitment of hepatoma-derived growth factor (HDGF) and decreased its expression. Knockdown of HDGF reduced the expression of c-JUN, a key oncogenic transcription factor that can induce the expression of cyclin D1 (CCND1), reducing cell cycle progression and suppressing cell growth in NPC. Transfecting HDGF or c-JUN could reverse the growth-suppressive effects in NAP1L1-downregulated NPC cells. The data obtained in this study suggest that NAP1L1 acts as a potential oncogene by activating HDGF/c-JUN/CCND1 signaling in NPC.
Collapse
Affiliation(s)
- YaHui Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - XiaoNing Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, China
| | - YeWei Zhang
- Guizhou Medical University, Guiyang 550001, Guizhou, China
| | - Yao Tang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - WeiYi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China.
| | - Xiong Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China; Department of Otolaryngology, Head and Neck Surgery, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China.
| | - Zhen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, 511436 Guangzhou, China.
| |
Collapse
|