1
|
Ador T, Fournié M, Rigollet S, Counil C, Stupar V, Barbier EL, Pichon C, Delalande A. Ultrasound-Assisted Blood-Brain Barrier Opening Monitoring by Photoacoustic and Fluorescence Imaging Using Indocyanine Green. ULTRASOUND IN MEDICINE & BIOLOGY 2025:S0301-5629(25)00068-7. [PMID: 40155229 DOI: 10.1016/j.ultrasmedbio.2025.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/18/2025] [Accepted: 02/28/2025] [Indexed: 04/01/2025]
Abstract
OBJECTIVE The blood-brain barrier (BBB) is a selectively permeable membrane that restricts drug delivery to the central nervous system. Focused ultrasound (FUS) combined with microbubbles (MBs) is a promising technique to transiently open the BBB, enabling therapeutic delivery. However, real-time monitoring of BBB permeability changes remains challenging. This study investigated the use of indocyanine green (ICG) as a bi-modal contrast agent for photoacoustic and fluorescence imaging to assess BBB opening and closure dynamics. METHODS BALB/c mice underwent FUS-mediated BBB opening with different doses of MBs and ICG administration. Photoacoustic and fluorescence imaging were performed at various time points post-FUS to evaluate ICG extravasation dynamics. Magnetic resonance imaging (MRI) with gadolinium contrast was used as the gold standard for BBB permeability assessment. The effect of MB dose and injection timing on BBB closure kinetics was analyzed. RESULTS Photoacoustic imaging provided reliable BBB monitoring within the first hour post-FUS, whereas fluorescence imaging was more effective at detecting ICG extravasation at 24 h. A strong correlation was observed between fluorescence intensity and MRI-based contrast enhancement, confirming BBB opening dynamics. BBB closure followed an exponential decay model, with a half-closure time of approximately 81 min. The degree of BBB opening was proportional to the MB dose administered. CONCLUSION ICG-based photoacoustic and fluorescence imaging provide a non-invasive and cost-effective alternative to MRI for monitoring FUS-induced BBB opening. These techniques offer complementary temporal windows for assessment, improving the precision of BBB permeability evaluation in preclinical and potentially clinical applications.
Collapse
Affiliation(s)
- Thomas Ador
- ART mRNA Inserm US55, Orléans, France; Université d'Orléans, LI²RSO, Orléans, France; Laboratory of Experimental and Molecular Immunology and Neuromodulation, UMR 7355 CNRS-Université d'Orléans, Orléans, France
| | | | - Sébastien Rigollet
- Université Grenoble Alpes, Inserm, Grenoble Institut Neurosciences, Grenoble, France; Image Guided Therapy, Pessac, France
| | - Claire Counil
- ART mRNA Inserm US55, Orléans, France; Université d'Orléans, LI²RSO, Orléans, France
| | - Vasile Stupar
- Université Grenoble Alpes, Inserm, Grenoble Institut Neurosciences, Grenoble, France; Université Grenoble Alpes, Inserm, CNRS, CHU Grenoble Alpes, IRMaGe, Grenoble, France
| | - Emmanuel L Barbier
- Université Grenoble Alpes, Inserm, Grenoble Institut Neurosciences, Grenoble, France; Université Grenoble Alpes, Inserm, CNRS, CHU Grenoble Alpes, IRMaGe, Grenoble, France
| | - Chantal Pichon
- ART mRNA Inserm US55, Orléans, France; Université d'Orléans, LI²RSO, Orléans, France; Institut Universitaire de France, Paris, France
| | - Anthony Delalande
- ART mRNA Inserm US55, Orléans, France; Université d'Orléans, LI²RSO, Orléans, France.
| |
Collapse
|
2
|
Morse SV, Rimer S, Geoghegan G, Shah M, Chan N, Yalcin C, Pereira MA, Rohfleisch L, Nkontchou N, Winiarski S, Ee J, Maitra A, Chan TG, Sastre M, Choi JJ. Biological effects of rapid short pulses of focused ultrasound for drug delivery to the brain. J Control Release 2025; 382:113646. [PMID: 40127724 DOI: 10.1016/j.jconrel.2025.113646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/28/2025] [Accepted: 03/18/2025] [Indexed: 03/26/2025]
Abstract
Focused ultrasound in combination with intravenously injected microbubbles offers a non-invasive and localised method to deliver drugs across the blood-brain barrier, enabling targeted treatment of brain disorders. Recently, we have shown that applying sequences of Rapid Short-Pulses (RaSP; 5 μs pulses emitted at 1.25 kHz grouped into 10 ms bursts) of ultrasound can deliver drugs with an improved efficacy and safety profile compared with traditionally-used longer pulses (> 10 ms). In this study, we examined the extent to which RaSP sequences allowed the extravasation of endogenous blood proteins, including albumin and immunoglobulin, as well as T cells, into the brain parenchyma. We also investigated the effect of RaSP ultrasound treatments on synaptic connectivity, and the distribution and excretion of fluorescently-labelled 3 kDa dextran delivered to the brain with RaSP. The left hippocampus of mice was sonicated with either a RaSP sequence (5 μs at 1.25 kHz in groups of 10 ms at 0.5 Hz) or a long pulse sequence (10 ms at 0.5 Hz), at 0.35, 0.53 and 0.71 MPa with a 1-MHz center frequency. Significantly less albumin was detected in RaSP-treated brains immediately after treatment and was cleared within 10 min compared to those treated with long pulses, while immunoglobulin was hardly detected in RaSP-treated brains at 0, 10 or 20 min after treatment. No T cells were detected in RaSP-treated brains at 0.35, 0.53 or 0.71 MPa after 0 or 2 h. In long pulse samples, however, T cells did extravasate when using the two higher acoustic pressures, 0.53 and 0.71 MPa, immediately after treatment. Quantification of dendritic spine area revealed no differences between RaSP-treated hippocampi compared to untreated contralateral hippocampi and control mice following three weekly ultrasound treatments. Finally, fluorescently-labelled dextran increasingly moved towards blood vessels and away from the parenchyma once delivered to the brain with both RaSP and long pulse sequences. Uptake of dextran within cells decreased over time with both sequences, and long pulses lead to a larger number of vessels with dextran uptake. This study highlights that RaSP ultrasound sequences can deliver molecules across the blood-brain barrier with minimal extravasation of endogenous proteins and no T cell infiltration, while preserving dendritic spine integrity, thus offering an improved safety profile.
Collapse
Affiliation(s)
- Sophie V Morse
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK; UK Dementia Research Institute at Imperial College London, UK.
| | - Sarah Rimer
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK
| | - Grainne Geoghegan
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK; Department of Brain Sciences, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Manaal Shah
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK; UK Dementia Research Institute at Imperial College London, UK
| | - Nicholas Chan
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK
| | - Ceren Yalcin
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK
| | - Maria Afonso Pereira
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK
| | - Lucia Rohfleisch
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK
| | - Neema Nkontchou
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK
| | - Samuel Winiarski
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK
| | - Jamie Ee
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK
| | - Aurna Maitra
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK
| | - Tiffany G Chan
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - James J Choi
- Department of Bioengineering, Imperial College London, South Kensington, London SW7 2BP, UK
| |
Collapse
|
3
|
Moonen CT, Kilroy JP, Klibanov AL. Focused Ultrasound: Noninvasive Image-Guided Therapy. Invest Radiol 2025; 60:205-219. [PMID: 39163359 PMCID: PMC11801465 DOI: 10.1097/rli.0000000000001116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/27/2024] [Indexed: 08/22/2024]
Abstract
ABSTRACT Invasive open surgery used to be compulsory to access tumor mass to perform excision or resection. Development of minimally invasive laparoscopic procedures followed, as well as catheter-based approaches, such as stenting, endovascular surgery, chemoembolization, brachytherapy, which minimize side effects and reduce the risks to patients. Completely noninvasive procedures bring further benefits in terms of reducing risk, procedure time, recovery time, potential of infection, or other side effects. Focusing ultrasound waves from the outside of the body specifically at the disease site has proven to be a safe noninvasive approach to localized ablative hyperthermia, mechanical ablation, and targeted drug delivery. Focused ultrasound as a medical intervention was proposed decades ago, but it only became feasible to plan, guide, monitor, and control the treatment procedures with advanced radiological imaging capabilities. The purpose of this review is to describe the imaging capabilities and approaches to perform these tasks, with the emphasis on magnetic resonance imaging and ultrasound. Some procedures already are in clinical practice, with more at the clinical trial stage. Imaging is fully integrated in the workflow and includes the following: (1) planning, with definition of the target regions and adjacent organs at risk; (2) real-time treatment monitoring via thermometry imaging, cavitation feedback, and motion control, to assure targeting and safety to adjacent normal tissues; and (3) evaluation of treatment efficacy, via assessment of ablation and physiological parameters, such as blood supply. This review also focuses on sonosensitive microparticles and nanoparticles, such as microbubbles injected in the bloodstream. They enable ultrasound energy deposition down to the microvascular level, induce vascular inflammation and shutdown, accelerate clot dissolution, and perform targeted drug delivery interventions, including focal gene delivery. Especially exciting is the ability to perform noninvasive drug delivery via opening of the blood-brain barrier at the desired areas within the brain. Overall, focused ultrasound under image guidance is rapidly developing, to become a choice noninvasive interventional radiology tool to treat disease and cure patients.
Collapse
|
4
|
Noel RL, Kugelman T, Karakatsani ME, Shahriar S, Willner MJ, Choi CS, Nimi Y, Ji R, Agalliu D, Konofagou EE. Safe focused ultrasound-mediated blood-brain barrier opening is driven primarily by transient reorganization of tight junctions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635258. [PMID: 39975117 PMCID: PMC11838333 DOI: 10.1101/2025.01.28.635258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Focused ultrasound (FUS) with microbubbles opens the blood-brain barrier (BBB) to allow targeted drug delivery into the brain. The mechanisms by which endothelial cells (ECs) respond to either low acoustic pressures known to open the BBB transiently, or high acoustic pressures that cause brain damage, remain incompletely characterized. Here, we use a mouse strain where tight junctions between ECs are labelled with eGFP and apply FUS at low (450 kPa) and high (750 kPa) acoustic pressures, after which mice are sacrificed at 1 or 72 hours. We find that the EC response leading to FUS-mediated BBB opening at low pressures is localized primarily in arterioles and capillaries, and characterized by a transient loss and reorganization of tight junctions. BBB opening still occurs at low safe pressures in mice lacking caveolae, suggesting that it is driven primarily by transient dismantlement and reorganization of tight junctions. In contrast, BBB opening at high pressures is associated with obliteration of EC tight junctions that remain unrepaired even after 72 hours, allowing continuous fibrinogen passage and persistent microglial activation. Single-cell RNA-sequencing of arteriole, capillary and venule ECs from FUS mice reveals that the transcriptomic responses of ECs exposed to high pressure are dominated by genes belonging to the stress response and cell junction disassembly at both 1 and 72 hours, while lower pressures induce primarily genes responsible for intracellular repair responses in ECs. Our findings suggest that at low pressures transient reorganization of tight junctions and repair responses mediate safe BBB opening for therapeutic delivery. Significance Statement Focused ultrasound with microbubbles is used as a noninvasive method to safely open the BBB at low acoustic pressures for therapeutic delivery into the CNS, but the mechanisms mediating this process remain unclear. Kugelman et al., demonstrate that FUS-mediated BBB opening at low pressures occurs primarily in arterioles and capillaries due to transient reorganization of tight junctions. BBB opening still occurs at low safe pressures in mice lacking caveolae, suggesting a transcellular route-independent mechanism. At high unsafe pressures, cell junctions are obliterated and remain unrepaired even after 72 hours, allowing fibrinogen passage and persistent microglial activation. Single-cell RNA-sequencing supports cell biological findings that safe, FUS-mediated BBB opening may be driven by transient reorganization and repair of EC tight junctions.
Collapse
|
5
|
Tsitsos FN, Batts AJ, Jimenez DA, Li C, Ji R, Bae S, Theodorou A, Gorman SL, Konofagou EE. Characterization of Microbubble Cavitation in Theranostic Ultrasound-mediated Blood-Brain Barrier Opening and Gene Delivery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633644. [PMID: 39896565 PMCID: PMC11785052 DOI: 10.1101/2025.01.17.633644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Rationale The characterization of microbubble activity has proven critical in assessing the safety and efficacy of ultrasound-mediated blood-brain barrier (BBB) opening and drug and gene delivery. In this study, we build upon our previous work on theranostic ultrasound (ThUS)-mediated BBB opening (ThUS-BBBO) and conduct for the first time a comprehensive characterization of the role of microbubble cavitation in ThUS-BBBO, as well as its impact on gene delivery with adeno-associated viruses (AAV). Methods A repurposed imaging phased array was used throughout the study to generate focused transmits and record microbubble activity through high-resolution power cavitation imaging (PCI). The cavitation of microbubbles under ThUS pulses was first characterized in flow phantom using pulse lengths ranging from 1.5 to 20 cycles and under varying microbubble flow rates using a separate single-element transducer a passive cavitation detector (PCD). A comprehensive in vivo study in mice was then conducted to characterize the in vivo microbubble activity under ThUS and correlate the resulting cavitation with AAV-mediated transgene delivery and expression. The transcranial microbubble activity was first detected in two mice using a PCD, to confirm the findings of the flow phantom study. Next, three mouse studies were conducted to evaluate the relationship between cavitation and AAV delivery; one with three different microbubble size distributions using polydisperse and size-isolated microbubbles, one with variable burst length and burst repetition frequency, and one with different AAV serotypes and injection doses. Electronic beam steering was used to induce bilateral BBB opening with 1.5 cycle on the left and 10 cycles on the right hemisphere. Cavitation dose was correlated with BBB opening volume, AAV transgene expression was evaluated with immunofluorescence staining and histological safety was assessed with T2* imaging and Hematoxylin and Eosin staining. Results Frequency domain analysis in the phantoms revealed a broadband-cavitation dominance at the shorter pulse lengths, while harmonic cavitation components are significantly increased for longer pulses. The PCD was better at detecting higher frequency harmonics, while the signal received by the theranostic array was more broadband dominated. Analysis of signals in the time domain showed that the longer pulses induce higher microbubble collapse compared to short pulses. In the transcranial in vivo experiments, the PCD was able to detect increased harmonic cavitation for 10-cycle pulses. The microbubble study showed that 3-5 μm microbubbles resulted in the largest cavitation doses, BBBO volumes and AAV transgene expression compared to the smaller microbubble sizes. The burst sequence study revealed that the sequences with shorter bursts and faster burst repetition frequencies induce larger BBBO volumes and AAV transduction due to faster microbubble replenishment in the focal volume. Increased erythrocyte extravasation was observed on the hemisphere sonicated with 10-cycle pulses. Transgene expression was also increased with injection dose, without notable side effects during the three-week survival period. Finally, AAV9 was shown to be the serotype with the highest transduction efficiency compared to AAV2 and AAV5 at the same injected dose. Conclusions This is the first comprehensive study into the microbubble cavitation under theranostic ultrasound. The phantom and in vivo studies show that the mechanism of ThUS-BBBO is mainly transient cavitation dominant, as microbubble collapse increases with pulse length despite the increased harmonic frequency response. Increased cavitation dose resulted in larger BBBO volumes and transgene expression in vivo . While ThUS induced microhemorrhage for most of the studied conditions, it did not have an impact on the survival and behavior of the mice.
Collapse
|
6
|
Qian K, Dai M, Gan L, Ye Q, Wu X, Qian T, Ma C, Lin X. Specific mode electroacupuncture stimulation opens the blood-brain barrier of the infarcted border zone in rats during MCAO/R recovery via modulation of tight junction protein expression by VEGFA and NF-κB. Neuroreport 2024; 35:1052-1060. [PMID: 39292955 DOI: 10.1097/wnr.0000000000002098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
The blood-brain barrier (BBB) strictly limits the entry of most exogenous therapeutic drugs into the brain, which brings great challenges to the drug treatment of refractory central diseases, including the treatment of ischemic stroke. Our previous studies have shown that specific mode electroacupuncture stimulation (SMES) can temporarily open the BBB, but with the mechanisms largely unknown. This study explored whether SMES opens the BBB in the infarcted border zone of rats during middle cerebral artery occlusion/reperfusion recovery, and whether this is related to p65 or vascular endothelial growth factor A (VEGFA) modulation of tight junction protein expression through in vivo and in vitro studies. Evans blue, FITC-dextran, mouse-derived nerve growth factor (NGF), and transendothelial electrical resistance values were used to evaluate the permeability of the BBB. Additionally, microvascular endothelial cells and astrocytes were utilized for in vitro study. Immunofluorescence, immunohistochemistry, western blot, and ELISA were employed to assess related protein expression. SMES significantly increased vascular permeability for Evans blue and NGF in the infarcted border zone, and increased the expression of VEGFA by activating p-p65, thereby reducing the expression of tight junction proteins Occludin and ZO-1. Correspondingly, oxygen glucose deprivation/reoxygenation activated p-p65 in and induced VEGFA secretion from astrocytes in vitro. Their conditioned medium reduced the expression of Occludin in bEnd.3 cells and increased the permeability of FITC-dextran. The mechanism of SMES opening infarcted border zone BBB is partly related to its actions on p65, VEGFA, and tight junction proteins.
Collapse
Affiliation(s)
- Kecheng Qian
- The Third Clinical Medical 5 College, Zhejiang Chinese Medical University, Hangzhou
| | - Mengyuan Dai
- Department of Rehabilitation, Lishui Central Hospital, LiShui City
| | - Lin Gan
- The Third Clinical Medical 5 College, Zhejiang Chinese Medical University, Hangzhou
| | - Qinyu Ye
- The Third Clinical Medical 5 College, Zhejiang Chinese Medical University, Hangzhou
| | - Xingying Wu
- Department of Neurobiology of the Second Affiliated Hospital
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou
| | - Tianyu Qian
- Ninghai County Hospital of Traditional Chinese Medicine, Ningbo
| | - Congcong Ma
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xianming Lin
- The Third Clinical Medical 5 College, Zhejiang Chinese Medical University, Hangzhou
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Jimenez-Gambin S, Bae S, Ji R, Tsitsos F, Konofagou EE. Feasibility of Hologram-Assisted Bilateral Blood-Brain Barrier Opening in Non-Human Primates. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1172-1185. [PMID: 39196737 PMCID: PMC11656487 DOI: 10.1109/tuffc.2024.3451289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Focused ultrasound (FUS) and microbubbles facilitate blood-brain barrier opening (BBBO) noninvasively, transiently, and safely for targeted drug delivery. Unlike state-of-the-art approaches, in this study, we demonstrate for the first time the simultaneous, bilateral BBBO in non-human primates (NHPs) using acoustic holograms at caudate and putamen structures. The simple and low-cost system with a single-element FUS transducer and 3-D printed acoustic hologram was guided by neuronavigation and a robotic arm. The advantages of holograms are transcranial aberration correction, simultaneous multifocus and high localization, and target-independent transducer positioning, defining a promising alternative for time- and cost-efficient FUS procedures. Holograms were designed with the k-space method by time-reversal techniques. T1-weighted MRI was used for treatment planning, while the computed tomography (CT) scan provided the head tissues acoustic properties. For the BBBO procedure, a robotic arm allowed transducer positioning errors below 0.1 mm and 0.1°. Following positioning, 0.5-0.6-MPa, 513-kHz microbubble-enhanced FUS was applied for 4 min. For BBBO assessment, Post-FUS T1-weighted MRI was acquired, and contrast enhancement indicated bilateral gadolinium extravasation at both caudate or putamen structures. The two BBBO locations were separated by 13.13 mm with a volume of 91.81 mm3 in the caudate, compared with 9.40 mm with a volume of 124.52 mm3 in simulation, while they were separated by 21.74 mm with a volume of 145.38 mm3 in the putamen and compared with 22.32 mm with a volume of 156.42 mm3 in simulation. No neurological damage was observed through T2-weighted and susceptibility-weighted imaging. This study demonstrates the feasibility and safety of hologram-assisted neuronavigation-guided-FUS for BBBO in NHP, providing thus an avenue for clinical translation.
Collapse
|
8
|
Kwak G, Grewal A, Slika H, Mess G, Li H, Kwatra M, Poulopoulos A, Woodworth GF, Eberhart CG, Ko H, Manbachi A, Caplan J, Price RJ, Tyler B, Suk JS. Brain Nucleic Acid Delivery and Genome Editing via Focused Ultrasound-Mediated Blood-Brain Barrier Opening and Long-Circulating Nanoparticles. ACS NANO 2024; 18:24139-24153. [PMID: 39172436 PMCID: PMC11792178 DOI: 10.1021/acsnano.4c05270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
We introduce a two-pronged strategy comprising focused ultrasound (FUS)-mediated blood-brain barrier (BBB) opening and long-circulating biodegradable nanoparticles (NPs) for systemic delivery of nucleic acids to the brain. Biodegradable poly(β-amino ester) polymer-based NPs were engineered to stably package various types of nucleic acid payloads and enable prolonged systemic circulation while retaining excellent serum stability. FUS was applied to a predetermined coordinate within the brain to transiently open the BBB, thereby allowing the systemically administered long-circulating NPs to traverse the BBB and accumulate in the FUS-treated brain region, where plasmid DNA or mRNA payloads produced reporter proteins in astrocytes and neurons. In contrast, poorly circulating and/or serum-unstable NPs, including the lipid NP analogous to a platform used in clinic, were unable to provide efficient nucleic acid delivery to the brain regardless of the BBB-opening FUS. The marriage of FUS-mediated BBB opening and the long-circulating NPs engineered to copackage mRNA encoding CRISPR-associated protein 9 and single-guide RNA resulted in genome editing in astrocytes and neurons precisely in the FUS-treated brain region. The combined delivery strategy provides a versatile means to achieve efficient and site-specific therapeutic nucleic acid delivery to and genome editing in the brain via a systemic route.
Collapse
Affiliation(s)
- Gijung Kwak
- Department of Neurosurgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Medicine Institute for Neuroscience Discovery (UM-MIND), School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Angad Grewal
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Hasan Slika
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Griffin Mess
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Haolin Li
- Department of Neurosurgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Department of Chemical and Biomolecular Engineering, School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Mohit Kwatra
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Alexandros Poulopoulos
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Graeme F. Woodworth
- Department of Neurosurgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Medicine Institute for Neuroscience Discovery (UM-MIND), School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Charles G. Eberhart
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
- Department of Ophthalmology, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Hanseok Ko
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Amir Manbachi
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Justin Caplan
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Richard J. Price
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA 22904, USA
| | - Betty Tyler
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jung Soo Suk
- Department of Neurosurgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Medicine Institute for Neuroscience Discovery (UM-MIND), School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Chemical and Biomolecular Engineering, School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
9
|
Ye D, Chukwu C, Yang Y, Hu Z, Chen H. Adeno-associated virus vector delivery to the brain: Technology advancements and clinical applications. Adv Drug Deliv Rev 2024; 211:115363. [PMID: 38906479 PMCID: PMC11892011 DOI: 10.1016/j.addr.2024.115363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/13/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Adeno-associated virus (AAV) vectors have emerged as a promising tool in the development of gene therapies for various neurological diseases, including Alzheimer's disease and Parkinson's disease. However, the blood-brain barrier (BBB) poses a significant challenge to successfully delivering AAV vectors to the brain. Strategies that can overcome the BBB to improve the AAV delivery efficiency to the brain are essential to successful brain-targeted gene therapy. This review provides an overview of existing strategies employed for AAV delivery to the brain, including direct intraparenchymal injection, intra-cerebral spinal fluid injection, intranasal delivery, and intravenous injection of BBB-permeable AAVs. Focused ultrasound has emerged as a promising technology for the noninvasive and spatially targeted delivery of AAV administered by intravenous injection. This review also summarizes each strategy's current preclinical and clinical applications in treating neurological diseases. Moreover, this review includes a detailed discussion of the recent advances in the emerging focused ultrasound-mediated AAV delivery. Understanding the state-of-the-art of these gene delivery approaches is critical for future technology development to fulfill the great promise of AAV in neurological disease treatment.
Collapse
Affiliation(s)
- Dezhuang Ye
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Chinwendu Chukwu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Yaoheng Yang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Zhongtao Hu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA; Department of Neurosurgery, Washington University School of Medicine, Saint Louis, MO 63110 USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
10
|
Desmarais S, Ramos-Palacios G, Porée J, Lee SA, Leconte A, Sadikot AF, Provost J. Equivalent-time-active-cavitation-imaging enables vascular-resolution blood-brain-barrier-opening-therapy planning. Phys Med Biol 2024; 69:055014. [PMID: 38157550 DOI: 10.1088/1361-6560/ad199a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Objective. Linking cavitation and anatomy was found to be important for predictable outcomes in focused-ultrasound blood-brain-barrier-opening and requires high resolution cavitation mapping. However, cavitation mapping techniques for planning and monitoring of therapeutic procedures either (1) do not leverage the full resolution capabilities of ultrasound imaging or (2) place constraints on the length of the therapeutic pulse. This study aimed to develop a high-resolution technique that could resolve vascular anatomy in the cavitation map.Approach. Herein, we develop BandPass-sampled-equivalent-time-active-cavitation-imaging (BP-ETACI), derived from bandpass sampling and dual-frequency contrast imaging at 12.5 MHz to produce cavitation maps prior and during blood-brain barrier opening with long therapeutic bursts using a 1.5 MHz focused transducer in the brain of C57BL/6 mice.Main results. The BP-ETACI cavitation maps were found to correlate with the vascular anatomy in ultrasound localization microscopy vascular maps and in histological sections. Cavitation maps produced from non-blood-brain-barrier disrupting doses showed the same cavitation-bearing vasculature as maps produced over entire blood-brain-barrier opening procedures, allowing use for (1) monitoring focused-ultrasound blood-brain-barrier-opening (FUS-BBBO), but also for (2) therapy planning and target verification.Significance. BP-ETACI is versatile, created high resolution cavitation maps in the mouse brain and is easily translatable to existing FUS-BBBO experiments. As such, it provides a means to further study cavitation phenomena in FUS-BBBO.
Collapse
Affiliation(s)
| | | | | | | | | | - Abbas F Sadikot
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Canada
| | - Jean Provost
- Polytechnique Montréal, Montréal, Canada
- Institut de Cardiologie de Montréal, Montréal, Canada
| |
Collapse
|
11
|
Ajenjo J, Seo JW, Foiret J, Wu B, Raie MN, Wang J, Fite BZ, Zhang N, Malek R, Beinat C, Malik N, Anders DA, Ferrara KW. PET imaging of focused-ultrasound enhanced delivery of AAVs into the murine brain. Theranostics 2023; 13:5151-5169. [PMID: 37908737 PMCID: PMC10614693 DOI: 10.7150/thno.85549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/19/2023] [Indexed: 11/02/2023] Open
Abstract
Rationale: Despite recent advances in the use of adeno-associated viruses (AAVs) as potential vehicles for genetic intervention of central and peripheral nervous system-associated disorders, gene therapy for the treatment of neuropathology in adults has not been approved to date. The currently FDA-approved AAV-vector based gene therapies rely on naturally occurring serotypes, such as AAV2 or AAV9, which display limited or no transport across the blood-brain barrier (BBB) if systemically administered. Recently developed engineered AAV variants have shown broad brain transduction and reduced off-target liver toxicity in non-human primates (NHPs). However, these vectors lack spatial selectivity for targeted gene delivery, a potentially critical limitation for delivering therapeutic doses in defined areas of the brain. The use of microbubbles, in conjunction with focused ultrasound (FUS), can enhance regional brain AAV transduction, but methods to assess transduction in vivo are needed. Methods: In a murine model, we combined positron emission tomography (PET) and optical imaging of reporter gene payloads to non-invasively assess the spatial distribution and transduction efficiency of systemically administered AAV9 after FUS and microbubble treatment. Capsid and reporter probe accumulation are reported as percent injected dose per cubic centimeter (%ID/cc) for in vivo PET quantification, whereas results for ex vivo assays are reported as percent injected dose per gram (%ID/g). Results: In a study spanning accumulation and transduction, mean AAV9 accumulation within the brain was 0.29 %ID/cc without FUS, whereas in the insonified region of interest of FUS-treated mice, the spatial mean and maximum reached ~2.3 %ID/cc and 4.3 %ID/cc, respectively. Transgene expression assessed in vivo by PET reporter gene imaging employing the pyruvate kinase M2 (PKM2)/[18F]DASA-10 reporter system increased up to 10-fold in the FUS-treated regions, as compared to mice receiving AAVs without FUS. Systemic injection of AAV9 packaging the EF1A-PKM2 transgene followed by FUS in one hemisphere resulted in 1) an average 102-fold increase in PKM2 mRNA concentration compared to mice treated with AAVs only and 2) a 12.5-fold increase in the insonified compared to the contralateral hemisphere of FUS-treated mice. Conclusion: Combining microbubbles with US-guided treatment facilitated a multi-hour BBB disruption and stable AAV transduction in targeted areas of the murine brain. This unique platform has the potential to provide insight and aid in the translation of AAV-based therapies for the treatment of neuropathologies.
Collapse
Affiliation(s)
- Javier Ajenjo
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Jai Woong Seo
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Josquin Foiret
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Bo Wu
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Marina Nura Raie
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - James Wang
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Brett Zain Fite
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Nisi Zhang
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Rim Malek
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Corinne Beinat
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Noeen Malik
- Stanford Cyclotron & Radiochemistry Facility (CRF), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - David Alexander Anders
- Stanford Cyclotron & Radiochemistry Facility (CRF), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Katherine W. Ferrara
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
12
|
Noel RL, Gorman SL, Batts AJ, Konofagou EE. Getting ahead of Alzheimer's disease: early intervention with focused ultrasound. Front Neurosci 2023; 17:1229683. [PMID: 37575309 PMCID: PMC10412991 DOI: 10.3389/fnins.2023.1229683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
The amyloid-β (Aβ) hypothesis implicates Aβ protein accumulation in Alzheimer's disease (AD) onset and progression. However, therapies targeting Aβ have proven insufficient in achieving disease reversal, prompting a shift to focus on early intervention and alternative therapeutic targets. Focused ultrasound (FUS) paired with systemically-introduced microbubbles (μB) is a non-invasive technique for targeted and transient blood-brain barrier opening (BBBO), which has demonstrated Aβ and tau reduction, as well as memory improvement in models of late-stage AD. However, similar to drug treatments for AD, this approach is not sufficient for complete reversal of advanced, symptomatic AD. Here we aim to determine whether early intervention with FUS-BBBO in asymptomatic AD could delay disease onset. Thus, the objective of this study is to measure the protective effects of FUS-BBBO on anxiety, memory and AD-associated protein levels in female and male triple transgenic (3xTg) AD mice treated at an early age and disease state. Here we show that early, repeated intervention with FUS-BBBO decreased anxiety-associated behaviors in the open field test by 463.02 and 37.42% in male and female cohorts, respectively. FUS-BBBO preserved female aptitude for learning in the active place avoidance paradigm, reducing the shock quadrant time by 30.03 and 31.01% in the final long-term and reversal learning trials, respectively. Finally, FUS-BBBO reduced hippocampal accumulation of Aβ40, Aβ42, and total tau in females by 12.54, 13.05, and 3.57%, respectively, and reduced total tau in males by 18.98%. This demonstration of both cognitive and pathological protection could offer a solution for carriers of AD-associated mutations as a safe, non-invasive technique to delay the onset of the cognitive and pathological effects of AD.
Collapse
Affiliation(s)
- Rebecca L. Noel
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Samantha L. Gorman
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Alec J. Batts
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Elisa E. Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
- Department of Radiology, Columbia University, New York, NY, United States
| |
Collapse
|
13
|
Lim Kee Chang W, Chan TG, Raguseo F, Mishra A, Chattenton D, de Rosales RTM, Long NJ, Morse SV. Rapid short-pulses of focused ultrasound and microbubbles deliver a range of agent sizes to the brain. Sci Rep 2023; 13:6963. [PMID: 37117169 PMCID: PMC10147927 DOI: 10.1038/s41598-023-33671-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/17/2023] [Indexed: 04/30/2023] Open
Abstract
Focused ultrasound and microbubbles can non-invasively and locally deliver therapeutics and imaging agents across the blood-brain barrier. Uniform treatment and minimal adverse bioeffects are critical to achieve reliable doses and enable safe routine use of this technique. Towards these aims, we have previously designed a rapid short-pulse ultrasound sequence and used it to deliver a 3 kDa model agent to mouse brains. We observed a homogeneous distribution in delivery and blood-brain barrier closing within 10 min. However, many therapeutics and imaging agents are larger than 3 kDa, such as antibody fragments and antisense oligonucleotides. Here, we evaluate the feasibility of using rapid short-pulses to deliver higher-molecular-weight model agents. 3, 10 and 70 kDa dextrans were successfully delivered to mouse brains, with decreasing doses and more heterogeneous distributions with increasing agent size. Minimal extravasation of endogenous albumin (66.5 kDa) was observed, while immunoglobulin (~ 150 kDa) and PEGylated liposomes (97.9 nm) were not detected. This study indicates that rapid short-pulses are versatile and, at an acoustic pressure of 0.35 MPa, can deliver therapeutics and imaging agents of sizes up to a hydrodynamic diameter between 8 nm (70 kDa dextran) and 11 nm (immunoglobulin). Increasing the acoustic pressure can extend the use of rapid short-pulses to deliver agents beyond this threshold, with little compromise on safety. This study demonstrates the potential for deliveries of higher-molecular-weight therapeutics and imaging agents using rapid short-pulses.
Collapse
Affiliation(s)
- William Lim Kee Chang
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2BP, UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London, W12 0BZ, UK
| | - Tiffany G Chan
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2BP, UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London, W12 0BZ, UK
| | - Federica Raguseo
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London, W12 0BZ, UK
| | - Aishwarya Mishra
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SW1 7EH, UK
| | - Dani Chattenton
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2BP, UK
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, London, SM2 5NG, UK
| | - Rafael T M de Rosales
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SW1 7EH, UK
| | - Nicholas J Long
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London, W12 0BZ, UK
| | - Sophie V Morse
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2BP, UK.
| |
Collapse
|