1
|
Zheng M, Bao N, Wang Z, Song C, Jin Y. Alternative splicing in autism spectrum disorder: Recent insights from mechanisms to therapy. Asian J Psychiatr 2025; 108:104501. [PMID: 40273800 DOI: 10.1016/j.ajp.2025.104501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/26/2025]
Abstract
Alternative splicing (AS) is a vital and highly dynamic RNA regulatory mechanism that allows a single gene to generate multiple mRNA and protein isoforms. Dysregulation of AS has been identified as a key contributor to the pathogenesis of autism spectrum disorders (ASD). A comprehensive understanding of aberrant splicing mechanisms and their functional consequences in ASD can help uncover the molecular basis of the disorder and facilitate the development of therapeutic strategies. This review focuses on the major aberrant splicing events and key splicing regulators associated with ASD, highlighting their roles in linking defective splicing to ASD pathogenesis. In addition, a discussion of how emerging technologies, such as long-read sequencing, single-cell sequencing, spatial transcriptomics and CRISPR-Cas systems are offering novel insights into the role and mechanisms of AS in ASD is presented. Finally, the RNA splicing-based therapeutic strategies are evaluated, emphasizing their potential to address unmet clinical needs in ASD treatment.
Collapse
Affiliation(s)
- Mixue Zheng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Nengcheng Bao
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Zhechao Wang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Chao Song
- Department of Developmental and Behavioral Pediatrics, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Centre for Child Health, Hangzhou 310052, China.
| | - Yongfeng Jin
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Kolpashchikov DM, Gerasimova YV. Cleavage of Structured RNAs Is Accelerated by High Affinity DNAzyme Agents. Chembiochem 2025; 26:e202400950. [PMID: 39901000 DOI: 10.1002/cbic.202400950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/05/2025]
Abstract
DNAzymes (Dz) have been suggested as sequence-specific agents for cleaving RNA for therapeutic purposes. This concept paper discusses the challenges of Dz 10-23 design to effciently cleave folded RNA substrates. Dz with traditionally designed RNA binding arms (Tm~37 °C) have low affinity to the folded RNA substrates, which limits the overall cleavage rate. The RNA cleavage can be facilitated using Dz with high-affinity arms. However, this strategy is efficient only for cleaving RNA into folded RNA products. The unfolded products inhibit multiple substrate turnover. In a more general approach, Dz should be equipped with additional RNA binding arms to achieve tight RNA binding. This can be accomplished by bivalent and multivalent Dz constructs that have multiple catalytic cores. In all cases, high selectivity toward single nucleotide variations can be achieved in addition to multiple turnovers. The presence of RNase H, which plays a role in the antisense effect of oligonucleotide gene therapy agents, stabilizes the Dz:RNA complex and reduces its selectivity but significantly increases RNA cleavage efficiency. This work proposes changes in the algorithms of Dz design, which can help in constructing potent Dz agents for RNA inhibition both in cell cultures and in vivo. The concept article is supplemented with a quiz, which tests knowledge of the main concepts discussed in this work.
Collapse
Affiliation(s)
- Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida, Orlando, FL, 32816-2366, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32816, USA
| | - Yulia V Gerasimova
- Chemistry Department, University of Central Florida, Orlando, FL, 32816-2366, USA
| |
Collapse
|
3
|
Li X, Hu H, Wang H, Liu J, Jiang W, Zhou F, Zhang J. DNA nanotechnology-based strategies for minimising hybridisation-dependent off-target effects in oligonucleotide therapies. MATERIALS HORIZONS 2025; 12:1388-1412. [PMID: 39692461 DOI: 10.1039/d4mh01158a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Targeted therapy has emerged as a transformative breakthrough in modern medicine. Oligonucleotide drugs, such as antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs), have made significant advancements in targeted therapy. Other oligonucleotide-based therapeutics like clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) systems are also leading a revolution in targeted gene therapy. However, hybridisation-dependent off-target effects, arising from imperfect base pairing, remain a significant and growing concern for the clinical translation of oligonucleotide-based therapeutics. These mismatches in base pairing can lead to unintended steric blocking or cleavage events in non-pathological genes, affecting the efficacy and safety of the oligonucleotide drugs. In this review, we examine recent developments in oligonucleotide-based targeted therapeutics, explore the factors influencing sequence-dependent targeting specificity, and discuss the current approaches employed to reduce the off-target side effects. The existing strategies, such as chemical modifications and oligonucleotide length optimisation, often require a trade-off between specificity and binding affinity. To further address the challenge of hybridisation-dependent off-target effects, we discuss DNA nanotechnology-based strategies that leverage the collaborative effects of nucleic acid assembly in the design of oligonucleotide-based therapies. In DNA nanotechnology, collaborative effects refer to the cooperative interactions between individual strands or nanostructures, where multiple bindings result in more stable and specific hybridisation behaviour. By requiring multiple complementary interactions to occur simultaneously, the likelihood of unintended partially complementary binding events in nucleic acid hybridisation should be reduced. And thus, with the aid of collaborative effects, DNA nanotechnology has great promise in achieving both high binding affinity and high specificity to minimise the hybridisation-dependent off-target effects of oligonucleotide-based therapeutics.
Collapse
Affiliation(s)
- Xiaoyu Li
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| | - Huanhuan Hu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| | - Hailong Wang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Jia Liu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| | - Wenting Jiang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Feng Zhou
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| | - Jiantao Zhang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| |
Collapse
|
4
|
Packard BZ, Komoriya A. The Influence of Length and Sequence of Complementary Oligonucleotides on the Spectral and Time-Resolved Fluorescence Properties of an H-Type Excitonic Dimer-Bearing Antisense Oligonucleotide. J Phys Chem B 2025; 129:684-691. [PMID: 39772540 DOI: 10.1021/acs.jpcb.4c07517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
We have previously found that the presence of an H-type excitonic dimer formed by two fluorophores covalently bound to an oligonucleotide allows the delivery of such a polymer into live cells without inducing toxicity. We are now using time-resolved fluorescence measurements in solution to understand the molecular dynamics of an antisense probe and how pairing with complementary sense strands of various lengths and degrees of complementarity affects the antisense strand's properties. We report that a DNA strand composed of 30 residues and labeled with an H-type excitonic Cyanine-5/Cyanine-5 dimer shows a predominant 1.9 ns lifetime decay term accompanied by a shorter (0.5 ns) secondary lifetime. Similar values were measured for this excitonic dimer-bearing antisense strand following binding with a series of sense strands of varying lengths and compositions. However, significant differences in both time-resolved and steady-state anisotropy values were found, depending on the level of duplex formation through hydrogen bonding between sense and antisense sequences. More specifically, the anisotropy measurements of the double-labeled single-chain probe showed increases as the two intramolecular fluorophores were induced to separate with values dependent on the length and sequence of complementary sense strands. These differences suggest induced changes in the degrees of wobbling, tumbling, and spinning.
Collapse
Affiliation(s)
- Beverly Z Packard
- OncoImmunin, Inc., 207A Perry Parkway, Suite 6, Gaithersburg, Maryland 20877, United States
| | - Akira Komoriya
- OncoImmunin, Inc., 207A Perry Parkway, Suite 6, Gaithersburg, Maryland 20877, United States
| |
Collapse
|
5
|
Bereczki Z, Benczik B, Balogh OM, Marton S, Puhl E, Pétervári M, Váczy-Földi M, Papp ZT, Makkos A, Glass K, Locquet F, Euler G, Schulz R, Ferdinandy P, Ágg B. Mitigating off-target effects of small RNAs: conventional approaches, network theory and artificial intelligence. Br J Pharmacol 2025; 182:340-379. [PMID: 39293936 DOI: 10.1111/bph.17302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/07/2024] [Accepted: 06/17/2024] [Indexed: 09/20/2024] Open
Abstract
Three types of highly promising small RNA therapeutics, namely, small interfering RNAs (siRNAs), microRNAs (miRNAs) and the RNA subtype of antisense oligonucleotides (ASOs), offer advantages over small-molecule drugs. These small RNAs can target any gene product, opening up new avenues of effective and safe therapeutic approaches for a wide range of diseases. In preclinical research, synthetic small RNAs play an essential role in the investigation of physiological and pathological pathways as silencers of specific genes, facilitating discovery and validation of drug targets in different conditions. Off-target effects of small RNAs, however, could make it difficult to interpret experimental results in the preclinical phase and may contribute to adverse events of small RNA therapeutics. Out of the two major types of off-target effects we focused on the hybridization-dependent, especially on the miRNA-like off-target effects. Our main aim was to discuss several approaches, including sequence design, chemical modifications and target prediction, to reduce hybridization-dependent off-target effects that should be considered even at the early development phase of small RNA therapy. Because there is no standard way of predicting hybridization-dependent off-target effects, this review provides an overview of all major state-of-the-art computational methods and proposes new approaches, such as the possible inclusion of network theory and artificial intelligence (AI) in the prediction workflows. Case studies and a concise survey of experimental methods for validating in silico predictions are also presented. These methods could contribute to interpret experimental results, to minimize off-target effects and hopefully to avoid off-target-related adverse events of small RNA therapeutics. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Zoltán Bereczki
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Bettina Benczik
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Olivér M Balogh
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Szandra Marton
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Eszter Puhl
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Mátyás Pétervári
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Sanovigado Kft, Budapest, Hungary
| | - Máté Váczy-Földi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zsolt Tamás Papp
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - András Makkos
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Kimberly Glass
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Fabian Locquet
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Gerhild Euler
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Rainer Schulz
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Bence Ágg
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
6
|
Aguilar R, Mardones C, Moreno AA, Cepeda-Plaza M. A guide to RNA structure analysis and RNA-targeting methods. FEBS J 2024. [PMID: 39718192 DOI: 10.1111/febs.17368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/22/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024]
Abstract
RNAs are increasingly recognized as promising therapeutic targets, susceptible to modulation by strategies that include targeting with small molecules, antisense oligonucleotides, deoxyribozymes (DNAzymes), or CRISPR/Cas13. However, while drug development for proteins follows well-established paths for rational design based on the accurate knowledge of their three-dimensional structure, RNA-targeting strategies are challenging since comprehensive RNA structures are yet scarce and challenging to acquire. Numerous methods have been developed to elucidate the secondary and three-dimensional structure of RNAs, including X-ray crystallography, cryo-electron microscopy, nuclear magnetic resonance, SHAPE, DMS, and bioinformatic methods, yet they have often revealed flexible transcripts and co-existing populations rather than single-defined structures. Thus, researchers aiming to target RNAs face a critical decision: whether to acquire the detailed structure of transcripts in advance or to adopt phenotypic screens or sequence-based approaches that are independent of the structure. Still, even in strategies that seem to rely only on the nucleotide sequence (like the design of antisense oligonucleotides), researchers may need information about the accessibility of the compounds to the folded RNA molecule. In this concise guide, we provide an overview for researchers interested in targeting RNAs: We start by revisiting current methodologies for defining secondary or three-dimensional RNA structure and then we explore RNA-targeting strategies that may or may not require an in-depth knowledge of RNA structure. We envision that complementary approaches may expedite the development of RNA-targeting molecules to combat disease.
Collapse
Affiliation(s)
- Rodrigo Aguilar
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Constanza Mardones
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Adrian A Moreno
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | | |
Collapse
|
7
|
Dubovichenko MV, Nedorezova DD, Patra C, Drozd VS, Andrianov VS, Ashmarova AI, Nnanyereugo VO, Eldeeb AA, Kolpashchikov DM. Marker-Dependent Cleavage of RNA by Binary (split) DNAzyme (BiDz) and Binary DNA Machines (BiDM). Chembiochem 2024; 25:e202400665. [PMID: 39471339 DOI: 10.1002/cbic.202400665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/05/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
Oligonucleotide gene therapy (OGT) can be used to suppress specific RNA in cells and thus has been explored for gene therapy. Despite extensive effort, there is no clinically significant OGT for treating cancer. Low efficiency of OGT is one of the problems. Earlier, we proposed to address this problem by suppressing the most vital genes in cancer cells e. g. housekeeping genes. To achieve specific activation of the OGT agents in cancer but not in normal cells, we designed a binary (split) DNAzyme (BiDz) activated by cancer-related nucleic acid sequences. This work is devoted to BiDz optimization for efficient cleavage of structured RNA targets upon activation with a cancer marker-related sequence. To achieve efficient binding of folded RNA, the BiDz was equipped with RNA binding/unwinding arms to produce 'Binary DNA-nanomachines' (BiDM). It was demonstrated that BiDM can improve both the rate and selectivity of RNA cleavage in comparison with BiDz. For the best selectivity, single-nucleotide variations should be recognized by the strand detached from the common DNA scaffold of BiDM. Further development of DNA nanotechnology-inspired agents can advance OGT in treating cancer, viral infections, and genetic disorders.
Collapse
Affiliation(s)
- Mikhail V Dubovichenko
- Laboratory of Nucleic Acid Nanotechnology, SCAMT Institute, ITMO University, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation
| | - Daria D Nedorezova
- Laboratory of Nucleic Acid Nanotechnology, SCAMT Institute, ITMO University, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation
| | - Christina Patra
- Laboratory of Nucleic Acid Nanotechnology, SCAMT Institute, ITMO University, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation
| | - Valeria S Drozd
- Laboratory of Nucleic Acid Nanotechnology, SCAMT Institute, ITMO University, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation
| | - Vladimir S Andrianov
- Laboratory of Nucleic Acid Nanotechnology, SCAMT Institute, ITMO University, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation
| | - Anna I Ashmarova
- Laboratory of Nucleic Acid Nanotechnology, SCAMT Institute, ITMO University, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation
| | - Vivian O Nnanyereugo
- Laboratory of Nucleic Acid Nanotechnology, SCAMT Institute, ITMO University, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation
| | - Ahmed A Eldeeb
- Laboratory of Nucleic Acid Nanotechnology, SCAMT Institute, ITMO University, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation
| | - Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida, Orlando, FL, 32816-2366, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32816, USA
| |
Collapse
|
8
|
Mohammadi F, Zahraee H, Zibadi F, Khoshbin Z, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Progressive cancer targeting by programmable aptamer-tethered nanostructures. MedComm (Beijing) 2024; 5:e775. [PMID: 39434968 PMCID: PMC11491555 DOI: 10.1002/mco2.775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
Scientific research in recent decades has affirmed an increase in cancer incidence as a cause of death globally. Cancer can be considered a plurality of various diseases rather than a single disease, which can be a multifaceted problem. Hence, cancer therapy techniques acquired more accelerated and urgent approvals compared to other therapeutic approaches. Radiotherapy, chemotherapy, immunotherapy, and surgery have been widely adopted as routine cancer treatment strategies to suppress disease progression and metastasis. These therapeutic approaches have lengthened the longevity of countless cancer patients. Nonetheless, some inherent limitations have restricted their application, including insignificant therapeutic efficacy, toxicity, negligible targeting, non-specific distribution, and multidrug resistance. The development of therapeutic oligomer nanoconstructs with the advantages of chemical solid-phase synthesis, programmable design, and precise adjustment is crucial for advancing smart targeted drug nanocarriers. This review focuses on the significance of the different aptamer-assembled nanoconstructs as multifunctional nucleic acid oligomeric nanoskeletons in efficient drug delivery. We discuss recent advancements in the design and utilization of aptamer-tethered nanostructures to enhance the efficacy of cancer treatment. Valuably, this comprehensive review highlights self-assembled aptamers as the exceptionally intelligent nano-biomaterials for targeted drug delivery based on their superior stability, high specificity, excellent recoverability, inherent biocompatibility, and versatile functions.
Collapse
Affiliation(s)
- Fatemeh Mohammadi
- Targeted Drug Delivery Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Pharmaceutical BiotechnologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Hamed Zahraee
- Targeted Drug Delivery Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Pharmaceutical BiotechnologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Farkhonde Zibadi
- Department of Medical Biotechnology and NanotechnologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Zahra Khoshbin
- Targeted Drug Delivery Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Medicinal ChemistrySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Mohammad Ramezani
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| | - Mona Alibolandi
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| | - Khalil Abnous
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Medicinal ChemistrySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Pharmaceutical BiotechnologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
9
|
Napoletano S, Battista E, Netti PA, Causa F. MicroLOCK: Highly stable microgel biosensor using locked nucleic acids as bioreceptors for sensitive and selective detection of let-7a. Biosens Bioelectron 2024; 260:116406. [PMID: 38805889 DOI: 10.1016/j.bios.2024.116406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
Chemically modified oligonucleotides can solve biosensing issues for the development of capture probes, antisense, CRISPR/Cas, and siRNA, by enhancing their duplex-forming ability, their stability against enzymatic degradation, and their specificity for targets with high sequence similarity as microRNA families. However, the use of modified oligonucleotides such as locked nucleic acids (LNA) for biosensors is still limited by hurdles in design and from performances on the material interface. Here we developed a fluorogenic biosensor for non-coding RNAs, represented by polymeric PEG microgels conjugated with molecular beacons (MB) modified with locked nucleic acids (MicroLOCK). By 3D modeling and computational analysis, we designed molecular beacons (MB) inserting spot-on LNAs for high specificity among targets with high sequence similarity (95%). MicroLOCK can reversibly detect microRNA targets in a tiny amount of biological sample (2 μL) at 25 °C with a higher sensitivity (LOD 1.3 fM) without any reverse transcription or amplification. MicroLOCK can hybridize the target with fast kinetic (about 30 min), high duplex stability without interferences from the polymer interface, showing high signal-to-noise ratio (up to S/N = 7.3). MicroLOCK also demonstrated excellent resistance to highly nuclease-rich environments, in real samples. These findings represent a great breakthrough for using the LNA in developing low-cost biosensing approaches and can be applied not only for nucleic acids and protein detection but also for real-time imaging and quantitative assessment of gene targeting both in vitro and in vivo.
Collapse
Affiliation(s)
- Sabrina Napoletano
- Interdisciplinary Research Centre on Biomaterials (CRIB), Università degli Studi di Napoli "Federico II", Piazzale Tecchio 80, 80125, Naples, Italy; Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Edmondo Battista
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Paolo Antonio Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), Università degli Studi di Napoli "Federico II", Piazzale Tecchio 80, 80125, Naples, Italy; Dipartimento di Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University "Federico II", Piazzale Tecchio 80, 80125, Naples, Italy; Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Filippo Causa
- Interdisciplinary Research Centre on Biomaterials (CRIB), Università degli Studi di Napoli "Federico II", Piazzale Tecchio 80, 80125, Naples, Italy; Dipartimento di Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University "Federico II", Piazzale Tecchio 80, 80125, Naples, Italy; Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125, Naples, Italy.
| |
Collapse
|
10
|
Nedorezova DD, Dubovichenko MV, Eldeeb AA, Nur MAY, Bobkov GA, Ashmarova AI, Kalnin AJ, Kolpashchikov DM. Cleaving Folded RNA by Multifunctional DNAzyme Nanomachines. Chemistry 2024; 30:e202401580. [PMID: 38757205 DOI: 10.1002/chem.202401580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Both tight and specific binding of folded biological mRNA is required for gene silencing by oligonucleotide gene therapy agents. However, this is fundamentally impossible using the conventional oligonucleotide probes according to the affinity/specificity dilemma. This study addresses this problem for cleaving folded RNA by using multicomponent agents (dubbed 'DNA nanomachine' or DNM). DNMs bind RNA by four short RNA binding arms, which ensure tight and highly selective RNA binding. Along with the improved affinity, DNM maintain the high sequence selectivity of the conventional DNAzymes. DNM enabled up to 3-fold improvement in DNAzymes catalytic efficiency (kcat/Km) by facilitating both RNA substrate binding and product release steps of the catalytic cycle. This study demonstrates that multicomponent probes organized in sophisticated structures can help to achieve the balance between affinity and selectivity in recognizing folded RNA and thus creates a foundation for applying complex DNA nanostructures derived by DNA nanotechnology in gene therapy.
Collapse
Affiliation(s)
- Daria D Nedorezova
- robotics and biosensor systems, and Frontier nucleic acid technologies in gene therapy of cancer SCAMT Institute, ITMO University, St. Petersburg, 191002, Russian Federation
| | - Mikhail V Dubovichenko
- robotics and biosensor systems, and Frontier nucleic acid technologies in gene therapy of cancer SCAMT Institute, ITMO University, St. Petersburg, 191002, Russian Federation
| | - Ahmed A Eldeeb
- robotics and biosensor systems, and Frontier nucleic acid technologies in gene therapy of cancer SCAMT Institute, ITMO University, St. Petersburg, 191002, Russian Federation
| | - Moustapha A Y Nur
- robotics and biosensor systems, and Frontier nucleic acid technologies in gene therapy of cancer SCAMT Institute, ITMO University, St. Petersburg, 191002, Russian Federation
| | - Gleb A Bobkov
- robotics and biosensor systems, and Frontier nucleic acid technologies in gene therapy of cancer SCAMT Institute, ITMO University, St. Petersburg, 191002, Russian Federation
| | - Anna I Ashmarova
- robotics and biosensor systems, and Frontier nucleic acid technologies in gene therapy of cancer SCAMT Institute, ITMO University, St. Petersburg, 191002, Russian Federation
| | - Arsenij J Kalnin
- robotics and biosensor systems, and Frontier nucleic acid technologies in gene therapy of cancer SCAMT Institute, ITMO University, St. Petersburg, 191002, Russian Federation
| | - Dmitry M Kolpashchikov
- robotics and biosensor systems, and Frontier nucleic acid technologies in gene therapy of cancer SCAMT Institute, ITMO University, St. Petersburg, 191002, Russian Federation
- Chemistry Department, University of Central Florida, Orlando, FL 32816-2366, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816
| |
Collapse
|
11
|
Dubovichenko MV, Batsa M, Bobkov G, Vlasov G, El-Deeb A, Kolpashchikov D. Multivalent DNAzyme agents for cleaving folded RNA. Nucleic Acids Res 2024; 52:5866-5879. [PMID: 38661191 PMCID: PMC11162777 DOI: 10.1093/nar/gkae295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024] Open
Abstract
Multivalent recognition and binding of biological molecules is a natural phenomenon that increases the binding stability (avidity) without decreasing the recognition specificity. In this study, we took advantage of this phenomenon to increase the efficiency and maintain high specificity of RNA cleavage by DNAzymes (Dz). We designed a series of DNA constructs containing two Dz agents, named here bivalent Dz devices (BDD). One BDD increased the cleavage efficiency of a folded RNA fragment up to 17-fold in comparison with the Dz of a conventional design. Such an increase was achieved due to both the improved RNA binding and the increased probability of RNA cleavage by the two catalytic cores. By moderating the degree of Dz agent association in BDD, we achieved excellent selectivity in differentiating single-base mismatched RNA, while maintaining relatively high cleavage rates. Furthermore, a trivalent Dz demonstrated an even greater efficiency than the BDD in cleaving folded RNA. The data suggests that the cooperative action of several RNA-cleaving units can significantly improve the efficiency and maintain high specificity of RNA cleavage, which is important for the development of Dz-based gene knockdown agents.
Collapse
Affiliation(s)
- Mikhail V Dubovichenko
- Laboratory of Frontier Nucleic Acid Technologies in Gene Therapy of Cancer, SCAMT Institute, ITMO University, Saint-Petersburg, 191002, Russia
| | - Michael Batsa
- Laboratory of Frontier Nucleic Acid Technologies in Gene Therapy of Cancer, SCAMT Institute, ITMO University, Saint-Petersburg, 191002, Russia
| | - Gleb A Bobkov
- Laboratory of Frontier Nucleic Acid Technologies in Gene Therapy of Cancer, SCAMT Institute, ITMO University, Saint-Petersburg, 191002, Russia
| | - Gleb S Vlasov
- Laboratory of Frontier Nucleic Acid Technologies in Gene Therapy of Cancer, SCAMT Institute, ITMO University, Saint-Petersburg, 191002, Russia
| | - Ahmed A El-Deeb
- Laboratory of Frontier Nucleic Acid Technologies in Gene Therapy of Cancer, SCAMT Institute, ITMO University, Saint-Petersburg, 191002, Russia
| | - Dmitry M Kolpashchikov
- Laboratory of Frontier Nucleic Acid Technologies in Gene Therapy of Cancer, SCAMT Institute, ITMO University, Saint-Petersburg, 191002, Russia
- Chemistry Department, University of Central Florida, Orlando, FL 32816, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
- National Center for Forensic Science, University of Central Florida, Orlando, FL, 32816, USA
| |
Collapse
|
12
|
Nour MAY, Drozd VS, Lemeshko EA, Tafran L, Salimova AA, Kulikova AV, Eldeeb AA. RNase H-dependent DNA thresholder modulated by cancer marker concentration. Chem Commun (Camb) 2024; 60:4427-4430. [PMID: 38563262 DOI: 10.1039/d4cc00495g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Threshold antisense oligonucleotide constructs were designed to cleave mRNA within different biomarker concentrations. The mRNA cleavage is activated by 2.6, 7.5 or 39.5 nM of biomarker depending on the construct design. The constructs can be used to differentiate cancer from normal cells by the level of oncogene expression followed by silencing of a targeted gene.
Collapse
Affiliation(s)
- Moustapha A Y Nour
- Laboratory of Nucleic Acid Nanotechnology, SCAMT Institute ITMO University, Saint-Petersburg, Russia, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation.
| | - Valeriia S Drozd
- Laboratory of Nucleic Acid Nanotechnology, SCAMT Institute ITMO University, Saint-Petersburg, Russia, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation.
| | - Evgenii A Lemeshko
- Laboratory of Nucleic Acid Nanotechnology, SCAMT Institute ITMO University, Saint-Petersburg, Russia, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation.
| | - Lilia Tafran
- Laboratory of Nucleic Acid Nanotechnology, SCAMT Institute ITMO University, Saint-Petersburg, Russia, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation.
| | - Adeliia A Salimova
- Laboratory of Nucleic Acid Nanotechnology, SCAMT Institute ITMO University, Saint-Petersburg, Russia, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation.
| | - Alexandra V Kulikova
- Laboratory of Nucleic Acid Nanotechnology, SCAMT Institute ITMO University, Saint-Petersburg, Russia, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation.
| | - Ahmed A Eldeeb
- Laboratory of Nucleic Acid Nanotechnology, SCAMT Institute ITMO University, Saint-Petersburg, Russia, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation.
| |
Collapse
|
13
|
Smirnov VV, Drozd VS, Patra CK, Hussein Z, Rybalko DS, Kozlova AV, Nour MAY, Zemerova TP, Kolosova OS, Kalnin AY, El-Deeb AA. Towards the development of a DNA automaton: modular RNA-cleaving deoxyribozyme logic gates regulated by miRNAs. Analyst 2024; 149:1947-1957. [PMID: 38385166 DOI: 10.1039/d3an02178e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Advancements in DNA computation have unlocked molecular-scale information processing possibilities, utilizing the intrinsic properties of DNA for complex logical operations with transformative applications in biomedicine. DNA computation shows promise in molecular diagnostics, enabling precise and sensitive detection of genetic mutations and disease biomarkers. Moreover, it holds potential for targeted gene regulation, facilitating personalized therapeutic interventions with enhanced efficacy and reduced side effects. Herein, we have developed six DNAzyme-based logic gates able to process YES, AND, and NOT Boolean logic. The novelty of this work lies in their additional functionalization with a common DNA scaffold for increased cooperativity in input recognition. Moreover, we explored hierarchical input binding to multi-input logic gates, which helped gate optimization. Additionally, we developed a new design of an allosteric hairpin switch used to implement NOT logic. All DNA logic gates achieved the desired true-to-false output signal when detecting a panel of miRNAs, known for their important role in malignancy regulation. This is the first example of DNAzyme-based logic gates having all input-recognizing elements integrated in a single DNA nanostructure, which provides new opportunities for building DNA automatons for diagnosis and therapy of human diseases.
Collapse
Affiliation(s)
- Viktor V Smirnov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation.
| | - Valerya S Drozd
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation.
| | - Christina K Patra
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation.
| | - Zain Hussein
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation.
- Almetyevsk State Oil Institute, 2 Lenina St., Almetyevsk, 423450, Tatarstan, Russian Federation
| | - Daria S Rybalko
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation.
| | - Anastasia V Kozlova
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation.
- Almetyevsk State Oil Institute, 2 Lenina St., Almetyevsk, 423450, Tatarstan, Russian Federation
| | - Moustapha A Y Nour
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation.
- Almetyevsk State Oil Institute, 2 Lenina St., Almetyevsk, 423450, Tatarstan, Russian Federation
| | - Tatiana P Zemerova
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation.
| | - Olga S Kolosova
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation.
- Faculty of Industrial Drug Technology, Saint Petersburg State Chemical and Pharmaceutical University, 14, lit. A, st. Professor Popov, 197022, St. Petersburg, Russian Federation
| | - Arseniy Y Kalnin
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation.
- Institute of Chemistry, Saint Petersburg University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russian Federation
| | - Ahmed A El-Deeb
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation.
- Almetyevsk State Oil Institute, 2 Lenina St., Almetyevsk, 423450, Tatarstan, Russian Federation
| |
Collapse
|
14
|
Pan Y, Zhu Y, Ma Y, Hong J, Zhao W, Gao Y, Guan J, Ren R, Zhang Q, Yu J, Guan Z, Yang Z. Design and synthesis of nucleotidyl lipids and their application in the targeted delivery of siG12D for pancreatic cancer therapy. Biomed Pharmacother 2024; 172:116239. [PMID: 38325267 DOI: 10.1016/j.biopha.2024.116239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024] Open
Abstract
Nucleic acid drugs are attracting significant attention as prospective therapeutics. However, their efficacy is hindered by challenges in penetrating cell membranes and reaching target tissues, limiting their applications. Nucleotidyl lipids, with their specific intermolecular interactions such as H-bonding and π-π stacking, offer a promising solution as gene delivery vehicles. In this study, a novel series of nucleotide-based amphiphiles were synthesized. These lipid molecules possess the ability to self-assemble into spherical vesicles of appropriate size and zeta potential in aqueous solution. Furthermore, their complexes with oligonucleotides demonstrated favorable biocompatibility and exhibited antiproliferative effects against a broad range of cancer cells. Additionally, when combined with the cationic lipid CLD, these complexes displayed promising in vitro performance and in vivo efficacy. By incorporating DSPE-PEGylated cRGD into the formulation, targeted accumulation of siG12D in pancreatic cancer cells increased from approximately 6% to 18%, leading to effective treatment outcomes (intravenous administration, 1 mg/kg). This finding holds significant importance for the liposomal delivery of nucleic acid drugs to extrahepatic tissues.
Collapse
Affiliation(s)
- Yufei Pan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuejie Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuan Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jiamei Hong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenting Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yujing Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing Guan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Runan Ren
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qi Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhu Guan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
15
|
Nedorezova DD, Dubovichenko MV, Kalnin AJ, Nour MAY, Eldeeb AA, Ashmarova AI, Kurbanov GF, Kolpashchikov DM. Cleaving Folded RNA with DNAzyme Agents. Chembiochem 2024; 25:e202300637. [PMID: 37870555 DOI: 10.1002/cbic.202300637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 10/24/2023]
Abstract
Cleavage of biological mRNA by DNAzymes (Dz) has been proposed as a variation of oligonucleotide gene therapy (OGT). The design of Dz-based OGT agents includes computational prediction of two RNA-binding arms with low affinity (melting temperatures (Tm ) close to the reaction temperature of 37 °C) to avoid product inhibition and maintain high specificity. However, RNA cleavage might be limited by the RNA binding step especially if the RNA is folded in secondary structures. This calls for the need for two high-affinity RNA-binding arms. In this study, we optimized 10-23 Dz-based OGT agents for cleavage of three RNA targets with different folding energies under multiple turnover conditions in 2 mM Mg2+ at 37 °C. Unexpectedly, one optimized Dz had each RNA-binding arm with a Tm ≥60 °C, without suffering from product inhibition or low selectivity. This phenomenon was explained by the folding of the RNA cleavage products into stable secondary structures. This result suggests that Dz with long (high affinity) RNA-binding arms should not be excluded from the candidate pool for OGT agents. Rather, analysis of the cleavage products' folding should be included in Dz selection algorithms. The Dz optimization workflow should include testing with folded rather than linear RNA substrates.
Collapse
Affiliation(s)
- Daria D Nedorezova
- Laboratory of molecular robotics and biosensor systems, Laboratory of Frontier nucleic acid technologies in gene therapy of cancer, SCAMT Institute, ITMO University, St. Petersburg, 191002, Russian Federation
| | - Mikhail V Dubovichenko
- Laboratory of molecular robotics and biosensor systems, Laboratory of Frontier nucleic acid technologies in gene therapy of cancer, SCAMT Institute, ITMO University, St. Petersburg, 191002, Russian Federation
| | - Arseniy J Kalnin
- Laboratory of molecular robotics and biosensor systems, Laboratory of Frontier nucleic acid technologies in gene therapy of cancer, SCAMT Institute, ITMO University, St. Petersburg, 191002, Russian Federation
| | - Moustapha A Y Nour
- Laboratory of molecular robotics and biosensor systems, Laboratory of Frontier nucleic acid technologies in gene therapy of cancer, SCAMT Institute, ITMO University, St. Petersburg, 191002, Russian Federation
| | - Ahmed A Eldeeb
- Laboratory of molecular robotics and biosensor systems, Laboratory of Frontier nucleic acid technologies in gene therapy of cancer, SCAMT Institute, ITMO University, St. Petersburg, 191002, Russian Federation
| | - Anna I Ashmarova
- Laboratory of molecular robotics and biosensor systems, Laboratory of Frontier nucleic acid technologies in gene therapy of cancer, SCAMT Institute, ITMO University, St. Petersburg, 191002, Russian Federation
| | - Gabdulla F Kurbanov
- Laboratory of molecular robotics and biosensor systems, Laboratory of Frontier nucleic acid technologies in gene therapy of cancer, SCAMT Institute, ITMO University, St. Petersburg, 191002, Russian Federation
| | - Dmitry M Kolpashchikov
- Laboratory of molecular robotics and biosensor systems, Laboratory of Frontier nucleic acid technologies in gene therapy of cancer, SCAMT Institute, ITMO University, St. Petersburg, 191002, Russian Federation
- Chemistry Department, University of Central Florida, Orlando, FL 32816-2366, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
16
|
Nedorezova DD, Rubel MS, Rubel AA. Multicomponent DNAzyme Nanomachines: Structure, Applications, and Prospects. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S249-S261. [PMID: 38621754 DOI: 10.1134/s0006297924140141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 04/17/2024]
Abstract
Nucleic acids (NAs) are important components of living organisms responsible for the storage and transmission of hereditary information. They form complex structures that can self-assemble and bind to various biological molecules. DNAzymes are NAs capable of performing simple chemical reactions, which makes them potentially useful elements for creating DNA nanomachines with required functions. This review focuses on multicomponent DNA-based nanomachines, in particular on DNAzymes as their main functional elements, as well as on the structure of DNAzyme nanomachines and their application in the diagnostics and treatment of diseases. The article also discusses the advantages and disadvantages of DNAzyme-based nanomachines and prospects for their future applications. The review provides information about new technologies and the possibilities of using NAs in medicine.
Collapse
|
17
|
Rossi M, Steklov M, Huberty F, Nguyen T, Marijsse J, Jacques-Hespel C, Najm P, Lonez C, Breman E. Efficient shRNA-based knockdown of multiple target genes for cell therapy using a chimeric miRNA cluster platform. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102038. [PMID: 37799328 PMCID: PMC10548280 DOI: 10.1016/j.omtn.2023.102038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023]
Abstract
Genome engineering technologies are powerful tools in cell-based immunotherapy to optimize or fine-tune cell functionalities. However, their use for multiple gene edits poses relevant biological and technical challenges. Short hairpin RNA (shRNA)-based cell engineering bypasses these criticalities and represents a valid alternative to CRISPR-based gene editing. Here, we describe a microRNA (miRNA)-based multiplex shRNA platform obtained by combining highly efficient miRNA scaffolds into a chimeric cluster, to deliver up to four shRNA-like sequences. Thanks to its limited size, our cassette could be deployed in a one-step process along with all the CAR components, streamlining the generation of engineered CAR T cells. The plug-and-play design of the shRNA platform allowed us to swap each shRNA-derived guide sequence without affecting the system performance. Appropriately choosing the target sequences, we were able to either achieve a functional KO, or fine-tune the expression levels of the target genes, all without the need for gene editing. Through our strategy we achieved easy, safe, efficient, and tunable modulation of multiple target genes simultaneously. This approach allows for the effective introduction of multiple functionally relevant tweaks in the transcriptome of the engineered cells, which may lead to increased performance in challenging environments, e.g., solid tumors.
Collapse
Affiliation(s)
- Matteo Rossi
- Celyad Oncology, 1435 Mont-Saint-Guibert, Belgium
| | | | | | - Thuy Nguyen
- Celyad Oncology, 1435 Mont-Saint-Guibert, Belgium
| | | | | | - Paul Najm
- Celyad Oncology, 1435 Mont-Saint-Guibert, Belgium
| | | | - Eytan Breman
- Celyad Oncology, 1435 Mont-Saint-Guibert, Belgium
| |
Collapse
|
18
|
Chen Z, Guan D, Zhu Q, Wang Z, Han F, Zhou W. Biological Roles and Pathogenic Mechanisms of LncRNA MIR4435-2HG in Cancer: A Comprehensive Review. Curr Issues Mol Biol 2023; 45:8864-8881. [PMID: 37998733 PMCID: PMC10670187 DOI: 10.3390/cimb45110556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
The long non-coding RNA MIR4435-2HG has been confirmed to play a crucial regulatory role in various types of tumors. As a novel type of non-coding RNA, MIR4435-2HG plays a key role in regulating the expression of tumor-related genes, interfering with cellular signaling pathways, and affecting tumor immune evasion. Its unique structure allows it to regulate the expression of various tumor-related genes through different pathways, participating in the regulation of tumor signaling pathways, such as regulating the expression of oncogenes and tumor suppressor genes, influencing the biological behaviors of proliferation, metastasis, and apoptosis in tumors. Numerous studies have found a high expression of MIR4435-2HG in various tumor tissues, closely related to the clinical pathological characteristics of tumors, such as staging, lymph node metastasis and prognosis. Some studies have discovered that MIR4435-2HG can regulate the sensitivity of tumor cells to chemotherapy drugs, affecting tumor cell drug resistance. This provides new insights into overcoming tumor drug resistance by regulating MIR4435-2HG. Therefore, studying its molecular mechanisms, expression regulation, and its relationship with the clinical features of tumors is of great significance for revealing the mechanisms of tumor occurrence and developing new therapeutic targets.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Defeng Guan
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Qiangping Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Zhengfeng Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Fangfang Han
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Wence Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, China
| |
Collapse
|
19
|
Elsayed A, Jaber N, Al-Remawi M, Abu-Salah K. From cell factories to patients: Stability challenges in biopharmaceuticals manufacturing and administration with mitigation strategies. Int J Pharm 2023; 645:123360. [PMID: 37657507 DOI: 10.1016/j.ijpharm.2023.123360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/19/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023]
Abstract
Active ingredients of biopharmaceuticals consist of a wide array of biomolecular structures, including those of enzymes, monoclonal antibodies, nucleic acids, and recombinant proteins. Recently, these molecules have dominated the pharmaceutical industry owing to their safety and efficacy. However, their manufacturing is hindered by high cost, inadequate batch-to-batch equivalence, inherent instability, and other quality issues. This article is an up-to-date review of the challenges encountered during different stages of biopharmaceutical production and mitigation of problems arising during their development, formulation, manufacturing, and administration. It is a broad overview discussion of stability issues encountered during product life cycle i.e., upstream processing (aggregation, solubility, host cell proteins, color change), downstream bioprocessing (aggregation, fragmentation), formulation, manufacturing, and delivery to patients.
Collapse
Affiliation(s)
- Amani Elsayed
- College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Nisrein Jaber
- Faculty of Pharmacy, Al Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Mayyas Al-Remawi
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman 1196, Jordan.
| | - Khalid Abu-Salah
- King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Department of Nanomedicine, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
Pan Y, Guan J, Gao Y, Zhu Y, Li H, Guo H, He Q, Guan Z, Yang Z. Modified ASO conjugates encapsulated with cytidinyl/cationic lipids exhibit more potent and longer-lasting anti-HCC effects. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:807-821. [PMID: 37251692 PMCID: PMC10220282 DOI: 10.1016/j.omtn.2023.04.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/28/2023] [Indexed: 05/31/2023]
Abstract
Antisense oligonucleotides (ASOs) are a class of therapeutics targeting mRNAs or genes that have attracted much attention. However, effective delivery and optimal accumulation in target tissues in vivo are still challenging issues. CT102 is an ASO that targets IGF1R mRNA and induces cell apoptosis. Herein, a detailed exploration of the tissue distribution of ASOs delivered by liposomes was carried out. A formulation that resulted in increased hepatic accumulation was identified based on multiple intermolecular interactions between DCP (cytidinyl/cationic lipid DNCA/CLD and DSPE-PEG) and oligonucleotides, including hydrogen bonding, π-π stacking, and electrostatic interactions. The structurally optimized CT102s present a novel strategy for the treatment of hepatocellular carcinoma. The gapmer CT102MOE5 and conjugate Glu-CT102MOE5 showed superior antiproliferation and IGF1R mRNA suppression effects at 100 nM in vitro and achieved greater efficacy at a lower dose and administration frequency in vivo. Combined transcriptome and proteome analyses revealed that additional associated targets and functional regulations might simultaneously exist in ASO therapy. These results showed that a combination of lipid encapsulation and structural optimization in the delivery of oligonucleotide drugs has favorable prospects for clinical application.
Collapse
Affiliation(s)
- Yufei Pan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing Guan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, China
| | - Yujing Gao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuejie Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Huantong Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qianyi He
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhu Guan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
21
|
Ateiah M, Gandalipov ER, Rubel AA, Rubel MS, Kolpashchikov DM. DNA Nanomachine (DNM) Biplex Assay for Differentiating Bacillus cereus Species. Int J Mol Sci 2023; 24:ijms24054473. [PMID: 36901903 PMCID: PMC10003685 DOI: 10.3390/ijms24054473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Conventional methods for the detection and differentiation of Bacillus cereus group species have drawbacks mostly due to the complexity of genetic discrimination between the Bacillus cereus species. Here, we describe a simple and straightforward assay based on the detected unamplified bacterial 16S rRNA by DNA nanomachine (DNM). The assay uses a universal fluorescent reporter and four all-DNA binding fragments, three of which are responsible for "opening up" the folded rRNA while the fourth stand is responsible for detecting single nucleotide variation (SNV) with high selectivity. Binding of the DNM to 16S rRNA results in the formation of the 10-23 deoxyribozyme catalytic core that cleaves the fluorescent reporter and produces a signal, which is amplified over time due to catalytic turnover. This developed biplex assay enables the detection of B. thuringiensis 16S rRNA at fluorescein and B. mycoides at Cy5 channels with a limit of detection of 30 × 103 and 35 × 103 CFU/mL, respectively, after 1.5 h with a hands-on time of ~10 min. The new assay may simplify the analysis of biological RNA samples and might be useful for environmental monitoring as a simple and inexpensive alternative to amplification-based nucleic acid analysis. The DNM proposed here may become an advantageous tool for detecting SNV in clinically significant DNA or RNA samples and can easily differentiate SNV under broadly variable experimental conditions and without prior amplification.
Collapse
Affiliation(s)
- Muhannad Ateiah
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova St. 9, St. Petersburg 191002, Russia; (M.A.); (E.R.G.); (M.S.R.)
| | - Erik R. Gandalipov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova St. 9, St. Petersburg 191002, Russia; (M.A.); (E.R.G.); (M.S.R.)
| | - Aleksandr A. Rubel
- Laboratory of Amyloid Biology, St. Petersburg State University, Universitetskaya enb. 7-9, St. Petersburg 199034, Russia;
| | - Maria S. Rubel
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova St. 9, St. Petersburg 191002, Russia; (M.A.); (E.R.G.); (M.S.R.)
| | - Dmitry M. Kolpashchikov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova St. 9, St. Petersburg 191002, Russia; (M.A.); (E.R.G.); (M.S.R.)
- Chemistry Department, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816-2366, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
- Correspondence:
| |
Collapse
|
22
|
Wang JQ, Liu YR, Xia QR, Liang J, Wang JL, Li J. Functional roles, regulatory mechanisms and theranostics applications of ncRNAs in alcohol use disorder. Int J Biol Sci 2023; 19:1316-1335. [PMID: 36923934 PMCID: PMC10008696 DOI: 10.7150/ijbs.81518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/02/2023] [Indexed: 03/14/2023] Open
Abstract
Alcohol use disorder (AUD) is one of the most prevalent neuropsychological disorders worldwide, and its pathogenesis is convoluted and poorly understood. There is considerable evidence demonstrating significant associations between multiple heritable factors and the onset and progression of AUD. In recent years, a substantial body of research conducted by emerging biotechnologies has increasingly highlighted the crucial roles of noncoding RNAs (ncRNAs) in the pathophysiology of mental diseases. As in-depth understanding of ncRNAs and their mechanisms of action, they have emerged as prospective diagnostic indicators and preclinical therapeutic targets for a variety of psychiatric illness, including AUD. Of note, dysregulated expression of ncRNAs such as circRNAs, lncRNAs and miRNAs was routinely found in AUD individuals, and besides, exogenous regulation of partial ncRNAs has also been shown to be effective in ameliorating alcohol preference and excessive alcohol consumption. However, the exact molecular mechanism still remains elusive. Herein, we systematically summarized current knowledge regarding alterations in the expression of certain ncRNAs as well as their-mediated regulatory mechanisms in individuals with AUD. And finally, we detailedly reviewed the potential theranostics applications of gene therapy agents targeting ncRNAs in AUD mice. Overall, a deeper comprehension of functional roles and biological mechanisms of ncRNAs may make significant contributions to the accurate diagnosis and effective treatment of AUD.
Collapse
Affiliation(s)
- Jie-Quan Wang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230000, China.,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, 230000, China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, 230000, China.,Anhui Clinical Research Center for Mental Disorders, Hefei,230000, China
| | - Ya-Ru Liu
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.,The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, 230022, China
| | - Qing-Rong Xia
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230000, China.,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, 230000, China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, 230000, China.,Anhui Clinical Research Center for Mental Disorders, Hefei,230000, China
| | - Jun Liang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230000, China.,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, 230000, China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, 230000, China.,Anhui Clinical Research Center for Mental Disorders, Hefei,230000, China
| | - Jin-Liang Wang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230000, China.,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, 230000, China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, 230000, China.,Anhui Clinical Research Center for Mental Disorders, Hefei,230000, China
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|