1
|
Cong Y, Li X, Hong H. Current strategies for senescence treatment: Focused on theranostic performance of nanomaterials. J Control Release 2025; 382:113710. [PMID: 40220869 DOI: 10.1016/j.jconrel.2025.113710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/03/2025] [Accepted: 04/06/2025] [Indexed: 04/14/2025]
Abstract
Age-related diseases imposed heavy burdens to the healthcare systems globally, while cell senescence served as one fundamental molecular/cellular basis for these diseases. How to tackle the senescence-relevant problems is a hotspot for biomedical research. In this review article, the hallmarks and molecular pathways of cell senescence were firstly discussed, followed by the introduction of the current anti-senescence strategies, including senolytics and senomorphics. With suitable physical or chemical properties, multiple types of nanomaterials were used successfully in senescence therapeutics, as well as senescence detection. Based on the accumulating knowledges for senescence, the rules of how to use these nanoplatforms more efficiently against senescence were also summarized, including but not limited to surface modification, material-cargo interactions, factor responsiveness etc. The comparison of these "senescence-selective" nanoplatforms to other treatment options (prodrugs, ADCs, PROTACs, CART etc.) was also given. Learning from the past, nanotechnology can add more choice for treating age-related diseases, and provide more (diagnostic) information to further our understanding of senescence process.
Collapse
Affiliation(s)
- Yiyang Cong
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center at Nanjing University, Medical School of Nanjing University, Nanjing 210093, China
| | - Xiaoyang Li
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center at Nanjing University, Medical School of Nanjing University, Nanjing 210093, China
| | - Hao Hong
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center at Nanjing University, Medical School of Nanjing University, Nanjing 210093, China.
| |
Collapse
|
2
|
Alakonya H, Koustoulidou S, Hopkins SL, Veal M, Ajenjo J, Sneddon D, Dias G, Mosley M, Baguña Torres J, Amoroso F, Anderson A, Banham AH, Cornelissen B. Molecular Imaging of p53 in Mouse Models of Cancer Using a Radiolabeled Antibody TAT Conjugate with SPECT. J Nucl Med 2024; 65:1626-1632. [PMID: 39266290 PMCID: PMC11448609 DOI: 10.2967/jnumed.124.267736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/02/2024] [Indexed: 09/14/2024] Open
Abstract
Mutations of p53 protein occur in over half of all cancers, with profound effects on tumor biology. We present the first-to our knowledge-method for noninvasive visualization of p53 in tumor tissue in vivo, using SPECT, in 3 different models of cancer. Methods: Anti-p53 monoclonal antibodies were conjugated to the cell-penetrating transactivator of transcription (TAT) peptide and a metal ion chelator and then radiolabeled with 111In to allow SPECT imaging. 111In-anti-p53-TAT conjugates were retained longer in cells overexpressing p53-specific than non-p53-specific 111In-mIgG (mouse IgG from murine plasma)-TAT controls, but not in null p53 cells. Results: In vivo SPECT imaging showed enhanced uptake of 111In-anti-p53-TAT, versus 111In-mIgG-TAT, in high-expression p53R175H and medium-expression wild-type p53 but not in null p53 tumor xenografts. The results were confirmed in mice bearing genetically engineered KPC mouse-derived pancreatic ductal adenocarcinoma tumors. Imaging with 111In-anti-p53-TAT was possible in KPC mice bearing spontaneous p53R172H pancreatic ductal adenocarcinoma tumors. Conclusion: We demonstrate the feasibility of noninvasive in vivo molecular imaging of p53 in tumor tissue using a radiolabeled TAT-modified monoclonal antibody.
Collapse
Affiliation(s)
- Hudson Alakonya
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Sofia Koustoulidou
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Samantha L Hopkins
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Mathew Veal
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Javier Ajenjo
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Deborah Sneddon
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Gemma Dias
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Michael Mosley
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Julia Baguña Torres
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Francesca Amoroso
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Amanda Anderson
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; and
| | - Alison H Banham
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; and
| | - Bart Cornelissen
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom;
- Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Zhang LL, Xu JY, Xing Y, Wu P, Jin YW, Wei W, Zhao L, Yang J, Chen GC, Qin LQ. Lactobacillus rhamnosus GG alleviates radiation-induced intestinal injury by modulating intestinal immunity and remodeling gut microbiota. Microbiol Res 2024; 286:127821. [PMID: 38941923 DOI: 10.1016/j.micres.2024.127821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Radiation injury to the intestine is one of the most common complications in patients undergoing abdominal or pelvic cavity radiotherapy. In this study, we investigated the potential protective effect of Lactobacillus rhamnosus GG (LGG) on radiation-induced intestinal injury and its underlying mechanisms. Mice were assigned to a control group, a 10 Gy total abdominal irradiation (TAI) group, or a group pretreated with 108 CFU LGG for three days before TAI. Small intestine and gut microbiota were analyzed 3.5 days post-exposure. LGG intervention improved intestinal structure, reduced jejunal DNA damage, and inhibited the inflammatory cGAS/STING pathway. Furthermore, LGG reduced M1 proinflammatory macrophage and CD8+ T cell infiltration, restoring the balance between Th17 and Treg cells in the inflamed jejunum. LGG also partially restored the gut microbiota. These findings suggest the possible therapeutic radioprotective effect of probiotics LGG in alleviating radiation-induced intestinal injury by maintaining immune homeostasis and reshaping gut microbiota.
Collapse
Affiliation(s)
- Li-Li Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Jia-Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Yifei Xing
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Pengcheng Wu
- Zhangjiagang Center for Disease Control and Prevention, 18 Zhizhong Road, Zhangjiagang 215600, China
| | - Yi-Wen Jin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Wei Wei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Lin Zhao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Jing Yang
- Department of Clinical Nutrition, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, China
| | - Guo-Chong Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou 215123, China.
| |
Collapse
|
4
|
Israel JS, Marcelin LM, Thomas C, Szczyrbová E, Fuessel S, Puhr M, Linxweiler J, Yalala S, Zwart WT, Baniahmad A, van Goubergen J, Itkonen HM, Sharp A, O'Neill E, Pretze M, Miederer M, Erb HHH. Emerging frontiers in androgen receptor research for prostate Cancer: insights from the 2nd international androgen receptor Symposium. J Exp Clin Cancer Res 2024; 43:194. [PMID: 39014480 PMCID: PMC11253403 DOI: 10.1186/s13046-024-03125-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/11/2024] [Indexed: 07/18/2024] Open
Abstract
Continued exploration of the androgen receptor (AR) is crucial, as it plays pivotal roles in diverse diseases such as prostate cancer (PCa), serving as a significant therapeutic focus. Therefore, the Department of Urology Dresden hosted an international meeting for scientists and clinical oncologists to discuss the newest advances in AR research. The 2nd International Androgen Receptor Symposium was held in Dresden, Saxony, Germany, from 26-27.04.2024, organised by Dr. Holger H.H. Erb. Following the format of the first meeting, more than 35 scientists from 8 countries attended the event to discuss recent developments, research challenges, and identification of venues in AR research. An important new feature was the involvement of PhD students and young investigators, acknowledging the high scientific quality of their work. The symposium included three covers: new advances from clinical research, basic and translational research, and novel strategies to target AR. Moreover, based on its increasing clinical relevance, a PSMA theranostic mini-symposium was added at the end of the AR symposium to allow the audience to discuss the newest advances in PSMA theranostic. This report focuses on the highlights and discussions of the meeting.
Collapse
Affiliation(s)
- Justus Simon Israel
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Laura-Maria Marcelin
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Christian Thomas
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Eva Szczyrbová
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, 779 00, Czech Republic
| | - Susanne Fuessel
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Puhr
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Shivani Yalala
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Wilbert T Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | | | - Harri M Itkonen
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Adam Sharp
- Institute of Cancer Research, Sutton, Surrey, UK
| | - Edward O'Neill
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Marc Pretze
- Institut für Radiopharmazie, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, D-01328, Dresden, Germany
| | - Matthias Miederer
- Department of Translational Imaging in Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden: Faculty of Medicine and University Hospital Carl Gustav Carus, University of Technology Dresden (TUD), German Cancer Research Center (DKFZ) Heidelberg, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Holger H H Erb
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany.
- Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| |
Collapse
|
5
|
Reuvers TGA, Grandia V, Brandt RMC, Arab M, Maas SLN, Bos EM, Nonnekens J. Investigating the Radiobiological Response to Peptide Receptor Radionuclide Therapy Using Patient-Derived Meningioma Spheroids. Cancers (Basel) 2024; 16:2515. [PMID: 39061156 PMCID: PMC11275064 DOI: 10.3390/cancers16142515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Peptide receptor radionuclide therapy (PRRT) using 177Lu-DOTA-TATE has recently been evaluated for the treatment of meningioma patients. However, current knowledge of the underlying radiation biology is limited, in part due to the lack of appropriate in vitro models. Here, we demonstrate proof-of-concept of a meningioma patient-derived 3D culture model to assess the short-term response to radiation therapies such as PRRT and external beam radiotherapy (EBRT). We established short-term cultures (1 week) for 16 meningiomas with high efficiency and yield. In general, meningioma spheroids retained characteristics of the parental tumor during the initial days of culturing. For a subset of tumors, clear changes towards a more aggressive phenotype were visible over time, indicating that the culture method induced dedifferentiation of meningioma cells. To assess PRRT efficacy, we demonstrated specific uptake of 177Lu-DOTA-TATE via somatostatin receptor subtype 2 (SSTR2), which was highly overexpressed in the majority of tumor samples. PRRT induced DNA damage which was detectable for an extended timeframe as compared to EBRT. Interestingly, levels of DNA damage in spheroids after PRRT correlated with SSTR2-expression levels of parental tumors. Our patient-derived meningioma culture model can be used to assess the short-term response to PRRT and EBRT in radiobiological studies. Further improvement of this model should pave the way towards the development of a relevant culture model for assessment of the long-term response to radiation and, potentially, individual patient responses to PRRT and EBRT.
Collapse
Affiliation(s)
- Thom G A Reuvers
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Vivian Grandia
- Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Renata M C Brandt
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Majd Arab
- Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Sybren L N Maas
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Eelke M Bos
- Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Julie Nonnekens
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
6
|
Warfvinge CF, Gustafsson J, Roth D, Tennvall J, Svensson J, Bernhardt P, Åkesson A, Wieslander E, Sundlöv A, Sjögreen Gleisner K. Relationship Between Absorbed Dose and Response in Neuroendocrine Tumors Treated with [ 177Lu]Lu-DOTATATE. J Nucl Med 2024; 65:1070-1075. [PMID: 38724277 DOI: 10.2967/jnumed.123.266991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/26/2024] [Indexed: 07/03/2024] Open
Abstract
Peptide receptor radionuclide therapy presents the possibility of tracing and quantifying the uptake of the drug in the body and performing dosimetry, potentially allowing individualization of treatment schemes. However, the details of how neuroendocrine tumors (NETs) respond to different absorbed doses are insufficiently known. Here, we investigated the relationship between tumor-absorbed dose and tumor response in a cohort of patients with NETs treated with [177Lu]Lu-DOTATATE. Methods: This was a retrospective study based on 69 tumors in 32 patients treated within a clinical trial. Dosimetry was performed at each cycle of [177Lu]Lu-DOTATATE, rendering 366 individual absorbed dose assessments. Hybrid planar-SPECT/CT imaging using [177Lu]Lu-DOTATATE was used, including quantitative SPECT reconstruction, voxel-based absorbed dose rate calculation, semiautomatic image segmentation, and partial-volume correction. Changes in tumor volume were used to determine tumor response. The volume for each tumor was manually delineated on consecutive CT scans, giving a total of 712 individual tumor volume assessments. Tumors were stratified according to grade. The relationship between absorbed dose and response was investigated using mixed-effects models and logistic regression. Tumors smaller than 4 cm3 were excluded. Results: In grade 2 NETs, a clear relationship between absorbed dose and volume reduction was observed. Our observations suggest a 90% probability of partial tumor response for an accumulated tumor-absorbed dose of at least 135 Gy. Conclusion: Our findings are in accordance with previous observations regarding the relationship between tumor shrinkage and absorbed dose. Moreover, our data suggest an absorbed dose threshold for partial response in grade 2 NETs. These observations provide valuable insights for the design of dosimetry-guided peptide receptor radionuclide therapy schemes.
Collapse
Affiliation(s)
- Carl Fredrik Warfvinge
- Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Lund, Sweden;
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | | | - Daniel Roth
- Medical Radiation Physics, Lund University, Lund, Sweden
| | - Jan Tennvall
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Johanna Svensson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Bernhardt
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; and
| | - Anna Åkesson
- Clinical Studies Sweden, Forum South, Skåne University Hospital, Lund, Sweden
| | - Elinore Wieslander
- Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Anna Sundlöv
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | | |
Collapse
|
7
|
Piranfar A, Souri M, Rahmim A, Soltani M. Localized radiotherapy of solid tumors using radiopharmaceutical loaded implantable system: insights from a mathematical model. Front Oncol 2024; 14:1320371. [PMID: 38559559 PMCID: PMC10979490 DOI: 10.3389/fonc.2024.1320371] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/06/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Computational models yield valuable insights into biological interactions not fully elucidated by experimental approaches. This study investigates an innovative spatiotemporal model for simulating the controlled release and dispersion of radiopharmaceutical therapy (RPT) using 177Lu-PSMA, a prostate-specific membrane antigen (PSMA) targeted radiopharmaceutical, within solid tumors via a dual-release implantable delivery system. Local delivery of anticancer agents presents a strategic approach to mitigate adverse effects while optimizing therapeutic outcomes. Methods This study evaluates various factors impacting RPT efficacy, including hypoxia region extension, binding affinity, and initial drug dosage, employing a novel 3-dimensional computational model. Analysis gauges the influence of these factors on radiopharmaceutical agent concentration within the tumor microenvironment. Furthermore, spatial and temporal radiopharmaceutical distribution within both the tumor and surrounding tissue is explored. Results Analysis indicates a significantly higher total concentration area under the curve within the tumor region compared to surrounding normal tissue. Moreover, drug distribution exhibits notably superior efficacy compared to the radiation source. Additionally, low microvascular density in extended hypoxia regions enhances drug availability, facilitating improved binding to PSMA receptors and enhancing therapeutic effectiveness. Reductions in the dissociation constant (KD) lead to heightened binding affinity and increased internalized drug concentration. Evaluation of initial radioactivities (7.1×107, 7.1×108, and 7.1×109 [Bq]) indicates that an activity of 7.1×108 [Bq] offers a favorable balance between tumor cell elimination and minimal impact on normal tissues. Discussion These findings underscore the potential of localized radiopharmaceutical delivery strategies and emphasize the crucial role of released drugs relative to the radiation source (implant) in effective tumor treatment. Decreasing the proximity of the drug to the microvascular network and enhancing its distribution within the tumor promote a more effective therapeutic outcome. The study furnishes valuable insights for future experimental investigations and clinical trials, aiming to refine medication protocols and minimize reliance on in vivo testing.
Collapse
Affiliation(s)
- Anahita Piranfar
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Mohammad Souri
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Arman Rahmim
- Departments of Radiology and Physics, University of British Columbia, Vancouver, BC, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada
- Centre for Sustainable Business, International Business University, Toronto, ON, Canada
| |
Collapse
|
8
|
Bu LL, Yuan HH, Xie LL, Guo MH, Liao DF, Zheng XL. New Dawn for Atherosclerosis: Vascular Endothelial Cell Senescence and Death. Int J Mol Sci 2023; 24:15160. [PMID: 37894840 PMCID: PMC10606899 DOI: 10.3390/ijms242015160] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Endothelial cells (ECs) form the inner linings of blood vessels, and are directly exposed to endogenous hazard signals and metabolites in the circulatory system. The senescence and death of ECs are not only adverse outcomes, but also causal contributors to endothelial dysfunction, an early risk marker of atherosclerosis. The pathophysiological process of EC senescence involves both structural and functional changes and has been linked to various factors, including oxidative stress, dysregulated cell cycle, hyperuricemia, vascular inflammation, and aberrant metabolite sensing and signaling. Multiple forms of EC death have been documented in atherosclerosis, including autophagic cell death, apoptosis, pyroptosis, NETosis, necroptosis, and ferroptosis. Despite this, the molecular mechanisms underlying EC senescence or death in atherogenesis are not fully understood. To provide a comprehensive update on the subject, this review examines the historic and latest findings on the molecular mechanisms and functional alterations associated with EC senescence and death in different stages of atherosclerosis.
Collapse
Affiliation(s)
- Lan-Lan Bu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.-L.B.); (D.-F.L.)
| | - Huan-Huan Yuan
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
| | - Ling-Li Xie
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Min-Hua Guo
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
| | - Duan-Fang Liao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.-L.B.); (D.-F.L.)
| | - Xi-Long Zheng
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
9
|
Bolcaen J, Combrink N, Spoormans K, More S, Vandevoorde C, Fisher R, Kleynhans J. Biodosimetry, can it find its way to the nuclear medicine clinic? FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1209823. [PMID: 39355046 PMCID: PMC11440959 DOI: 10.3389/fnume.2023.1209823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/06/2023] [Indexed: 10/03/2024]
Abstract
Personalised dosimetry based on molecular imaging is a field that has grown exponentially in the last decade due to the increasing success of Radioligand Therapy (RLT). Despite advances in imaging-based 3D dose estimation, the administered dose of a therapeutic radiopharmaceutical for RLT is often non-personalised, with standardised dose regimens administered every 4-6 weeks. Biodosimetry markers, such as chromosomal aberrations, could be used alongside image-based dosimetry as a tool for individualised dose estimation to further understand normal tissue toxicity and refine the administered dose. In this review we give an overview of biodosimetry markers that are used for blood dose estimation, followed by an overview of their current results when applied in RLT patients. Finally, an in-depth discussion will provide a perspective on the potential for the use of biodosimetry in the nuclear medicine clinic.
Collapse
Affiliation(s)
- Julie Bolcaen
- Radiation Biophysics Division, SSC Laboratory, iThemba Laboratory for Accelerator Based Sciences (iThemba LABS), Cape Town, South Africa
| | - Nastassja Combrink
- Nuclear Medicine Division, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Kaat Spoormans
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University of Leuven, Leuven, Belgium
| | - Stuart More
- Division of Nuclear Medicine, Department of Radiation Medicine, University of Cape Town, Cape Town, South Africa
| | - Charlot Vandevoorde
- Biophysics Departement, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Randall Fisher
- Radiation Biophysics Division, SSC Laboratory, iThemba Laboratory for Accelerator Based Sciences (iThemba LABS), Cape Town, South Africa
| | - Janke Kleynhans
- Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, Catholic University of Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Boyle AJ, Cai Z, O'Brien S, Crick J, Angers S, Reilly RM. Relative Biological Effectiveness (RBE) of [ 64Cu]Cu and [ 177Lu]Lu-NOTA-panitumumab F (ab') 2 radioimmunotherapeutic agents vs. γ-radiation for decreasing the clonogenic survival in vitro of human pancreatic ductal adenocarcinoma (PDAC) cells. Nucl Med Biol 2023; 122-123:108367. [PMID: 37506639 DOI: 10.1016/j.nucmedbio.2023.108367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/08/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
INTRODUCTION Our objective was to compare [64Cu]Cu-NOTA-panitumumab F(ab')2 and [177Lu]Lu-NOTA-panitumumab F(ab')2 radioimmunotherapy (RIT) agents for decreasing the clonogenic survival fraction (SF) in vitro of EGFR-positive human pancreatic ductal adenocarcinoma (PDAC) cell lines and estimate the relative biological effectiveness (RBE) vs. γ-radiation (XRT). METHODS EGFR-positive PDAC cell lines (AsPC-1, PANC-1, MIAPaCa-2, Capan-1) and EGFR-knockout PANC-1 EGFR KO cells were treated in vitro for 18 h with (0-19.65 MBq; 72 nmols/L) of [64Cu]Cu-NOTA-panitumumab F(ab')2 or [177Lu]Lu-NOTA-panitumumab F(ab')2 or XRT (0-8 Gy) followed by clonogenic assay. The SF was determined after culturing single treated cells for 14 d. Cell fractionation studies were performed for cells incubated with 1 MBq (72 nmols/L) of [64Cu]Cu-NOTA-panitumumab F(ab')2 or [177Lu]Lu-NOTA-panitumumab F(ab')2 for 1, 4, or 24 h to estimate the time-integrated activity (Ã) on the cell surface, cytoplasm, nucleus and medium. Radiation absorbed doses in the nucleus were calculated by multiplying à by S-factors calculated by Monte Carlo N Particle (MCNP) modeling using monolayer cell culture geometry. The SF of PDAC cells was plotted vs. dose and fitted to a linear quadratic model to estimate the dose required to decrease the SF to 0.1 (D10). The D10 for RIT agents were compared to XRT to estimate the RBE. DNA double-strand breaks (DSBs) caused by [64Cu]Cu-NOTA-panitumumab F(ab')2 or [177Lu]Lu-NOTA-panitumumab F(ab')2 continuous exposure for 5 h or 20 h were probed by immunofluorescence for γ-H2AX. Relative EGFR expression of PDAC cells was assessed by flow cytometry (scored + to +++) and cell doubling times for untreated cells were determined. RESULTS The D10 for [64Cu]Cu-NOTA-panitumumab F(ab')2 ranged from 9.1 Gy (PANC-1) to 39.9 Gy (Capan-1). The D10 for [177Lu]Lu-NOTA-panitumumab F(ab')2 ranged from 11.7 Gy (AsPC-1) to 170.8 Gy (Capan-1). The D10 for XRT ranged from 2.5 Gy (Capan-1) to 6.7 Gy (PANC-1 EGFR KO). D10 values were not correlated with EGFR expression over a relatively narrow range (++ to +++) or with cell doubling times. Based on D10 values, PANC-1 EGFR KO cells were 1.6-fold less sensitive than PANC-1 cells to [64Cu]Cu-NOTA-panitumumab F(ab')2 and 1.9-fold less sensitive to [177Lu]Lu-NOTA-panitumumab F(ab')2. The RBE for [64Cu]Cu-NOTA-panitumumab F(ab')2 ranged from 0.06 for Capan-1 cells to 0.45 for PANC-1 cells. The RBE for [177Lu]Lu-NOTA-panitumumab F(ab')2 ranged from 0.015 for Capan-1 cells to 0.28 for AsPC-1 cells. DNA DSBs were detected in PDAC cells exposed to [64Cu]Cu-NOTA-panitumumab F(ab')2 or [177Lu]Lu-NOTA-panitumumab F(ab')2 but were not correlated with the SF of the cells. CONCLUSIONS We conclude that at the same dose delivered to the cell nucleus [64Cu]Cu-NOTA-panitumumab F(ab')2 and [177Lu]Lu-NOTA-panitumumab F(ab')2 were less radiobiologically effective than XRT for decreasing the SF of human PDAC cells, but [64Cu]Cu-NOTA-panitumumab F(ab')2 was more cytotoxic than [177Lu]Lu-NOTA-panitumumab F(ab')2 except for AsPC-1 cells which were more sensitive to [177Lu]Lu-NOTA-panitumumab F(ab')2. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE This study demonstrates that higher radiation doses may be required for RIT than XRT to achieve radiobiologically equivalent effects when used to treat PDAC.
Collapse
Affiliation(s)
- Amanda J Boyle
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Zhongli Cai
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Siobhan O'Brien
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jennifer Crick
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Stephane Angers
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Raymond M Reilly
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; Department of Medical Imaging, University of Toronto, Toronto, ON M5T 1W7, Canada.
| |
Collapse
|