1
|
Qin J, Sun N, Wang Y, An J, Zhao D, Li J, Zhang H, Du R. Induction of feline fetal fibroblasts into pluripotent stem cells using cat-derived reprogramming factors. Theriogenology 2025; 244:117481. [PMID: 40381593 DOI: 10.1016/j.theriogenology.2025.117481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 05/11/2025] [Accepted: 05/11/2025] [Indexed: 05/20/2025]
Abstract
There are few studies on the establishment of induced pluripotent stem cells (iPSCs) in cats. Although induction using heterologous reprogramming factors delivered via viral vectors has been reported, its safety and reprogramming efficiency still require improvement. In addition, the reprogramming mechanism needs further elucidation. In this study, we constructed a series of expression vectors for cat-derived reprogramming transcription factors based on the piggyBac transposon system and transfected various factor combinations into cat fetal fibroblasts (CFFs) under different electroporation conditions to generate cat iPSCs (ciPSCs). Additionally, the specific roles of these factors in reprogramming were investigated. The results showed that under the optimized electroporation conditions (DMEM/F12 buffer, 300 V, 10 ms pulse duration, 2 pulses, 25 μg plasmid DNA, and 4 mm cuvette), the survival rate and transfection efficiency of CFFs reached 64 % and 67.8 %, respectively. Based on this condition, a seven-factor combination (cOSKM + pNL + SV40 Large T) was confirmed as a better inducer for establishing ciPSCs. The obtained ciPSCs exhibit good pluripotency and passaging stability. They express stemness-related genes and proteins, and can form embryoid bodies (EBs) capable of differentiating into all three germ layers. OCT4 (O), SOX2 (S), KLF4 (K), and c-MYC (M) play important cooperative and synergistic roles in the mesenchymal-to-epithelial transition (MET) during the initial stages of reprogramming, while the supplement of NANOG (N) and LIN28 (L) can further promote MET and is important for successful reprogramming. It lays a foundation for the further breeding of cloned and genetically modified cats, and provides a tool for studying embryonic developmental diseases, screening drugs, and applying to tissue regeneration.
Collapse
Affiliation(s)
- Jian Qin
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China; College of Life Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China; Center of Experiment Teaching, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Nannan Sun
- College of Life Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yitong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jie An
- College of Life Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Dipeng Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China; Department of Medical Laboratory, Fenyang College of Shanxi Medical University, Fenyang, 032200, Shanxi, China
| | - Junling Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Hao Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Rong Du
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
2
|
Tobos CI, Woodrow KA. Dissolving microneedles for nucleic acid delivery: A systematic search, review, and data synthesis. Acta Biomater 2025:S1742-7061(25)00353-8. [PMID: 40349901 DOI: 10.1016/j.actbio.2025.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/10/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Dissolving microneedles deliver many classes of nucleic acids, overcoming susceptibility to enzymatic cleavage and poor intracellular delivery. Understanding the impact of microneedle formulation on nucleic acid therapeutic efficacy is critical for clinical translation. Here, we performed a systematic search to identify preclinical dissolving microneedle studies that deliver nucleic acid therapeutics including aptamers, DNA enzymes, mRNA, miRNA, plasmid DNA, recombinant viral vectors, and siRNA. This review quantitatively synthesizes preclinical data to identify correlations between microneedle form and function. Factors such as polymer molecular weight and incorporation of a nucleic acid carrier strongly influence mechanical and biological properties, while other design parameters allow for more flexibility. Altogether, 83 % of studies show equivalent or superior efficacy to existing nucleic acid administration routes including topical, subcutaneous, and intramuscular administration. Data especially supports the use of dissolving microneedles for viral and cancer vaccine applications, with a growing body of work exploring their utility for gene silencing. Nonetheless, several knowledge gaps remain. Emerging nucleic acid carrier chemistries that retain efficacy with improved toxicity profiles will define the next generation of formulations. Plasmid DNA and viral vectors show excellent long-term stability in dissolving microneedles, but further characterization is needed for long RNA transcripts. Finally, future work could explore the potential for non-dermal administration routes, as well as co-delivery of nucleic acids with small molecules to leverage synergistic effects. STATEMENT OF SIGNIFICANCE: This review comprehensively, critically, and quantitatively synthesizes preclinical dissolving microneedles for nucleic acid delivery. This approach identifies empirically supported correlations between microneedle form and function, highlighting evidence-based best practices and remaining challenges. The form-function relationships identified in this review will be valuable to those within the immediate microneedle field, as well as more broadly to audiences interested in nucleic acid therapeutics, drug delivery systems, microfabrication, and delivery strategies for low resource settings.
Collapse
Affiliation(s)
- Carmen I Tobos
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, USA
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, USA.
| |
Collapse
|
3
|
Yang X, Xiao J, Staveness D, Zang X. Efficient mRNA Delivery In Vitro and In Vivo Using a Polycharged Biodegradable Nanomaterial. Int J Mol Sci 2024; 25:13620. [PMID: 39769382 PMCID: PMC11728123 DOI: 10.3390/ijms252413620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
As RNA rises as one of the most significant modalities for clinical applications and life science research, efficient tools for delivering and integrating RNA molecules into biological systems become essential. Herein, we report a formulation using a polycharged biodegradable nano-carrier, N1-501, which demonstrates superior efficiency and versatility in mRNA encapsulation and delivery in both cell and animal models. N1-501 is a polymeric material designed to function through a facile one-step formulation process suitable for various research settings. Its capability for mRNA transfection is investigated across a wide range of mRNA doses and in different biological models, including 18 tested cell lines and mouse models. This study also comprehensively analyzes N1-501's application for mRNA transfection by examining factors such as buffer composition and pH, incubation condition, and media type. Additionally, N1-501's superior in vivo mRNA transfection capability ensures its potential as an efficient and consistent tool for advancing mRNA-based therapies and genetic research.
Collapse
Affiliation(s)
| | | | | | - Xiaoyu Zang
- N1 Life, Inc., 446 S Hillview Dr, Milpitas, CA 95035, USA
| |
Collapse
|
4
|
Albukhaty S, Sulaiman GM, Al-Karagoly H, Mohammed HA, Hassan AS, Alshammari AAA, Ahmad AM, Madhi R, Almalki FA, Khashan KS, Jabir MS, Yusuf M, Al-aqbi ZT, Sasikumar P, Khan RA. Iron oxide nanoparticles: The versatility of the magnetic and functionalized nanomaterials in targeting drugs, and gene deliveries with effectual magnetofection. J Drug Deliv Sci Technol 2024; 99:105838. [DOI: 10.1016/j.jddst.2024.105838] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Idiago-López J, Ferreira D, Asín L, Moros M, Armenia I, Grazú V, Fernandes AR, de la Fuente JM, Baptista PV, Fratila RM. Membrane-localized magnetic hyperthermia promotes intracellular delivery of cell-impermeant probes. NANOSCALE 2024; 16:15176-15195. [PMID: 39052238 DOI: 10.1039/d4nr01955e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
In this work, we report the disruptive use of membrane-localized magnetic hyperthermia to promote the internalization of cell-impermeant probes. Under an alternating magnetic field, magnetic nanoparticles (MNPs) immobilized on the cell membrane via bioorthogonal click chemistry act as nanoheaters and lead to the thermal disruption of the plasma membrane, which can be used for internalization of different types of molecules, such as small fluorescent probes and nucleic acids. Noteworthily, no cell death, oxidative stress and alterations of the cell cycle are detected after the thermal stimulus, although cells are able to sense and respond to the thermal stimulus through the expression of different types of heat shock proteins (HSPs). Finally, we demonstrate the utility of this approach for the transfection of cells with a small interference RNA (siRNA), revealing a similar efficacy to a standard transfection method based on the use of cationic lipid-based reagents (such as Lipofectamine), but with lower cell toxicity. These results open the possibility of developing new procedures for "opening and closing" cellular membranes with minimal disturbance of cellular integrity. This on-demand modification of cell membrane permeability could allow the direct intracellular delivery of biologically relevant (bio)molecules, drugs and nanomaterials, thus overcoming traditional endocytosis pathways and avoiding endosomal entrapment.
Collapse
Affiliation(s)
- Javier Idiago-López
- Instituto de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, 50009, Zaragoza, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Daniela Ferreira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Laura Asín
- Instituto de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, 50009, Zaragoza, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - María Moros
- Instituto de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, 50009, Zaragoza, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Ilaria Armenia
- Instituto de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, 50009, Zaragoza, Spain.
| | - Valeria Grazú
- Instituto de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, 50009, Zaragoza, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Alexandra R Fernandes
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Jesús M de la Fuente
- Instituto de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, 50009, Zaragoza, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Pedro V Baptista
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Raluca M Fratila
- Instituto de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, 50009, Zaragoza, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Departamento de Química Orgánica, Facultad de Ciencias, C/Pedro Cerbuna 12, 50009, Zaragoza, Spain
| |
Collapse
|
6
|
Berg AE, Velayuthan LP, Månsson A, Ušaj M. Cost-Efficient Expression of Human Cardiac Myosin Heavy Chain in C2C12 Cells with a Non-Viral Transfection Reagent. Int J Mol Sci 2024; 25:6747. [PMID: 38928453 PMCID: PMC11203843 DOI: 10.3390/ijms25126747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Production of functional myosin heavy chain (MHC) of striated muscle myosin II for studies of isolated proteins requires mature muscle (e.g., C2C12) cells for expression. This is important both for fundamental studies of molecular mechanisms and for investigations of deleterious diseases like cardiomyopathies due to mutations in the MHC gene (MYH7). Generally, an adenovirus vector is used for transfection, but recently we demonstrated transfection by a non-viral polymer reagent, JetPrime. Due to the rather high costs of JetPrime and for the sustainability of the virus-free expression method, access to more than one transfection reagent is important. Here, we therefore evaluate such a candidate substance, GenJet. Using the human cardiac β-myosin heavy chain (β-MHC) as a model system, we found effective transfection of C2C12 cells showing a transfection efficiency nearly as good as with the JetPrime reagent. This was achieved following a protocol developed for JetPrime because a manufacturer-recommended application protocol for GenJet to transfect cells in suspension did not perform well. We demonstrate, using in vitro motility assays and single-molecule ATP turnover assays, that the protein expressed and purified from cells transfected with the GenJet reagent is functional. The purification yields reached were slightly lower than in JetPrime-based purifications, but they were achieved at a significantly lower cost. Our results demonstrate the sustainability of the virus-free method by showing that more than one polymer-based transfection reagent can generate useful amounts of active MHC. Particularly, we suggest that GenJet, due to its current ~4-fold lower cost, is useful for applications requiring larger amounts of a given MHC variant.
Collapse
Affiliation(s)
| | | | - Alf Månsson
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, 391 82 Kalmar, Sweden; (A.E.B.); (L.P.V.)
| | - Marko Ušaj
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, 391 82 Kalmar, Sweden; (A.E.B.); (L.P.V.)
| |
Collapse
|
7
|
Peng L, Dan J, Huang W, Sang L, Tian H, Li Z, Li W, Liu J, Luo Y. The dual effects of Congea chinensis Moldenke on inhibiting tumor cell proliferation and delaying aging by activating TERT transcriptional activity. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117103. [PMID: 37673201 DOI: 10.1016/j.jep.2023.117103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Natural medicinal plants, also named herbs, have attracted considerable research attention for their potential pharmacological activities, such as antitumor and longevity-promoting activities. Our previous review proposed that maintaining the homeostatic balance between aging and cancer may benefit organisms to enable tumor-free longevity. Congea chinensis Moldenke (CCM) is a plant species that grows on the border of Yunnan Province of China. Its medicinal value has been few reports until now. Thus, screening and extraction the ingredients from CCM that are both active tumor suppressors and TERT activators is a therapeutic strategy for improving tumor-free longevity. AIM OF THE STUDY To extract and evaluate the cytotoxic antitumor and TERT transcription-promoting activities of the plant CCM. MATERIALS AND METHODS The ingredients extracted from CCM were tested for transcriptional activation of p53 using pGL4-p53-GFP cells and for TERT expression using a real-time PCR assay. In vitro antitumor activity was detected by sulforhodamine B (SRB) assay and Annexin V/PI staining assay. The cell-permeable probe H2DCFDA was used to detect intracellular reactive oxygen species (ROS). Western blot was performed to verify predicated proteins regulated by the ingredients. RNA-sequence analysis was applied to predicate the underlying mechanism of CCM. RESULTS Both CCM and MPRC2-8, two novel extracts of Congea chinensis Moldenke, activated the expression of p53 and TERT and were selectively cytotoxic toward tumor cells. In addition, the cytotoxic mechanism of MPRC2-8 was identified as ROS generation-induced apoptosis. Interestingly, MPRC2-8 showed opposite regulatory effects on the SIRT1-p53 axis in A549 and HT-29 cells, which have different p53 statuses. RNA-seq analysis showed that CCM and MPRC2-8 induced the p53, apoptosis and ROS signaling pathways, consistent with the results of cellular experiments in vitro. CONCLUSION Our study reveals that CCM and MPRC2-8 have two complementary activities, antitumor activity and TERT-activating activity, with potential antitumor and longevity-improving effects.
Collapse
Affiliation(s)
- Lei Peng
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Juhua Dan
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Wenhui Huang
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Lei Sang
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Hao Tian
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
| | - Zhiming Li
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
| | - Wanyi Li
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China.
| | - Jing Liu
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Ying Luo
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Development on Common Chronic Diseases, School of Basic Medicine, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
8
|
Heyza JR, Mikhova M, Schmidt JC. Live cell single-molecule imaging to study DNA repair in human cells. DNA Repair (Amst) 2023; 129:103540. [PMID: 37467632 PMCID: PMC10530516 DOI: 10.1016/j.dnarep.2023.103540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023]
Abstract
The genetic material in human cells is continuously exposed to a wide variety of insults that can induce different DNA lesions. To maintain genomic stability and prevent potentially deleterious genetic changes caused by DNA damage, mammalian cells have evolved a number of pathways that repair specific types of DNA damage. These DNA repair pathways vary in their accuracy, some providing high-fidelity repair while others are error-prone and are only activated as a last resort. Adding additional complexity to cellular mechanisms of DNA repair is the DNA damage response which is a sophisticated a signaling network that coordinates repair outcomes, cell-cycle checkpoint activation, and cell fate decisions. As a result of the sheer complexity of the various DNA repair pathways and the DNA damage response there are large gaps in our understanding of the molecular mechanisms underlying DNA damage repair in human cells. A key unaddressed question is how the dynamic recruitment of DNA repair factors contributes to repair kinetics and repair pathway choice in human cells. Methodological advances in live cell single-molecule imaging over the last decade now allow researchers to directly observe and analyze the dynamics of DNA repair proteins in living cells with high spatiotemporal resolution. Live cell single-molecule imaging combined with single-particle tracking can provide direct insight into the biochemical reactions that control DNA repair and has the power to identify previously unobservable processes in living cells. This review summarizes the main considerations for experimental design and execution for live cell single-molecule imaging experiments and describes how they can be used to define the molecular mechanisms of DNA damage repair in mammalian cells.
Collapse
Affiliation(s)
- Joshua R Heyza
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Mariia Mikhova
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Jens C Schmidt
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
9
|
Shokouhi AR, Chen Y, Yoh HZ, Murayama T, Suu K, Morikawa Y, Brenker J, Alan T, Voelcker NH, Elnathan R. Electroactive nanoinjection platform for intracellular delivery and gene silencing. J Nanobiotechnology 2023; 21:273. [PMID: 37592297 PMCID: PMC10433684 DOI: 10.1186/s12951-023-02056-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Nanoinjection-the process of intracellular delivery using vertically configured nanostructures-is a physical route that efficiently negotiates the plasma membrane, with minimal perturbation and toxicity to the cells. Nanoinjection, as a physical membrane-disruption-mediated approach, overcomes challenges associated with conventional carrier-mediated approaches such as safety issues (with viral carriers), genotoxicity, limited packaging capacity, low levels of endosomal escape, and poor versatility for cell and cargo types. Yet, despite the implementation of nanoinjection tools and their assisted analogues in diverse cellular manipulations, there are still substantial challenges in harnessing these platforms to gain access into cell interiors with much greater precision without damaging the cell's intricate structure. Here, we propose a non-viral, low-voltage, and reusable electroactive nanoinjection (ENI) platform based on vertically configured conductive nanotubes (NTs) that allows for rapid influx of targeted biomolecular cargos into the intracellular environment, and for successful gene silencing. The localization of electric fields at the tight interface between conductive NTs and the cell membrane drastically lowers the voltage required for cargo delivery into the cells, from kilovolts (for bulk electroporation) to only ≤ 10 V; this enhances the fine control over membrane disruption and mitigates the problem of high cell mortality experienced by conventional electroporation. RESULTS Through both theoretical simulations and experiments, we demonstrate the capability of the ENI platform to locally perforate GPE-86 mouse fibroblast cells and efficiently inject a diverse range of membrane-impermeable biomolecules with efficacy of 62.5% (antibody), 55.5% (mRNA), and 51.8% (plasmid DNA), with minimal impact on cells' viability post nanoscale-EP (> 90%). We also show gene silencing through the delivery of siRNA that targets TRIOBP, yielding gene knockdown efficiency of 41.3%. CONCLUSIONS We anticipate that our non-viral and low-voltage ENI platform is set to offer a new safe path to intracellular delivery with broader selection of cargo and cell types, and will open opportunities for advanced ex vivo cell engineering and gene silencing.
Collapse
Affiliation(s)
- Ali-Reza Shokouhi
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
| | - Yaping Chen
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
| | - Hao Zhe Yoh
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
| | - Takahide Murayama
- Institute of Semiconductor and Electronics Technologies, ULVAC Inc, 1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
| | - Koukou Suu
- Institute of Semiconductor and Electronics Technologies, ULVAC Inc, 1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
| | - Yasuhiro Morikawa
- Institute of Semiconductor and Electronics Technologies, ULVAC Inc, 1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
| | - Jason Brenker
- Department of Mechanical and Aerospace Engineering, Monash University, Wellington Rd, Clayton, VIC, 3168, Australia
| | - Tuncay Alan
- Department of Mechanical and Aerospace Engineering, Monash University, Wellington Rd, Clayton, VIC, 3168, Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia.
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany.
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, VIC, 3168, Australia.
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia.
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Melbourne, VIC, 3216, Australia.
- Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds campus, Melbourne, VIC, 3216, Australia.
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong Waurn Ponds Campus, Melbourne, VIC, 3216, Australia.
| |
Collapse
|
10
|
Bai Y, Li FF, Zhang Y, Ding YB. Silicon dioxide nanoparticles compromise decidualization via autophagy impairment to possibly cause embryo resorption. Toxicol Lett 2023; 381:72-82. [PMID: 37169230 DOI: 10.1016/j.toxlet.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/15/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
The wide application of silicon dioxide nanoparticles (SiO2NPs) has raised concerns about their harmful effects on reproduction. The purpose of this research was to investigate the toxic effects and the possible mechanisms by which SiO2NPs affect decidualization and pregnancy progression. We found that SiO2NPs could inhibit decidualization, both in mice and in human endometrial stromal cells (HESCs). Embryo resorption was also evident in mice treated with SiO2NPs. When HESCs were treated with SiO2NPs, decidualization was inhibited and there was an increase in intracellular lysosomes and autophagosomes as well as the blockage of autophagic flux. Interestingly, a reduction of autophagosome accumulation via 3-methyladenine (3MA) significantly restored the decidualization of HESCs. In summary, our results indicate that SiO2NPs can affect embryo survival by impairing decidualization through a dysfunctional autophagic process.
Collapse
Affiliation(s)
- Ying Bai
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China; Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Fang-Fang Li
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Yi Zhang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Yu-Bin Ding
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China; Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, P. R. China.
| |
Collapse
|
11
|
Kucharski M, Mrowiec P, Ocłoń E. Current standards and pitfalls associated with the transfection of primary fibroblast cells. Biotechnol Prog 2021; 37:e3152. [PMID: 33774920 DOI: 10.1002/btpr.3152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/25/2022]
Abstract
Cultured fibroblast cells, especially dermal cells, are used for various types of scientific research, particularly within the medical field. Desirable features of the cells include their ease of isolation, rapid cellular growth, and high degree of robustness. Currently, fibroblasts are mainly used to obtain pluripotent cells via a reprogramming process. Dermal fibroblasts, are particularly useful for gene therapies used for promoting wound healing or minimizing skin aging. In recent years, fibroblast transfection efficiencies have significantly improved. In order to introduce molecules (most often DNA or RNA) into cells, viral-based systems (transduction) or non-viral methods (transfection) that include physical/mechanical processes or lipid reagents may be used. In this article, we describe critical points that should be considered when selecting a method for transfecting fibroblasts. The most effective methods used for the transfection of fibroblasts include both viral-based and non-viral nucleofection systems. These methods result in a high level of transgene expression and are superior in terms of transfection efficacy and viability.
Collapse
Affiliation(s)
- Mirosław Kucharski
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Krakow, Poland
| | - Patrycja Mrowiec
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, Krakow, Poland
| | - Ewa Ocłoń
- Centre for Experimental and Innovative Medicine, Laboratory of Recombinant Proteins Production, University of Agriculture in Krakow, Krakow, Poland
| |
Collapse
|
12
|
Morshedi Rad D, Alsadat Rad M, Razavi Bazaz S, Kashaninejad N, Jin D, Ebrahimi Warkiani M. A Comprehensive Review on Intracellular Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005363. [PMID: 33594744 DOI: 10.1002/adma.202005363] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/22/2020] [Indexed: 05/22/2023]
Abstract
Intracellular delivery is considered an indispensable process for various studies, ranging from medical applications (cell-based therapy) to fundamental (genome-editing) and industrial (biomanufacture) approaches. Conventional macroscale delivery systems critically suffer from such issues as low cell viability, cytotoxicity, and inconsistent material delivery, which have opened up an interest in the development of more efficient intracellular delivery systems. In line with the advances in microfluidics and nanotechnology, intracellular delivery based on micro- and nanoengineered platforms has progressed rapidly and held great promises owing to their unique features. These approaches have been advanced to introduce a smorgasbord of diverse cargoes into various cell types with the maximum efficiency and the highest precision. This review differentiates macro-, micro-, and nanoengineered approaches for intracellular delivery. The macroengineered delivery platforms are first summarized and then each method is categorized based on whether it employs a carrier- or membrane-disruption-mediated mechanism to load cargoes inside the cells. Second, particular emphasis is placed on the micro- and nanoengineered advances in the delivery of biomolecules inside the cells. Furthermore, the applications and challenges of the established and emerging delivery approaches are summarized. The topic is concluded by evaluating the future perspective of intracellular delivery toward the micro- and nanoengineered approaches.
Collapse
Affiliation(s)
- Dorsa Morshedi Rad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Maryam Alsadat Rad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Sajad Razavi Bazaz
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Navid Kashaninejad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Dayong Jin
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute of Molecular Medicine, Sechenov University, Moscow, 119991, Russia
| |
Collapse
|
13
|
Genetic code expansion in mammalian cells: A plasmid system comparison. Bioorg Med Chem 2020; 28:115772. [PMID: 33069552 DOI: 10.1016/j.bmc.2020.115772] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/22/2022]
Abstract
Genetic code expansion with unnatural amino acids (UAAs) has significantly broadened the chemical repertoire of proteins. Applications of this method in mammalian cells include probing of molecular interactions, conditional control of biological processes, and new strategies for therapeutics and vaccines. A number of methods have been developed for transient UAA mutagenesis in mammalian cells, each with unique features and advantages. All have in common a need to deliver genes encoding additional protein biosynthetic machinery (an orthogonal tRNA/tRNA synthetase pair) and a gene for the protein of interest. In this study, we present a comparative evaluation of select plasmid-based genetic code expansion systems and a detailed analysis of suppression efficiency with different UAAs and in different cell lines.
Collapse
|
14
|
Alallam B, Altahhan S, Taher M, Mohd Nasir MH, Doolaanea AA. Electrosprayed Alginate Nanoparticles as CRISPR Plasmid DNA Delivery Carrier: Preparation, Optimization, and Characterization. Pharmaceuticals (Basel) 2020; 13:E158. [PMID: 32707857 PMCID: PMC7465179 DOI: 10.3390/ph13080158] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 11/17/2022] Open
Abstract
Therapeutic gene editing is becoming more feasible with the emergence of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein (Cas) system. However, the successful implementation of CRISPR/Cas9-based therapeutics requires a safe and efficient in vivo delivery of the CRISPR components, which remains challenging. This study presents successful preparation, optimization, and characterization of alginate nanoparticles (ALG NPs), loaded with two CRISPR plasmids, using electrospray technique. The aim of this delivery system is to edit a target gene in another plasmid (green fluorescent protein (GFP)). The effect of formulation and process variables were evaluated. CRISPR ALG NPs showed mean size and zeta potential of 228 nm and -4.42 mV, respectively. Over 99.0% encapsulation efficiency was achieved while preserving payload integrity. The presence of CRISPR plasmids in the ALG NPs was confirmed by Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy. The tests revealed that the nanoparticles were cytocompatible and successfully introduced the Cas9 transgene in HepG2 cells. Nanoparticles-transfected HepG2 was able to edit its target plasmid by introducing double-strand break (DSB) in GFP gene, indicating the bioactivity of CRISPR plasmids encapsulated in alginate nanoparticles. This suggests that this method is suitable for biomedical application in vitro or ex vivo. Future investigation of theses nanoparticles might result in nanocarrier suitable for in vivo delivery of CRISPR/Cas9 system.
Collapse
Affiliation(s)
- Batoul Alallam
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia; (B.A.); (M.T.)
| | - Sara Altahhan
- College of Pharmacy, Alfaisal University, Riyadh 11533, Kingdom of Saudi Arabia;
| | - Muhammad Taher
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia; (B.A.); (M.T.)
| | - Mohd Hamzah Mohd Nasir
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Malaysia;
| | - Abd Almonem Doolaanea
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia; (B.A.); (M.T.)
- IKOP Sdn Bhd, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia
| |
Collapse
|
15
|
Chen Y, Aslanoglou S, Murayama T, Gervinskas G, Fitzgerald LI, Sriram S, Tian J, Johnston APR, Morikawa Y, Suu K, Elnathan R, Voelcker NH. Silicon-Nanotube-Mediated Intracellular Delivery Enables Ex Vivo Gene Editing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000036. [PMID: 32378244 DOI: 10.1002/adma.202000036] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/16/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
Engineered nano-bio cellular interfaces driven by vertical nanostructured materials are set to spur transformative progress in modulating cellular processes and interrogations. In particular, the intracellular delivery-a core concept in fundamental and translational biomedical research-holds great promise for developing novel cell therapies based on gene modification. This study demonstrates the development of a mechanotransfection platform comprising vertically aligned silicon nanotube (VA-SiNT) arrays for ex vivo gene editing. The internal hollow structure of SiNTs allows effective loading of various biomolecule cargoes; and SiNTs mediate delivery of those cargoes into GPE86 mouse embryonic fibroblasts without compromising their viability. Focused ion beam scanning electron microscopy (FIB-SEM) and confocal microscopy results demonstrate localized membrane invaginations and accumulation of caveolin-1 at the cell-NT interface, suggesting the presence of endocytic pits. Small-molecule inhibition of endocytosis suggests that active endocytic process plays a role in the intracellular delivery of cargo from SiNTs. SiNT-mediated siRNA intracellular delivery shows the capacity to reduce expression levels of F-actin binding protein (Triobp) and alter the cellular morphology of GPE86. Finally, the successful delivery of Cas9 ribonucleoprotein (RNP) to specifically target mouse Hprt gene is achieved. This NT-enhanced molecular delivery platform has strong potential to support gene editing technologies.
Collapse
Affiliation(s)
- Yaping Chen
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, 3168, Australia
| | - Stella Aslanoglou
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, 3168, Australia
| | - Takahide Murayama
- Institute of Semiconductor and Electronics Technologies, ULVAC Inc., 1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
| | - Gediminas Gervinskas
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, 15 Innovation Walk, Clayton, VIC, 3800, Australia
| | - Laura I Fitzgerald
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Sharath Sriram
- MicroNano Research Facility (MNRF), RMIT University, Melbourne City Campus, Building 7, Level 4, Bowen Street, Melbourne, VIC, 3000, Australia
| | - Jie Tian
- MicroNano Research Facility (MNRF), RMIT University, Melbourne City Campus, Building 7, Level 4, Bowen Street, Melbourne, VIC, 3000, Australia
| | - Angus P R Johnston
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Yasuhiro Morikawa
- Institute of Semiconductor and Electronics Technologies, ULVAC Inc., 1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
| | - Koukou Suu
- Institute of Semiconductor and Electronics Technologies, ULVAC Inc., 1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
- Department of Materials Science and Engineering Monash University, 22 Alliance Lane, Clayton, VIC, 3168, Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, 3168, Australia
- Department of Materials Science and Engineering Monash University, 22 Alliance Lane, Clayton, VIC, 3168, Australia
- INM-Leibniz Institute for New Materials, Campus D2 2, Saarbrücken, 66123, Germany
| |
Collapse
|
16
|
Tarakanchikova Y, Muslimov A, Sergeev I, Lepik K, Yolshin N, Goncharenko A, Vasilyev K, Eliseev I, Bukatin A, Sergeev V, Pavlov S, Popov A, Meglinski I, Afanasiev B, Parakhonskiy B, Sukhorukov G, Gorin D. A highly efficient and safe gene delivery platform based on polyelectrolyte core–shell nanoparticles for hard-to-transfect clinically relevant cell types. J Mater Chem B 2020; 8:9576-9588. [DOI: 10.1039/d0tb01359e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The polyelectrolyte nanocarriers’ based on nanosized vaterite particles as a novel tool for genetic material delivery into the clinically relevant cell types and potential application of described technology in gene therapy approaches.
Collapse
|
17
|
Walia R, Ho CC, Lee C, Gilch S, Schatzl HM. Gene-edited murine cell lines for propagation of chronic wasting disease prions. Sci Rep 2019; 9:11151. [PMID: 31371793 PMCID: PMC6673760 DOI: 10.1038/s41598-019-47629-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/18/2019] [Indexed: 01/28/2023] Open
Abstract
Prions cause fatal infectious neurodegenerative diseases in humans and animals. Cell culture models are essential for studying the molecular biology of prion propagation. Defining such culture models is mostly a random process, includes extensive subcloning, and for many prion diseases few or no models exist. One example is chronic wasting disease (CWD), a highly contagious prion disease of cervids. To extend the range of cell models propagating CWD prions, we gene-edited mouse cell lines known to efficiently propagate murine prions. Endogenous prion protein (PrP) was ablated in CAD5 and MEF cells, using CRISPR-Cas9 editing. PrP knock-out cells were reconstituted with mouse, bank vole and cervid PrP genes by lentiviral transduction. Reconstituted cells expressing mouse PrP provided proof-of-concept for re-established prion infection. Bank voles are considered universal receptors for prions from a variety of species. Bank vole PrP reconstituted cells propagated mouse prions and cervid prions, even without subcloning for highly susceptible cells. Cells reconstituted with cervid PrP and infected with CWD prions tested positive in prion conversion assay, whereas non-reconstituted cells were negative. This novel cell culture platform which is easily adjustable and allows testing of polymorphic alleles will provide important new insights into the biology of CWD prions.
Collapse
Affiliation(s)
- Rupali Walia
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada.,Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
| | - Cheng Ching Ho
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada.,Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
| | - Chi Lee
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada.,Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
| | - Sabine Gilch
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada.,Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
| | - Hermann M Schatzl
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada. .,Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada.
| |
Collapse
|
18
|
Zhang J, Hu Y, Wang X, Liu P, Chen X. High-Throughput Platform for Efficient Chemical Transfection, Virus Packaging, and Transduction. MICROMACHINES 2019; 10:mi10060387. [PMID: 31185602 PMCID: PMC6631631 DOI: 10.3390/mi10060387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 01/22/2023]
Abstract
Intracellular gene delivery is normally required to study gene functions. A versatile platform able to perform both chemical transfection and viral transduction to achieve efficient gene modification in most cell types is needed. Here we demonstrated that high throughput chemical transfection, virus packaging, and transduction can be conducted efficiently on our previously developed superhydrophobic microwell array chip (SMAR-chip). A total of 169 chemical transfections were successfully performed on the chip in physically separated microwells through a few simple steps, contributing to the convenience of DNA delivery and media change on the SMAR-chip. Efficiencies comparable to the traditional transfection in multi-well plates (~65%) were achieved while the manual operations were largely reduced. Two transfection procedures, the dry method amenable for the long term storage of the transfection material and the wet method for higher efficiencies were developed. Multiple transfections in a scheduled manner were performed to further increase the transfection efficiencies or deliver multiple genes at different time points. In addition, high throughput virus packaging integrated with target cell transduction were also proved which resulted in a transgene expression efficiency of >70% in NIH 3T3 cells. In summary, the SMAR-chip based high throughput gene delivery is efficient and versatile, which can be used for large scale genetic modifications in a variety of cell types.
Collapse
Affiliation(s)
- Jianxiong Zhang
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China.
| | - Yawei Hu
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China.
| | - Xiaoqing Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Peng Liu
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China.
| | - Xiaofang Chen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
19
|
Li Y, Niu S, Xi D, Zhao S, Sun J, Jiang Y, Liu J. Differences in Lipopolysaccharides-Induced Inflammatory Response Between Mouse Embryonic Fibroblasts and Bone Marrow-Derived Macrophages. J Interferon Cytokine Res 2019; 39:375-382. [PMID: 30990360 DOI: 10.1089/jir.2018.0167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mouse embryonic fibroblasts (MEFs) are commonly used in research on the molecular mechanism(s) of inflammation because of its good response to inflammatory stimuli. However, the difference in inflammatory reaction between MEFs and macrophages, a classical inflammatory cell type, has not been identified. In this study, we report that both mRNA and protein levels of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) in MEFs upon lipopolysaccharides (LPS) stimulation were significantly lower than those in bone marrow-derived macrophages (BMDMs). MAPK, NF-κB, and IRF3 pathways control the expression and production of inflammatory activated in LPS-stimulated MEFs, but showed different activation patterns in comparison with LPS-stimulated BMDMs. Upon LPS stimulation, activation of the MAPK pathway was slow and remarkably weaker in MEFs than that in BMDMs, whereas more pronounced activation of both NF-κB and IRF3 pathways was observed in MEFs compared to BMDMs. This difference in the activation of MAPK, NF-κB, and IRF3 pathways may result in different production of IL-6 and TNF-α between MEFs and BMDMs. We further revealed that substantial differences in more additional inflammatory response-related cytokines exist between LPS-stimulated MEFs and BMDMs. In conclusion, MEFs exhibit good responsiveness to LPS as a target cell for inflammation-related research. However, MEFs cannot replace macrophages because of substantial differences in their inflammatory reactivity.
Collapse
Affiliation(s)
- Yue Li
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shixian Niu
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Dalin Xi
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shuqi Zhao
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jiang Sun
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jinghua Liu
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
Zeng M, Zhou D, Alshehri F, Lara-Sáez I, Lyu Y, Creagh-Flynn J, Xu Q, A S, Zhang J, Wang W. Manipulation of Transgene Expression in Fibroblast Cells by a Multifunctional Linear-Branched Hybrid Poly(β-Amino Ester) Synthesized through an Oligomer Combination Approach. NANO LETTERS 2019; 19:381-391. [PMID: 30565945 DOI: 10.1021/acs.nanolett.8b04098] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Delivery of functional genetic materials into fibroblast cells to manipulate the transgene expression is of great significance in skin gene therapy. Despite numerous polymeric gene delivery systems having been developed, highly safe and efficient fibroblast gene transfection has not yet been achieved. Here, through a new linear oligomer combination strategy, linear poly(β-amino ester) oligomers are connected by the branching units, forming a new type of poly(β-amino ester). This new multifunctional linear-branched hybrid poly(β-amino ester) (LBPAE) shows high-performance fibroblast gene transfection. In human primary dermal fibroblasts (HPDFs) and mouse embryo fibroblasts (3T3s), ultrahigh transgene expression is achieved by LBPAE: up to 3292-fold enhancement in Gaussia luciferase (Gluc) expression and nearly 100% of green fluorescence protein expression are detected. Concurrently, LBPAE is of high in vitro biocompatibility. In depth mechanistic studies reveal that versatile LBPAE can navigate multiple extra- and intracellular barriers involved in the fibroblast gene transfection. More importantly, LBPAE can effectively deliver minicircle DNA encoding COL7A1 gene (a large and functional gene construct) to substantially upregulate the expression of type VII collagen (C7) in HPDFs, demonstrating its great potential in the treatment of C7-deficiency related genodermatoses such as recessive dystrophic epidermolysis bullosa.
Collapse
Affiliation(s)
- Ming Zeng
- Charles Institute of Dermatology, School of Medicine , University College Dublin , Dublin 4 , Ireland
- Department of Dermatology , the First Affiliated Hospital of Anhui Medical University , Hefei 230022 , China
| | - Dezhong Zhou
- Charles Institute of Dermatology, School of Medicine , University College Dublin , Dublin 4 , Ireland
- School of Chemical Engineering and Technology (SCET) , Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Fatma Alshehri
- Charles Institute of Dermatology, School of Medicine , University College Dublin , Dublin 4 , Ireland
| | - Irene Lara-Sáez
- Charles Institute of Dermatology, School of Medicine , University College Dublin , Dublin 4 , Ireland
| | - Yuanning Lyu
- Charles Institute of Dermatology, School of Medicine , University College Dublin , Dublin 4 , Ireland
| | - Jack Creagh-Flynn
- Charles Institute of Dermatology, School of Medicine , University College Dublin , Dublin 4 , Ireland
| | - Qian Xu
- Charles Institute of Dermatology, School of Medicine , University College Dublin , Dublin 4 , Ireland
| | - Sigen A
- Charles Institute of Dermatology, School of Medicine , University College Dublin , Dublin 4 , Ireland
| | - Jing Zhang
- Charles Institute of Dermatology, School of Medicine , University College Dublin , Dublin 4 , Ireland
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine , University College Dublin , Dublin 4 , Ireland
| |
Collapse
|
21
|
Katwal P, Thomas M, Uprety T, Hildreth MB, Kaushik RS. Development and biochemical and immunological characterization of early passage and immortalized bovine intestinal epithelial cell lines from the ileum of a young calf. Cytotechnology 2019; 71:127-148. [PMID: 30600465 PMCID: PMC6368510 DOI: 10.1007/s10616-018-0272-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 10/21/2018] [Indexed: 12/23/2022] Open
Abstract
The intestinal epithelium is a major site of interaction with pathogens. In bovine intestinal epithelial cells (BIECs), Toll-like receptors (TLRs) play an important role in innate immune responses against enteric pathogens. This study is aimed at establishing a stable bovine intestinal epithelial cell line that can be maintained by a continuous passage so that studies on innate immune responses against various enteric pathogens can be performed. The main goal was to establish pure cultures of primary and immortalized bovine intestinal epithelial cells from the ileum and then characterize them biochemically and immunologically. Mixed epithelial and fibroblast bovine ileal intestinal cultures were first established from a 2-day old calf. Limiting dilution method was used to obtain a clone of epithelial cells which was characterized using immunocytochemistry (ICC). The selected clone BIEC-c4 was cytokeratin positive and expressed low levels of vimentin, confirming the epithelial cell phenotype. Early passage BIEC-c4 cells were transfected with either simian virus 40 (SV40) large T antigen or human telomerase reverse transcriptase (hTERT), or human papillomavirus (HPV) type 16E6/E7 genes to establish three immortalized BIEC cell lines. The expression of SV40, hTERT and HPV E6/E7 genes in immortalized BIECs was confirmed by a polymerase chain reaction (PCR). Immunocytochemistry and immunofluorescence assays also confirmed the expression of SV40, hTERT and HPV E6 proteins. The immortalized BIECs were cytokeratin positive and all except HPV-BIECs expressed low levels of vimentin. A growth kinetics study indicated that there were no significant differences in the doubling time of immortalized BIECs as compared to early passage BIEC-c4 cells. All four BIEC types expressed TLR 1-10 genes, with TLR 3 and 4 showing higher expression across all cell types. These newly established early passage and immortalized BIEC cell lines should serve as a good model for studying infectivity, pathogenesis and innate immune responses against enteric pathogens.
Collapse
Affiliation(s)
- Pratik Katwal
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Milton Thomas
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Tirth Uprety
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Michael B Hildreth
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Radhey S Kaushik
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA.
| |
Collapse
|
22
|
Pylaev T, Vanzha E, Avdeeva E, Khlebtsov B, Khlebtsov N. A novel cell transfection platform based on laser optoporation mediated by Au nanostar layers. JOURNAL OF BIOPHOTONICS 2019; 12:e201800166. [PMID: 30203552 DOI: 10.1002/jbio.201800166] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/26/2018] [Accepted: 09/09/2018] [Indexed: 05/23/2023]
Abstract
The recently developed laser-induced cell transfection mediated by Au nanoparticles is a promising alternative to the well-established lipid-based transfection or to electroporation. Optoporation is based on the laser plasmonic heating of nanoparticles located near the cell membrane. However, the uncontrollable cell damage from intense laser pulses and from random attachment of nanoparticles may be crucial for transfection. We present a novel plasmonic optoporation technique that uses Au nanostar layers immobilized in culture microplate wells. HeLa cells were grown directly on Au nanostar layers, after which they were subjected to continuous-wave 808 nm laser irradiation. An Au monolayer density ~15 μg/cm2 and an absorbed energy of about 15 to 30 J were found to be optimal for optoporation. Propidium iodide molecules were used as model penetrating agent. The transfection efficiency evaluated using fluorescence microscopy for HeLa cells transfected with pGFP under optimized optoporation conditions (95% ± 5%) was similar to the efficiency of TurboFect. The technique's efficiency (295 ± 10 relative light units, RLU), demonstrated by transfecting HeLa cells with the pCMV-GLuc 2 control plasmid, was greater than that obtained by transfection of HeLa cells with the TurboFect agent (220 ± 10 RLU). The cell viability in plasmonic optoporation (92% ± 7%), too, was greater than that in transfection with TurboFect (75% ± 7%).
Collapse
Affiliation(s)
- Timofey Pylaev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
| | - Ekaterina Vanzha
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
| | - Elena Avdeeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
| | - Boris Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
- Saratov National Research State University, Saratov, Russia
| | - Nikolai Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
- Saratov National Research State University, Saratov, Russia
| |
Collapse
|
23
|
Wang T, Larcher LM, Ma L, Veedu RN. Systematic Screening of Commonly Used Commercial Transfection Reagents towards Efficient Transfection of Single-Stranded Oligonucleotides. Molecules 2018; 23:molecules23102564. [PMID: 30297632 PMCID: PMC6222501 DOI: 10.3390/molecules23102564] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 12/19/2022] Open
Abstract
Non-viral vector-mediated transfection is a core technique for in vitro screening of oligonucleotides. Despite the growing interests in the development of oliogonucleotide-based drug molecules in recent years, a comprehensive comparison of the transfection efficacy of commonly used commercial transfection reagents has not been reported. In this study, five commonly used transfection reagents, including Lipofectamine 3000, Lipofectamine 2000, Fugene, RNAiMAX and Lipofectin, were comprehensively analyzed in ten cell lines using a fluorescence imaging-based transfection assay. Although the transfection efficacy and toxicity of transfection reagents varied depending on cell types, the toxicity of transfection reagents generally displayed a positive correlation with their transfection efficacy. According to our results, Lipofectamine 3000, Fugene and RNAiMAX showed high transfection efficacy, however, RNAiMAX may be a better option for majority of cells when lower toxicity is desired. The transfection efficacy of Lipofectamine 2000 was compromised by its high toxicity, which may adversely affect its application in most cells. We firmly believe that our findings may contribute to the future In vitro delivery and screening of single-stranded therapeutic oligonucleotides such as antisense oligonucleotides, antimiRs, and DNAzymes.
Collapse
Affiliation(s)
- Tao Wang
- Centre for Comparative Genomics, Murdoch University, Perth, WA 6150, Australia.
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia.
| | - Leon M Larcher
- Centre for Comparative Genomics, Murdoch University, Perth, WA 6150, Australia.
| | - Lixia Ma
- School of Statistics, Henan University of Economics and Law, Zhengzhou 450046, China.
| | - Rakesh N Veedu
- Centre for Comparative Genomics, Murdoch University, Perth, WA 6150, Australia.
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia.
| |
Collapse
|
24
|
AAVvector-mediated in vivo reprogramming into pluripotency. Nat Commun 2018; 9:2651. [PMID: 29985406 PMCID: PMC6037684 DOI: 10.1038/s41467-018-05059-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 05/14/2018] [Indexed: 12/19/2022] Open
Abstract
In vivo reprogramming of somatic cells into induced pluripotent stem cells (iPSC) holds vast potential for basic research and regenerative medicine. However, it remains hampered by a need for vectors to express reprogramming factors (Oct-3/4, Klf4, Sox2, c-Myc; OKSM) in selected organs. Here, we report OKSM delivery vectors based on pseudotyped Adeno-associated virus (AAV). Using the AAV-DJ capsid, we could robustly reprogram mouse embryonic fibroblasts with low vector doses. Swapping to AAV8 permitted to efficiently reprogram somatic cells in adult mice by intravenous vector delivery, evidenced by hepatic or extra-hepatic teratomas and iPSC in the blood. Notably, we accomplished full in vivo reprogramming without c-Myc. Most iPSC generated in vitro or in vivo showed transcriptionally silent, intronic or intergenic vector integration, likely reflecting the increased host genome accessibility during reprogramming. Our approach crucially advances in vivo reprogramming technology, and concurrently facilitates investigations into the mechanisms and consequences of AAV persistence. In vivo reprogramming of somatic cells is hampered by the need for vectors to express the OKSM factors in selected organs. Here the authors report new AAV-based vectors capable of in vivo reprogramming at low doses.
Collapse
|
25
|
Gong L, Cao L, Shen Z, Shao L, Gao S, Zhang C, Lu J, Li W. Materials for Neural Differentiation, Trans-Differentiation, and Modeling of Neurological Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705684. [PMID: 29573284 DOI: 10.1002/adma.201705684] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/04/2017] [Indexed: 05/02/2023]
Abstract
Neuron regeneration from pluripotent stem cells (PSCs) differentiation or somatic cells trans-differentiation is a promising approach for cell replacement in neurodegenerative diseases and provides a powerful tool for investigating neural development, modeling neurological diseases, and uncovering the mechanisms that underlie diseases. Advancing the materials that are applied in neural differentiation and trans-differentiation promotes the safety, efficiency, and efficacy of neuron regeneration. In the neural differentiation process, matrix materials, either natural or synthetic, not only provide a structural and biochemical support for the monolayer or three-dimensional (3D) cultured cells but also assist in cell adhesion and cell-to-cell communication. They play important roles in directing the differentiation of PSCs into neural cells and modeling neurological diseases. For the trans-differentiation of neural cells, several materials have been used to make the conversion feasible for future therapy. Here, the most current applications of materials for neural differentiation for PSCs, neuronal trans-differentiation, and neurological disease modeling is summarized and discussed.
Collapse
Affiliation(s)
- Lulu Gong
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Lining Cao
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Zhenmin Shen
- The VIP Department, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Li Shao
- The VIP Department, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Shaorong Gao
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jianfeng Lu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Weida Li
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| |
Collapse
|