1
|
Sun M, Han X, Liu X, Xu Y. Cinobufacini suppresses malignant behaviors of endometrial cancer by regulating NF-κB pathway. Biotechnol Genet Eng Rev 2024; 40:2221-2233. [PMID: 37022215 DOI: 10.1080/02648725.2023.2199236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023]
Abstract
Cinobufagin has inhibitory effects on various tumors, but there are few studies on gynecological tumors. This study explored the function and molecular mechanism of cinobufagin in endometrial cancer (EC). Different concentrations of cinobufagin treated EC cells (Ishikawa and HEC-1). Clone formation, methyl thiazolyl tetrazolium (MTT), flow cytometry, and transwell assays were used to detect malignant behaviors. A Western blot assay was performed to detect protein expression. Cinobufacini was sensitive to the inhibition of EC cell proliferation in a time- and concentration-dependent manner. Meanwhile, EC cell apoptosis was induced by cinobufacini. In addition, cinobufacini impaired the invasive and migratory abilities of EC cells. More importantly, cinobufacini blocked the nuclear factor kappa beta (NF-κB) pathway in EC by inhibiting p-IkBα and p-p65 expression. Cinobufacini suppresses malignant behaviors of EC by blocking the NF-κB pathway.
Collapse
Affiliation(s)
- Mengyi Sun
- Beijing Medical Health Technology Development Center, Beijing Pharma and Biotech Center, Beijing, China
| | - Xiaodao Han
- Day Chemotherapy Ward, Qingdao Central Hospital, Qingdao, Shandong, China
| | - Xiaoyun Liu
- Day Chemotherapy Ward, Qingdao Central Hospital, Qingdao, Shandong, China
| | - Yintao Xu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
2
|
Tian H, Zhao F, Yue BS, Zhai BT. Combinational Antitumor Strategies Based on the Active Ingredients of Toad Skin and Toad Venom. Drug Des Devel Ther 2024; 18:3549-3594. [PMID: 39139676 PMCID: PMC11321342 DOI: 10.2147/dddt.s469832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
A multidrug combination strategy is an important mean to improve the treatment of cancer and is the mainstream scheme of clinical cancer treatment. The active ingredients of traditional Chinese medicine, represented by toad skin and toad venom, have the advantages of high efficiency, low toxicity, wide action and multiple targets and have become ideal targets in combined treatment strategies for tumors in recent years. Toad skin and toad venom are traditional Chinese animal medicines derived from Bufo bufo gargarizans Cantor or Bufo melanostictus Schneider that have shown excellent therapeutic effects on the treatment of various cancers and cancer pain as adjuvant antitumor drugs in clinical practice. The involved mechanisms include inducing apoptosis, arresting the cell cycle, inhibiting cell proliferation, migration and invasion, inhibiting tumor angiogenesis, reversing the multidrug resistance of tumor cells, and regulating multiple signaling pathways and targets. Moreover, a multidrug combination strategy based on a nanodelivery system can realize the precise loading of the active ingredients of toad skin or toad venom and other antitumor drugs and carry drugs to overcome physiological and pathological barriers, complete efficient enrichment in tumor tissues, and achieve targeted delivery to tumor cells and the controlled release of drugs, thus enhancing antitumor efficacy and reducing toxicity and side effects. This article reviewed the clinical efficacy and safety of the combination of toad skin and toad venom with chemotherapeutic drugs, targeted drugs, analgesics and other drugs; evaluated the effects and mechanisms of the combination of toad skin and toad venom with chemotherapy, targeted therapy, radiotherapy or hyperthermia, traditional Chinese medicine, signaling pathway inhibitors and other therapies in cell and animal models; and summarized the codelivery strategies for the active ingredients of toad skin and toad venom with chemotherapeutic drugs, small-molecule targeted drugs, monoclonal antibodies, active ingredients of traditional Chinese medicine, and photodynamic and photothermal therapeutic drugs to provide a basis for the rational drug use of toad skin and toad venom in the clinic and the development of novel drug delivery systems.
Collapse
Affiliation(s)
- Huan Tian
- Department of Pharmacy, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, People’s Republic of China
| | - Feng Zhao
- Department of Pharmacy, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, People’s Republic of China
| | - Bao-Sen Yue
- Department of Pharmacy, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, People’s Republic of China
| | - Bing-Tao Zhai
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, People’s Republic of China
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Xi’an, People’s Republic of China
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Xi’an, People’s Republic of China
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Xi’an, People’s Republic of China
| |
Collapse
|
3
|
Chen Y, Wang Y, Zhai Y, Yuan Y, Wang J, Jin Y, Dang L, Song L, Chen C, Wang Y. Cinobufacini injection suppresses the proliferation of human osteosarcoma cells by inhibiting PIN1-YAP/TAZ signaling pathway. Front Pharmacol 2023; 14:1081363. [PMID: 37006999 PMCID: PMC10063998 DOI: 10.3389/fphar.2023.1081363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
Cinobufacini injection (CI), an aqueous extract of Cutis Bufonis, is clinically used for cancer therapy in China, but its molecular mechanism for the treatment of osteosarcoma (OS) remains unclear. We constructed U2OS ectopic subcutaneous tumor model to verify the anti-OS effect of CI in vivo. Meanwhile, cell proliferation of U2OS and MG63 cells was monitored in vitro using the CCK-8 assay, colony formation and morphological changes. Cell cycle arrest and apoptosis were detected by flow cytometry and western blot, which showed that CI significantly inhibited proliferation, induced cell cycle arrest and apoptosis in human OS cells. The further RNA-seq results identified that the Hippo signaling pathway was involved in the anti-OS effect of CI. YAP/TAZ are two major components of the Hippo pathway in breast cancer and are positively regulated by prolyl isomerase PIN1, we assessed their role in OS using both clinicopathological sections and western blots. CI also inhibited PIN1 enzyme activity in a dose-dependent manner, which resulted in impaired PIN1, YAP, and TAZ expression in vitro and in vivo. Additionally, 15 potential compounds of CI were found to occupy the PIN1 kinase domain and inhibit its activity. In summary, CI plays an anti-OS role by down-regulating the PIN1-YAP/TAZ pathway.
Collapse
Affiliation(s)
- Yuru Chen
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, China
| | - Yanyan Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Zhai
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ye Yuan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, China
| | - Junhong Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yajing Jin
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, China
| | - Lingling Dang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, China
| | - Liming Song
- Department of Joint Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Changbao Chen
- Department of Spinal Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Yu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, China
| |
Collapse
|
4
|
Peszek W, Kras P, Grabarek BO, Boroń D, Oplawski M. Cisplatin Changes Expression of SEMA3B in Endometrial Cancer. Curr Pharm Biotechnol 2020; 21:1368-1376. [PMID: 32410560 DOI: 10.2174/1389201021666200514215839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/22/2020] [Accepted: 04/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Semaphorin 3B (SEMA3B) is characterized as a strong suppressing factor of the proliferation of cancerous cells and also by its anti-angiogenic effect. However, the knowledge on the changes in the expression profile of SEMA3B under the influence of cisplatin in endometrial cancer remains fragmented. The aim of this work was to note the changes in expression of SEMA3B when under the influence of cisplatin in the endometrial cancer cell line. METHODS Ishikawa cell line cells were exposed to three different concentrations of cisplatin: 2.5μM; 5μM; 10μM for 12, 24 and 48 hours and were compared to cells untreated by the drug. Changes in the expression profile of SEMA3B were determined based upon RtqPCR (mRNA) alongside the ELISA assay (protein). The Statistica 13.0 PL program was used for statistical analysis (p<0.05). RESULTS Changes on the transcriptome level seem to be more dynamic than on the proteome level. Regardless of the concentration given or the exposition period, the expression of semaphorin 3B was, in fact, higher in cells exposed to cisplatin. Statistically substantial differences (p<0.05) in the expression of SEMA3B mRNA and protein were seen for all incubation periods at the given cisplatin level when compared to the control. CONCLUSION Cisplatin causes a growth in the expression of SEMA3B in an endometrial cancer cell culture, this results in the restoration in the state of cell homeostasis and shows the effectiveness of pharmacotherapy, including a low risk of drug resistance.
Collapse
Affiliation(s)
- Wojciech Peszek
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
| | - Piotr Kras
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
| | - Beniamin O Grabarek
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Zabrze, Poland,Department of Clinical Trials, Maria Sklodowska-Curie National Research Institute of Oncology, Kraków Branch, Kraków, Poland
| | - Dariusz Boroń
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland,Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Zabrze, Poland,Department of Clinical Trials, Maria Sklodowska-Curie National Research Institute of Oncology, Kraków Branch, Kraków, Poland
| | - Marcin Oplawski
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
| |
Collapse
|
5
|
Ma YC, Li MM, Wu Q, Xu WF, Lin S, Chen ZW, Liu L, Shi L, Sheng Q, Li TT, Zhang Q, Li XH. Hydroxysafflor yellow A sensitizes ovarian cancer cells to chemotherapeutic agent by decreasing WSB1 expression. Eur J Integr Med 2019. [DOI: 10.1016/j.eujim.2018.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
6
|
Ma XC, Ding HQ, Shi JD, Hei L, Niu NK, Suo ZG, Shang YB, Lin S, Pu FF, Shao ZW. Cinobufacini from the Skin of Bufo bufo gargarizans Induces Apoptosis, Possibly via Activation of the Wnt/β-Catenin Pathway, in Human Osteosarcoma Cells. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cinobufacini (huachansu) is a traditional Chinese medicine extracted from the skin of Bufo bufo gargarizans, which is used in clinical cancer therapy. The purpose of this study was to investigate the signaling pathways regulating cinobufacini-induced apoptosis in the osteosarcoma cell line, U2OS. We used 3-[4,5-dimethylthiazol- 2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay to evaluate the effects of cinobufacini on cell proliferation in U2OS cells. Changes in cell morphology and apoptosis were detected by TUNEL staining. The expression of apoptosis-related and Wnt/β-catenin pathway proteins was detected by immunofluorescence, RT-PCR, and western blot analysis. Our data indicated that cinobufacini significantly inhibited cell proliferation in a dose- and time-dependent manner. Marked changes in cell morphology and apoptosis rate were clearly observed after cinobufacini treatment. The Wnt/β-catenin pathway was activated, and β-catenin expression was positive in cells after treatment. Further, protein expression of bax was increased, whereas bcl-2 was decreased, resulting in an increased bax/bcl-2 ratio. Moreover, after cinobufacini treatment, the expression of Wnt/β-catenin pathway-related proteins was similar to controls. Taken together, our study indicates that cinobufacini can induce apoptosis in U2OS cells, likely through activating the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Xiu-cai Ma
- Department of Spine Orthopedics, General Hospital, NingXia Medical University, Yinchuan, 750000, Ningxia, P. R. China
| | - Hui-qiang Ding
- Department of Spine Orthopedics, General Hospital, NingXia Medical University, Yinchuan, 750000, Ningxia, P. R. China
| | - Jian-dang Shi
- Department of Spine Orthopedics, General Hospital, NingXia Medical University, Yinchuan, 750000, Ningxia, P. R. China
| | - Long Hei
- Department of Spine Orthopedics, General Hospital, NingXia Medical University, Yinchuan, 750000, Ningxia, P. R. China
| | - Ning-kui Niu
- Department of Spine Orthopedics, General Hospital, NingXia Medical University, Yinchuan, 750000, Ningxia, P. R. China
| | - Zhi-gang Suo
- Department of Spine Orthopedics, General Hospital, NingXia Medical University, Yinchuan, 750000, Ningxia, P. R. China
| | - Yan-bing Shang
- Department of Spine Orthopedics, General Hospital, NingXia Medical University, Yinchuan, 750000, Ningxia, P. R. China
| | - Song Lin
- Department of Orthopedics, Orthopaedic Hospital of Henan Province, Zhengzhou, 450003, Henan, P. R. China
| | - Fei-fei Pu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, P. R. China
| | - Zeng-wu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, P. R. China
| |
Collapse
|
7
|
Ki HH, Poudel B, Lee JH, Lee YM, Kim DK. In vitro and in vivo anti-cancer activity of dichloromethane fraction of Triticum aestivum sprouts. Biomed Pharmacother 2017; 96:120-128. [PMID: 28972884 DOI: 10.1016/j.biopha.2017.09.118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/19/2017] [Accepted: 09/23/2017] [Indexed: 01/01/2023] Open
Abstract
Triticum aestivum sprouts (TA) contain significant amounts of chlorophyll, minerals, enzymes, and other functional entities. Furthermore, TA extracts have been shown to possess anti-obesity, anti-diabetic and hepatoprotective effects and are believed to help blood flow, digestion, and general detoxification of the body. In this study, the mechanism underlying the anti-cancer effects of a dichloromethane fraction of TA (TDF) was investigated in vitro and in vivo. In vitro study was done by examining cancer cells growth, morphological changes, cell cycles, expressions of death receptors and apoptosis-linked proteins in wide range of human cancer cell lines. To investigate the effect of TDF in vivo, C57BL/6 mice were injected with B16 melanoma cells and orally administered TDF. TDF markedly inhibited cancer cell growth and induced cellular morphological alterations, cell cycle arrest and apoptosis, and enhanced the expressions of death receptors (DR)-4, 5, and 6 in cell lines. In addition, TDF regulated the expressions mitochondrial apoptosis-linked proteins and induced caspase-dependent cell death. It also significantly enhanced phosphorylation of ERK1/2 and JNK, but not p38, whereas inhibited the activation of NF-κB in cancer cells. In our mouse model, TDF significantly suppressed B16 melanoma growth, to an extent similar to cisplatin (reference control) and augmented immunomodulatory cytokines. In brief, this study presents the mechanism responsible for the anti-cancer effects of TDF in vitro and in vivo.
Collapse
Affiliation(s)
- Hyeon-Hui Ki
- Department of Immunology and Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju, Jeonbuk 54907, Republic of Korea; Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Barun Poudel
- Department of Immunology and Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Ji-Hyun Lee
- Department of Immunology and Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Young-Mi Lee
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Dae-Ki Kim
- Department of Immunology and Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju, Jeonbuk 54907, Republic of Korea.
| |
Collapse
|
8
|
The synergistic antitumor effect of cinobufagin and cisplatin in human osteosarcoma cell line in vitro and in vivo. Oncotarget 2017; 8:85150-85168. [PMID: 29156710 PMCID: PMC5689600 DOI: 10.18632/oncotarget.19554] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/24/2017] [Indexed: 01/01/2023] Open
Abstract
Cisplatin (CDDP) has been shown to be a promising anticancer drug that is effective against many types of cancer, which include osteosarcoma (OS). However, its therapeutic application is restricted by its toxicity in normal tissues and by side effects caused in patients. Reduction of the toxicity of CDDP is necessary to improve cancer treatment. In the present study, we attempted to clarify how cinobufagin, a traditional Chinese medicine, enhances CDDP-induced cytotoxicity in OS cells. OS 143B cells were treated with cinobufagin and CDDP alone or in combination. After low dose combined treatments with cinobufagin and CDDP, the effects of these therapeutics on cell proliferation, apoptosis, cell cycle, migration, invasion, and involvement in Notch pathway, as well as tumor growth and metastatic capability were determined. It was found that the combination of low doses of cinobufagin and CDDP markedly inhibited cell activity, motility, and induced apoptosis and cell cycle arrest in S phase, as well as suppressing tumor growth, metastasis and prolonging longer survival of nude mice in OS xenograft models compared with the actions of either drug alone or vehicle. The results also demonstrated that cinobufagin plus CDDP significantly suppressed the Notch pathway. The anticancer mechanism of these two drugs may involve intervention in the Notch signaling, which may contribute to inhibit tumor growth. All of these results suggest that application of lower concentration cinobufagin plus CDDP could produce a synergistic antitumor effect and this finding warrants further investigation for its potential clinical applications in human OS patients.
Collapse
|
9
|
Rady I, Siddiqui IA, Rady M, Mukhtar H. Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy. Cancer Lett 2017; 402:16-31. [PMID: 28536009 DOI: 10.1016/j.canlet.2017.05.010] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 02/07/2023]
Abstract
Melittin (MEL), a major peptide component of bee venom, is an attractive candidate for cancer therapy. This agent has shown a variety of anti-cancer effects in preclinical cell culture and animal model systems. Despite a convincing efficacy data against variety of cancers, its applicability to humans has met with challenges due to several issues including its non-specific cytotoxicity, degradation and hemolytic activity. Several optimization approaches including utilization of nanoparticle based delivery of MEL have been utilized to circumvent the issues. Here, we summarize the current understanding of the anticancer effects of bee venom and MEL on different kinds of cancers. Further, we also present the available information for the possible mechanism of action of bee venom and/or MEL.
Collapse
Affiliation(s)
- Islam Rady
- School of Medicine and Public Health, Department of Dermatology, University of Wisconsin-Madison, WI 53706, USA; Department of Zoology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Imtiaz A Siddiqui
- School of Medicine and Public Health, Department of Dermatology, University of Wisconsin-Madison, WI 53706, USA
| | - Mohamad Rady
- Department of Zoology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Hasan Mukhtar
- School of Medicine and Public Health, Department of Dermatology, University of Wisconsin-Madison, WI 53706, USA.
| |
Collapse
|
10
|
Liu CC, Hao DJ, Zhang Q, An J, Zhao JJ, Chen B, Zhang LL, Yang H. Application of bee venom and its main constituent melittin for cancer treatment. Cancer Chemother Pharmacol 2016; 78:1113-1130. [DOI: 10.1007/s00280-016-3160-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/20/2016] [Indexed: 01/29/2023]
|
11
|
Cao Y, Yu L, Dai G, Zhang S, Zhang Z, Gao T, Guo W. Cinobufagin induces apoptosis of osteosarcoma cells through inactivation of Notch signaling. Eur J Pharmacol 2016; 794:77-84. [PMID: 27845066 DOI: 10.1016/j.ejphar.2016.11.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 11/05/2016] [Accepted: 11/07/2016] [Indexed: 12/21/2022]
Abstract
Osteosarcoma (OS) is a major cause of cancer-related mortality in children and young adults worldwide. Due to preexisting or acquired chemoresistance, the current standard neoadjuvant chemotherapy regimens show only moderate activity against OS. In the current study, we explored the potential anti-OS Cinobufagin in vitro and in vivo, and investigated its underlying mechanisms. The antitumor potential of Cinobufagin was assessed using cell viability assays, and cycle and apoptosis were determined. In a cell-based assay, the mRNA and protein expression of Notch-1, Hes-1, Hes-5 and Hey-1 were determined by quantitative polymerase chain reactions and western blotting. The involvement of Notch signaling in Cinobufagin-induced apoptosis was confirmed using gain and loss-of function assays. A xenograft OS model was established and the antitumor effect and biosafety of Cinobufagin were evaluated. Cinobufagin suppressed OS cells growth in a dose- and time-dependent manner, involving both cell cycle arrest at the S phase and programmed cell death. Cinobufagin treatment decreased the expression of Notch-1, and Hes-1, Hes-5 and Hey-1 gene expression in OS cell lines. Furthermore, Notch activation attenuated the Cinobufagin-induced apoptosis, while Notch inhibition enhanced this effect. Using a mouse xenograft model, we found that Cinobufagin inhibited OS cell growth in vivo. The mice showed excellent tolerance to Cinobufagin treatment. Taken together, our data suggested that Cinobufagin inhibited cell survival and induced apoptosis in OS cells both in vitro and in vivo, and these effects were partly mediated through the Notch pathway.
Collapse
Affiliation(s)
- Yongfei Cao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ling Yu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Guo Dai
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shanshan Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhengpei Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tian Gao
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Orthopedic Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Weichun Guo
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
12
|
Zhang Y, Jin H, Li X, Zhao J, Guo X, Wang J, Guo Z, Zhang X, Tao Y, Liu Y, Chen D, Liang X. Separation and characterization of bufadienolides in toad skin using two-dimensional normal-phase liquid chromatography×reversed-phase liquid chromatography coupled with mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1026:67-74. [PMID: 26621782 DOI: 10.1016/j.jchromb.2015.11.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 11/03/2015] [Accepted: 11/10/2015] [Indexed: 01/25/2023]
Abstract
Bufadienolides possess various bioactivities especially antitumor. Due to the high structural diversity, the separation of bufadienolides often suffers from coelution problem on conventional RP columns. In this work, an off-line two-dimensional normal-phase liquid chromatography×reversed-phase liquid chromatography (2D-NPLC×RPLC) method was developed to separate and characterize bufadienolides in toad skin. Several RP and NP columns were evaluated with five reference bufadienlides. The XUnion C18 and XAmide columns exhibited superior chromatographic performances for bufadienlide separation, and were selected in RPLC and NPLC, respectively. RPLC was used in the second-dimension for the good compatibility with MS, while NPLC was adopted in the first-dimension. The orthogonality of the 2D-NPLC×RPLC system was investigated by the geometric approach using fifteen bufadienolide mixtures. The result was 49.6%, demonstrating reasonable orthogonality of this 2D-LC system. By combining the 2D-LC system with MS, 64 bufadienlides including 33 minor ones and 11 pairs of isomers in toad skin were identified. This off-line 2D-NPLC×RPLC allowed to solve the coelution problem of bufadienlides in one-dimension RPLC, and thus facilitated the identification significantly.
Collapse
Affiliation(s)
- Yun Zhang
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hongli Jin
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaolong Li
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jianqiang Zhao
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, PR China
| | - Xiujie Guo
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jixia Wang
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhimou Guo
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiuli Zhang
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yanduo Tao
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, PR China
| | - Yanfang Liu
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Deliang Chen
- Wuhan Univ., Zhongnan Hosp., Dept. Internal Med., Div. Cardiol., Wuhan 430071, Hubei Province, PR China.
| | - Xinmiao Liang
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
13
|
Liu CC, Yang H, Zhang LL, Zhang Q, Chen B, Wang Y. Biotoxins for cancer therapy. Asian Pac J Cancer Prev 2015; 15:4753-8. [PMID: 24998537 DOI: 10.7314/apjcp.2014.15.12.4753] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In recent times, a number of studies have provided evidence that biotoxins present great potential as antitumor agents, such as snake venom, bee venom, some bacteria toxins and plant toxins, and thus could be used as chemotherapeutic agents against tumors. The biodiversity of venoms and toxins make them a unique source from which novel anticancer agent may be developed. Biotoxins, also known as natural toxins, include toxic substances produced by plants, animals and microorganisms. Here, we systematically list representative biological toxins that have antitumor properties, involving animal toxins, plant toxins, mycotoxins as well as bacterial toxins. In this review, we summarize the current knowledge involving biotoxins and the active compounds that have anti-cancer activity to induce cytotoxic, antitumor, immunomodulatory, and apoptotic effects in different tumor cells in vivo or in vitro. We also show insights into the molecular and functional evolution of biotoxins.
Collapse
Affiliation(s)
- Cui-Cui Liu
- Department of Scientific Research, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China E-mail :
| | | | | | | | | | | |
Collapse
|
14
|
Jiang W, Huang Y, Wang JP, Yu XY, Zhang LY. The synergistic anticancer effect of artesunate combined with allicin in osteosarcoma cell line in vitro and in vivo. Asian Pac J Cancer Prev 2014; 14:4615-9. [PMID: 24083713 DOI: 10.7314/apjcp.2013.14.8.4615] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Artesunate, extracted from Artemisia annua, has been proven to have anti-cancer potential. Allicin, diallyl thiosulfinate, the main biologically active compound derived from garlic, is also of interest in cancer treatment research. This object of this report was to document synergistic effects of artesunate combined with allicin on osteosarcoma cell lines in vitro and in vivo. METHODS After treatment with artesunate and allicin at various concentrations, the viability of osteosarcoma cells was analyzed by MTT method, with assessment of invasion and motility, colony formation and apoptosis. Western Blotting was performed to determine the expression of caspase-3/9, and activity was also detected after drug treatment. Moreover, in a nude mouse model established with orthotopic xenograft tumors, tumor weight and volume were monitored after drug administration via the intraperitoneal (i.p.) route. RESULTS The viability of osteosarcoma cells in the combination group was significantly decreased in a concentration and time dependent manner; moreover, invasion, motility and colony formation ability were significantly suppressed and the apoptotic rate was significantly increased through caspase-3/9 expression and activity enhancement in the combination group. Furthermore, suppression of tumor growth was evident in vivo. CONCLUSION Our results indicated that artesunate and allicin in combination exert synergistic effects on osteosarcoma cell proliferation and apoptosis.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Orthopaedic, Wenling City Chinese Medicine Hospital, Wenling, Zhejiang, China E-mail :
| | | | | | | | | |
Collapse
|
15
|
Li X, Guo Z, Wang C, Shen A, Liu Y, Zhang X, Zhao W, Liang X. Purification of bufadienolides from the skin of Bufo bufo gargarizans Cantor with positively charged C18 column. J Pharm Biomed Anal 2014; 92:105-13. [DOI: 10.1016/j.jpba.2014.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/30/2013] [Accepted: 01/03/2014] [Indexed: 11/27/2022]
|