1
|
Pongpiachan S, Surapipith V, Hashmi MZ, Aukkaravittayapun S, Poshyachinda S. An application of aromatic compounds as alternative tracers of tsunami backwash deposits. Heliyon 2021; 7:e06883. [PMID: 33997408 PMCID: PMC8099755 DOI: 10.1016/j.heliyon.2021.e06883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/30/2020] [Accepted: 04/19/2021] [Indexed: 12/02/2022] Open
Abstract
This manuscript provides some comprehensive technical insights regarding the application of polycyclic aromatic hydrocarbons (PAHs) characterized by using Gas-Chromatography Mass Spectrometry. Although numerous chemical species such as water soluble ionic species (e.g. Na+, K+, Cl-, Ca2+, Mg2+) and acid leachable heavy metal fractions (e.g. Fe, Cd, Al, Mo, Sb, As, Cu, Zn, Pb, and Mn) can be used to characterize tsunami deposits, the knowledge of PAH congeners as alternative chemical species for identifying tsunami backwash deposits is strictly limited. This manuscript is exclusive because it aims to find some alternative chemical proxies in order to distinguish tsunami backwash deposits from typical marine sediments. A wide range of diagnostic binary ratios of PAH congeners have been selected in order to characterize Typical Marine Sediments (TMS), Tsunami backwash deposits (TBD), Onshore Tsunami Deposits (OTD) and Coastal Zone Soils (CZS). The state of the art and future perspectives coupled with both advantages and disadvantages of above mentioned chemical tracers will be critically reviewed and further discussed.
Collapse
Affiliation(s)
- Siwatt Pongpiachan
- NIDA Center for Research & Development of Disaster Prevention & Management, School of Social and Environmental Development, National Institute of Development Administration (NIDA), 118 Moo-3, Sereethai Road, Klong-Chan, Bangkapi, Bangkok 10240 Thailand
- SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences (IEECAS), Xi'an, 710075, China
- National Astronomical Research Institute of Thailand (Public Organization) (NARIT), 260 Moo 4, T. Donkaew, A. Maerim, Chiangmai, 50180, Thailand
| | - Vanisa Surapipith
- National Astronomical Research Institute of Thailand (Public Organization) (NARIT), 260 Moo 4, T. Donkaew, A. Maerim, Chiangmai, 50180, Thailand
| | | | - Suparerk Aukkaravittayapun
- National Astronomical Research Institute of Thailand (Public Organization) (NARIT), 260 Moo 4, T. Donkaew, A. Maerim, Chiangmai, 50180, Thailand
| | - Saran Poshyachinda
- National Astronomical Research Institute of Thailand (Public Organization) (NARIT), 260 Moo 4, T. Donkaew, A. Maerim, Chiangmai, 50180, Thailand
| |
Collapse
|
2
|
Kahkashan S, Wang X, Ya M, Chen J, Wu Y, Cai Y, Saleem M, Inam A, Aftab J. Evaluation of marine sediment contamination by polycyclic aromatic hydrocarbons along the Karachi coast, Pakistan, 11 years after the Tasman Spirit oil spill. CHEMOSPHERE 2019; 233:652-659. [PMID: 31195269 DOI: 10.1016/j.chemosphere.2019.05.217] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/07/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
On July 27, 2003, a spill of approximately 31,000 tons of Iranian light crude oil affected the coast of Karachi, Pakistan. Approximately 11 years after the spill, we analyzed polycyclic aromatic hydrocarbons (PAHs) and their alkylated homologues (alkyl-PAHs) as the indicators to evaluate the residual effect of oil spill to the sediment along the Karachi coast. The total concentrations (dry weight) of parent PAHs and alkyl-PAHs ranged from 121.9 to 735.4 and 42.3-1149.9 ng/g, respectively. The estuary and harbor were the two regions with the highest levels of PAHs in the sediment. Conversely, sedimentary PAHs in the oil spill areas and remote coastal areas showed significantly lower levels. Although the results of the source identification indicated the up to 75.2% of the contribution from petroleum and its derivatives, this could only reflect the direct impact of the Karachi city on the presence of PAHs in the coastal sedimentary environment and did not indicated that the oil spill continues to stay 11 years later. Compared with 11 years ago, the sharply reduced PAH content, great changed composition, and the degradation driven trend of diagnostic ratios all indicated a sharp decrease in the influence of PAHs caused by the oil spill. Finally, the ecological risk caused by the PAH residual in the marine sedimentary ecosystem had disappeared along the Karachi coasts, Pakistan.
Collapse
Affiliation(s)
- Sanober Kahkashan
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China; Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; National Institute of Oceanography, Clifton, Block 1, Karachi-75600, Pakistan
| | - Xinhong Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China.
| | - Miaolei Ya
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Jianfang Chen
- Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Yuling Wu
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Yizhi Cai
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Monawwar Saleem
- National Institute of Oceanography, Clifton, Block 1, Karachi-75600, Pakistan
| | - Asif Inam
- National Institute of Oceanography, Clifton, Block 1, Karachi-75600, Pakistan
| | - Javed Aftab
- National Institute of Oceanography, Clifton, Block 1, Karachi-75600, Pakistan
| |
Collapse
|