1
|
Chao Y, Ou Q, Shang J. Expression and prognostic value of SULT1A2 in bladder cancer. Exp Ther Med 2021; 22:779. [PMID: 34055078 PMCID: PMC8145616 DOI: 10.3892/etm.2021.10211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 03/02/2021] [Indexed: 12/31/2022] Open
Abstract
Sulfotransferase Family 1A Member 2 (SULT1A2) is a protein coding gene. Several studies have reported that SULT1A2 may have a chemical carcinogenic effect if expressed as a functional protein. The present study aimed to investigate the expression and potential role of SULT1A2 in bladder cancer (BC). Data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus databases were used to analyze SULT1A2 expression in BC. In addition, reverse transcription-quantitative PCR and western blot analyses were performed to detect SULT1A2 expression in BC cells and tissues. Immunohistochemistry analysis was performed on 100 formalin-fixed, paraffin-embedded BC tissues and corresponding adjacent normal bladder tissues (ANBTs) to verify SULT1A2 expression and determine the clinical significance of SULT1A2 in BC. Gene set enrichment analysis (GSEA) was performed to determine the potential biological processes and internal molecular mechanisms. The results demonstrated that SULT1A2 was highly expressed in BC tissues compared with ANBTs. Furthermore, high SULT1A2 expression was significantly associated with the staging of BC. Analyses of TCGA datasets and BC tissue microarray indicated that high SULT1A2 expression was significantly associated with a favorable overall survival in patients with BC. In addition, GSEA revealed pathways, diseases and biological processes associated with SULT1A2. Taken together, the results of the present study suggest that SULT1A2 acts as an oncogene in BC, and thus may serve as a biomarker for tumor staging and prognosis in patients with BC.
Collapse
Affiliation(s)
- Yinghui Chao
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qifeng Ou
- Laboratory of Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jin Shang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
2
|
Gan Y, Ye F, He XX. The role of YWHAZ in cancer: A maze of opportunities and challenges. J Cancer 2020; 11:2252-2264. [PMID: 32127952 PMCID: PMC7052942 DOI: 10.7150/jca.41316] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 11/30/2019] [Indexed: 12/21/2022] Open
Abstract
YWHAZ (also named 14-3-3ζ) is a central hub protein for many signal transduction pathways and plays a significant role in tumor progression. Accumulating evidences have demonstrated that YWHAZ is frequently up-regulated in multiple types of cancers and acts as an oncogene in a wide range of cell activities including cell growth, cell cycle, apoptosis, migration, and invasion. Moreover, YWHAZ was reported to be regulated by microRNAs (miRNAs) or long non-coding RNAs and exerted its malignant functions by targeting downstream molecules like protein kinase, apoptosis proteins, and metastasis-related molecules. Additionally, YWHAZ may be a potential biomarker of diagnosis, prognosis and chemoresistance in several cancers. Targeting YWHAZ by siRNA, shRNA or miRNA was reported to have great help in suppressing malignant properties of cancer cells. In this review, we perform literature and bioinformatics analysis to reveal the oncogenic role and molecular mechanism of YWHAZ in cancer, and discuss the potential clinical applications of YWHAZ concerning diagnosis, prognosis, and therapy in malignant tumors.
Collapse
Affiliation(s)
- Yun Gan
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Ye
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing-Xing He
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Melittin Constrains the Expression of Identified Key Genes Associated with Bladder Cancer. J Immunol Res 2018; 2018:5038172. [PMID: 29854840 PMCID: PMC5960535 DOI: 10.1155/2018/5038172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/02/2018] [Accepted: 04/02/2018] [Indexed: 12/25/2022] Open
Abstract
This work is aimed at investigating the effect of melittin on identified key genes in bladder cancer (BC) and further providing a theoretical basis for BC treatment. GSE35014 downloaded from the Gene Expression Omnibus (GEO) database was used to screen differentially expressed genes (DEGs) in BC cells and control. Results showed that a total of 389 upregulated and 169 downregulated genes were identified. Subsequently, GO analysis, KEGG pathway enrichment analysis, and PPI network analysis were employed to disclose the crucial genes and signaling pathways involved in BC. Fifteen module-related DEGs and their associated signaling pathways were obtained according to the PPI network and modular analyses. Based on the analysis of articles retrieved in the PubMed database, we found that melittin could induce apoptosis and constrain the progression of tumor cells as a result of regulating critical cancer-related signaling pathways, such as PI3K-Akt and TNF signaling pathways. Furthermore, PI3K-Akt and TNF signaling pathways were also found to be associated with module-related DEGs according to biological analyses. At last, qRT-PCR analysis demonstrated that melittin could constrain the expression of module-related DEGs (LPAR1, COL5A1, COL6A2, CXCL1, CXCL2, and CXCL3) associated with PI3K-Akt and TNF signaling pathways in BC cells. Functional assays revealed that melittin could constrain the proliferative and migrated abilities of BC cells. Conjointly, these findings provide a theoretical basis for these six genes as drug-sensitive markers of melittin in BC treatment.
Collapse
|
4
|
Zhao B, Wang M, Xu J, Li M, Yu Y. Identification of pathogenic genes and upstream regulators in age-related macular degeneration. BMC Ophthalmol 2017. [PMID: 28651595 PMCID: PMC5485582 DOI: 10.1186/s12886-017-0498-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in older individuals. Our study aims to identify the key genes and upstream regulators in AMD. Methods To screen pathogenic genes of AMD, an integrated analysis was performed by using the microarray datasets in AMD derived from the Gene Expression Omnibus (GEO) database. The functional annotation and potential pathways of differentially expressed genes (DEGs) were further discovered by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. We constructed the AMD-specific transcriptional regulatory network to find the crucial transcriptional factors (TFs) which target the DEGs in AMD. Quantitative real time polymerase chain reaction (qRT-PCR) was performed to verify the DEGs and TFs obtained by integrated analysis. Results From two GEO datasets obtained, we identified 1280 DEGs (730 up-regulated and 550 down-regulated genes) between AMD and normal control (NC). After KEGG analysis, steroid biosynthesis is a significantly enriched pathway for DEGs. The expression of 8 genes (TNC, GRP, TRAF6, ADAMTS5, GPX3, FAP, DHCR7 and FDFT1) was detected. Except for TNC and GPX3, the other 6 genes in qRT-PCR played the same pattern with that in our integrated analysis. Conclusions The dysregulation of these eight genes may involve with the process of AMD. Two crucial transcription factors (c-rel and myogenin) were concluded to play a role in AMD. Especially, myogenin was associated with AMD by regulating TNC, GRP and FAP. Our finding can contribute to developing new potential biomarkers, revealing the underlying pathogenesis, and further raising new therapeutic targets for AMD. Electronic supplementary material The online version of this article (doi:10.1186/s12886-017-0498-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Ophthlmology, Affiliated Hospital of Taishan Medical College, No.706 Taishan street, Taian, 271000, China
| | - Mengya Wang
- Department of Ophthlmology, Peoples Hospital of Feicheng, No. 108 Xincheng Road, Feicheng, 271699, China
| | - Jing Xu
- Department of Ophthlmology, The First Peoples Hospital of Jining, Shandong, No.6 Jiankang Road, Jining, 272011, China.
| | - Min Li
- Department of Ophthlmology, The Third Peoples Hospital of Xintai, No.127 Cuyang street, Taian, 271212, China
| | - Yuhui Yu
- Department of Ophthlmology, Affiliated Hospital of Taishan Medical College, No.706 Taishan street, Taian, 271000, China
| |
Collapse
|
5
|
Yan W, Xue W, Chen J, Hu G. Biological Networks for Cancer Candidate Biomarkers Discovery. Cancer Inform 2016; 15:1-7. [PMID: 27625573 PMCID: PMC5012434 DOI: 10.4137/cin.s39458] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/06/2016] [Accepted: 06/16/2016] [Indexed: 12/16/2022] Open
Abstract
Due to its extraordinary heterogeneity and complexity, cancer is often proposed as a model case of a systems biology disease or network disease. There is a critical need of effective biomarkers for cancer diagnosis and/or outcome prediction from system level analyses. Methods based on integrating omics data into networks have the potential to revolutionize the identification of cancer biomarkers. Deciphering the biological networks underlying cancer is undoubtedly important for understanding the molecular mechanisms of the disease and identifying effective biomarkers. In this review, the networks constructed for cancer biomarker discovery based on different omics level data are described and illustrated from recent advances in the field.
Collapse
Affiliation(s)
- Wenying Yan
- Center for Systems Biology, Soochow University, Suzhou, Jiangsu, China
| | - Wenjin Xue
- Department of Electrical Engineering, Technician College of Taizhou, Taizhou, Jiangsu, China
| | - Jiajia Chen
- School of Chemistry, Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Guang Hu
- Center for Systems Biology, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
6
|
Agarwal N, Dancik GM, Goodspeed A, Costello JC, Owens C, Duex JE, Theodorescu D. GON4L Drives Cancer Growth through a YY1-Androgen Receptor-CD24 Axis. Cancer Res 2016; 76:5175-85. [PMID: 27312530 DOI: 10.1158/0008-5472.can-16-1099] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/02/2016] [Indexed: 11/16/2022]
Abstract
In principle, the inhibition of candidate gain-of-function genes defined through genomic analyses of large patient cohorts offers an attractive therapeutic strategy. In this study, we focused on changes in expression of CD24, a well-validated clinical biomarker of poor prognosis and a driver of tumor growth and metastasis, as a benchmark to assess functional relevance. Through this approach, we identified GON4L as a regulator of CD24 from screening a pooled shRNA library of 176 candidate gain-of-function genes. GON4L depletion reduced CD24 expression in human bladder cancer cells and blocked cell proliferation in vitro and tumor xenograft growth in vivo Mechanistically, GON4L interacted with transcription factor YY1, promoting its association with the androgen receptor to drive CD24 expression and cell growth. In clinical bladder cancer specimens, expression of GON4L, YY1, and CD24 was elevated compared with normal bladder urothelium. This pathway is biologically relevant in other cancer types as well, where CD24 and the androgen receptor are clinically prognostic, given that silencing of GON4L and YY1 suppressed CD24 expression and growth of human lung, prostate, and breast cancer cells. Overall, our results define GON4L as a novel driver of cancer growth, offering new biomarker and therapeutic opportunities. Cancer Res; 76(17); 5175-85. ©2016 AACR.
Collapse
Affiliation(s)
- Neeraj Agarwal
- Department of Pharmacology, University of Colorado, Denver, Colorado. Department of Surgery (Urology), University of Colorado, Denver, Colorado
| | - Garrett M Dancik
- Department of Mathematics and Computer Science, Eastern Connecticut State University, Willimantic, Connecticut
| | - Andrew Goodspeed
- Department of Pharmacology, University of Colorado, Denver, Colorado
| | - James C Costello
- Department of Pharmacology, University of Colorado, Denver, Colorado. University of Colorado Comprehensive Cancer Center, Denver, Colorado
| | - Charles Owens
- Department of Pharmacology, University of Colorado, Denver, Colorado. Department of Surgery (Urology), University of Colorado, Denver, Colorado
| | - Jason E Duex
- Department of Pharmacology, University of Colorado, Denver, Colorado. Department of Surgery (Urology), University of Colorado, Denver, Colorado
| | - Dan Theodorescu
- Department of Pharmacology, University of Colorado, Denver, Colorado. Department of Surgery (Urology), University of Colorado, Denver, Colorado. University of Colorado Comprehensive Cancer Center, Denver, Colorado.
| |
Collapse
|
7
|
Zekri ARN, Hassan ZK, Bahnassy AA, Khaled HM, El-Rouby MN, Haggag RM, Abu-Taleb FM. Differentially expressed genes in metastatic advanced Egyptian bladder cancer. Asian Pac J Cancer Prev 2016; 16:3543-9. [PMID: 25921176 DOI: 10.7314/apjcp.2015.16.8.3543] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bladder cancer is one of the most common cancers worldwide. Gene expression profiling using microarray technologies improves the understanding of cancer biology. The aim of this study was to determine the gene expression profile in Egyptian bladder cancer patients. MATERIALS AND METHODS Samples from 29 human bladder cancers and adjacent non-neoplastic tissues were analyzed by cDNA microarray, with hierarchical clustering and multidimensional analysis. RESULTS Five hundred and sixteen genes were differentially expressed of which SOS1, HDAC2, PLXNC1, GTSE1, ULK2, IRS2, ABCA12, TOP3A, HES1, and SRP68 genes were involved in 33 different pathways. The most frequently detected genes were: SOS1 in 20 different pathways; HDAC2 in 5 different pathways; IRS2 in 3 different pathways. There were 388 down-regulated genes. PLCB2 was involved in 11 different pathways, MDM2 in 9 pathways, FZD4 in 5 pathways, p15 and FGF12 in 4 pathways, POLE2 in 3 pathways, and MCM4 and POLR2E in 2 pathways. Thirty genes showed significant differences between transitional cell cancer (TCC) and squamous cell cancer (SCC) samples. Unsupervised cluster analysis of DNA microarray data revealed a clear distinction between low and high grade tumors. In addition 26 genes showed significant differences between low and high tumor stages, including fragile histidine triad, Ras and sialyltransferase 8 (alpha) and 16 showed significant differences between low and high tumor grades, like methionine adenosyl transferase II, beta. CONCLUSIONS The present study identified some genes, that can be used as molecular biomarkers or target genes in Egyptian bladder cancer patients.
Collapse
Affiliation(s)
- Abdel-Rahman N Zekri
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt E-mail :
| | | | | | | | | | | | | |
Collapse
|
8
|
Lei Y, Hu X, Li B, Peng M, Tong S, Zu X, Wang Z, Qi L, Chen M. miR-150 modulates cisplatin chemosensitivity and invasiveness of muscle-invasive bladder cancer cells via targeting PDCD4 in vitro. Med Sci Monit 2014; 20:1850-7. [PMID: 25287716 PMCID: PMC4199406 DOI: 10.12659/msm.891340] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Chemotherapeutic insensitivity and tumor cell invasiveness are major obstacles to effectively treating muscle-invasive bladder cancer (MIBC). Recent reports show that microRNAs (miRNAs) play an important role in the chemotherapeutic response and disease progression of MIBC. Therefore, here we investigated the role of miR-150 in MIBC cells in vitro. MATERIAL AND METHODS miR-150 expression was quantified by qRT-PCR in two MIBC cell lines (5637 and T24). After successful miR-150 inhibition by transfection, MTS and transwell assays were used to assess the MIBC's cisplatin sensitivity and cell invasiveness, respectively. The TargetScan database and a luciferase reporter system were used to identify whether the programmed cell death 4 protein (PDCD4) is a direct target of miR-150 in MIBC cells. RESULTS miR-150 expression was found to be significantly increased in both MIBC cell lines, and treatment with a miR-150 inhibitor significantly sensitized MIBC cells to cisplatin and inhibited MIBC cell invasiveness. PDCD4 was identified as a direct target of miR-150 in MIBC cells, and increased PDCD4 expression via transfection with the pLEX-PDCD4 plasmid efficiently sensitized MIBC cells to cisplatin chemotherapy and inhibited MIBC cell invasiveness. CONCLUSIONS This study provides novel evidence that miR-150 functions as a tumor promoter in reducing chemosensitivity and promoting invasiveness of MIBC cells via targeting PDCD4. Thus, modulation of the miR-150-PDCD4 axis shows promise as a therapeutic strategy for MIBC.
Collapse
Affiliation(s)
- Ye Lei
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Xiheng Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Bin Li
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Minyuan Peng
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Shiyu Tong
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Zhi Wang
- Department of Urology, Xiangya Hospital of Central South University, Changsha, Hunan, China (mainland)
| | - Lin Qi
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Minfeng Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| |
Collapse
|