1
|
Diab M, Hamdi A, Al-Obeidat F, Hafez W, Cherrez-Ojeda I, Gador M, Rashid G, Elkhazin SF, Ibrahim MA, Ismail TF, Alkafaas SS. Discovery of drug transporter inhibitors tied to long noncoding RNA in resistant cancer cells; a computational model -in silico- study. Front Immunol 2025; 16:1511029. [PMID: 40352931 PMCID: PMC12061905 DOI: 10.3389/fimmu.2025.1511029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/26/2025] [Indexed: 05/14/2025] Open
Abstract
Chemotherapeutic resistance is a major obstacle to chemotherapeutic failure. Cancer cell resistance involves several mechanisms, including epithelial-to-mesenchymal transition (EMT), signaling pathway bypass, drug efflux activation, and impairment of drug entry. P-glycoproteins (P-gp) are an efflux transporter that pumps chemotherapeutic drugs out of cancer cells, resulting in chemotherapeutic resistance. Several types of long noncoding RNA (lncRNAs) have been identified in resistant cancer cells, including ODRUL, MALAT1, and ANRIL. The high expression level of ODRUL is related to the induction of ATP-binding cassette (ABC) gene expression, resulting in the emergence of doxorubicin resistance in osteosarcoma. lncRNAs are observed to be regulators of drug transporters in cancer cells such as MALAT1 and ANRIL. Targeting P-gp expression using natural products is a new strategy to overcome cancer cell resistance and improve the sensitivity of resistant cells toward chemotherapies. This review validates the inhibitory effects of natural products on P-gp expression and activity using in silico molecular docking. In silico analysis showed that Delphinidin and Asparagoside-f are the most significant natural product inhibitors of p-glycoprotein-1. These inhibitors can reverse multi-drug resistance and induce the sensitivity of resistant cancer cells toward chemotherapy based on in silico molecular docking. It is important to validate that pre-elementary docking can be confirmed using in vitro and in vivo experimental data.
Collapse
Affiliation(s)
- Mohanad Diab
- Mediclinic Airport Road Hospital, Abu Dhabi, United Arab Emirates
| | - Amel Hamdi
- Molecular biology and Hematology, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Feras Al-Obeidat
- College of Technological Innovation at Zayed University, Abu Dhabi, United Arab Emirates
| | - Wael Hafez
- NMC Royal Hospital, Abu Dhabi, United Arab Emirates
- Department of Internal Medicine, Medical Research and Clinical Studies Institute, The National Research Center, Cairo, Egypt
| | - Ivan Cherrez-Ojeda
- School of Health, Universidad Espíritu Santo-Ecuador, Samborondón, Guayas, Ecuador
- Respiralab Research Group, Guayaquil, Guayas, Ecuador
| | - Muneir Gador
- NMC Royal Hospital, Abu Dhabi, United Arab Emirates
| | - Gowhar Rashid
- Department of Clinical Biochemistry, Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, India
| | - Sana F. Elkhazin
- Mediclinic Airport Road Hospital, Abu Dhabi, United Arab Emirates
| | | | | | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
2
|
Orlandella FM, Arcone R, Luciano N, Salvatore G, Motti ML. Novel Biological Strategies for Melanoma Therapy: A Focus on lncRNAs and Their Targeting. Cancers (Basel) 2025; 17:1273. [PMID: 40282449 PMCID: PMC12025846 DOI: 10.3390/cancers17081273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
Increasing evidence revealed that restoring the correct expression of lncRNAs could have implications in the management of melanoma patients. In this context, here, we aim to dissect the main characteristics of lncRNAs altered in melanoma and their crosstalk with the signaling pathways involved in the progression of this disease. We also highlight the role of nucleic acid-based techniques and natural compounds (i.e., phytochemicals) as a therapeutic tool to increase or silence their expression in cancer cells. Finally, we explore the advances in nanotechnologies as delivery systems to efficiently carry these chemicals into cancer cells, thus limiting their potential off-target effects. The analysis of the literature showed that HOTAIR, MALAT1, and H19 are the oncogenic lncRNAs most studied in melanoma, while MEG3 is an important tumor suppressor decreased in this cancer. The aberrant expression of these lncRNAs affects several hallmarks of cancer, e.g., proliferation, motility, and epithelial to mesenchymal transition, promoting the melanoma plasticity and drug resistance. In this frame, siRNA, antisense oligonucleotide, and CRISPR-Cas9 genome editing appear to be the most effective nucleic acid strategies to restore the physiologic expression of lncRNA, while curcumin, resveratrol, and quercetin are the main phytochemicals able to target and influence the expression of lncRNAs altered in cancer. Overall, this study provides a comprehensive overview regarding the role of lncRNAs in the phenotype plasticity of melanoma cells and their potential targeting using RNA-based therapy and natural products.
Collapse
Affiliation(s)
- Francesca Maria Orlandella
- Department of Medical, Human Movement and Well-Being Sciences, University of Naples Parthenope, 80133 Naples, Italy; (F.M.O.); (R.A.); (N.L.)
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy
| | - Rosaria Arcone
- Department of Medical, Human Movement and Well-Being Sciences, University of Naples Parthenope, 80133 Naples, Italy; (F.M.O.); (R.A.); (N.L.)
| | - Neila Luciano
- Department of Medical, Human Movement and Well-Being Sciences, University of Naples Parthenope, 80133 Naples, Italy; (F.M.O.); (R.A.); (N.L.)
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy
| | - Giuliana Salvatore
- Department of Medical, Human Movement and Well-Being Sciences, University of Naples Parthenope, 80133 Naples, Italy; (F.M.O.); (R.A.); (N.L.)
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy
| | - Maria Letizia Motti
- Department of Medical, Human Movement and Well-Being Sciences, University of Naples Parthenope, 80133 Naples, Italy; (F.M.O.); (R.A.); (N.L.)
| |
Collapse
|
3
|
Abolfathi S, Zare M. The evaluation of chitosan hydrogel based curcumin effect on DNMT1, DNMT3A, DNMT3B, MEG3, HOTAIR gene expression in glioblastoma cell line. Mol Biol Rep 2023:10.1007/s11033-023-08531-0. [PMID: 37268862 DOI: 10.1007/s11033-023-08531-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/17/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Cancer is one of the most important causes of death worldwide. Some types of cancer, including glioblastoma, with a high potential for growth, invasion, and resistance to general treatments, chemotherapy, and radiotherapy, have a high potential for recurrence. Many chemical drugs have been used to treat it, but herbal drugs are more effective with fewer side effects; Therefore, this research aims to investigate the effect of curcumin-chitosan nano-complex on the expression of MEG3, HOTAIR, DNMT1, DNMT3A, DNMT3B genes in the glioblastoma cell line. METHODS In this research, glioblastoma cell line, PCR and spectrophotometry techniques, MTT test and transmission, field emission transmission, and fluorescent electron microscopes were used. RESULTS The morphological examination of the curcumin-chitosan nano-complex was without clumping, and the fluorescent microscope examination showed the nano-complex enters the cell and affects the genes expression. In its bioavailability studies, it was found that it significantly increases the death of cancer cells in a dose- and time-dependent manner. Gene expression tests showed that this nano-complex increased MEG3 gene expression compared to the control group, which is statistically significant (p < 0.05). It also decreased HOTAIR gene expression compared to the control group, which was not statistically significant (p > 0.05). It decreased the expression of DNMT1, DNMT3A, and DNMT3B genes compared to the control group, which is statistically significant (p < 0.05). CONCLUSION By using active plant substances such as curcumin, the active demethylation of brain cells can be directed to the path of inhibiting the growth of brain cancer cells and eliminating them.
Collapse
Affiliation(s)
- Sanaz Abolfathi
- Department of Biology, Faculty of Sciences, Payame Noor University, Shahre Rey, Iran
| | - Maryam Zare
- Department of Biology, Faculty of Sciences, Payame Noor University, Tehran, Iran.
| |
Collapse
|
4
|
Long Non-Coding RNAs as Novel Targets for Phytochemicals to Cease Cancer Metastasis. Molecules 2023; 28:molecules28030987. [PMID: 36770654 PMCID: PMC9921150 DOI: 10.3390/molecules28030987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Metastasis is a multi-step phenomenon during cancer development leading to the propagation of cancer cells to distant organ(s). According to estimations, metastasis results in over 90% of cancer-associated death around the globe. Long non-coding RNAs (LncRNAs) are a group of regulatory RNA molecules more than 200 base pairs in length. The main regulatory activity of these molecules is the modulation of gene expression. They have been reported to affect different stages of cancer development including proliferation, apoptosis, migration, invasion, and metastasis. An increasing number of medical data reports indicate the probable function of LncRNAs in the metastatic spread of different cancers. Phytochemical compounds, as the bioactive agents of plants, show several health benefits with a variety of biological activities. Several phytochemicals have been demonstrated to target LncRNAs to defeat cancer. This review article briefly describes the metastasis steps, summarizes data on some well-established LncRNAs with a role in metastasis, and identifies the phytochemicals with an ability to suppress cancer metastasis by targeting LncRNAs.
Collapse
|
5
|
Zhai W, Hu Y, Zhang Y, Zhang G, Chen H, Tan X, Zheng Y, Gao W, Wei Y, Wu J. A systematic review of phytochemicals from Chinese herbal medicines for non-coding RNAs-mediated cancer prevention and treatment: From molecular mechanisms to potential clinical applications. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
6
|
Homayoonfal M, Asemi Z, Yousefi B. Targeting long non coding RNA by natural products: Implications for cancer therapy. Crit Rev Food Sci Nutr 2021:1-29. [PMID: 34783279 DOI: 10.1080/10408398.2021.2001785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In spite of achieving substantial progress in its therapeutic strategies, cancer-associated prevalence and mortality are persistently rising globally. However, most malignant cancers either cannot be adequately diagnosed at the primary phase or resist against multiple treatments such as chemotherapy, surgery, radiotherapy as well as targeting therapy. In recent decades, overwhelming evidences have provided more convincing words on the undeniable roles of long non-coding RNAs (lncRNAs) in incidence and development of various cancer types. Recently, phytochemical and nutraceutical compounds have received a great deal of attention due to their inhibitory and stimulatory effects on oncogenic and tumor suppressor lncRNAs respectively that finally may lead to attenuate various processes of cancer cells such as growth, proliferation, metastasis and invasion. Therefore, application of phytochemicals with anticancer characteristics can be considered as an innovative approach for treating cancer and increasing the sensitivity of cancer cells to standard prevailing therapies. The purpose of this review was to investigate the effect of various phytochemicals on regulation of lncRNAs in different human cancer and evaluate their capabilities for cancer treatment and prevention.
Collapse
Affiliation(s)
- Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Liu JM, Li M, Luo W, Sun HB. Curcumin attenuates Adriamycin-resistance of acute myeloid leukemia by inhibiting the lncRNA HOTAIR/miR-20a-5p/WT1 axis. J Transl Med 2021; 101:1308-1317. [PMID: 34282279 DOI: 10.1038/s41374-021-00640-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is a common subtype of leukemia, and a large proportion of patients with AML eventually develop drug resistance. Curcumin exerts cancer suppressive effects and increases sensitivity to chemotherapy in several diseases. This study aimed to investigate the mechanism by which curcumin affects the resistance of AML to Adriamycin by regulating HOX transcript antisense RNA (HOTAIR) expression. Cell viability, colony-formation, flow cytometry, and Transwell assays were used to assess cell proliferation, apoptosis, and migration. A dual-luciferase reporter assay was used to verify the interaction between microRNA (miR)-20a-5p and HOTAIR or Wilms' tumor 1 (WT1). RT-qPCR and Western blotting assays were performed to detect gene and protein expression. The results showed that curcumin suppressed the resistance to Adriamycin, inhibited the expression of HOTAIR and WT1, and promoted the expression of miR-20a-5p in human acute leukemia cells (HL-60) or Adriamycin-resistant HL-60 cells (HL-60/ADR). Furthermore, curcumin suppressed proliferation and promoted apoptosis of HL-60/ADR cells. Overexpression of HOTAIR reversed the regulatory effect of curcumin on apoptosis and migration and restored the effect of curcumin on inducing the expression of cleaved caspase3, Bax, and P27. In addition, HOTAIR upregulated WT1 expression by targeting miR-20a-5p, and inhibition of miR-20a-5p reversed the regulation of Adriamycin resistance by curcumin in AML cells. Finally, curcumin inhibited Adriamycin resistance by suppressing the HOTAIR/miR-20a-5p/WT1 pathway in vivo. In short, curcumin suppressed the proliferation and migration, blocked the cell cycle progression of AML cells, and sensitized AML cells to Adriamycin by regulating the HOTAIR/miR-20a-5p/WT1 axis. These findings suggest a potential role of curcumin and HOTAIR in AML treatment.
Collapse
Affiliation(s)
- Jun-Min Liu
- Department of Hematology, People's Hospital of Longhua District, Shenzhen, Guangdong Province, People's Republic of China.
| | - Min Li
- Department of Hematology, People's Hospital of Longhua District, Shenzhen, Guangdong Province, People's Republic of China
| | - Wei Luo
- Department of Hematology, People's Hospital of Longhua District, Shenzhen, Guangdong Province, People's Republic of China
| | - Hong-Bo Sun
- Department of Hematology, People's Hospital of Longhua District, Shenzhen, Guangdong Province, People's Republic of China
| |
Collapse
|
8
|
Sun X, Chen Z. Cancer-associated fibroblast-derived CCL5 contributes to cisplatin resistance in A549 NSCLC cells partially through upregulation of lncRNA HOTAIR expression. Oncol Lett 2021; 22:696. [PMID: 34457051 PMCID: PMC8358620 DOI: 10.3892/ol.2021.12957] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/28/2021] [Indexed: 12/20/2022] Open
Abstract
Aberrant C-C motif chemokine ligand 5 (CCL5) is associated with disease progression, poor prognosis and chemotherapy resistance in human malignancy. The tumor microenvironment (TME) contributes to chemotherapy resistance. However, the role of cancer-associated fibroblasts (CAFs)-derived CCL5 is not well documented. Hence, the present study aimed to investigate the effects of CAFs on chemotherapy resistance in A549 non-small cell lung cancer (NSCLC) cells and the underlying mechanism. Primary CAFs isolated from patients with NSCLC were found to express and secrete elevated levels of CCL5, which attenuated cisplatin (DDP)-induced apoptosis, as indicated by flow cytometry analysis. In addition, CCL5 upregulated the expression levels of long non-coding RNA (lncRNA) HOX transcript antisense RNA (HOTAIR) in the tumor cells, and silencing HOTAIR in tumor cells enhanced the cytotoxic effect of cisplatin, characterized by decreased cell viability and increased apoptotic rate. Mechanistically, HOTAIR was found to inactivate the caspase-3/BCL-2 signaling pathway in A549 NSCLC cells. Collectively, the current study demonstrated that CAFs in the TME may serve a crucial role in the higher expression levels of CCL5 in tumors and that CAF-derived CCL5 may promote cisplatin resistance via upregulating lncRNA HOTAIR expression.
Collapse
Affiliation(s)
- Xiangjun Sun
- Department of Respiratory and Critical Care Medicine, Hanchuan People's Hospital, Hanchuan, Hubei 431600, P.R. China
| | - Zhijie Chen
- Department of General Surgery, Hanchuan People's Hospital, Hanchuan, Hubei 431600, P.R. China
| |
Collapse
|
9
|
Chen C, Zheng H. LncRNA LINC00944 Promotes Tumorigenesis but Suppresses Akt Phosphorylation in Renal Cell Carcinoma. Front Mol Biosci 2021; 8:697962. [PMID: 34291088 PMCID: PMC8287069 DOI: 10.3389/fmolb.2021.697962] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/25/2021] [Indexed: 11/23/2022] Open
Abstract
Long non-coding RNA (lncRNA) is a kind of RNA that possesses longer than 200 nucleotides and lacks protein coding function. It was recognized as a junk sequence for a long time. Recent studies have found that lncRNAs are actively functioning in almost every aspect of cell biology and involved in a variety of biological functions. LncRNAs are closely related to a variety of human diseases, especially tumors. Recently, lncRNAs are being increasingly reported in renal cancer. In our study, we identified the expression of lncRNA LINC00944 is significantly elevated in renal cell carcinoma (RCC) tissues and cell lines and high LINC00944 expression is significantly correlated with the tumor stage and prognosis of RCC. The knockdown of LINC00944 by CRISPR/dCas9-KRAB in higher expressing 786-O and 769-P RCC cells could significantly decrease proliferation and migration and also promote phosphorylation of Akt compared with the control group. Our study is the first to report the function of lncRNA LINC00944 in RCC. And we provide clinicopathological and experimental evidence that lncRNA LINC00944 acts as an oncogene in RCC, suggesting that targeting lncRNA LINC00944 expression might be a promising therapeutic strategy for the treatment of RCC.
Collapse
Affiliation(s)
- Chiheng Chen
- Department of Urology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hanxiong Zheng
- Department of Urology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
10
|
Gowhari Shabgah A, Hejri Zarifi S, Mazloumi Kiapey SS, Ezzatifar F, Pahlavani N, Soleimani D, Mohammadian Haftcheshmeh S, Mohammadi H, Gholizadeh Navashenaq J. Curcumin and cancer; are long non-coding RNAs missing link? PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 164:63-71. [PMID: 33894206 DOI: 10.1016/j.pbiomolbio.2021.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/08/2021] [Accepted: 04/15/2021] [Indexed: 02/08/2023]
Abstract
Despite significant signs of progress in cancer treatment over the past decade, either cancer prevalence or mortality continuously grow worldwide. Current anti-cancer agents show insignificant effectiveness, followed by serious side effects. It is important to find new, highly efficient pharmacological agents to increase cancer patients' clinical outcomes. Curcumin, a polyphenolic compound, has gained growing attention because of its anti-cancer properties. Curcumin can hinder the development, migration, and metastasis of cancer cells. The anti-cancer effects of curcumin are principally attributed to the regulation of several cellular signaling pathways, including MAPK/PI3K/Akt, Wnt/β-catenin, JAK/STAT, and NF-ĸB signaling pathways. Furthermore, curcumin can affect the expression and function of tumor-suppressive and oncogenic long non-coding RNAs (lncRNAs). In this study, we briefly reviewed the modulatory effect of curcumin on dysregulated tumor-supportive and tumor-suppressive lncRNAs in several cancers. It is hoped that a better understanding of curcumin's anti-cancer properties would pave the way for the development of a therapeutic approach in cancer.
Collapse
Affiliation(s)
| | - Sudiyeh Hejri Zarifi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Fatemeh Ezzatifar
- Molecular and Cell Biology Research Center, Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Naseh Pahlavani
- Social Development and Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran; Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Davood Soleimani
- Department of Nutritional Sciences, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeed Mohammadian Haftcheshmeh
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran; Students Research Committee, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | | |
Collapse
|
11
|
Role of Curcumin in Regulating Long Noncoding RNA Expression in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:13-23. [PMID: 33861433 DOI: 10.1007/978-3-030-64872-5_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phytochemicals are various compounds produced by plants. There is growing evidence on their potential health effects. Some of these compounds are considered as traditional medicines and used as painkillers, anti-inflammatory agents, and for other applications. One of these phytochemicals is curumin, a natural polyphenol derived from the turmeric plant (Curcuma longa L.). Curcumin is widely used as a food coloring, preservative and condiment. It has also been shown to have antioxidative and anti-inflammatory effects. Moreover, there is growing evidence that curcumin alters long noncoding RNAs (lncRNAs) in many kinds of cancer. These noncoding RNAs can cause epigenetic modulation in the expression of several genes. This study reviews reports of curcumin effects on lncRNAs in lung, prostate, colorectal, breast, pancreatic, renal, gastric, and ovarian cancers.
Collapse
|
12
|
Kalhori MR, Khodayari H, Khodayari S, Vesovic M, Jackson G, Farzaei MH, Bishayee A. Regulation of Long Non-Coding RNAs by Plant Secondary Metabolites: A Novel Anticancer Therapeutic Approach. Cancers (Basel) 2021; 13:cancers13061274. [PMID: 33805687 PMCID: PMC8001769 DOI: 10.3390/cancers13061274] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cancer is caused by the rapid and uncontrolled growth of cells that eventually lead to tumor formation. Genetic and epigenetic alterations are among the most critical factors in the onset of carcinoma. Phytochemicals are a group of natural compounds that play an essential role in cancer prevention and treatment. Long non-coding RNAs (lncRNAs) are potential therapeutic targets of bioactive phytochemicals, and these compounds could regulate the expression of lncRNAs directly and indirectly. Here, we critically evaluate in vitro and in vivo anticancer effects of phytochemicals in numerous human cancers via regulation of lncRNA expression and their downstream target genes. Abstract Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs that play an essential role in various cellular activities, such as differentiation, proliferation, and apoptosis. Dysregulation of lncRNAs serves a fundamental role in the progression and initiation of various diseases, including cancer. Precision medicine is a suitable and optimal treatment method for cancer so that based on each patient’s genetic content, a specific treatment or drug is prescribed. The rapid advancement of science and technology in recent years has led to many successes in this particular treatment. Phytochemicals are a group of natural compounds extracted from fruits, vegetables, and plants. Through the downregulation of oncogenic lncRNAs or upregulation of tumor suppressor lncRNAs, these bioactive compounds can inhibit metastasis, proliferation, invasion, migration, and cancer cells. These natural products can be a novel and alternative strategy for cancer treatment and improve tumor cells’ sensitivity to standard adjuvant therapies. This review will discuss the antineoplastic effects of bioactive plant secondary metabolites (phytochemicals) via regulation of expression of lncRNAs in various human cancers and their potential for the treatment and prevention of human cancers.
Collapse
Affiliation(s)
- Mohammad Reza Kalhori
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran;
| | - Hamid Khodayari
- International Center for Personalized Medicine, 40235 Düsseldorf, Germany; (H.K.); (S.K.)
- Breast Disease Research Center, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| | - Saeed Khodayari
- International Center for Personalized Medicine, 40235 Düsseldorf, Germany; (H.K.); (S.K.)
- Breast Disease Research Center, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| | - Miko Vesovic
- Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Gloria Jackson
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
| | - Mohammad Hosein Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6718874414, Iran
- Correspondence: (M.H.F.); or (A.B.)
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
- Correspondence: (M.H.F.); or (A.B.)
| |
Collapse
|
13
|
Kaleem M, Alhosin M, Khan K, Ahmad W, Hosawi S, Nur SM, Choudhry H, Zamzami MA, Al-Abbasi FA, Javed MDN. Epigenetic Basis of Polyphenols in Cancer Prevention and Therapy. POLYPHENOLS-BASED NANOTHERAPEUTICS FOR CANCER MANAGEMENT 2021:189-238. [DOI: 10.1007/978-981-16-4935-6_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
|
14
|
Han Z, He J, Zou M, Chen W, Lv Y, Li Y. Small interfering RNA target for long noncoding RNA PCGEM1 increases the sensitivity of LNCaP cells to baicalein. Anat Rec (Hoboken) 2020; 303:2077-2085. [PMID: 32445497 DOI: 10.1002/ar.24454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/13/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022]
Abstract
The objective of this study is to investigate the inhibitory effect and mechanism of long noncoding RNA PCGEM1 siRNA combined with baicalein on prostate cancer LNCaP cells. LNCaP cells transfected with small hairpin RNA lentiviral vector targeting PCGEM1 were constructed and their expression in LNCaP cells was absent. The stable cell line of LNCaP cells infected with LV3-shRNA-PCGEM1 was successfully constructed. In addition, LV3-shRNA-PCGEM1 was able to increase the baicalein-induced inhibitory effects on LNCaP cells, and the susceptibility was 2.3 fold higher than that of baicalein alone. LV3-shRNA-PCGEM1 combined with baicalein also inhibited the colony formation, increased G2 and S phase cells, inhibited the expression of PCGEM1, and induced autophagy of LNCaP cells. In summary, LV3-shRNA-PCGEM1 may improve the sensitivity of LNCaP cells to baicalein, and the molecular mechanism may be associated with the decrease of PCGEM1 expression and the induction of autophagy. Our findings provided an experimental basis for the combined treatment of Chinese traditional and Western medicine on prostate cancer in a clinical setting.
Collapse
Affiliation(s)
- Zeping Han
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, Guangdong, People's Republic of China
| | - Jinhua He
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, Guangdong, People's Republic of China
| | - Maoxian Zou
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, Guangdong, People's Republic of China
| | - Weiming Chen
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, Guangdong, People's Republic of China
| | - Yubing Lv
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, Guangdong, People's Republic of China
| | - Yuguang Li
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
15
|
Curcumin Inhibits Proliferation and Epithelial-Mesenchymal Transition in Lens Epithelial Cells through Multiple Pathways. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6061894. [PMID: 32337261 PMCID: PMC7154973 DOI: 10.1155/2020/6061894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/23/2020] [Accepted: 03/04/2020] [Indexed: 01/11/2023]
Abstract
Background Posterior capsule opacification (PCO), a complication of extracapsular lens extraction surgery that causes visual impairment, is characterized by aberrant proliferation and epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs). Curcumin, exerting inhibitive effects on cell proliferation and EMT in cancer, serves as a possible antidote towards PCO. Methods Cellular proliferation of LECs after treatment of curcumin was measured with MTT assay and flow cytometry. The transcriptional and expressional levels of proteins related to proliferation and EMT of LECs were quantified by western blotting and real-time PCR. Results Curcumin was found to suppress the proliferation of LECs by inducing G2/M arrest via possible inhibition of cell cycle-related proteins including CDK1, cyclin B1, and CDC25C. It had also inactivated proliferation pathways involving ERK1/2 and Akt pathways in LECs. On the other hand, curcumin downregulated the EMT of LECs through blocking the TGF-β/Smad pathway and interfering Notch pathway which play important roles in PCO. Conclusions This study shows that curcumin could suppress the proliferation and EMT in LECs, and it might be a potential therapeutic protection against visual loss induced by PCO.
Collapse
|
16
|
Saghafi T, Taheri RA, Parkkila S, Emameh RZ. Phytochemicals as Modulators of Long Non-Coding RNAs and Inhibitors of Cancer-Related Carbonic Anhydrases. Int J Mol Sci 2019; 20:E2939. [PMID: 31208095 PMCID: PMC6627131 DOI: 10.3390/ijms20122939] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 01/17/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are classified as a group of transcripts which regulate various biological processes, such as RNA processing, epigenetic control, and signaling pathways. According to recent studies, lncRNAs are dysregulated in cancer and play an important role in cancer incidence and spreading. There is also an association between lncRNAs and the overexpression of some tumor-associated proteins, including carbonic anhydrases II, IX, and XII (CA II, CA IX, and CA XII). Therefore, not only CA inhibition, but also lncRNA modulation, could represent an attractive strategy for cancer prevention and therapy. Experimental studies have suggested that herbal compounds regulate the expression of many lncRNAs involved in cancer, such as HOTAIR (HOX transcript antisense RNA), H19, MALAT1 (metastasis-associated lung adenocarcinoma transcript 1), PCGEM1 (Prostate cancer gene expression marker 1), PVT1, etc. These plant-derived drugs or phytochemicals include resveratrol, curcumin, genistein, quercetin, epigallocatechin-3-galate, camptothcin, and 3,3'-diindolylmethane. More comprehensive information about lncRNA modulation via phytochemicals would be helpful for the administration of new herbal derivatives in cancer therapy. In this review, we describe the state-of-the-art and potential of phytochemicals as modulators of lncRNAs in different types of cancers.
Collapse
Affiliation(s)
- Tayebeh Saghafi
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran.
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O.Box 14965/161 Tehran, Iran.
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland.
- Fimlab Laboratories Ltd. and Tampere University Hospital, FI-33520 Tampere, Finland.
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran.
| |
Collapse
|
17
|
Mishra S, Verma SS, Rai V, Awasthee N, Chava S, Hui KM, Kumar AP, Challagundla KB, Sethi G, Gupta SC. Long non-coding RNAs are emerging targets of phytochemicals for cancer and other chronic diseases. Cell Mol Life Sci 2019; 76:1947-1966. [PMID: 30879091 PMCID: PMC7775409 DOI: 10.1007/s00018-019-03053-0] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 02/01/2019] [Accepted: 02/19/2019] [Indexed: 12/18/2022]
Abstract
The long non-coding RNAs (lncRNAs) are the crucial regulators of human chronic diseases. Therefore, approaches such as antisense oligonucleotides, RNAi technology, and small molecule inhibitors have been used for the therapeutic targeting of lncRNAs. During the last decade, phytochemicals and nutraceuticals have been explored for their potential against lncRNAs. The common lncRNAs known to be modulated by phytochemicals include ROR, PVT1, HOTAIR, MALAT1, H19, MEG3, PCAT29, PANDAR, NEAT1, and GAS5. The phytochemicals such as curcumin, resveratrol, sulforaphane, berberine, EGCG, and gambogic acid have been examined against lncRNAs. In some cases, formulation of phytochemicals has also been used. The disease models where phytochemicals have been demonstrated to modulate lncRNAs expression include cancer, rheumatoid arthritis, osteoarthritis, and nonalcoholic fatty liver disease. The regulation of lncRNAs by phytochemicals can affect multi-steps of tumor development. When administered in combination with the conventional drugs, phytochemicals can also produce synergistic effects on lncRNAs leading to the sensitization of cancer cells. Phytochemicals target lncRNAs either directly or indirectly by affecting a wide variety of upstream molecules. However, the potential of phytochemicals against lncRNAs has been demonstrated mostly by preclinical studies in cancer models. How the modulation of lncRNAs by phytochemicals produce therapeutic effects on cancer and other chronic diseases is discussed in this review.
Collapse
Affiliation(s)
- Shruti Mishra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Sumit S Verma
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Vipin Rai
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Nikee Awasthee
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Srinivas Chava
- Department of Biochemistry and Molecular Biology, and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kam Man Hui
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, 169610, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Kishore B Challagundla
- Department of Biochemistry and Molecular Biology, and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
18
|
Xiang Y, Guo Z, Zhu P, Chen J, Huang Y. Traditional Chinese medicine as a cancer treatment: Modern perspectives of ancient but advanced science. Cancer Med 2019; 8:1958-1975. [PMID: 30945475 PMCID: PMC6536969 DOI: 10.1002/cam4.2108] [Citation(s) in RCA: 477] [Impact Index Per Article: 79.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/26/2019] [Accepted: 03/07/2019] [Indexed: 12/24/2022] Open
Abstract
Traditional Chinese medicine (TCM) has been practiced for thousands of years and at the present time is widely accepted as an alternative treatment for cancer. In this review, we sought to summarize the molecular and cellular mechanisms underlying the chemopreventive and therapeutic activity of TCM, especially that of the Chinese herbal medicine-derived phytochemicals curcumin, resveratrol, and berberine. Numerous genes have been reported to be involved when using TCM treatments and so we have selectively highlighted the role of a number of oncogene and tumor suppressor genes in TCM therapy. In addition, the impact of TCM treatment on DNA methylation, histone modification, and the regulation of noncoding RNAs is discussed. Furthermore, we have highlighted studies of TCM therapy that modulate the tumor microenvironment and eliminate cancer stem cells. The information compiled in this review will serve as a solid foundation to formulate hypotheses for future studies on TCM-based cancer therapy.
Collapse
Affiliation(s)
- Yuening Xiang
- College of Life and Health SciencesNortheastern UniversityShenyangChina
| | - Zimu Guo
- College of Life and Health SciencesNortheastern UniversityShenyangChina
| | - Pengfei Zhu
- College of Life and Health SciencesNortheastern UniversityShenyangChina
| | - Jia Chen
- College of Life and Health SciencesNortheastern UniversityShenyangChina
| | - Yongye Huang
- College of Life and Health SciencesNortheastern UniversityShenyangChina
| |
Collapse
|
19
|
Kouhpeikar H, Butler AE, Bamian F, Barreto GE, Majeed M, Sahebkar A. Curcumin as a therapeutic agent in leukemia. J Cell Physiol 2019; 234:12404-12414. [PMID: 30609023 DOI: 10.1002/jcp.28072] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/18/2018] [Indexed: 12/28/2022]
Abstract
Leukemia comprises a group of hematological malignancies responsible for 8% of all cancers and is the most common cancer in children. Despite significant improvements in leukemia treatment, the efficacy of conventional chemotherapeutic agents is low and the disease carries a poor prognosis with frequent relapses and high mortality. Curcumin is a yellow polyphenol compound with diverse pharmacological actions including anticancer, antioxidant, antidiabetic, anti-inflammatory, immunomodulatory, hepatoprotective, lipid-regulating, antidepressant, and antiarthritic. Many cellular and experimental studies have reported the benefits of curcumin in treating leukemia. Curcumin's anticancer effects are exerted via various mechanisms. Here, we review the effects of curcumin on various types of leukemia whilst considering its mechanisms of action.
Collapse
Affiliation(s)
- Hamideh Kouhpeikar
- Department of Hematology and Blood Bank, Cancer Molecular Pathology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Alexandra E Butler
- Diabetes Research Center, Qatar Biomedical Research Institute, Doha, Qatar
| | - Faeze Bamian
- Department of Hematology and Blood Bank, Cancer Molecular Pathology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Biersack B. Relations between approved platinum drugs and non-coding RNAs in mesothelioma. Noncoding RNA Res 2018; 3:161-173. [PMID: 30809599 PMCID: PMC6260483 DOI: 10.1016/j.ncrna.2018.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/29/2018] [Indexed: 12/23/2022] Open
Abstract
Malignant mesothelioma diseases feature an increasing risk due to their severe forms and their association with asbestos exposure. Platinum(II) complexes such as cisplatin and carboplatin are clinically approved for the therapy of mesothelioma often in combination with antimetabolites such as pemetrexed or gemcitabine. It was observed that pathogenic properties of mesothelioma cells and the response of mesothelioma tumors towards platinum-based drugs are strongly influenced by non-coding RNAs, in particular, by small microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). These non-coding RNAs controlled drug sensitivity and the development of tumor resistance towards platinum drugs. An overview of the interactions between platinum drugs and non-coding RNAs is given and the influence of non-coding RNAs on platinum drug efficacy in mesothelioma is discussed. Suitable non-coding RNA-modulating agents with potentially beneficial effects on cisplatin treatment of mesothelioma diseases are mentioned. The understanding of mesothelioma diseases concerning the interactions of non-coding RNAs and platinum drugs will optimize existing therapy schemes and pave the way to new treatment options in future.
Collapse
Key Words
- ABC, ATP-binding cassette
- AKBA, 3-acetyl-11-keto-β-boswellic acid
- AKI, acute kidney injury
- Anticancer drugs
- Bcl-2, B-cell lymphoma 2
- CAF, cancer-associated fibroblast
- CBDCA, cyclobutane-1,1-dicarboxylate
- Carboplatin
- Cisplatin
- DADS, diallyl sulfide
- DHA, docosahexaenoic acid
- DIM, 3,3′-diindolylmethane
- DMPM, diffuse malignant peritoneal mesothelioma
- EGCG, epigallocatechin-3-gallate
- EMT, epithelial-mesenchymal transition
- HOTAIR, HOX transcript antisense RNA
- I3C, indole-3-carbinol
- Long non-coding RNA
- MALAT1, metastasis-associated lung adenocarcinoma transcript 1
- MPM, malignant pleural mesothelioma
- MRP1, multidrug resistance protein 1
- Mesothelioma
- MicroRNA
- NSCLC, non-small cell lung cancer
- NaB, sodium butyrate
- PDCD4, programmed cell death 4
- PEG, polyethylene glycole
- PEITC, phenethylisothiocyanate
- PTEN, phosphatase and tensin homolog
- RA, retinoic acid
- SAHA, suberoylanilide hydroxamic acid
- SFN, sulforaphane
- TNBC, triple-negative breast cancer
- TSA, trichostatin A
Collapse
|
21
|
Biersack B. Interplay of non-coding RNAs and approved antimetabolites such as gemcitabine and pemetrexed in mesothelioma. Noncoding RNA Res 2018; 3:213-225. [PMID: 30809600 PMCID: PMC6257890 DOI: 10.1016/j.ncrna.2018.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/03/2018] [Accepted: 11/03/2018] [Indexed: 12/13/2022] Open
Abstract
Gemcitabine and pemetrexed are clinically approved antimetabolites for the therapy of mesothelioma diseases. These drugs are often applied in combination with platinum complexes and other drugs. The activity of antimetabolites depended on the expression levels of certain non-coding RNAs, in particular, of small microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). The development of tumor resistance towards antimetabolites was regulated by non-coding RNAs. An overview of the interplay between gemcitabine/pemetrexed antimetabolites and non-coding RNAs in mesothelioma is provided. Further to this, various non-coding RNA-modulating agents are discussed which displayed positive effects on gemcitabine or pemetrexed treatment of mesothelioma diseases. A detailed knowledge of the connections of non-coding RNAs with antimetabolites will be constructive for the design of improved therapies in future.
Collapse
Key Words
- AKBA, 3-acetyl-11-keto-β-boswellic acid
- Anticancer drugs
- Bcl-2, B-cell lymphoma 2
- DADS, diallyl sulfide
- DHA, docosahexaenoic acid
- DIM, 3,3‘-diindolylmethane
- DMPM, diffuse malignant peritoneal mesothelioma
- EGCG, epigallocatechin-3-gallate
- EMT, epithelial-mesenchymal transition
- Gemcitabine
- HOTAIR, HOX transcript antisense RNA
- I3C, indole-3-carbinol
- Long non-coding RNA
- MALAT1, metastasis-associated lung adenocarcinoma transcript 1
- MPM, malignant pleural mesothelioma
- Mesothelioma
- MicroRNA
- NSCLC, non-small cell lung cancer
- NaB, sodium butyrate
- PDCD4, programmed cell death 4
- PEG, polyethylene glycole
- PEITC, phenethylisothiocyanate
- PTEN, phosphatase and tensin homolog
- Pemetrexed
- RA, retinoic acid
- SAHA, suberoylanilide hydroxamic acid
- SFN, sulforaphane
- TSA, trichostatin A
Collapse
|
22
|
Rathinasamy B, Velmurugan BK. Role of lncRNAs in the cancer development and progression and their regulation by various phytochemicals. Biomed Pharmacother 2018; 102:242-248. [PMID: 29567536 DOI: 10.1016/j.biopha.2018.03.077] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/07/2018] [Accepted: 03/13/2018] [Indexed: 12/11/2022] Open
Abstract
Long non coding RNAs (lncRNAs) are involved in modulating the expression of other non-coding RNAs (ncRNA), such as microRNAs, or target proteins through the epigenetic, transcriptional, or post-transcriptional regulations. Genomic mutations in cancer reside inside regions that do not code for proteins and these regions are often transcribed into long non coding RNAs (lncRNAs). Emerging evidences have revealed an intense involvement of lncRNAs in the cancer development and progression. Recently, emerging evidences have depicted that the phytochemicals interact with lncRNAs to modulate their activities. Such findings are highly important for the identification of therapeutic strategies against diseases that are particularly associated with an aberrant lncRNA signaling. This review aims at deciphering the role of lncRNAs in the cancer development and progression, and their regulation by various phytochemicals.
Collapse
Affiliation(s)
- Baskaran Rathinasamy
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | | |
Collapse
|
23
|
Khan MI, Rath S, Adhami VM, Mukhtar H. Targeting epigenome with dietary nutrients in cancer: Current advances and future challenges. Pharmacol Res 2018; 129:375-387. [DOI: 10.1016/j.phrs.2017.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/22/2017] [Accepted: 12/05/2017] [Indexed: 02/06/2023]
|
24
|
Zhao W, Zhou X, Qi G, Guo Y. Curcumin suppressed the prostate cancer by inhibiting JNK pathways via epigenetic regulation. J Biochem Mol Toxicol 2018; 32:e22049. [PMID: 29485738 DOI: 10.1002/jbt.22049] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/21/2018] [Accepted: 01/25/2018] [Indexed: 01/22/2023]
Abstract
Curcumin is a component of turmeric and is isolated from the rhizomes of the plant Curcuma longa. Curcumin was reported to have therapeutic effects on prostate cancer. Yet the molecular mechanism of curcumin remains unclear. In this study, mouse prostate cancer xenograft model was established and subjected to curcumin treatment. GST-c-Jun pull down kinase assays were performed to study the phospho-c-Jun level. Cell Counting Kit-8 assay kit was utilized to detect the cell viability. Immunoblotting and qRT-PCR were performed for target gene expression analysis. Curcumin inhibited growth of prostate cancer in vivo as well as promoted apoptosis of LNCaP cells in vitro. Curcumin inhibited JNK pathway and repressed H3K4me3 in LNCaP cells. Combined use of curcumin and JQ-1 inhibited the prostate cancer efficiently. In conclusion, curcumin inhibits JNK pathway and plays a role in epigenetic regulation of prostate cancer cells by repressing H3K4me3.
Collapse
Affiliation(s)
- Wanli Zhao
- Second Department of Urology, Cangzhou Central Hospital, Cangzhou, 061000, China
| | - Xudong Zhou
- Second Department of Urology, Cangzhou Central Hospital, Cangzhou, 061000, China
| | - Guisong Qi
- Second Department of Urology, Cangzhou Central Hospital, Cangzhou, 061000, China
| | - Yuexian Guo
- Department of Urological Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 0550051, China
| |
Collapse
|
25
|
The Role of Compounds Derived from Natural Supplement as Anticancer Agents in Renal Cell Carcinoma: A Review. Int J Mol Sci 2017; 19:ijms19010107. [PMID: 29301217 PMCID: PMC5796057 DOI: 10.3390/ijms19010107] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/24/2017] [Accepted: 12/28/2017] [Indexed: 12/24/2022] Open
Abstract
Renal Cell Carcinoma (RCC) is the most prominent kidney cancer derived from renal tubules and accounts for roughly 85% of all malignant kidney cancer. Every year, over 60,000 new cases are registered, and about 14,000 people die from RCC. The incidence of this has been increasing significantly in the U.S. and other countries. An increased understanding of molecular biology and the genomics of RCC has uncovered several signaling pathways involved in the progression of this cancer. Significant advances in the treatment of RCC have been reported from agents approved by the Food and Drug Administration (FDA) that target these pathways. These agents have become drugs of choice because they demonstrate clinical benefit and increased survival in patients with metastatic disease. However, the patients eventually relapse and develop resistance to these drugs. To improve outcomes and seek approaches for producing long-term durable remission, the search for more effective therapies and preventative strategies are warranted. Treatment of RCC using natural products is one of these strategies to reduce the incidence. However, recent studies have focused on these chemoprevention agents as anti-cancer therapies given they can inhibit tumor cell grow and lack the severe side effects common to synthetic compounds. This review elaborates on the current understanding of natural products and their mechanisms of action as anti-cancer agents. The present review will provide information for possible use of these products alone or in combination with chemotherapy for the prevention and treatment of RCC.
Collapse
|
26
|
Jin L, Quan J, Pan X, He T, Hu J, Li Y, Gui Y, Yang S, Mao X, Chen Y, Lai Y. Identification of lncRNA EGOT as a tumor suppressor in renal cell carcinoma. Mol Med Rep 2017; 16:7072-7079. [PMID: 28901455 DOI: 10.3892/mmr.2017.7470] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 07/13/2017] [Indexed: 11/06/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common type of kidney cancer and the prognosis of metastatic RCC remains poor, with a high rate of recurrence and mortality. Long non‑coding RNA (lncRNA) is a class of RNA which serves important roles in multiple cellular processes and tumorigenesis. In the present study, the expression and function of lncRNA eosinophil granule ontogeny transcript (EGOT) were examined in RCC. In 24 paired tissues (RCC tissues and adjacent normal tissues) the results of reverse transcription‑quantitative polymerase chain reaction analysis revealed that EGOT was downregulated in 22 RCC tissues compared with paired tissues. Upregulation of lncRNA EGOT by transfection of 786‑O and ACHN RCC cells with pcDNA3.1‑EGOT suppressed cell proliferation, migration and invasion, and induced RCC cell apoptosis. The results demonstrated that EGOT may serve as a tumor suppressor in RCC and may be a potential prognostic biomarker of RCC.
Collapse
Affiliation(s)
- Lu Jin
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Jing Quan
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Xiang Pan
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Tao He
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Jia Hu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Yifan Li
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Yaoting Gui
- Department of Urology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Shangqi Yang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Xiangming Mao
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Yun Chen
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Yongqing Lai
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| |
Collapse
|
27
|
Curcumin enhances the radiosensitivity of renal cancer cells by suppressing NF-κB signaling pathway. Biomed Pharmacother 2017; 94:974-981. [DOI: 10.1016/j.biopha.2017.07.148] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/18/2017] [Accepted: 07/30/2017] [Indexed: 01/06/2023] Open
|
28
|
Epigenome Aberrations: Emerging Driving Factors of the Clear Cell Renal Cell Carcinoma. Int J Mol Sci 2017; 18:ijms18081774. [PMID: 28812986 PMCID: PMC5578163 DOI: 10.3390/ijms18081774] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/29/2017] [Accepted: 08/12/2017] [Indexed: 12/13/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC), the most common form of Kidney cancer, is characterized by frequent mutations of the von Hippel-Lindau (VHL) tumor suppressor gene in ~85% of sporadic cases. Loss of pVHL function affects multiple cellular processes, among which the activation of hypoxia inducible factor (HIF) pathway is the best-known function. Constitutive activation of HIF signaling in turn activates hundreds of genes involved in numerous oncogenic pathways, which contribute to the development or progression of ccRCC. Although VHL mutations are considered as drivers of ccRCC, they are not sufficient to cause the disease. Recent genome-wide sequencing studies of ccRCC have revealed that mutations of genes coding for epigenome modifiers and chromatin remodelers, including PBRM1, SETD2 and BAP1, are the most common somatic genetic abnormalities after VHL mutations in these tumors. Moreover, recent research has shed light on the extent of abnormal epigenome alterations in ccRCC tumors, including aberrant DNA methylation patterns, abnormal histone modifications and deregulated expression of non-coding RNAs. In this review, we discuss the epigenetic modifiers that are commonly mutated in ccRCC, and our growing knowledge of the cellular processes that are impacted by them. Furthermore, we explore new avenues for developing therapeutic approaches based on our knowledge of epigenome aberrations of ccRCC.
Collapse
|
29
|
Curcumin mediates anticancer effects by modulating multiple cell signaling pathways. Clin Sci (Lond) 2017; 131:1781-1799. [PMID: 28679846 DOI: 10.1042/cs20160935] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 04/05/2017] [Accepted: 04/21/2017] [Indexed: 12/18/2022]
Abstract
Curcumin, a component of a spice native to India, was first isolated in 1815 by Vogel and Pelletier from the rhizomes of Curcuma longa (turmeric) and, subsequently, the chemical structure of curcumin as diferuloylmethane was reported by Milobedzka et al. [(1910) 43., 2163-2170]. Since then, this polyphenol has been shown to exhibit antioxidant, anti-inflammatory, anticancer, antiviral, antibacterial, and antifungal activities. The current review primarily focuses on the anticancer potential of curcumin through the modulation of multiple cell signaling pathways. Curcumin modulates diverse transcription factors, inflammatory cytokines, enzymes, kinases, growth factors, receptors, and various other proteins with an affinity ranging from the pM to the mM range. Furthermore, curcumin effectively regulates tumor cell growth via modulation of numerous cell signaling pathways and potentiates the effect of chemotherapeutic agents and radiation against cancer. Curcumin can interact with most of the targets that are modulated by FDA-approved drugs for cancer therapy. The focus of this review is to discuss the molecular basis for the anticancer activities of curcumin based on preclinical and clinical findings.
Collapse
|
30
|
Tang PMK, Tang PCT, Chung JYF, Lan HY. TGF-β1 signaling in kidney disease: From Smads to long non-coding RNAs. Noncoding RNA Res 2017; 2:68-73. [PMID: 30159422 PMCID: PMC6096420 DOI: 10.1016/j.ncrna.2017.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/14/2017] [Accepted: 04/06/2017] [Indexed: 01/07/2023] Open
Abstract
Transforming growth factor-β1 (TGF-β1) has an essential role in the development of kidney diseases. However, targeting TGF-β1 is not a good strategy for fibrotic diseases due to its multifunctional characteristic in physiology. A precise therapeutic target maybe identified by further resolving the underlying TGF-β1 driven mechanisms in renal inflammation and fibrosis. Smad signaling is uncovered as a key pathway of TGF-β1-mediated renal injury, where Smad3 is hyper-activated but Smad7 is suppressed. Mechanistic studies revealed that TGF-β1/Smad3 is capable of promoting renal inflammation and fibrosis via regulating non-coding RNAs. More importantly, involvement of disease- and tissue-specific TGF-β1-dependent long non-coding RNAs (lncRNA) have been recently recognized in a number of kidney diseases. In this review, current understanding of TGF-β1 driven lncRNAs in the pathogenesis of kidney injury, diabetic nephropathy and renal cell carcinoma will be intensively discussed.
Collapse
Affiliation(s)
- Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Philip Chiu-Tsun Tang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jeff Yat-Fai Chung
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hui-Yao Lan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
31
|
Deng J, Yang M, Jiang R, An N, Wang X, Liu B. Long Non-Coding RNA HOTAIR Regulates the Proliferation, Self-Renewal Capacity, Tumor Formation and Migration of the Cancer Stem-Like Cell (CSC) Subpopulation Enriched from Breast Cancer Cells. PLoS One 2017; 12:e0170860. [PMID: 28122024 PMCID: PMC5266294 DOI: 10.1371/journal.pone.0170860] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/11/2017] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Long non-coding RNAs (lncRNAs) play important roles in the malignant behavior of cancer. HOTAIR, a well-studied lncRNA, contributes to breast cancer development, and overexpression of HOTAIR predicts a poor prognosis. However, the regulatory role of HOTAIR in the cancer stem-like cell (CSC) subpopulation remains largely unknown. Our goal was to determine the regulatory functions of HOTAIR in the processes of self-renewal capacity, tumor formation and proliferation of CSCs derived from breast cancer. METHODS We first enriched and incubated the CSC population derived from breast cancer cell line MCF7 (CSC-MCF7) or MDA-MB-231 (MB231, CSC-MB231). Self-renewal capacity and tumor formation were assessed in vitro and in vivo to determine the stemness of CSCs. We assessed the impact on ectopically upregulated or downregulated expression of HOTAIR in CSCs by soft agar, self-renewal capacity and CCK-8 assays. The functional domain of HOTAIR was determined by truncation. RT-qPCR and semiquantitative Western blotting were performed to detect the expression levels of genes of interest. Chromatin IP (ChIP) was employed to detect the transcriptional regulatory activity of p53 on its target gene. RESULTS After the identification of CSC properties, RT-qPCR analysis revealed that HOTAIR, but not other cancer-associated lncRNAs, is highly upregulated in both CSC-MCF7 and CSC-MB231 populations compared with MCF7 and MB231 populations. By modulating the level of HOTAIR expression, we showed that HOTAIR tightly regulates the proliferation, colony formation, migration and self-renewal capacity of CSCs. Moreover, full-length HOTAIR transcriptionally inhibits miR-34a specifically, leading to upregulation of Sox2, which is targeted by miR-34a. Ectopic introduction of miR-34a mimics reverses the effects of HOTAIR on the physiological processes of CSCs, indicating that HOTAIR affects these processes, including self-renewal capacity; these effects are dependent on the regulation of Sox2 via miR-34a. Interestingly, tight transcriptional regulation of p53 by HOTAIR was found; accordingly, p21 is indirectly regulated by HOTAIR, resulting in cell cycle entry. CONCLUSION These results suggest that HOTAIR is a key regulator of proliferation, colony formation, invasion and self-renewal capacity in breast CSCs, which occurs in part through regulation of Sox2 and p53.
Collapse
Affiliation(s)
- Jia Deng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Anesthesiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, P.R. China
| | - Mengchang Yang
- Department of Anesthesiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, P.R. China
| | - Rong Jiang
- Department of Anesthesiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, P.R. China
| | - Ning An
- Department of oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, P.R. China
| | - Xiaoshan Wang
- Department of oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, P.R. China
| | - Bin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
32
|
Ye N, Wang B, Quan ZF, Cao SJ, Wen XT, Huang Y, Huang XB, Wu R, Ma XP, Yan QG. Functional roles of long non-coding RNA in human breast cancer. Asian Pac J Cancer Prev 2017; 15:5993-7. [PMID: 25124562 DOI: 10.7314/apjcp.2014.15.15.5993] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The discovery of long noncoding RNA (LncRNA) changes our view of transcriptional and posttranscriptional regulation of gene expression. With application of new research techniques such as high-throughput sequencing, the biological functions of LncRNAs are gradually becoming to be understood. Multiple studies have shown that LncRNAs serve as carcinogenic factors or tumor suppressors in breast cancer with abnormal expression, prompts the question of whether they have potential value in predicting the stages and survival rate of breast cancer patients, and also as therapeutic targets. Focusing on the latest research data, this review mainly summarizes the tumorigenic mechanisms of certain LncRNAs in breast cancer, in order to provide a theoretical basis for finding safer, more effective treatment of breast cancer at the LncRNA molecular level.
Collapse
Affiliation(s)
- Ni Ye
- College of Veterinary Medicine, Sichuan Agricultural University, Yaan, Sichuan, China E-mail :
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
He HT, Xu M, Kuang Y, Han XY, Wang MQ, Yang Q. Biomarker and competing endogenous RNA potential of tumor-specific long noncoding RNA in chromophobe renal cell carcinoma. Onco Targets Ther 2016; 9:6399-6406. [PMID: 27799788 PMCID: PMC5077270 DOI: 10.2147/ott.s116392] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Accumulating evidence suggests long noncoding RNAs (lncRNAs) play important roles in the initiation and progression of cancers. However, their functions in chromophobe renal cell carcinoma (chRCC) are not fully understood. Methods We analyzed the expression profiles of lncRNA, microRNA, and protein-coding RNA, along with the clinical information of 59 primary chRCC patients collected from The Cancer Genome Atlas database to identify lncRNA biomarkers for prognosis. We also constructed an lncRNA–microRNA–mRNA coexpression network (competitive endogenous RNAs network) by bioinformational approach. Results One hundred and forty-two lncRNAs were found to be differentially expressed between the cancer and normal tissues (fold change ≥1.5, P<0.001). Among them, 12 lncRNAs were also differentially expressed with the corresponding clinical characteristics (fold change ≥1.5, P<0.01). Besides, 7 lncRNAs (COL18A1-AS, BRE-AS1, SNHG7, TMEM51-AS1, C21orf62-AS1, LINC00336, and LINC00882) were identified to be significantly correlated with overall survival (log-rank P<0.05). A competitive endogenous RNA network in chRCC containing 16 lncRNAs, 18 miRNAs, and 168 protein-coding RNAs was constructed. Conclusion Our results identified specific lncRNAs associated with chRCC progression and prognosis, and presented competing endogenous RNA potential of lncRNAs in the tumor.
Collapse
Affiliation(s)
- Hai-Tao He
- Department of Pathogenobiology; Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun, People's Republic of China
| | - Mu Xu
- Department of Pathogenobiology
| | | | | | | | | |
Collapse
|
34
|
Li H, An J, Wu M, Zheng Q, Gui X, Li T, Pu H, Lu D. LncRNA HOTAIR promotes human liver cancer stem cell malignant growth through downregulation of SETD2. Oncotarget 2016; 6:27847-64. [PMID: 26172293 PMCID: PMC4695030 DOI: 10.18632/oncotarget.4443] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/19/2015] [Indexed: 02/02/2023] Open
Abstract
Long non-coding RNA HOTAIR predicts negative tumor prognosis and exhibits oncogenic activity. Herein, we demonstrate HOTAIR promotes human liver cancer stem cell malignant growth through downregulation of SETD2. Mechanistically, HOTAIR reduces the recuritment of the CREB, P300, RNA polII onto the SETD2 promoter region that inhibits SETD2 expression and its phosphorylation. Thereby, the SETD2 binding capacity to substrate histone H3 is weakened, triggering a reduction of trimethylation on histone H3 thirty-sixth lysine, and thereby the H3K36me3–hMSH2-hMSH6-SKP2 complex is also decreased. Strikingly, the complex occupancy on chromosome is depressed, preventing from mismatch DNA repair. While reducing the degradation capacity of Skp2 for aging histone H3 bound to damaged DNA, the aging histone repair is impaired. Furthermore, that the damaged DNA escaped to repair can causes microsatellite instability(MSI) and abnormal expression of cell cycle related genes that may trigger the hepatocarcinogenesis. This study provides evidence for HOTAIR to promote tumorigenesis via downregulating SETD2 in liver cancer stem cells.
Collapse
Affiliation(s)
- Haiyan Li
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Jiahui An
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Mengying Wu
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Qidi Zheng
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xin Gui
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Tianming Li
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Hu Pu
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Dongdong Lu
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
35
|
Seles M, Hutterer GC, Kiesslich T, Pummer K, Berindan-Neagoe I, Perakis S, Schwarzenbacher D, Stotz M, Gerger A, Pichler M. Current Insights into Long Non-Coding RNAs in Renal Cell Carcinoma. Int J Mol Sci 2016; 17:573. [PMID: 27092491 PMCID: PMC4849029 DOI: 10.3390/ijms17040573] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/08/2016] [Accepted: 04/12/2016] [Indexed: 02/07/2023] Open
Abstract
Renal cell carcinoma (RCC) represents a deadly disease with rising mortality despite intensive therapeutic efforts. It comprises several subtypes in terms of distinct histopathological features and different clinical presentations. Long non-coding RNAs (lncRNAs) are non-protein-coding transcripts in the genome which vary in expression levels and length and perform diverse functions. They are involved in the inititation, evolution and progression of primary cancer, as well as in the development and spread of metastases. Recently, several lncRNAs were described in RCC. This review emphasises the rising importance of lncRNAs in RCC. Moreover, it provides an outlook on their therapeutic potential in the future.
Collapse
Affiliation(s)
- Maximilian Seles
- Department of Urology, Medical University of Graz, A-8036 Graz, Austria.
| | - Georg C Hutterer
- Department of Urology, Medical University of Graz, A-8036 Graz, Austria.
| | - Tobias Kiesslich
- Department of Internal Medicine I, Salzburger Landeskliniken (SALK), Paracelsus Medical University, A-5020 Salzburg, Austria.
- Laboratory for Tumour Biology and Experimental Therapies, Institute of Physiology and Pathophysiology, Paracelsus Medical University, A-5020 Salzburg, Austria.
| | - Karl Pummer
- Department of Urology, Medical University of Graz, A-8036 Graz, Austria.
| | - Ioana Berindan-Neagoe
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
- Research Center of Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania.
- Department of Experimental Pathology, The Oncology Institute Ion Chiricuta, 400015 Cluj-Napoca, Romania.
| | - Samantha Perakis
- Institute of Human Genetics, Medical University of Graz, A-8036 Graz, Austria.
| | - Daniela Schwarzenbacher
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, A-8036 Graz, Austria.
| | - Michael Stotz
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, A-8036 Graz, Austria.
| | - Armin Gerger
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, A-8036 Graz, Austria.
- Center for Biomarker Research in Medicine, Medical University of Graz, A-8036 Graz, Austria.
| | - Martin Pichler
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, A-8036 Graz, Austria.
| |
Collapse
|
36
|
Identification of differentially expressed signatures of long non-coding RNAs associated with different metastatic potentials in gastric cancer. J Gastroenterol 2016; 51:119-29. [PMID: 26045391 PMCID: PMC4742487 DOI: 10.1007/s00535-015-1091-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/13/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND Gastric cancer (GC) is known for its lymph node metastasis and outstanding morbidity and mortality. Thus, improvement in the current knowledge regarding the molecular mechanism of GC is urgently needed to discover novel biomarkers involved in its progression and prognosis. Several long, non-coding RNAs (lncRNAs) play important roles in gastric tumorigenesis and metastasis. However, the signature of lncRNA-associated metastasis in GC is not fully clarified. METHODS We determined the lncRNA and mRNA expression profiles correlating to GC with or without lymph node-metastasis based on microarray analysis. Twelve differentially expressed lncRNAs and six differentially expressed mRNAs were validated by real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay. RESULTS The relationships between the aberrantly expressed lncRNAs XLOC_010235 or RP11-789C1.1 and lymph node metastasis, pathologic metastasis status, distal metastasis and TNM (tumour, node, and metastasis) stage were found to be significantly different. Via survival analysis, patients who had high-expressed XLOC_010235 or low-expressed RP11-789C1.1 showed significantly worse survival than patients with inverse-expressed XLOC_010235 or RP11-789C1.1. CONCLUSION In summary, this current study highlights some evidence regarding the potential role of lncRNAs in GC and posits that specific lncRNAs can be identified as novel, poor prognostic biomarkers in GC.
Collapse
|
37
|
Khandelwal A, Bacolla A, Vasquez KM, Jain A. Long non-coding RNA: A new paradigm for lung cancer. Mol Carcinog 2015; 54:1235-51. [PMID: 26332907 DOI: 10.1002/mc.22362] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/05/2015] [Accepted: 06/26/2015] [Indexed: 12/14/2022]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Recent advances in whole genome transcriptome analysis have enabled the identification of numerous members of a novel class of non-coding RNAs, i.e., long non-coding RNAs (lncRNAs), which play important roles in a wide range of biological processes and whose deregulation causes human disease, including cancer. Herein we provide a comprehensive survey of lncRNAs associated with lung cancer, with particular focus on the functions that either facilitate or inhibit the progression of lung cancer and the pathways involved. Emerging data on the use of lncRNAs as biomarkers for the diagnosis and prognosis of cancer are also discussed. We cast this information within the wider perspective of lncRNA biogenesis and molecular functions in the cell. Relationships that exist between lncRNAs, genome-wide transcription, and lung cancer are discussed. Deepening our understanding on these processes is critical not only from a mechanistic standpoint, but also for the development of novel biomarkers and effective therapeutic targets for cancer patients.
Collapse
Affiliation(s)
- Akanksha Khandelwal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, India
| | - Albino Bacolla
- Division of Pharmacology and Toxicology, College of Pharmacy, Dell Pediatric Research Institute, University of Texas, Austin, Texas
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, Dell Pediatric Research Institute, University of Texas, Austin, Texas
| | - Aklank Jain
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, India
| |
Collapse
|