1
|
Gayatri MB, Kancha RK, Behera A, Patchva D, Velugonda N, Gundeti S, Reddy ABM. AMPK-induced novel phosphorylation of RUNX1 inhibits STAT3 activation and overcome imatinib resistance in chronic myelogenous leukemia (CML) subjects. Cell Death Discov 2023; 9:401. [PMID: 37903788 PMCID: PMC10616083 DOI: 10.1038/s41420-023-01700-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/01/2023] Open
Abstract
Imatinib resistance remains an unresolved problem in CML disease. Activation of JAK2/STAT3 pathway and increased expression of RUNX1 have become one reason for development of imatinib resistance in CML subjects. Metformin has gained attention as an antileukemic drug in recent times. However, the molecular mechanism remains elusive. The present study shows that RUNX1 is a novel substrate of AMP-activated kinase (AMPK), where AMPK phosphorylates RUNX1 at Ser 94 position. Activation of AMPK by metformin could lead to increased cytoplasmic retention of RUNX1 due to Ser 94 phosphorylation. RUNX1 Ser 94 phosphorylation resulted in increased interaction with STAT3, which was reflected in reduced transcriptional activity of both RUNX1 and STAT3 due to their cytoplasmic retention. The reduced transcriptional activity of STAT3 and RUNX1 resulted in the down-regulation of their signaling targets involved in proliferation and anti-apoptosis. Our cell proliferation assays using in vitro resistant cell line models and PBMCs isolated from CML clinical patients and normal subjects demonstrate that metformin treatment resulted in reduced growth and improved imatinib sensitivity of resistant subjects.
Collapse
Affiliation(s)
- Meher Bolisetti Gayatri
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Rama Krishna Kancha
- Molecular Medicine and Therapeutics Laboratory, CPMB, Osmania University, Hyderabad, 500007, India
| | - Abhayananda Behera
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Dorababu Patchva
- Department of Pharmacology, Apollo Institute of Medical Sciences and Research, Jubilee Hills, Hyderabad, 500033, India
| | - Nagaraj Velugonda
- Department of Medical Oncology, Nizam's Institute of Medical Sciences, Hyderabad, 500082, India
| | - Sadasivudu Gundeti
- Department of Medical Oncology, Nizam's Institute of Medical Sciences, Hyderabad, 500082, India
| | | |
Collapse
|
2
|
Al-Rawashde FA, Al-Sanabra OM, Alqaraleh M, Jaradat AQ, Al-Wajeeh AS, Johan MF, Wan Taib WR, Ismail I, Al-Jamal HAN. Thymoquinone Enhances Apoptosis of K562 Chronic Myeloid Leukemia Cells through Hypomethylation of SHP-1 and Inhibition of JAK/STAT Signaling Pathway. Pharmaceuticals (Basel) 2023; 16:884. [PMID: 37375831 DOI: 10.3390/ph16060884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The epigenetic silencing of tumor suppressor genes (TSGs) is critical in the development of chronic myeloid leukemia (CML). SHP-1 functions as a TSG and negatively regulates JAK/STAT signaling. Enhancement of SHP-1 expression by demethylation provides molecular targets for the treatment of various cancers. Thymoquinone (TQ), a constituent of Nigella sativa seeds, has shown anti-cancer activities in various cancers. However, TQs effect on methylation is not fully clear. Therefore, the aim of this study is to assess TQs ability to enhance the expression of SHP-1 through modifying DNA methylation in K562 CML cells. The activities of TQ on cell cycle progression and apoptosis were evaluated using a fluorometric-red cell cycle assay and Annexin V-FITC/PI, respectively. The methylation status of SHP-1 was studied by pyrosequencing analysis. The expression of SHP-1, TET2, WT1, DNMT1, DNMT3A, and DNMT3B was determined using RT-qPCR. The protein phosphorylation of STAT3, STAT5, and JAK2 was assessed using Jess Western analysis. TQ significantly downregulated the DNMT1 gene, DNMT3A gene, and DNMT3B gene and upregulated the WT1 gene and TET2 gene. This led to hypomethylation and restoration of SHP-1 expression, resulting in inhibition of JAK/STAT signaling, induction of apoptosis, and cell cycle arrest. The observed findings imply that TQ promotes apoptosis and cell cycle arrest in CML cells by inhibiting JAK/STAT signaling via restoration of the expression of JAK/STAT-negative regulator genes.
Collapse
Affiliation(s)
| | - Ola M Al-Sanabra
- Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, Al-Salt 19117, Jordan
| | - Moath Alqaraleh
- Pharmacological and Diagnostic Research Center (PDRC), Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Ahmad Q Jaradat
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Mutah University, Al-Karak 61710, Jordan
| | | | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Wan Rohani Wan Taib
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Kuala Terengganu 21300, Malaysia
| | - Imilia Ismail
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Kuala Terengganu 21300, Malaysia
| | - Hamid Ali Nagi Al-Jamal
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Kuala Terengganu 21300, Malaysia
| |
Collapse
|
3
|
Keewan E, Matlawska-Wasowska K. The Emerging Role of Suppressors of Cytokine Signaling (SOCS) in the Development and Progression of Leukemia. Cancers (Basel) 2021; 13:4000. [PMID: 34439155 PMCID: PMC8393695 DOI: 10.3390/cancers13164000] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
Cytokines are pleiotropic signaling molecules that execute an essential role in cell-to-cell communication through binding to cell surface receptors. Receptor binding activates intracellular signaling cascades in the target cell that bring about a wide range of cellular responses, including induction of cell proliferation, migration, differentiation, and apoptosis. The Janus kinase and transducers and activators of transcription (JAK/STAT) signaling pathways are activated upon cytokines and growth factors binding with their corresponding receptors. The SOCS family of proteins has emerged as a key regulator of cytokine signaling, and SOCS insufficiency leads to constitutive activation of JAK/STAT signaling and oncogenic transformation. Dysregulation of SOCS expression is linked to various solid tumors with invasive properties. However, the roles of SOCS in hematological malignancies, such as leukemia, are less clear. In this review, we discuss the recent advances pertaining to SOCS dysregulation in leukemia development and progression. We also highlight the roles of specific SOCS in immune cells within the tumor microenvironment and their possible involvement in anti-tumor immunity. Finally, we discuss the epigenetic, genetic, and post-transcriptional modifications of SOCS genes during tumorigenesis, with an emphasis on leukemia.
Collapse
Affiliation(s)
- Esra’a Keewan
- Department of Pediatrics, Division of Hematology and Oncology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA;
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, USA
| | - Ksenia Matlawska-Wasowska
- Department of Pediatrics, Division of Hematology and Oncology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA;
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
4
|
Shah K, Rawal RM. Genetic and Epigenetic Modulation of Drug Resistance in Cancer: Challenges and Opportunities. Curr Drug Metab 2020; 20:1114-1131. [PMID: 31902353 DOI: 10.2174/1389200221666200103111539] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/30/2019] [Accepted: 10/06/2019] [Indexed: 02/08/2023]
Abstract
Cancer is a complex disease that has the ability to develop resistance to traditional therapies. The current chemotherapeutic treatment has become increasingly sophisticated, yet it is not 100% effective against disseminated tumours. Anticancer drugs resistance is an intricate process that ascends from modifications in the drug targets suggesting the need for better targeted therapies in the therapeutic arsenal. Advances in the modern techniques such as DNA microarray, proteomics along with the development of newer targeted drug therapies might provide better strategies to overcome drug resistance. This drug resistance in tumours can be attributed to an individual's genetic differences, especially in tumoral somatic cells but acquired drug resistance is due to different mechanisms, such as cell death inhibition (apoptosis suppression) altered expression of drug transporters, alteration in drug metabolism epigenetic and drug targets, enhancing DNA repair and gene amplification. This review also focusses on the epigenetic modifications and microRNAs, which induce drug resistance and contributes to the formation of tumour progenitor cells that are not destroyed by conventional cancer therapies. Lastly, this review highlights different means to prevent the formation of drug resistant tumours and provides future directions for better treatment of these resistant tumours.
Collapse
Affiliation(s)
- Kanisha Shah
- Department of Life Science, School of Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Rakesh M Rawal
- Department of Life Science, School of Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India
| |
Collapse
|
5
|
Wu D, Dong W, Fang K, Wang M. As 4S 4 Exhibits Good Killing Effect on Multiple Myeloma Cells Via Repressing SOCS1 Methylation-Mediated JAK2/STAT3 Signaling Pathway. Technol Cancer Res Treat 2020; 18:1533033819896806. [PMID: 31868118 PMCID: PMC6928533 DOI: 10.1177/1533033819896806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Objective: This study aimed to investigate the effect of tetra-arsenic tetra-sulfide on treating multiple myeloma and its potential regulation on suppressor of cytokine signaling 1 methylation-mediated Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway. Methods: Tetra-arsenic tetra-sulfide with different concentrations were used to treat U266 cells, and cell viability was measured at 12, 24, and 48 hours with 0 μM tetra-arsenic tetra-sulfide treatment as control by Cell Counting Kit-8 assay. Suppressor of cytokine signaling 1 methylation and expression were determined by methylation-specific polymerase chain reaction, quantitative polymerase chain reaction, and Western blot, respectively, in U266 cells and normal plasma cells and in U266 cells treated by tetra-arsenic tetra-sulfide. Then, rescue experiments were performed by transfecting suppressor of cytokine signaling 1 small interfering RNA into tetra-arsenic tetra-sulfide-treated U266 cells. Besides, phosphor–Janus kinase 2, Janus kinase 2, phospho–signal transducer and activator of transcription 3, and signal transducer and activator of transcription 3 expressions were determined by Western blot. Results: Tetra-arsenic tetra-sulfide inhibited U266 cell viability efficiently in a dose- and time-dependent manner. Suppressor of cytokine signaling 1 methylation was higher while suppressor of cytokine signaling 1 expression was lower in U266 cells compared to normal plasma cells; when treated by tetra-arsenic tetra-sulfide, suppressor of cytokine signaling 1 methylation was decreased while suppressor of cytokine signaling 1 expression was increased in U266 cells, along with the reduced phospho–Janus kinase 2 and phospho–signal transducer and activator of transcription 3 expressions. Then, suppressor of cytokine signaling 1 small interfering RNA enhanced the cell viability and phospho–Janus kinase 2 as well as phospho–signal transducer and activator of transcription 3 expressions in both tetra-arsenic tetra-sulfide treatment-free and tetra-arsenic tetra-sulfide-treated U266 cells. Conclusion: Tetra-arsenic tetra-sulfide exhibits good killing effect on multiple myeloma cells via repressing suppressor of cytokine signaling 1 methylation and downstream Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway, which might serve as a potential treatment option for multiple myeloma.
Collapse
Affiliation(s)
- Di Wu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Dong
- Department of Sales, Kindstar Global, Wuhan, China
| | - Kun Fang
- Department of Sales, Kindstar Global, Wuhan, China
| | - Mengchang Wang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
6
|
Ivanova ES, Tatarskiy VV, Yastrebova MA, Khamidullina AI, Shunaev AV, Kalinina AA, Zeifman AA, Novikov FN, Dutikova YV, Chilov GG, Shtil AA. PF‑114, a novel selective inhibitor of BCR‑ABL tyrosine kinase, is a potent inducer of apoptosis in chronic myelogenous leukemia cells. Int J Oncol 2019; 55:289-297. [PMID: 31115499 DOI: 10.3892/ijo.2019.4801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/11/2019] [Indexed: 11/06/2022] Open
Abstract
A t(9;22) chromosomal translocation which forms the chimeric tyrosine kinase breakpoint cluster region (BCR)‑Abelson murine leukemia viral oncogene homolog 1 (ABL) is a key mechanism underlying the pathogenesis of chronic myelogenous leukemia (CML). Pharmacological inhibition of BCR‑ABL with imatinib (Gleevec) has been reported as an effective targeted therapy; however, mutations (including the kinase domain of ABL) suppress the efficacy of inhibitors. PF‑114, a derivative of the third generation BCR‑ABL inhibitor ponatinib, demonstrated a high inhibitory activity against wild-type and mutant BCR‑ABL forms, such as the clinically important T315I. Furthermore, PF‑114 exhibited preferential kinase selectivity, safety, notable pharmacokinetic properties and therapeutic efficacy in a murine model. Investigation into the mechanisms of CML cell death revealed an exceptional potency of PF‑114 (at low nanomolar concentrations) for the CML‑derived K562 cell line, whereas leukemia cell lines that lack the chimeric tyrosine kinase were markedly more refractory. The molecular ordering of events mechanistically associated with K562 cell death included the dephosphorylation of CrkL adaptor protein followed by inhibition of ERK1/2 and Akt, G1 arrest, a decrease of phosphorylated Bcl‑2‑associated death promoter, Bcl‑2‑like protein 11, BH3 interacting‑domain death agonist, Bcl‑extra large and Bcl‑2 family apoptosis regulator, and reduced mitochondrial transmembrane potential. Increased Annexin V reactivity, activation of caspases and poly(ADP‑ribose)polymerase cleavage were proposed to lead to internucleosomal DNA fragmentation. Thus, PF‑114 may be a potent inducer of apoptosis in CML cells. Nevertheless, activation of STAT3 phosphorylation in response to PF‑114 may permit cell rescue; thus, a combination of BCR‑ABL and STAT3 inhibitors should be considered for improved therapeutic outcome. Collectively, the targeted killing of BCR‑ABL‑positive cells, along with other beneficial properties, such as in vivo characteristics, suggests PF‑114 as a potential candidate for analysis in clinical trials with CML patients.
Collapse
Affiliation(s)
| | | | | | | | - Alexei V Shunaev
- Blokhin National Medical Center of Oncology, 115478 Moscow, Russia
| | | | - Alexei A Zeifman
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, and FusionPharma, 119991 Moscow, Russia
| | - Fedor N Novikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, and FusionPharma, 119991 Moscow, Russia
| | | | - Ghermes G Chilov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, and FusionPharma, 119991 Moscow, Russia
| | | |
Collapse
|
7
|
Liu K, Wu Z, Chu J, Yang L, Wang N. Promoter methylation and expression of SOCS3 affect the clinical outcome of pediatric acute lymphoblastic leukemia by JAK/STAT pathway. Biomed Pharmacother 2019; 115:108913. [PMID: 31054507 DOI: 10.1016/j.biopha.2019.108913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Suppressor of cytokine signaling 3 (SOCS3) has been characterized as one of the most crucial negative regulator in the JAK2/STAT3 signaling pathway. However, there are few studies on the relationship between SOCS3 and pediatric acute lymphoblastic leukemia (ALL). This study analyzes the influence of SOCS3 expression on the risk and the progression of pediatric ALL and the underlying mechanism. The levels of SOCS3, p-JAK2, p-STAT3, SOCS3 methylation, CD4+CD25+CD127lowTreg were detected by PCR, laser confocal microscopy, western blot, bisulfite sequencing and flow cytometry at different progression of ALL. We found that the SOCS3 expression level at initial diagnosis (DG) of ALL patients was significantly lower than that of healthy controls (HC), while the expression of SOCS3 methylation was opposite. The expression of SOCS3 and SOCS3 methylation were returned to normal in the complete remission (CR) stage, and there were no difference between resistance, relapse and initial diagnosis. The expression of SOCS3 decreased and weakened the inhibition of pSTAT3 expression in DG, resistance and relapse groups. The levels of Treg cells in ALL children were significantly higher than those in the HC children. There was a positive correlation between the expression level of STAT3 and the expression level of Treg cells in children with ALL, while that was negatively correlated with the expression levels of Treg cells. Compared with high-level of SOCS3, the low-level of SOCS3 patients had more high risk factors, as higher WBC counts, LDH level and much more poor prognostic genes. SOCS3 methylation leads to low-expression of SOCS3, which can lead to continuous activation of JAK/STAT3 and increased expression of Treg cells, which in turn affects the anti-tumor immunological effect of the body. Taken together, our data show that monitoring the level of SOCS3 can contribute to the understanding of the state of illness and evaluate the risk of progression of ALL.
Collapse
Affiliation(s)
- Kangkang Liu
- Pediatrics, the Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhengyu Wu
- Pediatrics, the Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jinhua Chu
- Pediatrics, the Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Linhai Yang
- Pediatrics, the Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Ningling Wang
- Pediatrics, the Second Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
8
|
Qu Y, Dou B, Tan H, Feng Y, Wang N, Wang D. Tumor microenvironment-driven non-cell-autonomous resistance to antineoplastic treatment. Mol Cancer 2019; 18:69. [PMID: 30927928 PMCID: PMC6441162 DOI: 10.1186/s12943-019-0992-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/28/2019] [Indexed: 12/24/2022] Open
Abstract
Drug resistance is of great concern in cancer treatment because most effective drugs are limited by the development of resistance following some periods of therapeutic administration. The tumor microenvironment (TME), which includes various types of cells and extracellular components, mediates tumor progression and affects treatment efficacy. TME-mediated drug resistance is associated with tumor cells and their pericellular matrix. Noninherent-adaptive drug resistance refers to a non-cell-autonomous mechanism in which the resistance lies in the treatment process rather than genetic or epigenetic changes, and this mechanism is closely related to the TME. A new concept is therefore proposed in which tumor cell resistance to targeted therapy may be due to non-cell-autonomous mechanisms. However, knowledge of non-cell-autonomous mechanisms of resistance to different treatments is not comprehensive. In this review, we outlined TME factors and molecular events involved in the regulation of non-cell-autonomous resistance of cancer, summarized how the TME contributes to non-cell-autonomous drug resistance in different types of antineoplastic treatment, and discussed the novel strategies to investigate and overcome the non-cell-autonomous mechanism of cancer non-cell-autonomous resistance.
Collapse
Affiliation(s)
- Yidi Qu
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Bo Dou
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Horyue Tan
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, 130012, China.
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
9
|
Al-Jamal HAN, Johan MF, Mat Jusoh SA, Ismail I, Wan Taib WR. Re-Expression of Bone Marrow Proteoglycan-2 by 5-Azacytidine is associated with STAT3 Inactivation and Sensitivity
Response to Imatinib in Resistant CML Cells. Asian Pac J Cancer Prev 2018; 19:1585-1590. [PMID: 29936783 PMCID: PMC6103584 DOI: 10.22034/apjcp.2018.19.6.1585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background: Epigenetic silencing of tumor suppressor genes (TSG) is involved in development and progression of cancers. Re-expression of TSG is inversely proportionate with STAT3 signaling pathways. Demethylation of DNA by 5-Azacytidine (5-Aza) results in re-expression of silenced TSG. Forced expression of PRG2 by 5-Aza induced apoptosis in cancer cells. Imatinib is a tyrosine kinase inhibitor that potently inhibits BCR/ABL tyrosine kinase resulting in hematological remission in CML patients. However, majority of CML patients treated with imatinib would develop resistance under prolonged therapy. Methods: CML cells resistant to imatinib were treated with 5-Aza and cytotoxicity of imatinib and apoptosis were determined by MTS and annexin-V, respectively. Gene expression analysis was detected by real time-PCR, STATs activity examined using Western blot and methylation status of PRG2 was determined by pyrosequencing analysis. Result: Expression of PRG2 was significantly higher in K562-R+5-Aza cells compared to K562 and K562-R (p=0.001). Methylation of PRG2 gene was significantly decreased in K562-R+5-Aza cells compared to other cells (p=0.021). STAT3 was inactivated in K562-R+5-Aza cells which showed higher sensitivity to imatinib. Conclusion: PRG2 gene is a TSG and its overexpression might induce sensitivity to imatinib. However, further studies are required to evaluate the negative regulations of PRG2 on STAT3 signaling.
Collapse
Affiliation(s)
- Hamid Ali Nagi Al-Jamal
- Diagnostic and Biomedicine, Faculty of Health Science, Universiti Sultan Zainal Abidin, Gong Badak Compus, Kuala Nerus, Terengganu, Malaysia.
| | | | | | | | | |
Collapse
|
10
|
Behzad MM, Shahrabi S, Jaseb K, Bertacchini J, Ketabchi N, Saki N. Aberrant DNA Methylation in Chronic Myeloid Leukemia: Cell Fate Control, Prognosis, and Therapeutic Response. Biochem Genet 2018; 56:149-175. [DOI: 10.1007/s10528-018-9841-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/18/2018] [Indexed: 01/24/2023]
|
11
|
Koschmieder S, Vetrie D. Epigenetic dysregulation in chronic myeloid leukaemia: A myriad of mechanisms and therapeutic options. Semin Cancer Biol 2017; 51:180-197. [PMID: 28778403 DOI: 10.1016/j.semcancer.2017.07.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/13/2017] [Accepted: 07/28/2017] [Indexed: 01/08/2023]
Abstract
The onset of global epigenetic changes in chromatin that drive tumor proliferation and heterogeneity is a hallmark of many forms of cancer. Identifying the epigenetic mechanisms that govern these changes and developing therapeutic approaches to modulate them, is a well-established avenue pursued in translational cancer medicine. Chronic myeloid leukemia (CML) arises clonally when a hematopoietic stem cell (HSC) acquires the capacity to produce the constitutively active tyrosine kinase BCR-ABL1 fusion protein which drives tumor development. Treatment with tyrosine kinase inhibitors (TKI) that target BCR-ABL1 has been transformative in CML management but it does not lead to cure in the vast majority of patients. Thus novel therapeutic approaches are required and these must target changes to biological pathways that are aberrant in CML - including those that occur when epigenetic mechanisms are altered. These changes may be due to alterations in DNA or histones, their biochemical modifications and requisite 'writer' proteins, or to dysregulation of various types of non-coding RNAs that collectively function as modulators of transcriptional control and DNA integrity. Here, we review the evidence for subverted epigenetic mechanisms in CML and how these impact on a diverse set of biological pathways, on disease progression, prognosis and drug resistance. We will also discuss recent progress towards developing epigenetic therapies that show promise to improve CML patient care and may lead to improved cure rates.
Collapse
Affiliation(s)
- Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - David Vetrie
- Epigenetics Unit, Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
12
|
Heidari N, Abroun S, Bertacchini J, Vosoughi T, Rahim F, Saki N. Significance of Inactivated Genes in Leukemia: Pathogenesis and Prognosis. CELL JOURNAL 2017; 19:9-26. [PMID: 28580304 PMCID: PMC5448318 DOI: 10.22074/cellj.2017.4908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 02/14/2017] [Indexed: 11/04/2022]
Abstract
Epigenetic and genetic alterations are two mechanisms participating in leukemia, which can inactivate genes involved in leukemia pathogenesis or progression. The purpose of this review was to introduce various inactivated genes and evaluate their possible role in leukemia pathogenesis and prognosis. By searching the mesh words "Gene, Silencing AND Leukemia" in PubMed website, relevant English articles dealt with human subjects as of 2000 were included in this study. Gene inactivation in leukemia is largely mediated by promoter's hypermethylation of gene involving in cellular functions such as cell cycle, apoptosis, and gene transcription. Inactivated genes, such as ASPP1, TP53, IKZF1 and P15, may correlate with poor prognosis in acute lymphoid leukemia (ALL), chronic lymphoid leukemia (CLL), chronic myelogenous leukemia (CML) and acute myeloid leukemia (AML), respectively. Gene inactivation may play a considerable role in leukemia pathogenesis and prognosis, which can be considered as complementary diagnostic tests to differentiate different leukemia types, determine leukemia prognosis, and also detect response to therapy. In general, this review showed some genes inactivated only in leukemia (with differences between B-ALL, T-ALL, CLL, AML and CML). These differences could be of interest as an additional tool to better categorize leukemia types. Furthermore; based on inactivated genes, a diverse classification of Leukemias could represent a powerful method to address a targeted therapy of the patients, in order to minimize side effects of conventional therapies and to enhance new drug strategies.
Collapse
Affiliation(s)
- Nazanin Heidari
- Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Abroun
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Jessika Bertacchini
- Signal Transduction Unit, Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Tina Vosoughi
- Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fakher Rahim
- Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
13
|
Zamani A, Mat Jusoh SA, Al-Jamal HAN, Sul'ain MD, Johan MF. Anti-Proliferative Effects of Dendrophthoe pentandra Methanol Extract on BCR/ABL-Positive and Imatinib-Resistant Leukemia Cell Lines. Asian Pac J Cancer Prev 2016; 17:4857-4861. [PMID: 28030911 PMCID: PMC5454686 DOI: 10.22034/apjcp.2016.17.11.4857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background: Imatinib mesylate, a tyrosine kinase inhibitor specifically targeting the BCR/ABL fusion protein, induces hematological remission in patients with chronic myeloid leukemia (CML). However, the majority of CML patients treated with imatinib develop resistance with prolonged therapy. Dendrophthoe pentandra (L.) Miq. is a Malaysian mistletoe species that has been used as a traditional treatment for several ailments such as smallpox, ulcers, and cancers. Methods: We developed a resistant cell line (designated as K562R) by long-term co-culture of a BCR/ABL positive CML cell line, K562, with imatinib mesylate. We then investigated the anti-proliferative effects of D. pentandra methanol extract on parental K562 and resistant K562R cells. Trypan blue exclusion assays were performed to determine the IC50 concentration; apoptosis and cell cycle analysis were conducted by flow cytometry. Results: D. pentandra extract had greater anti-proliferative effects towards K562R (IC50= 192 μg/mL) compared to K562 (500 μg/mL) cells. Upon treatment with D. pentandra extract at the IC50 concentration: K562 but not K562R demonstrated increase in apoptosis and cell cycle arrest in the G2/M phase. Conclusion: D. pentandra methanol extract exerts potent anti-proliferative effect on BCR/ABL positive K562 cells.
Collapse
Affiliation(s)
- Afiqah Zamani
- School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Malaysia.
| | | | | | | | | |
Collapse
|
14
|
Liu C, Liu H, Chen J. [The Role of SOCS in the Development of Tumors]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2016; 19:620-5. [PMID: 27666555 PMCID: PMC5972954 DOI: 10.3779/j.issn.1009-3419.2016.09.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Suppressor of cytokine signaling (SOCS) family proteins are a group of negative regulatory factors that plays important roles in the negative regulation of cytokine responses by terminating the activation of the JAK-STAT and other signaling pathways. The family is composed of eight structurally related proteins. mainly through the inhibition of the activation of JAK-STAT signaling pathway and regulates cell proliferation, differentiation and apoptosis. In the process of tumor progression, the promoter CG island hypermethylation, gene mutation, gene deletion and inactivation lead to the abnormal expression of SOCS protein make JAK-STAT continuous activation, resulting in the development and metastasis of tumor. Here, we review the SOCS family members found, composition and molecular structure, the domain of the function, and the latest progress of development in tumor. Based on the important role of SOCS in tumor development, SOCS as a negative regulator factor represent a kind of tumor suppressor genes, has become a new target for tumor therapy.
Collapse
Affiliation(s)
- Chunlai Liu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hongyu Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General
Hospital, Tianjin 300052, China
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China;Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General
Hospital, Tianjin 300052, China
| |
Collapse
|
15
|
Liu C, Li Y, Dong Y, Zhang H, Li Y, Liu H, Chen J. [Methylation Status of the SOCS3 Gene Promoter in H2228 Cells and
EML4-ALK-positive Lung Cancer Tissues]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2016; 19:565-70. [PMID: 27666544 PMCID: PMC5972959 DOI: 10.3779/j.issn.1009-3419.2016.09.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The EML4-ALK fusion gene is a newly discovered driver gene of non-small cell lung cancer and exhibits special clinical and pathological features. The JAK-STAT signaling pathway, an important downstream signaling pathway of EML4-ALK, is aberrantly sustained and activated in EML4-ALK-positive lung cancer cells fusion gene, but the underlying reason remains unknown. The suppressor of cytokine signaling (SOCS) is a negative regulatory factor that mainly inhibits the proliferation, differentiation, and induction of apoptotic cells by inhibiting the JAK-STAT signaling pathway. The aberrant methylation of the SOCS gene leads to inactivation of tumors and abnormal activation of the JAK2-STAT signaling pathway. The aim of this study is to investigate the methylation status of the SOCS3 promoter in EML4-ALK-positive H2228 cells and lung cancer tissues. METHODS The methylation status of the SOCS3 promoter in EML4-ALK-positive H2228 lung cancer cells and lung cancer tissues was detected by methylation-specific PCR (MSP) analysis and verified by DNA sequencing. The expression levels of SOCS3 in H2228 cells were detected by Western blot and Real-time PCR analyses after treatment with the DNA methyltransferase inhibitor 5'-Aza-dC. RESULTS MSP and DNA sequencing assay results indicated the presence of SOCS3 promoter methylation in H2228 cells as well as in three cases of seven EML4-ALK-positive lung cancer tissues. The expression level of SOCS3 significantly increased in H2228 cells after 5'-Aza-dC treatment. CONCLUSIONS The aerrant methylation of the SOCS3 promoter region in EML4-ALK (+) H2228 cells and lung cancer tissues may be significantly involved in the pathogenesis of EML4-ALK-positive lung cancer.
Collapse
Affiliation(s)
- Chunlai Liu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yongwen Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yunlong Dong
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hongbing Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ying Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hongyu Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jun Chen
- Department of Lung Cancer Surgery;Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
16
|
Liu YX, Wang L, Liu WJ, Zhang HT, Xue JH, Zhang ZW, Gao CJ. MiR-124-3p/B4GALT1 axis plays an important role in SOCS3-regulated growth and chemo-sensitivity of CML. J Hematol Oncol 2016; 9:69. [PMID: 27516205 PMCID: PMC4982324 DOI: 10.1186/s13045-016-0300-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 08/05/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Abnormal expression of SOCS3 has been implicated in myeloproliferative neoplasms, but the role of SOCS3 in the pathogenesis of leukemia remains largely unknown. Here, we examined the function of SOCS3 in the growth and chemo-sensitivity of chronic myeloid leukemia (CML) and explored the involved mechanisms. METHODS Expression levels of SOCS3 in several leukemia cell lines and bone marrow mononuclear cells (BMNCs) from CML patients were determined using quantitative real-time PCR (qPCR) and Western blotting (WB). The roles of SOCS3 in the proliferation, apoptosis, and drug resistance of CML cells were examined by clonogenic progenitor cell assay, flow cytometry, and CCK-8 assay. A detailed analysis of the underlying mechanism of SOCS3 in K562 cells was performed using the Human HT-12 v4 Expression BeadChip, which has more than 48000 gene probes including 600 microRNAs (miRNA) probes. The correlation between the mRNA expression of SOCS3 and miR-124-3p in BMNCs from 30 CML patients was tested by qPCR and analyzed by Pearson correlation and linear regression analysis. The potential target of miR-124-3p in CML cells was explored using the luciferase reporter assay, qPCR, and WB. The effect of SOCS3 on the miR-124-3p/B4GALT1 axis was investigated by qPCR, WB, CCK-8 assay, and tumorigenicity assays in nude mice. RESULTS SOCS3 was down-regulated in CML cell lines and most of BMNCs from CML patients, and the expression level of SOCS3 was associated with the inhibition of cell proliferation and drug resistance of CML cells. Over-expression of SOCS3 in K562 cells inhibited the expression of leukemia-specific genes and promoted the expression of some miRNAs, among which miR-124-3p was the highest. SOCS3 over-expression enhanced the expression of miR-124-3p and vice versa. The mRNA expression of miR-124-3p and SOCS3 in BMNCs from 30 CML patients was positively correlated. Consistently, the tumor suppressing effects of SOCS3 were partially neutralized by the miR-124-3p inhibitor. B4GALT1 was downstream of miR-124-3p and regulated by SOCS3/miR-124-3p in vitro. Furthermore, SOCS3 over-expression could inhibit the growth and B4GALT expression of K562 cells in vivo. CONCLUSIONS SOCS3/miR-124-3p/B4GALT1 axis plays an important role in the pathogenesis of CML.
Collapse
Affiliation(s)
- Yu-Xiao Liu
- Department of Neurosurgery, The First Affiliated Hospital of Chinese PLA General Hospital, 51 Fushi Road, Beijing, 100048, People's Republic of China
| | - Li Wang
- Department of Hematology, Chinese PLA General Hospital, Laoshan Branch, No. 401, Qingdao, 266100, People's Republic of China.,Department of Hematology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Wen-Jia Liu
- Genetic Laboratory of Development and Diseases, Beijing Institute of Biotechnology, Beijing, 100071, People's Republic of China
| | - Hai-Tao Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chinese PLA General Hospital, 51 Fushi Road, Beijing, 100048, People's Republic of China
| | - Jing-Hui Xue
- Department of Neurosurgery, The First Affiliated Hospital of Chinese PLA General Hospital, 51 Fushi Road, Beijing, 100048, People's Republic of China.
| | - Zhi-Wen Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chinese PLA General Hospital, 51 Fushi Road, Beijing, 100048, People's Republic of China
| | - Chun-Ji Gao
- Department of Hematology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, People's Republic of China.
| |
Collapse
|
17
|
Li L, Zhao G. Downregulation of microRNA-218 relieves neuropathic pain by regulating suppressor of cytokine signaling 3. Int J Mol Med 2016; 37:851-8. [PMID: 26782075 DOI: 10.3892/ijmm.2016.2455] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 12/16/2015] [Indexed: 11/05/2022] Open
Abstract
Neuropathic pain is an incapacitating disease that affects a large number of people worldwide, but effective therapies have not yet been established. microRNAs (miRs) are short non-coding RNAs that participate in several biological processes and states, including neuropathic pain. Nevertheless, the precise role of miRs in regulating neuropathic pain remains largely unknown. In the present study, we investigated the role of miR-218 in neuropathic pain using a rat model of chronic constriction injury (CCI). miR-218 expression was induced and studied in the spinal cord and microglial cells of rats with CCI. We noted that downregulation of miR-218 by a specific miR-218 inhibitor significantly attenuated mechanical allodynia, thermal hyperalgesia, and proinflammatory cytokine release in CCI rats. A dual-luciferase reporter assay, RT-qPCR, and western blot analysis results demonstrated that miR-218 directly targeted the 3'-UTR of the suppressor of cytokine signaling 3 (SOCS3) and regulated mRNA and protein expression of SOCS3. Treatment with miR-218 inhibitors inactivated Janus kinase/signal transducer and activator of transcription 3 (STAT3) signaling in rats with CCI in vivo. Moreover, miR-218 inhibitors significantly inhibited the activation of microglial cell STAT3 signaling and downstream proinflammatory genes in microglial cells. These results suggest that miR-218 regulated neuropathic pain and neuroinflammation by regulating SOCS3 expression, which negatively mediated STAT3 signaling. Thus, we propose that silencing of miR-218 may be a promising and novel treatment for neuropathic pain.
Collapse
Affiliation(s)
- Longyun Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Guoqing Zhao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
18
|
Al-Jamal HAN, Mat Jusoh SA, Hassan R, Johan MF. Enhancing SHP-1 expression with 5-azacytidine may inhibit STAT3 activation and confer sensitivity in lestaurtinib (CEP-701)-resistant FLT3-ITD positive acute myeloid leukemia. BMC Cancer 2015; 15:869. [PMID: 26547689 PMCID: PMC4637135 DOI: 10.1186/s12885-015-1695-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 10/07/2015] [Indexed: 01/10/2023] Open
Abstract
Background Tumor-suppressor genes are inactivated by methylation in several cancers including acute myeloid leukemia (AML). Src homology-2 (SH2)-containing protein-tyrosine phosphatase 1 (SHP-1) is a negative regulator of the JAK/STAT pathway. Transcriptional silencing of SHP-1 plays a critical role in the development and progression of cancers through STAT3 activation. 5-Azacytidine (5-Aza) is a DNA methyltransferase inhibitor that causes DNA demethylation resulting in re-expression of silenced SHP-1. Lestaurtinib (CEP-701) is a multi-targeted tyrosine kinase inhibitor that potently inhibits FLT3 tyrosine kinase and induces hematological remission in AML patients harboring the internal tandem duplication of the FLT3 gene (FLT3-ITD). However, the majority of patients in clinical trials developed resistance to CEP-701. Therefore, the aim of this study, was to assess the effect of re-expression of SHP-1 on sensitivity to CEP-701 in resistant AML cells. Methods Resistant cells harboring the FLT3-ITD were developed by overexposure of MV4-11 to CEP-701, and the effects of 5-Aza treatment were investigated. Apoptosis and cytotoxicity of CEP-701 were determined using Annexin V and MTS assays, respectively. Gene expression was performed by quantitative real-time PCR. STATs activity was examined by western blotting and the methylation profile of SHP-1 was studied using MS-PCR and pyrosequencing analysis. Repeated-measures ANOVA and Kruskal–Wallis tests were used for statistical analysis. Results The cytotoxic dose of CEP-701 on resistant cells was significantly higher in comparison with parental and MV4-11R-cep + 5-Aza cells (p = 0.004). The resistant cells showed a significant higher viability and lower apoptosis compared with other cells (p < 0.001). Expression of SHP-1 was 7-fold higher in MV4-11R-cep + 5-Aza cells compared to parental and resistant cells (p = 0.011). STAT3 was activated in resistant cells. Methylation of SHP-1 was significantly decreased in MV4-11R-cep + 5-Aza cells (p = 0.002). Conclusions The restoration of SHP-1 expression induces sensitivity towards CEP-701 and could serve as a target in the treatment of AML. Our findings support the hypothesis that, the tumor-suppressor effect of SHP-1 is lost due to epigenetic silencing and its re-expression might play an important role in re-inducing sensitivity to TKIs. Thus, SHP-1 is a plausible candidate for a role in the development of CEP-701 resistance in FLT3-ITD+ AML patients.
Collapse
Affiliation(s)
- Hamid Ali Nagi Al-Jamal
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| | - Siti Asmaa Mat Jusoh
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| | - Rosline Hassan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
19
|
Tortorella SM, Hung A, Karagiannis TC. The implication of cancer progenitor cells and the role of epigenetics in the development of novel therapeutic strategies for chronic myeloid leukemia. Antioxid Redox Signal 2015; 22:1425-62. [PMID: 25366930 DOI: 10.1089/ars.2014.6096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE Chronic myeloid leukemia (CML) involves the malignant transformation of hematopoietic stem cells, defined largely by the Philadelphia chromosome and expression of the breakpoint cluster region-Abelson (BCR-ABL) oncoprotein. Pharmacological tyrosine kinase inhibitors (TKIs), including imatinib mesylate, have overcome limitations in conventional treatment for the improved clinical management of CML. RECENT ADVANCES Accumulated evidence has led to the identification of a subpopulation of quiescent leukemia progenitor cells with stem-like self renewal properties that may initiate leukemogenesis, which are also shown to be present in residual disease due to their insensitivity to tyrosine kinase inhibition. CRITICAL ISSUES The characterization of quiescent leukemia progenitor cells as a unique cell population in CML pathogenesis has become critical with the complete elucidation of mechanisms involved in their survival independent of BCR-ABL that is important in the development of novel anticancer strategies. Understanding of these functional pathways in CML progenitor cells will allow for their selective therapeutic targeting. In addition, disease pathogenesis and drug responsiveness is also thought to be modulated by epigenetic regulatory mechanisms such as DNA methylation, histone acetylation, and microRNA expression, with a capacity to control CML-associated gene transcription. FUTURE DIRECTIONS A number of compounds in combination with TKIs are under preclinical and clinical investigation to assess their synergistic potential in targeting leukemic progenitor cells and/or the epigenome in CML. Despite the collective promise, further research is required in order to refine understanding, and, ultimately, advance antileukemic therapeutic strategies.
Collapse
Affiliation(s)
- Stephanie M Tortorella
- 1 Epigenomic Medicine, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct , Melbourne, Australia
| | | | | |
Collapse
|
20
|
Gaballah HH, Shafik NM, Wasfy RE, Abou Farha MO. Significance of suppressor of cytokine signaling-3 expression in bladder urothelial carcinoma in relation to proinflammatory cytokines and tumor histopathological grading. Asian Pac J Cancer Prev 2015; 16:307-14. [PMID: 25640370 DOI: 10.7314/apjcp.2015.16.1.307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bladder cancer is among the five most common malignancies worldwide. Altered expression of suppressor of cytokine signaling -3 (SOCS-3) has been implicated in various types of human cancers; however, its role in bladder cancer is not well established. AIM The present study was undertaken to investigate the mRNA expression of SOCS-3 in normal and cancerous bladder tissue and to explore its correlation with urinary levels of some proinflammatory cytokines, cytokeratin-18 (CK -18) and with tumor histopathological grading, in order to evaluate their role as potential diagnostic markers. MATERIALS AND METHODS SOCS3 mRNA expression levels were evaluated using quantitative real time PCR. Urinary levels of interleukins 6 and 8 were estimated by enzyme linked immunosorbent assay (ELISA). Cytokeratin-18 expression was analyzed by immuunohistochemistry then validated by ELISA. RESULTS SOC3 m RNA expression levels were significantly lower in high grade urothelial carcinoma (0.36±0.12) compared to low grade carcinoma (1.22±0.38) and controls (4.08±0.88), (p<0.001). However, in high grade urothelial carcinoma the urinary levels of IL-6, IL-8, total CK-18(221.33±22.84 pg/ml, 325.2±53.6 pg/ ml, 466.7±57.40 U/L respectively) were significantly higher than their levels in low grade carcinoma (58.6±18.6 pg/ ml, 58.3±50.2 pg/ml, 185.5±60.3 U/L respectively) and controls (50.9±23.0 pg/ml, 7.12±2.74 pg/ml, 106.7±47.3U/L respectively), (p<0.001). CONCLUSIONS Advanced grade of urothelial bladder carcinoma is significantly associated with lowered mRNA expression of SOC3 as well as elevated urinary levels of proinflammatory cytokines and CK-18. Furthermore, our results suggested that urinary IL-8, IL-6 and CK-18 may benefit as noninvasive biomarkers for early detection as well as histopathological subtyping of urothelial carcinoma.
Collapse
|
21
|
Tahira B, Asif M, Khan S, Hussain A, Shahwani MN, Malik A, Inayatullah S, Iqbal Z, Rasool M. Detection of BCR/ABL Fusion Gene by Hematological and Cytogenetical Analysis in Chronic Myeloid Leukemia Patients in Quetta, Pakistan. Asian Pac J Cancer Prev 2015; 16:3793-3797. [PMID: 25987039 DOI: 10.7314/apjcp.2015.16.9.3793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic myeloid leukemia (CML) is a myeloproliferative disorder of pluripotent stem cells, caused by reciprocal translocation between the long arms of chromosomes 9 and 22, t(9;22)(q34;q11), known as the Philadelphia chromosome. MATERIALS AND METHODS A total of 51 CML patients were recruited in this study. Complete blood counts of all CML patients were performed to find out their total leukocytes, hemoglobin and platelets. FISH was performed for the detection of BCR-ABL fusion and cryptogenic tests using bone marrow samples were performed for the conformation of Ph (9;22)(q34;q11) and variant translocation mechanisms. RESULTS In cytogenetic analysis we observed that out of 51 CML patients 40 (88.9%) were Ph positive and 4 (8.88%) had Ph negative chromosomes. Mean values of WBC 134.5 103/μl, hemoglobin 10.44 mg/dl, and platelets 288.6 103/μl were observed in this study. CONCLUSIONS In this study, Ph positive translocation between chromosome (9:22)(q34;q11) were observed in 40 (88.9%) CML patients.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Child
- Child, Preschool
- Chromosomes, Human, Pair 22/genetics
- Chromosomes, Human, Pair 9/genetics
- Cytogenetic Analysis
- Female
- Follow-Up Studies
- Fusion Proteins, bcr-abl/genetics
- Hematologic Tests
- Humans
- In Situ Hybridization, Fluorescence
- Infant
- Infant, Newborn
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/mortality
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Male
- Middle Aged
- Neoplasm Staging
- Philadelphia Chromosome
- Prognosis
- Survival Rate
- Translocation, Genetic/genetics
- Young Adult
Collapse
Affiliation(s)
- Bibi Tahira
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan E-mail :
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, Sarkar S. Drug Resistance in Cancer: An Overview. Cancers (Basel) 2014. [DOI: 78495111110.3390/cancers6031769' target='_blank'>'"<>78495111110.3390/cancers6031769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [78495111110.3390/cancers6031769','', '10.7314/apjcp.2014.15.11.4555')">Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
78495111110.3390/cancers6031769" />
|
23
|
Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, Sarkar S. Drug resistance in cancer: an overview. Cancers (Basel) 2014; 6:1769-92. [PMID: 25198391 PMCID: PMC4190567 DOI: 10.3390/cancers6031769] [Citation(s) in RCA: 1671] [Impact Index Per Article: 151.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/25/2014] [Accepted: 08/29/2014] [Indexed: 02/06/2023] Open
Abstract
Cancers have the ability to develop resistance to traditional therapies, and the increasing prevalence of these drug resistant cancers necessitates further research and treatment development. This paper outlines the current knowledge of mechanisms that promote or enable drug resistance, such as drug inactivation, drug target alteration, drug efflux, DNA damage repair, cell death inhibition, and the epithelial-mesenchymal transition, as well as how inherent tumor cell heterogeneity plays a role in drug resistance. It also describes the epigenetic modifications that can induce drug resistance and considers how such epigenetic factors may contribute to the development of cancer progenitor cells, which are not killed by conventional cancer therapies. Lastly, this review concludes with a discussion on the best treatment options for existing drug resistant cancers, ways to prevent the formation of drug resistant cancers and cancer progenitor cells, and future directions of study.
Collapse
Affiliation(s)
- Genevieve Housman
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA.
| | - Shannon Byler
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Sarah Heerboth
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Karolina Lapinska
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | - Nicole Snyder
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Sibaji Sarkar
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|