1
|
Geng L, Bai Z, Wen X, Liu H, Xie H, Wang Y, Wu W, Zeng Z, Zheng K. PTEN-Long inhibits the biological behaviors of glioma cells. Am J Transl Res 2024; 16:2840-2851. [PMID: 39114725 PMCID: PMC11301513 DOI: 10.62347/qhca5842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/11/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVES PTEN-Long is a translational variant of phosphatase and tensin homolog (PTEN). This study aimed to assess the effect of PTEN-Long on the biological characteristics of glioma cells and related mechanisms. METHODS A vector stably expressing PTEN-Long was established and transfected into cells, serving as the overexpression group, while a set of empty vectors served as the negative control group. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and western blot were used to detect the expression of PTEN-Long and phosphatidylinositol 3-kinase, Protein kinase B, andnuclear factor-κB (PI3K-AKT-NF-κB). Cell proliferation was assessed with the Cell Counting Kit 8 (CCK8) assay, migration through the scratch test, and invasion by the transwell chamber assay. Cell cycle analysis was performed using flow cytometry. The volume and weight of subcutaneous tumors in nude mice were also evaluated. RESULTS PTEN-Long expression led to downregulation of p-Akt, NF-κB p65, p-NF-κB p65, and Bcl-xl, and up-regulation of IκBα. In addition, it inhibited glioma cell proliferation, induced cell cycle arrest in the G0/G1 phase, and reduced cell migration and invasion. Moreover, PTEN-Long inhibited the growth of subcutaneous glioma in nude mice. CONCLUSIONS PTEN-Long inhibits the proliferation, migration, and invasion and induces apoptosis in glioma cells by inhibiting PI3K-AKT-NF-κb signaling, implying that PTEN-Long may be a new target for glioma treatment.
Collapse
Affiliation(s)
- Lianting Geng
- Department of Neurosurgery, Affiliated Hospital of Hebei UniversityBaoding 071000, Hebei, China
| | - Zetong Bai
- Department of Neurosurgery, Affiliated Hospital of Hebei UniversityBaoding 071000, Hebei, China
| | - Xichao Wen
- Department of Neurosurgery, Affiliated Hospital of Hebei UniversityBaoding 071000, Hebei, China
| | - Haipeng Liu
- Department of Neurosurgery, Affiliated Hospital of Hebei UniversityBaoding 071000, Hebei, China
| | - Haipeng Xie
- Department of Neurosurgery, Affiliated Hospital of Hebei UniversityBaoding 071000, Hebei, China
| | - Yan Wang
- Department of Neurosurgery, Affiliated Hospital of Hebei UniversityBaoding 071000, Hebei, China
| | - Wensong Wu
- Department of Neurosurgery, Affiliated Hospital of Hebei UniversityBaoding 071000, Hebei, China
| | - Zhaomu Zeng
- Department of Neurosurgery, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical CollegeNanchang 330000, Jiangxi, China
| | - Kebin Zheng
- Department of Neurosurgery, Affiliated Hospital of Hebei UniversityBaoding 071000, Hebei, China
| |
Collapse
|
2
|
lncRNA MEG3 Inhibits the Proliferation and Growth of Glioma Cells by Downregulating Bcl-xL in the PI3K/Akt/NF-κB Signal Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3729069. [PMID: 35860793 PMCID: PMC9293524 DOI: 10.1155/2022/3729069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022]
Abstract
This study was conducted to investigate the impact and mechanisms of lncRNA MEG3 on glioma cells. lncRNA MEG3 was lowly expressed in glioma cells as compared to noncancer cells. Overexpression of MEG3 significantly downregulated the expression of Bcl-xL, slightly upregulated the expression of NF-κB p65 and IκBα, and reduced the proliferation of glioma cells with increased apoptosis and the migration and invasion ability. Subsequently, glioma cells overexpressing MEG3 had less tumorgenicity in xenograft mouse models. It is likely that MEG3 induces apoptosis in glioma cells via downregulating the Bcl-xL gene in the PI3K/Akt/NF-κB signal pathway to reduce the development of glioma.
Collapse
|
3
|
Jokonya L, Musara A, Esene I, Mduluza-Jokonya TL, Makunike-Mutasa R, Rothemeyer S, Ntenge Kalangu KK, Mduluza T, Naicker T. Landscape, Presentation, and Characteristics of Brain Gliomas in Zimbabwe. Asian J Neurosurg 2021; 16:294-299. [PMID: 34268154 PMCID: PMC8244682 DOI: 10.4103/ajns.ajns_404_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/23/2020] [Accepted: 01/05/2021] [Indexed: 11/30/2022] Open
Abstract
Introduction: Gliomas are tumors of the supporting cells of the central nervous system. They have great heterogeneity in their clinical and pathological features as well as prognosis. There is paucity of glioma epidemiology data in Zimbabwe. We carried out a study to determine the landscape, presentation, and characteristics of brain gliomas in Zimbabwe. Materials and Methods: A prospective cross-sectional study was conducted in Zimbabwe over a 2 years period to determine descriptive epidemiological data with regards to demographic distribution, presentation, and tumor characteristics. Consecutive patients from across the country with brain gliomas were recruited in the study. Results: A total of 112 brain tumors were diagnosed histologically. Of these 43.8% (n = 49) were gliomas and hence recruited in the study. The mean age of study participants was 40.3 years (standard deviation = 23.1 years), range 3–83 years. Male to female ratio (M:F) was 1:1. The study population consisted of 14% caucasians (n = 7), 83.7% black (n = 41), and 2% (n = 1) were of mixed race. Eighty-six percent (n = 42) of participants were from urban areas. The most common presenting complaint was headache in 87.8% (n = 43). The majority (61.2%) presented with a Karnofsky score ≥70%. Astrocytomas were the most common gliomas constituting 57.1% (n = 28), followed by ependymomas and oligodendrogliomas being 8.1% (n = 4) each. There was no statistical difference in the hemisphere of the brain involved (P = 0.475). Eight percent of the population were HIV positive (n = 4). Age above 60 years has an adjusted odds ratio of 13 for presenting with high-grade tumors. Conclusion: There is a disproportionately high number of gliomas among Caucasians, urban dwellers, and those gainfully employed. The prevalence of HIV in glioma patients is less than that of the general population.
Collapse
Affiliation(s)
- Luxwell Jokonya
- Department of Surgery, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe.,Department of Optics and Imaging, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, KwaZulu-Natal, Durban, South Africa
| | - Aaron Musara
- Department of Surgery, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Ignatius Esene
- Division of Neurosurgery, Faculty of Health Sciences, University of Bamenda, Bamenda, Cameroon
| | - Tariro Lavender Mduluza-Jokonya
- Department of Optics and Imaging, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, KwaZulu-Natal, Durban, South Africa
| | - Rudo Makunike-Mutasa
- Department of Histopathology, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Sally Rothemeyer
- Division of Neurosurgery, University of Cape Town, Cape Town, South Africa
| | | | - Takafira Mduluza
- Department of Biochemistry, University of Zimbabwe, Harare, Zimbabwe
| | - Thajasvarie Naicker
- Department of Optics and Imaging, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
4
|
Lin T, Wang D, Chen J, Zhang Z, Zhao Y, Wu Z, Wang Y. IL-24 inhibits the malignancy of human glioblastoma cells via destabilization of Zeb1. Biol Chem 2021; 402:839-848. [PMID: 33894112 DOI: 10.1515/hsz-2020-0373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 04/15/2021] [Indexed: 01/13/2023]
Abstract
Glioblastoma (GBM) is the most common and fatal type of primary malignant tumours in the central nervous system. Cytokines such as interleukins (ILs) play an important role in GBM progression. Our present study found that IL-24 is down-regulated in GBM cells. Recombinant IL-24 (rIL-24) can suppress the in vitro migration and invasion of GBM cells while increase its chemo-sensitivity to temozolomide (TMZ) treatment. rIL-24 negatively regulates the expression of Zeb1, one well known transcription factors of epithelial to mesenchymal transition (EMT) of cancer cells. Over expression of Zeb1 can attenuate IL-24-suppressed malignancy of GBM cells. Mechanistically, IL-24 decreases the protein stability of Zeb1 while has no effect on its mRNA stability. It is due to that IL-24 can increase the expression of FBXO45, which can destabilize Zeb1 in cancer cells. Collectively, we reveal that IL-24 can suppress the malignancy of GBM cells via decreasing the expression of Zeb1. It suggests that targeted activation of IL-24 signals might be a potential therapy approach for GBM treatment.
Collapse
Affiliation(s)
- Tie Lin
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin150001, People's Republic of China
| | - Dongpeng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin150001, People's Republic of China
| | - Jun Chen
- Department of Neurosurgery, Heilongjiang Provincial Hospital, Harbin150030, People's Republic of China
| | - Zhan Zhang
- Department of Neurosurgery, Heilongjiang Provincial Hospital, Harbin150030, People's Republic of China
| | - Yuming Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin150001, People's Republic of China
| | - Zhong Wu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin150001, People's Republic of China
| | - Yuehua Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin150001, People's Republic of China
| |
Collapse
|
5
|
Touati S, Djekkoun R, El-Okki MEH, Satta D. Epidemiology and survival analyses of 333 adult glioma patients from Eastern Algeria (2008-2016). Afr Health Sci 2020; 20:1250-1258. [PMID: 33402972 PMCID: PMC7751532 DOI: 10.4314/ahs.v20i3.29] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Gliomas are a relatively rare group of tumors with a poor prognosis. We aimed to describe and analyze the clinical characteristics and survival of patients with glioma tumors of Eastern Algeria. METHODS A retrospective study was conducted at the University Hospital of Constantine. Medical records of patients enrolled between January 2008 and October 2016 were consulted. Demographic characteristics, clinical data, treatment strategy and dates of last follow-up or death were collected. Chi-square test was used for checking associations, Kaplan-Meier methodology for estimating the survival, and the cox model for identifying prognosis factors. RESULTS A total of 333 patients composed our cohort. The mean age was 48.07 years, and men were 1.87 times more frequent than women. High grade tumors were mainly observed among adults and old adults and in supra-tentorial locations. More than half of the patients had a large resection and a curative protocol of oncological treatment (50.7% and 57%, respectively). The mean overall survival was 45.4 months, the median was 21.7 months, and survival rates at 1-, 2-, and 5-years were: 62.8%, 48.5% and 32.9% respectively. Age, histology, grade of malignancy and oncological treatment were the major prognosis factors. CONCLUSION Our sample was relatively young with a higher survival compared to others.
Collapse
Affiliation(s)
- Sabrina Touati
- Laboratory of molecular and cellular biology, Mentouri Brothers University, Constantine, Algeria
| | - Rachid Djekkoun
- Radiation-Oncology Department, University Hospital Benbadis, Constantine, Algeria
- Occupational hazards and health laboratory, Salah Boubnider University, Constantine, Algeria
| | | | - Dalila Satta
- Laboratory of molecular and cellular biology, Mentouri Brothers University, Constantine, Algeria
| |
Collapse
|
6
|
Limam S, Missaoui N, Hmissa S, Yacoubi MT, Krifa H, Mokni M, Selmi B. Investigation of Human Cytomegalovirus and Human Papillomavirus in Glioma. Cancer Invest 2020; 38:394-405. [PMID: 32643440 DOI: 10.1080/07357907.2020.1793352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The study investigated the human cytomegalovirus (HCMV) and human papillomavirus (HPV) in gliomas. A retrospective study was conducted on 112 samples. HCMV was investigated by PCR, in situ hybridization (ISH) and immunohistochemistry. HPV was tested by PCR and DNA ISH. HCMV was identified in 60 gliomas, including 55 GBM. However, RNA ISH and immunohistochemistry failed to detect HCMV positivity. HPV was identified in 44 GBM. No significant relationship was identified between HCMV and HPV and tumour characteristics (p > 0.05). Our findings support the HCMV and HPV presence in gliomas. Further assays are required to more explore the potential efficient antiviral management.
Collapse
Affiliation(s)
- Sarra Limam
- Pathology Department, Farhet Hached University Hospital, Sousse, Tunisia
| | - Nabiha Missaoui
- Research Unit UR14ES17, Medicine Faculty, Sousse University, Sousse, Tunisia.,Faculty of Sciences and Techniques of Sidi Bouzid, Kairouan University, Kairouan, Tunisia.,Pathology Department, Sahloul University Hospital, Sousse, Tunisia
| | - Sihem Hmissa
- Pathology Department, Sahloul University Hospital, Sousse, Tunisia
| | | | - Hedi Krifa
- Department of Neurosurgery, Sahloul University Hospital, Sousse, Tunisia
| | - Moncef Mokni
- Pathology Department, Farhet Hached University Hospital, Sousse, Tunisia
| | - Boulbeba Selmi
- Higher Institute of Biotechnology, Monastir University, Monastir, Tunisia
| |
Collapse
|
7
|
Wang H, Zhu Z, Zhang G, Lin F, Liu Y, Zhang Y, Feng J, Chen W, Meng Q, Chen L. AS1411 Aptamer/Hyaluronic Acid-Bifunctionalized Microemulsion Co-Loading Shikonin and Docetaxel for Enhanced Antiglioma Therapy. J Pharm Sci 2019; 108:3684-3694. [PMID: 31465736 DOI: 10.1016/j.xphs.2019.08.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 02/06/2023]
Abstract
In this study, we developed an AS1411 aptamer/hyaluronic acid-bifunctionalized microemulsion co-loading shikonin and docetaxel (AS1411/SKN&DTX-M). Such microemulsion was capable of penetrating the blood-brain barrier (BBB), targeting CD44/nucleolin-overexpressed glioma, and inhibiting the orthotopic glioma growth. AS1411/SKN&DTX-M showed a spherical morphology with a diameter around 30 nm and rapidly released drugs in the presence of hyaluronidase and mild acid. In the U87 cellular studies, AS1411/SKN&DTX-M elevated the cytotoxicity, enhanced the cellular uptake, and induced the cell apoptosis. In the artificial blood-brain barrier model, the transepithelial electrical resistance was decreased after the treatment with AS1411/SKN&DTX-M and thereby of increasing the apparent permeability coefficient. Furthermore, AS1411/SKN&DTX-M showed a strong inhibition against the formation of cancer stem cell-enriched U87 cell spheroids, in which the expression of CD133 was downregulated significantly. In the biodistribution studies, AS1411/SKN&DTX-M could selectively accumulate in the brains of orthotopic luciferase-transfected U87 glioma tumor-bearing nude mice. Importantly, AS1411/SKN&DTX-M exhibited the overwhelming inhibition of glioma growth of orthotopic luciferase-transfected U87 glioma models and reached the longest survival period among all the treatments. In summary, the codelivery of shikonin and docetaxel using bifunctionalization with hyaluronic acid and AS1411 aptamer offers a promising strategy for dual drug-based combinational antiglioma treatment.
Collapse
Affiliation(s)
- Hong Wang
- Department of Neurosurgery, School of Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, People's Republic of China
| | - Zhihan Zhu
- Department of Neurosurgery, School of Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, People's Republic of China
| | - Guilong Zhang
- Department of Neurosurgery, School of Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, People's Republic of China
| | - Feixiang Lin
- Department of Neurosurgery, School of Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, People's Republic of China
| | - Yong Liu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Yu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Jia Feng
- Department of Neurosurgery, School of Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, People's Republic of China
| | - Wanghao Chen
- Department of Neurosurgery, School of Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, People's Republic of China
| | - Qiang Meng
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China.
| | - Lukui Chen
- Department of Neurosurgery, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, People's Republic of China.
| |
Collapse
|
8
|
Li X, Qi S, Ma D, Fan J, Wang J. Long non-coding RNA BLACAT1 promotes the proliferation and invasion of glioma cells via Wnt/β-catenin signaling. Exp Ther Med 2019; 17:4703-4708. [PMID: 31086604 DOI: 10.3892/etm.2019.7468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 03/07/2019] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are hypothesized to regulate numerous biological behaviors in human cancers. The present study aimed to explore the roles of lncRNA bladder cancer associated transcript 1 (BLACAT1) in glioma. The expression of BLACAT1 in glioma tissues and cell lines was determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). CCK-8 assay, colony formation assay, wound healing assay and Transwell invasion assay were used to explore the roles of BLACAT1 in glioma cells. RT-qPCR and western blot analysis were used to determine the BLACAT1 molecular mechanism. The findings demonstrated that lncRNA BLACAT1 was overexpressed in glioma tissues and cell lines. High BLACAT1 expression was correlated with high tumor grade in glioma patients. Functional assays determined that BLACAT1 promoted glioma cell proliferation, migration, invasion and epithelial-mesenchymal transition in vitro. In addition, it was demonstrated that BLACAT1 activated the Wnt/β-catenin signaling pathway. In conclusion, BLACAT1 may serve as an oncogenic lncRNA in glioma progression via activation of the Wnt/β-catenin signaling pathway. Therefore, BLACAT1 may be a novel therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Xiushan Li
- Department of Neurosurgery, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056002, P.R. China
| | - Shujing Qi
- Department of Nutrition, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056002, P.R. China
| | - Dongzhou Ma
- Department of Neurosurgery, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056002, P.R. China
| | - Jinbiao Fan
- Department of Neurosurgery, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056002, P.R. China
| | - Jingtao Wang
- Department of Neurosurgery, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056002, P.R. China
| |
Collapse
|
9
|
Niu WX, Zhou CX, Cheng CD, Bao DJ, Dong YF, Li DX, Yang Y, He H, Niu CS. Effects of lentivirus-mediated CYP17A1 gene silencing on the biological activity of glioma. Neurosci Lett 2018; 692:210-215. [PMID: 30439398 DOI: 10.1016/j.neulet.2018.11.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/03/2018] [Accepted: 11/12/2018] [Indexed: 01/28/2023]
Abstract
Gliomas are the most common malignant primary brain tumors with poor prognosis. We attempted to explore the role of CYP17A1 in glioma progression. We demonstrated that the expression of CYP17A1 was significantly higher in the glioma tissues than the normal brain tissues, especially in malignant glioma. Moreover, the expression of CYP17A1 gene was positively correlative with glioma pathological grades. In vitro, CYP17A1 gene silence inhibited the proliferation and invasion of glioma cells and promoted the apoptosis in glioma cells. Also, the subcutaneously transplanted tumour in BALB/C-nu showed that CYP17A1 gene silence inhibited glioma growth. These results reveal that CYP17A1 plays a major role in the progress of glioma.
Collapse
Affiliation(s)
- Wan-Xiang Niu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, China; Anhui Province Key Laboratory of Brain Function and Brain Disease, China; Anhui Provincial Stereotactic Neurosurgical Institute, China
| | - Chen-Xu Zhou
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, China; Anhui Province Key Laboratory of Brain Function and Brain Disease, China; Anhui Provincial Stereotactic Neurosurgical Institute, China
| | - Chuan-Dong Cheng
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, China; Anhui Province Key Laboratory of Brain Function and Brain Disease, China; Anhui Provincial Stereotactic Neurosurgical Institute, China
| | - De-Jun Bao
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, China; Anhui Province Key Laboratory of Brain Function and Brain Disease, China; Anhui Provincial Stereotactic Neurosurgical Institute, China
| | - Yong-Fei Dong
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, China; Anhui Province Key Laboratory of Brain Function and Brain Disease, China; Anhui Provincial Stereotactic Neurosurgical Institute, China
| | - Dong-Xue Li
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, China; Anhui Province Key Laboratory of Brain Function and Brain Disease, China; Anhui Provincial Stereotactic Neurosurgical Institute, China
| | - Yang Yang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, China; Anhui Province Key Laboratory of Brain Function and Brain Disease, China; Anhui Provincial Stereotactic Neurosurgical Institute, China
| | - Hu He
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, China; Anhui Province Key Laboratory of Brain Function and Brain Disease, China; Anhui Provincial Stereotactic Neurosurgical Institute, China
| | - Chao-Shi Niu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, China; Anhui Province Key Laboratory of Brain Function and Brain Disease, China; Anhui Provincial Stereotactic Neurosurgical Institute, China.
| |
Collapse
|
10
|
Thambi R, Kandamuthan S, Sainulabdeen S, Vilasiniamma L, Abraham TR, Balakrishnan PK. Histopathological Analysis of Brain Tumours- A Seven Year Study from a Tertiary Care Centre in South India. J Clin Diagn Res 2017; 11:EC05-EC08. [PMID: 28764170 DOI: 10.7860/jcdr/2017/25623.9990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/09/2017] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Tumours of central nervous system constitute 1%-2% of tumours in adults. The incidence of brain tumours has been reported to be around 3.9 and 3.0/one lac/year in males and females respectively. A few studies are available from India which show a lower incidence of brain tumours compared to the developed countries. Not much is known about the epidemiology of brain tumours in the population from South India. AIM To identify the age groups, gender distribution, topography and different histological types of brain tumours. MATERIALS AND METHODS A total of 510 cases of brain tumours were identified over a period of seven years which were included in the present study. We retrieved the slides of these cases and reviewed them. Immunohistochemistry in required cases were done. Age and gender distribution, clinical presentation, site of tumour and histopathologic patterns with grade were noted and the data was analysed with SPSS software version 17.0. RESULTS Our analysis showed that most of the brain tumours occur between 40-60 years of age, with a male to female ratio of 0.9:1. Majority of cases involved dura and cerebral lobes except for the occipital lobe, and meningioma and glial tumours were the most common broad histological types. WHO grade IV tumours and metastasis were common in males compared to females. CONCLUSION This study revealed the distribution of brain tumours in patients attending our institution. The results obtained were comparable with available worldwide data.
Collapse
Affiliation(s)
- Renu Thambi
- Assistant Professor, Department of Pathology, Government Medical College Kottayam, Kerala, India
| | - Subitha Kandamuthan
- Assistant Professor, Department of Pathology, Government Medical College Kottayam, Kerala, India
| | - Sheeja Sainulabdeen
- Assistant Professor, Department of Pathology, Government Medical College Kottayam, Kerala, India
| | - Letha Vilasiniamma
- Additional Professor, Department of Pathology, Government Medical College Kottayam, Kerala, India
| | - Tinu Ravi Abraham
- Assistant Professor, Department of Neurosurgery, Government Medical College Kottayam, Kerala, India
| | - P K Balakrishnan
- Professor, Department of Neurosurgery, Government Medical College, Kottayam, Kerala, India
| |
Collapse
|
11
|
Kang CM, Hu YW, Nie Y, Zhao JY, Li SF, Chu S, Li HX, Huang QS, Qiu YR. Long non-coding RNA RP5-833A20.1 inhibits proliferation, metastasis and cell cycle progression by suppressing the expression of NFIA in U251 cells. Mol Med Rep 2016; 14:5288-5296. [PMID: 27779670 DOI: 10.3892/mmr.2016.5854] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 08/16/2016] [Indexed: 11/06/2022] Open
Abstract
Early reports suggest that nuclear factor IA (NFIA) is important in the pathogenesis of glioma. Our previous study demonstrated that the long non‑coding RNA (lncRNA), RP5‑833A20.1, suppressed the expression of NFIA in THP‑1 macrophage-derived foam cells. However, the effect and possible mechanism of RP5‑833A20.1 on glioma remains to be fully elucidated, and whether the NFIA-dependent pathway is involved in its progression has not been investigated. In the present study, the mechanisms by which RP5‑833A20.1 regulates the expression of NFIA in glioma were investigated. The expression levels of RP5‑833A20.1 and NFIA were determined in U251 cells and clinical samples using reverse transcription‑quantitative polymerase chain reaction (PCR) analysis. The effects of RP5‑833A20.1 on cell proliferation, invasion, cell cycle and apoptosis were evaluated using in vitro assays. The potential changes in protein expression were investigated using western blot analysis. The methylation status of the CpG island in the NFIA promoter was determined using bisulfite PCR (BSP) sequencing. It was found that the expression of RP5‑833A20.1 was downregulated, whereas the expression of NFIA was upregulated in glioma tissues, compared with corresponding adjacent nontumor tissues from 20 patients with glioma. The overexpression of RP5‑833A20.1 inhibited proliferation and cell cycle progression, and induced apoptosis in the U251 cells. The mRNA and protein levels of NFIA were markedly inhibited by overexpression of RP5‑833A20.1 in the U251 cells. The overexpression of RP5‑833A20.1 increased the expression of microRNA‑382‑5p in the U251 cells. The BSP assay revealed that the overexpression of RP5‑833A20.1 enhanced the methylation level of the NFIA promoter. These results demonstrated that RP5‑833A20.1 inhibited tumor cell proliferation, induced apoptosis and inhibited cell‑cycle progression by suppressing the expression of NFIA in U251 cells. Collectively, these results indicated RP5‑833A20.1 as a novel therapeutic target for glioma.
Collapse
Affiliation(s)
- Chun-Min Kang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yan-Wei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ying Nie
- Department of Anesthesiology, Guangdong 999 Brain Hospital, Guangzhou, Guangdong 510510, P.R. China
| | - Jia-Yi Zhao
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Shu-Fen Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Shuai Chu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hai-Xia Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qing-Shui Huang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yu-Rong Qiu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
12
|
Gu H, Feng J, Wang H, Qian Y, Yang L, Chen J, Jin F, Shi Y, Lu S, Liu Y. Celastrus orbiculatus extract inhibits the migration and invasion of human glioblastoma cells in vitro. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:387. [PMID: 27716341 PMCID: PMC5052973 DOI: 10.1186/s12906-016-1232-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 07/19/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Gliomas are highly aggressive tumors of the nervous system, and current treatments fail to improve patient survival. To identify substances that can be used as treatments for gliomas, we examined the effect of Celastrus orbiculatus extract (COE) on the invasion and migration of human glioblastoma U87 and U251 cells in vitro. METHODS The effects of COE on cell viability and adhesion were tested using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay and cell adhesion assay, respectively. The effects of COE on cell migration and invasion were assessed by a wound-healing assay and transwell migration and invasion assays. The effects of COE on the expression of epithelial-mesenchymal transition (EMT)-related proteins and matrix metalloproteinases (MMPs) were evaluated using western blot and gelatin zymography, respectively. Finally, the effect of COE on actin assembly was observed using phalloidin-tetramethylrhodamine isothiocyanate labeling and confocal laser scanning microscopy. RESULTS We found that COE inhibited the adhesion, migration, and invasion of U87 and U251 cells in a dose-dependent manner. COE reduced N-cadherin and vimentin expression, increased E-cadherin expression, and reduced MMP-2 and MMP-9 expression in U87 and U251 cells. Furthermore, COE inhibited actin assembly in U87 and U251 cells. CONCLUSIONS COE attenuates EMT, MMP expression, and actin assembly in human glioblastoma cells, thereby inhibiting their adhesion, migration, and invasion in vitro.
Collapse
|
13
|
Ahmad Z, Din NU, Memon A, Tariq MU, Idrees R, Hasan S. Central, Extraventricular and Atypical Neurocytomas: a Clinicopathologic Study of 35 Cases from Pakistan Plus a Detailed Review of the Published Literature. Asian Pac J Cancer Prev 2016; 17:1565-70. [PMID: 27039806 DOI: 10.7314/apjcp.2016.17.3.1565] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Central neurocytomas are rare neuronal neoplasms with a favorable prognosis. They are typically located in the lateral ventricles of the brain and mostly histologically correspond to WHO grade II with a Mib 1 labelling index of <2%. Similar tumors located in the cerebral hemispheres and spinal cord, for example, are called "extraventricular neurocytomas". A few tumors histologically show atypia, mitoses, vascular proliferation and/or necrosis and a Mib 1 index >2 % and are designated as "atypical neurocytomas. AIM The aim of our study was to describe the common as well as unusual morphologic features and the role of various immunohistochemical stains in the diagnosis of these rare tumors. MATERIALS AND METHODS We retrieved and reviewed 35 cases diagnosed between 2001 and 2015. RESULTS Sixty percent of patients were males, and the mean age was 26 years. 31 cases (88.6%) were intraventricular and 4(11.4%) were extraventricular. Histologically, 6 cases (17.1%) were compatible with "atypical neurocytomas". All cases showed the classic morphology comprising nests and sheets of uniform, round cells with uniform round to oval nuclei with finely speckled chromatin and perinuclear cytoplasmic clearing (halos). All cases also showed delicate, fibrillary, neuropil-like matrices. Other common histologic features included capillary-sized blood vessels in a branching pattern in 57.1%, foci of calcification in 34.3% and perivascular pseudorosettes in 20%. Rare findings included Homer- Wright or true rosettes in 8.6% and ganglioid cells in 2.9%. Synaptophysin was the most consistent and valuable marker, being positive in almost all cases. GFAP positivity in tumor cells was seen in 25.7% of cases. Follow up was available in 13 patients. Of these 9 had histologically typical and 4 had atypical tumors. Only 1 (with an atypical neurocytoma) died, probably due to complications of surgery within one month, while 12 (including 3 with atypical neurocytomas) remained alive. Recurrence developed in 1 of these 12 patients (histologically consistent with typical morphology) almost 9 years after surgery. Only 4 patients, including 2 with atypical tumors, received postoperative radiotherapy, all with surgery in 2010 or later. Overall, prognosis was excellent with prolonged, recurrence free survival and most patients, even without receiving radiation therapy, were alive and well for many years, even a decade or more after surgery, without developing any recurrence, indicating the benign nature of these neoplasms.
Collapse
Affiliation(s)
- Zubair Ahmad
- Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Karachi, Pakistan E-mail :
| | | | | | | | | | | |
Collapse
|
14
|
Molecular Diagnostic and Prognostic Subtyping of Gliomas in Tunisian Population. Mol Neurobiol 2016; 54:2381-2394. [PMID: 26957305 DOI: 10.1007/s12035-016-9805-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/17/2016] [Indexed: 10/22/2022]
Abstract
It has become increasingly evident that morphologically similar gliomas may have distinct clinical phenotypes arising from diverse genetic signatures. To date, glial tumours from the Tunisian population have not been investigated. To address this, we correlated the clinico-pathology with molecular data of 110 gliomas by a combination of HM450K array, MLPA and TMA-IHC. PTEN loss and EGFR amplification were distributed in different glioma histological groups. However, 1p19q co-deletion and KIAA1549:BRAF fusion were, respectively, restricted to Oligodendroglioma and Pilocytic Astrocytoma. CDKN2A loss and EGFR overexpression were more common within high-grade gliomas. Furthermore, survival statistical correlations led us to identify Glioblastoma (GB) prognosis subtypes. In fact, significant lower overall survival (OS) was detected within GB that overexpressed EGFR and Cox2. In addition, IDH1R132H mutation seemed to provide a markedly survival advantage. Interestingly, the association of IDHR132H mutation and EGFR normal status, as well as the association of differentiation markers, defined GB subtypes with good prognosis. By contrast, poor survival GB subtypes were defined by the combination of PTEN loss with PDGFRa expression and/or EGFR amplification. Additionally, GB presenting p53-negative staining associated with CDKN2A loss or p21 positivity represented a subtype with short survival. Thus, distinct molecular subtypes with individualised prognosis were identified. Interestingly, we found a unique histone mutation in a poor survival young adult GB case. This tumour exceptionally associated the H3F3A G34R mutation and MYCN amplification as well as 1p36 loss and 10q loss. Furthermore, by exhibiting a remarkable methylation profile, it emphasised the oncogenic power of G34R mutation connecting gliomagenesis and chromatin regulation.
Collapse
|
15
|
Wang K, Fu XT, Li Y, Hou YJ, Yang MF, Sun JY, Yi SY, Fan CD, Fu XY, Zhai J, Sun BL. Induction of S-Phase Arrest in Human Glioma Cells by Selenocysteine, a Natural Selenium-Containing Agent Via Triggering Reactive Oxygen Species-Mediated DNA Damage and Modulating MAPKs and AKT Pathways. Neurochem Res 2016; 41:1439-47. [PMID: 26846141 DOI: 10.1007/s11064-016-1854-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 01/11/2023]
Abstract
Selenocysteine (SeC) a natural available selenoamino acid exhibits novel anticancer activities against human cancer cell lines. However, the growth inhibitory effect and mechanism of SeC in human glioma cells remain unclear. The present study reveals that SeC time- and dose-dependently inhibited U251 and U87 human glioma cells growth by induction of S-phase cell cycle arrest, followed by the marked decrease of cyclin A. SeC-induced S-phase arrest was achieved by inducing DNA damage through triggering generation of reactive oxygen species (ROS) and superoxide anion, with concomitant increase of TUNEL-positive cells and induction of p21waf1/Cip1 and p53. SeC treatment also caused the activation of p38MAPK, JNK and ERK, and inactivation of AKT. Four inhibitors of MAPKs and AKT pathways further confirmed their roles in SeC-induced S-phase arrest in human glioma cells. Our findings advance the understanding on the molecular mechanisms of SeC in human glioma management.
Collapse
Affiliation(s)
- Kun Wang
- Department of Neurology, Shandong University School of Medicine, Jinan, 250012, Shandong, China
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China
| | - Xiao-Ting Fu
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China
| | - Yuan Li
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China
| | - Ya-Jun Hou
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China
| | - Ming-Feng Yang
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China
| | - Jing-Yi Sun
- School of Basic Medicine, Taishan Medical University, Taian, 271000, Shandong, China
| | - Shu-Ying Yi
- School of Basic Medicine, Taishan Medical University, Taian, 271000, Shandong, China
| | - Cun-Dong Fan
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China.
| | - Xiao-Yan Fu
- School of Basic Medicine, Taishan Medical University, Taian, 271000, Shandong, China.
| | - Jing Zhai
- School of Basic Medicine, Taishan Medical University, Taian, 271000, Shandong, China.
| | - Bao-Liang Sun
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China.
- Affiliated Hospital of Taishan Medical University, Taian, 271000, Shandong, China.
| |
Collapse
|
16
|
Jin T, Zhang Z, Yang XF, Luo JS. S100A4 expression is closely linked to genesis and progression of glioma by regulating proliferation, apoptosis, migration and invasion. Asian Pac J Cancer Prev 2015; 16:2883-7. [PMID: 25854377 DOI: 10.7314/apjcp.2015.16.7.2883] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The calcium-binding S100A4 protein is involved in epithelial to mesenchymal transition, oncogenic transformation, angiogenesis, cytoskeletal integrity, mobility and metastasis of cancer cells. This study aimed to clarify the roles of S100A4 in genesis and progression of glioma. MATERIALS AND METHODS S100A4 expression was examined by real-time RT-CPR and Western blot in glioma and paired normal brain tissue (n=69), and compared with clinicopathological parameters of tumors. In addition, glioma U251 cells transfected with an S100A4-expressing plasmid were examined for proliferation by MTT, apoptosis by Annexin V-FITC, and migration and invasion with Transwell chambers. RESULTS Increased S100A4 mRNA expression was found in gliomas, compared with paired non-tumor tissue (p<0.001). Gradual elevation of overexpression of S100A4 was observed with increasing glioma grade (p<0.001). Astrocytoma showed lower S100A4 mRNA expression than oligodendrogliomas, with glioblastomas having highest values (p<0.001). Similar results were obtained for S100A4 protein, a positive link being found between mRNA and protein expression in gliomas (p<0.001). There was higher growth, lower apoptosis, stronger migration and invasion of S100A4 transfectants than control and mock transfected cells (p<0.001). CONCLUSIONS These findings indicate that up-regulated S100A4 expression is positively linked to pathogenesis, progression and histogenesis of glioma by modulating proliferation, apoptosis, migration and invasion.
Collapse
Affiliation(s)
- Ting Jin
- Department of Neurosurgery, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, China E-mail :
| | | | | | | |
Collapse
|
17
|
Yushan R, Wenjie C, Suning H, Yiwu D, Tengfei Z, Madushi WM, Feifei L, Changwen Z, Xin W, Roodrajeetsing G, Zuyun L, Gang C. Insights into the clinical value of cyclin-dependent kinase 5 in glioma: a retrospective study. World J Surg Oncol 2015. [PMID: 26205145 PMCID: PMC4513965 DOI: 10.1186/s12957-015-0629-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Previous studies suggested that expression of cyclin-dependent kinase 5 (CDK5) may promote the migration and invasion of human glioma cells. In this study, we aimed to evaluate the clinical value of CDK5 in different grades of glioma in relation to Ki-67 labeling index (LI). Methods We firstly assessed by immunohistochemistry the expression of CDK5 in 152 glioma tissues and 16 normal brain tissues and further explored the relationship between CDK5 expression and other clinical features. Results The positive ratio of CDK5 in gliomas (57.2 %) was higher than that in normal brain tissues (12.5 %, P = 0.001). Difference of CDK5 expression among four World Health Organization (WHO) grades was statistically significant (P = 0.001). The significant differences of CDK5 expression were also observed between WHO I glioma (34.8 %) and WHO III glioma (62.5 %), as well as WHO IV glioma (82.8 %; P = 0.026, P < 0.001, respectively). Furthermore, Spearman’s rank correlation confirmed that CDK5 was positively correlated with the pathological grade of glioma (r = 0.831, P < 0.001). The CDK5 expression was also positively correlated with Ki-67 LI (r = 0.347, P < 0.001). Conclusions The current result suggests that CDK5 may play an essential role in the tumorigenesis and aggressiveness of gliomas.
Collapse
Affiliation(s)
- Ruan Yushan
- Department of Neurosurgery, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic China
| | - Chen Wenjie
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic China
| | - Huang Suning
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic China
| | - Dang Yiwu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic China
| | - Zhong Tengfei
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic China
| | - Wickramaarachchi Mihiranganee Madushi
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic China
| | - Luo Feifei
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic China
| | - Zhang Changwen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic China
| | - Wen Xin
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic China
| | - Gopaul Roodrajeetsing
- Department of Neurosurgery, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic China
| | - Li Zuyun
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic China.
| | - Chen Gang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic China.
| |
Collapse
|