1
|
Morillo-Huesca M, G López-Cepero I, Conesa-Bakkali R, Tomé M, Watts C, Huertas P, Moreno-Bueno G, Durán RV, Martínez-Fábregas J. Radiotherapy resistance driven by Asparagine endopeptidase through ATR pathway modulation in breast cancer. J Exp Clin Cancer Res 2025; 44:74. [PMID: 40012043 PMCID: PMC11866873 DOI: 10.1186/s13046-025-03334-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/18/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Tumor resistance represents a major challenge in the current oncology landscape. Asparagine endopeptidase (AEP) overexpression correlates with worse prognosis and reduced overall survival in most human solid tumors. However, the underlying mechanisms of the connection between AEP and reduced overall survival in cancer patients remain unclear. METHODS High-throughput proteomics, cellular and molecular biology approaches and clinical data from breast cancer (BC) patients were used to identify novel, biologically relevant AEP targets. Immunoblotting and qPCR analyses were used to quantify protein and mRNA levels. Flow cytometry, confocal microscopy, chemical inhibitors, siRNA- and shRNA-silencing and DNA repair assays were used as functional assays. In-silico analyses using the TCGA BC dataset and immunofluorescence assays in an independent cohort of invasive ductal (ID) BC patients were used to validate the clinical relevance of our findings. RESULTS Here we showed a dual role for AEP in genomic stability and radiotherapy resistance in BC patients by suppressing ATR and PPP1R10 levels. Reduced ATR and PPP1R10 levels were found in BC patients expressing high AEP levels and correlated with worst prognosis. Mechanistically, AEP suppresses ATR levels, reducing DNA damage-induced cell death, and PPP1R10 levels, promoting Chek1/P53 cell cycle checkpoint activation, allowing BC cells to efficiently repair DNA. Functional studies revealed AEP-deficiency results in genomic instability, increased DNA damage signaling, reduced Chek1/P53 activation, impaired DNA repair and cell death, with phosphatase inhibitors restoring the DNA damage response in AEP-deficient BC cells. Furthermore, AEP inhibition sensitized BC cells to the chemotherapeutic reagents cisplatin and etoposide. Immunofluorescence assays in an independent cohort of IDBC patients showed increased AEP levels in ductal cells. These analyses showed that higher AEP levels in radioresistant IDBC patients resulted in ATR nuclear eviction, revealing AEPhigh/ATRlow protein levels as an efficient predictive biomarker for the stratification of radioresistant patients. CONCLUSION The newly identified AEP/ATR/PPP1R10 axis plays a dual role in genomic stability and radiotherapy resistance in BC. Our work provides new clues to the underlying mechanisms of tumor resistance and strong evidence validating the AEP/ATR axis as a novel predictive biomarker and therapeutic target for the stratification and treatment of radioresistant BC patients.
Collapse
Affiliation(s)
- Macarena Morillo-Huesca
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla, Universidad Pablo de Olavide, Américo Vespucio 24, Seville, 41092, Spain
| | - Ignacio G López-Cepero
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla, Universidad Pablo de Olavide, Américo Vespucio 24, Seville, 41092, Spain
| | - Ryan Conesa-Bakkali
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla, Universidad Pablo de Olavide, Américo Vespucio 24, Seville, 41092, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes, Seville, 41012, Spain
| | - Mercedes Tomé
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla, Universidad Pablo de Olavide, Américo Vespucio 24, Seville, 41092, Spain
| | - Colin Watts
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Pablo Huertas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla, Universidad Pablo de Olavide, Américo Vespucio 24, Seville, 41092, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes, Seville, 41012, Spain
| | - Gema Moreno-Bueno
- Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), C/ Arturo Duperier 4, Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Fundación MD Anderson Internacional, C/ Gómez Hemans 1, Madrid, 28033, Spain
- Translational Cancer Research Group. Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Raúl V Durán
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla, Universidad Pablo de Olavide, Américo Vespucio 24, Seville, 41092, Spain
| | - Jonathan Martínez-Fábregas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla, Universidad Pablo de Olavide, Américo Vespucio 24, Seville, 41092, Spain.
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes, Seville, 41012, Spain.
| |
Collapse
|
2
|
Conesa-Bakkali R, Morillo-Huesca M, Martínez-Fábregas J. Non-Canonical, Extralysosomal Activities of Lysosomal Peptidases in Physiological and Pathological Conditions: New Clinical Opportunities for Cancer Therapy. Cells 2025; 14:68. [PMID: 39851495 PMCID: PMC11763575 DOI: 10.3390/cells14020068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
Lysosomes are subcellular compartments characterised by an acidic pH, containing an ample variety of acid hydrolases involved in the recycling of biopolymers. Among these hydrolases, lysosomal proteases have merely been considered as end-destination proteases responsible for the digestion of waste proteins, trafficked to the lysosomal compartment through autophagy and endocytosis. However, recent reports have started to unravel specific roles for these proteases in the regulation of initially unexpected biological processes, both under physiological and pathological conditions. Furthermore, some lysosomal proteases are no longer restricted to the lysosomal compartment, as more novel non-canonical, extralysosomal targets are being identified. Currently, lysosomal proteases are accepted to play key functions in the extracellular milieu, attached to the plasma membrane and even in the cytosolic and nuclear compartments of the cell. Under physiological conditions, lysosomal proteases, through non-canonical, extralysosomal activities, have been linked to cell differentiation, regulation of gene expression, and cell division. Under pathological conditions, these proteases have been linked to cancer, mostly through their extralysosomal activities in the cytosol and nuclei of cells. In this review, we aim to provide a comprehensive summary of our current knowledge about the extralysosomal, non-canonical functions of lysosomal proteases, both under physiological and pathological conditions, with a particular interest in cancer, that could potentially offer new opportunities for clinical intervention.
Collapse
Affiliation(s)
- Ryan Conesa-Bakkali
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Américo Vespucio 24, 41092 Sevilla, Spain; (R.C.-B.); (M.M.-H.)
| | - Macarena Morillo-Huesca
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Américo Vespucio 24, 41092 Sevilla, Spain; (R.C.-B.); (M.M.-H.)
| | - Jonathan Martínez-Fábregas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Américo Vespucio 24, 41092 Sevilla, Spain; (R.C.-B.); (M.M.-H.)
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes, 41012 Sevilla, Spain
| |
Collapse
|
3
|
Xu H, Xu D, Zheng Y, Wang H, Li A, Zheng X. Investigation of prognostic values of immune infiltration and LGMN expression in the microenvironment of osteosarcoma. Discov Oncol 2024; 15:275. [PMID: 38980440 PMCID: PMC11233489 DOI: 10.1007/s12672-024-01123-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 06/25/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Osteosarcoma (OS), the most common primary malignant bone tumor, predominantly affects children and young adults and is characterized by high invasiveness and poor prognosis. Despite therapeutic advancements, the survival rate remains suboptimal, indicating an urgent need for novel biomarkers and therapeutic targets. This study aimed to investigate the prognostic significance of LGMN expression and immune cell infiltration in the tumor microenvironment of OS. METHODS We performed an integrative bioinformatics analysis utilizing the GEO and TARGET-OS databases to identify differentially expressed genes (DEGs) associated with LGMN in OS. We conducted Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) to explore the biological pathways and functions. Additionally, we constructed protein-protein interaction (PPI) networks, a competing endogenous RNA (ceRNA) network, and applied the CIBERSORT algorithm to quantify immune cell infiltration. The diagnostic and prognostic values of LGMN were evaluated using the area under the receiver operating characteristic (ROC) curve and Cox regression analysis. Furthermore, we employed Consensus Clustering Analysis to explore the heterogeneity within OS samples based on LGMN expression. RESULTS The analysis revealed significant upregulation of LGMN in OS tissues. DEGs were enriched in immune response and antigen processing pathways, suggesting LGMN's role in immune modulation within the TME. The PPI and ceRNA network analyses provided insights into the regulatory mechanisms involving LGMN. Immune cell infiltration analysis indicated a correlation between high LGMN expression and increased abundance of M2 macrophages, implicating an immunosuppressive role. The diagnostic AUC for LGMN was 0.799, demonstrating its potential as a diagnostic biomarker. High LGMN expression correlated with reduced overall survival (OS) and progression-free survival (PFS). Importantly, Consensus Clustering Analysis identified two distinct subtypes of OS, highlighting the heterogeneity and potential for personalized medicine approaches. CONCLUSIONS Our study underscores the prognostic value of LGMN in osteosarcoma and its potential as a therapeutic target. The identification of LGMN-associated immune cell subsets and the discovery of distinct OS subtypes through Consensus Clustering Analysis provide new avenues for understanding the immunosuppressive TME of OS and may aid in the development of personalized treatment strategies. Further validation in larger cohorts is warranted to confirm these findings.
Collapse
Affiliation(s)
- Hualiang Xu
- Department of Orthopedic, Guangzhou Red Cross Hospital of Jinan University, No. 396, Tongfu Middle Road, Haizhu District, Guangzhou, Guangdong, People's Republic of China
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, No. 613, Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong, People's Republic of China
| | - Dawei Xu
- Department of Orthopedic, Guangzhou Red Cross Hospital of Jinan University, No. 396, Tongfu Middle Road, Haizhu District, Guangzhou, Guangdong, People's Republic of China
| | - Yinfeng Zheng
- Department of Orthopedic, Guangzhou Red Cross Hospital of Jinan University, No. 396, Tongfu Middle Road, Haizhu District, Guangzhou, Guangdong, People's Republic of China
| | - Huajun Wang
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, No. 613, Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong, People's Republic of China
| | - Aiguo Li
- Department of Orthopedic, Guangzhou Red Cross Hospital of Jinan University, No. 396, Tongfu Middle Road, Haizhu District, Guangzhou, Guangdong, People's Republic of China.
| | - Xiaofei Zheng
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, No. 613, Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
Bandi DR, Chitturi CMK, Aswathanarayan JB, Veeresh PKM, Bovilla VR, Sukocheva OA, Devi PS, Natraj SM, Madhunapantula SV. Pigmented Microbial Extract (PMB) from Exiguobacterium Species MB2 Strain (PMB1) and Bacillus subtilis Strain MB1 (PMB2) Inhibited Breast Cancer Cells Growth In Vivo and In Vitro. Int J Mol Sci 2023; 24:17412. [PMID: 38139241 PMCID: PMC10743659 DOI: 10.3390/ijms242417412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Breast cancer (BC) continues to be one of the major causes of cancer deaths in women. Progress has been made in targeting hormone and growth factor receptor-positive BCs with clinical efficacy and success. However, little progress has been made to develop a clinically viable treatment for the triple-negative BC cases (TNBCs). The current study aims to identify potent agents that can target TNBCs. Extracts from microbial sources have been reported to contain pharmacological agents that can selectively inhibit cancer cell growth. We have screened and identified pigmented microbial extracts (PMBs) that can inhibit BC cell proliferation by targeting legumain (LGMN). LGMN is an oncogenic protein expressed not only in malignant cells but also in tumor microenvironment cells, including tumor-associated macrophages. An LGMN inhibition assay was performed, and microbial extracts were evaluated for in vitro anticancer activity in BC cell lines, angiogenesis assay with chick chorioallantoic membrane (CAM), and tumor xenograft models in Swiss albino mice. We have identified that PMB from the Exiguobacterium (PMB1), inhibits BC growth more potently than PMB2, from the Bacillus subtilis strain. The analysis of PMB1 by GC-MS showed the presence of a variety of fatty acids and fatty-acid derivatives, small molecule phenolics, and aldehydes. PMB1 inhibited the activity of oncogenic legumain in BC cells and induced cell cycle arrest and apoptosis. PMB1 reduced the angiogenesis and inhibited BC cell migration. In mice, intraperitoneal administration of PMB1 retarded the growth of xenografted Ehrlich ascites mammary tumors and mitigated the proliferation of tumor cells in the peritoneal cavity in vivo. In summary, our findings demonstrate the high antitumor potential of PMB1.
Collapse
Affiliation(s)
- Deepa R. Bandi
- Department of Applied Microbiology, Sri Padmavathi Mahila Viswavidyalayam, Tirupati 517502, Andhra Pradesh, India; (D.R.B.); (P.S.D.)
| | - Ch M. Kumari Chitturi
- Department of Applied Microbiology, Sri Padmavathi Mahila Viswavidyalayam, Tirupati 517502, Andhra Pradesh, India; (D.R.B.); (P.S.D.)
| | - Jamuna Bai Aswathanarayan
- Department of Microbiology, JSS Academy of Higher Education & Research (JSS AHER), Mysore 570015, Karnataka, India;
| | - Prashant Kumar M. Veeresh
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysore 570015, Karnataka, India; (P.K.M.V.); (V.R.B.); (S.M.N.)
| | - Venugopal R. Bovilla
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysore 570015, Karnataka, India; (P.K.M.V.); (V.R.B.); (S.M.N.)
| | - Olga A. Sukocheva
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia;
| | - Potireddy Suvarnalatha Devi
- Department of Applied Microbiology, Sri Padmavathi Mahila Viswavidyalayam, Tirupati 517502, Andhra Pradesh, India; (D.R.B.); (P.S.D.)
| | - Suma M. Natraj
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysore 570015, Karnataka, India; (P.K.M.V.); (V.R.B.); (S.M.N.)
| | - SubbaRao V. Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysore 570015, Karnataka, India; (P.K.M.V.); (V.R.B.); (S.M.N.)
- Special Interest Group (SIG) in Cancer Biology and Cancer Stem Cells (CBCSC), JSS Academy of Higher Education & Research (JSS AHER), Mysore 570015, Karnataka, India
| |
Collapse
|
5
|
Asparaginyl endopeptidase contributes to cetuximab resistance via MEK/ERK signaling in RAS wide-type metastatic colorectal cancer. Clin Transl Oncol 2023; 25:776-785. [PMID: 36609651 PMCID: PMC9941237 DOI: 10.1007/s12094-022-02986-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/17/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Cetuximab, a monoclonal antibody targeting epidermal growth factor receptor (EGFR), is effective for RAS wild-type metastatic colorectal cancer (mCRC) patients. However, cetuximab resistance often occur and the mechanism has not been fully elucidated. The purpose of this study was to investigate the role of asparaginyl endopeptidase (AEP) in cetuximab resistance. METHODS Differentially expressed genes between cetuximab responders and non-responders were identified by analyzing the gene expression profile GSE5851, retrieved from Gene Expression Omnibus (GEO). The potential genes were further validated in cetuximab-resistant CRC cell lines. The expression of AEP in the peripheral blood and tumor tissues of mCRC patients in our hospital were detected by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry, respectively. The survival analysis was carried out by Kaplan-Meier method. The function and associated pathways of AEP were further investigated by lentivirus transfection, CCK8 assay, colony formation assay, real-time polymerase chain reaction (qPCR) and western blot. RESULTS Through bioinformatics analysis, we found that the expression of AEP gene was related to progress free survival (PFS) of mCRC patients treated with cetuximab alone (P = 0.00133). The expression of AEP was significantly higher in the cetuximab-resistant CRC cell lines, as well as in mCRC patients with shorter PFS treated with cetuximab-containing therapy. Furthermore, AEP could decrease the sensitivity of CRC cells to cetuximab in vitro. And the phosphorylation level of MEK and ERK1/2 was increased in AEP overexpression cells. The downregulation of AEP using specific inhibitors could partially restore the sensitivity of CRC cells to cetuximab. CONCLUSION The higher expression of AEP could contribute to the shorter PFS of cetuximab treatment in mCRC. The reason might be that AEP could promote the phosphorylation of MEK/ERK protein in the downstream signal pathway of EGFR.
Collapse
|
6
|
Jiang S, Xiong Y, Zhang W, Zhu J, Cheng D, Gong Y, Wu Y, Qiao H, Fu H. A Novel Legumain-Like Protease in Macrobrachium nipponense: Identification, Characterization, and Function Analysis in Ovary Maturation. Front Endocrinol (Lausanne) 2022; 13:858726. [PMID: 35399931 PMCID: PMC8987206 DOI: 10.3389/fendo.2022.858726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/28/2022] [Indexed: 11/16/2022] Open
Abstract
Legumain, also called aspartic endopeptidase (AEP), is a member of the cysteine protease family and is involved in various physiological processes. In this study, we analyzed the characteristics of a novel legumain-like (named Mn-Lel) in the female oriental river prawn, Macrobrachium nipponense, which is involved in ovary maturation. The Mn-Lel is 1,454 bp in length, including a 1,290-bp open reading frame that encodes 430 amino acids. qPCR analysis indicated that Mn-Lel is specifically highly expressed in the hepatopancreas and ovaries of female prawns. It is rarely expressed in embryogenesis, weakly expressed in early larval development stages, and then significantly increased after metamorphosis, which indicated that Mn-Lel is not a maternal gene and mainly plays a role in adults. During the different ovarian stages, Mn-Lel expression in the hepatopancreas had no obvious rules, while its expression in the ovaries had a significant peak in stage III. In situ hybridization studies revealed that Mn-Lel is localized in the oocyte of the ovary. Changes in the gonadosomatic index confirmed the inhibitory effects of Mn-Lel dsRNA on ovary maturation. These results suggest that Mn-Lel has a key role in promoting ovary maturation.
Collapse
Affiliation(s)
- Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Junpeng Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Dan Cheng
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- *Correspondence: Hongtuo Fu, ; Hui Qiao,
| | - Hongtuo Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- *Correspondence: Hongtuo Fu, ; Hui Qiao,
| |
Collapse
|
7
|
Zhao T, Liu Y, Hao Y, Zhang W, Tao L, Wang D, Li Y, Liu Z, McKenzie EA, Zhao Q, Diao A. Esomeprazole inhibits the lysosomal cysteine protease legumain to prevent cancer metastasis. Invest New Drugs 2020; 39:337-347. [PMID: 32978718 DOI: 10.1007/s10637-020-01011-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/21/2020] [Indexed: 01/01/2023]
Abstract
Legumain is a newly discovered lysosomal cysteine protease that can cleave asparagine bonds and plays crucial roles in regulating immunity and cancer metastasis. Legumain has been shown to be highly expressed in various solid tumors, within the tumor microenvironment and its levels are directly related to tumor metastasis and poor prognosis. Therefore, legumain presents as a potential cancer therapeutic drug target. In this study, we have identified esomeprazole and omeprazole as novel legumain small molecule inhibitors by screening an FDA approved-drug library. These compounds inhibited enzyme activity of both recombinant and endogenous legumain proteins with esomeprazole displaying the highest inhibitory effect. Further molecular docking analysis also indicated that esomeprazole, the S- form of omeprazole had the most stable binding to legumain protein compared to R-omeprazole. Transwell assay data showed that esomeprazole and omeprazole reduced MDA-MB-231 breast cancer cell invasion without effecting cell viability. Moreover, an in vivo orthotopic transplantation nude mouse model study showed that esomeprazole reduced lung metastasis of MDA-MB-231 breast cancer cells. These results indicated that esomeprazole has the exciting potential to be used in anti-cancer therapy by preventing cancer metastasis via the inhibition of legumain enzyme activity. Graphical abstract.
Collapse
Affiliation(s)
- Tian Zhao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin Economic and Technological Development Area (TEDA), Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin, 300457, China
| | - Yujie Liu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin Economic and Technological Development Area (TEDA), Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin, 300457, China
| | - Yanfei Hao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin Economic and Technological Development Area (TEDA), Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin, 300457, China
| | - Wei Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin Economic and Technological Development Area (TEDA), Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin, 300457, China
| | - Li Tao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin Economic and Technological Development Area (TEDA), Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin, 300457, China
| | - Dong Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin Economic and Technological Development Area (TEDA), Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin, 300457, China
| | - Yuyin Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin Economic and Technological Development Area (TEDA), Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin, 300457, China
| | - Zhenxing Liu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin Economic and Technological Development Area (TEDA), Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin, 300457, China
| | - Edward A McKenzie
- Manchester Institute of Biotechnology (MIB), Manchester University, Manchester, M1 7DN, UK
| | - Qing Zhao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin Economic and Technological Development Area (TEDA), Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin, 300457, China.
| | - Aipo Diao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin Economic and Technological Development Area (TEDA), Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin, 300457, China.
| |
Collapse
|
8
|
Grozdanić M, Vidmar R, Vizovišek M, Fonović M. Degradomics in Biomarker Discovery. Proteomics Clin Appl 2019; 13:e1800138. [PMID: 31291060 DOI: 10.1002/prca.201800138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/01/2019] [Indexed: 12/13/2022]
Abstract
The upregulation of protease expression and proteolytic activity is implicated in numerous pathological conditions such as neurodegeneration, cancer, cardiovascular and autoimmune diseases, and bone degeneration. During disease progression, various proteases form characteristic patterns of cleaved proteins and peptides, which can affect disease severity and course of progression. It has been shown that qualitative and quantitative monitoring of cleaved protease substrates can provide relevant prognostic, diagnostic, and therapeutic information. As proteolytic fragments and peptides generated in the affected tissue are commonly translocated to blood, urine, and other proximal fluids, their possible application as biomarkers is the subject of ongoing research. The field of degradomics has been established to enable the global identification of proteolytic events on the organism level, utilizing proteomic approaches and sample preparation techniques that facilitate the detection of proteolytic processing of protease substrates in complex biological samples. In this review, some of the latest developments in degradomic methodologies used for the identification and validation of biologically relevant proteolytic events and their application in the search for clinically relevant biomarker candidates are presented. The current state of degradomics in clinics is discussed and the future perspectives of the field are outlined.
Collapse
Affiliation(s)
- Marija Grozdanić
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, SI-1000, Ljubljana, Slovenia.,International Postgraduate School Jožef Stefan, SI-1000, Ljubljana, Slovenia
| | - Robert Vidmar
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, SI-1000, Ljubljana, Slovenia
| | - Matej Vizovišek
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, SI-1000, Ljubljana, Slovenia
| | - Marko Fonović
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
9
|
Toss MS, Miligy IM, Gorringe KL, McCaffrey L, AlKawaz A, Abidi A, Ellis IO, Green AR, Rakha EA. Legumain is an independent predictor for invasive recurrence in breast ductal carcinoma in situ. Mod Pathol 2019; 32:639-649. [PMID: 30429518 DOI: 10.1038/s41379-018-0180-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 12/21/2022]
Abstract
Legumain is a proteolytic enzyme that plays a role in the regulation of cell proliferation in invasive breast cancer. Studies evaluating its role in ductal carcinoma in situ (DCIS) are lacking. Here, we aimed to characterize legumain protein expression in DCIS and evaluate its prognostic significance. Legumain was assessed immunohistochemically in a tissue microarray of a well-characterized cohort of DCIS (n = 776 pure DCIS and n = 239 DCIS associated with invasive breast cancer (DCIS-mixed)). Legumain immunoreactivity was scored in tumor cells and surrounding stroma and related to clinicopathological parameters and patient outcome. High legumain expression was observed in 23% of pure DCIS and was associated with features of high-risk DCIS including higher nuclear grade, comedo necrosis, hormone receptor negativity, HER2 positivity, and higher proliferation index. Legumain expression was higher in DCIS associated with invasive breast cancer than in pure DCIS (p < 0.0001). In the DCIS-mixed cohort, the invasive component showed higher legumain expression than the DCIS component (p < 0.0001). Legumain was an independent predictor of shorter local recurrencefree interval for all recurrences (p = 0.0003) and for invasive recurrences (p = 0.002). When incorporated with other risk factors, legumain provided better patient risk stratification. High legumain expression is associated with poor prognosis in DCIS and could be a potential marker to predict DCIS progression to invasive disease.
Collapse
Affiliation(s)
- Michael S Toss
- Department of Histopathology, Nottingham Breast Cancer Research Center, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham University Hospital NHS Trust, Nottingham City Hospital, Nottingham, UK.,Histopathology department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Islam M Miligy
- Department of Histopathology, Nottingham Breast Cancer Research Center, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham University Hospital NHS Trust, Nottingham City Hospital, Nottingham, UK.,Histopathology department, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Egypt
| | - Kylie L Gorringe
- Cancer Genomics Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - L McCaffrey
- Department of Oncology, Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Abdulbaqi AlKawaz
- Department of Histopathology, Nottingham Breast Cancer Research Center, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham University Hospital NHS Trust, Nottingham City Hospital, Nottingham, UK.,College of dentistry, Al Mustansiriya University, Baghdad, Iraq
| | - Asima Abidi
- Department of Histopathology, Nottingham Breast Cancer Research Center, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham University Hospital NHS Trust, Nottingham City Hospital, Nottingham, UK
| | - Ian O Ellis
- Department of Histopathology, Nottingham Breast Cancer Research Center, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham University Hospital NHS Trust, Nottingham City Hospital, Nottingham, UK
| | - Andrew R Green
- Department of Histopathology, Nottingham Breast Cancer Research Center, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham University Hospital NHS Trust, Nottingham City Hospital, Nottingham, UK
| | - Emad A Rakha
- Department of Histopathology, Nottingham Breast Cancer Research Center, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham University Hospital NHS Trust, Nottingham City Hospital, Nottingham, UK. .,Histopathology department, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Egypt.
| |
Collapse
|
10
|
Dutta A, Potier DN, Walker MJ, Gray OJ, Parker C, Holland M, Williamson AJK, Pierce A, Unwin RD, Krishnan S, Saha V, Whetton AD. Development of a selected reaction monitoring mass spectrometry-based assay to detect asparaginyl endopeptidase activity in biological fluids. Oncotarget 2018; 7:70822-70831. [PMID: 27683124 PMCID: PMC5342591 DOI: 10.18632/oncotarget.12224] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/15/2016] [Indexed: 12/22/2022] Open
Abstract
Cancer Biomarkers have the capability to improve patient outcomes. They have potential applications in diagnosis, prognosis, monitoring of disease progression and measuring response to treatment. This type of information is particularly useful in the individualisation of treatment regimens. Biomarkers may take many forms but considerable effort has been made to identify and quantify proteins in biological fluids. However, a major challenge in measuring protein in biological fluids, such as plasma, is the sensitivity of the assay and the complex matrix of proteins present. Furthermore, determining the effect of proteases in disease requires measurement of their activity in biological fluids as quantification of the protein itself may not provide sufficient information. To date little progress has been made towards monitoring activity of proteases in plasma. The protease asparaginyl endopeptidase has been implicated in diseases such as breast cancer, leukaemia and dementia. Here we describe a new approach to sensitively and in a targeted fashion quantify asparaginyl endopeptidase activity in plasma using a synthetic substrate peptide protected from nonspecific hydrolysis using D-amino acids within the structure. Our selected reaction monitoring approach enabled asparaginyl endopeptidase activity to be measured in human plasma with both a high dynamic range and sensitivity. This manuscript describes a paradigm for future development of assays to measure protease activities in biological fluids as biomarkers of disease.
Collapse
Affiliation(s)
- Anindita Dutta
- Stem Cell and Leukaemia Proteomics Laboratory, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Tata Translational Cancer Research Centre, Kolkata, India
| | - David N Potier
- Stem Cell and Leukaemia Proteomics Laboratory, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Michael J Walker
- Stem Cell and Leukaemia Proteomics Laboratory, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Oliver J Gray
- Stoller Biomarker Discovery Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Catriona Parker
- Children's Cancer Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Mark Holland
- Children's Cancer Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Andrew J K Williamson
- Stem Cell and Leukaemia Proteomics Laboratory, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Andrew Pierce
- Stem Cell and Leukaemia Proteomics Laboratory, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Richard D Unwin
- Stem Cell and Leukaemia Proteomics Laboratory, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Current address: Centre for Advanced Discovery and Experimental Therapeutics, Central Manchester University Hospitals NHS Foundation Trust and Institute of Human Development, University of Manchester, Manchester, UK
| | | | - Vaskar Saha
- Tata Translational Cancer Research Centre, Kolkata, India.,Children's Cancer Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Anthony D Whetton
- Stem Cell and Leukaemia Proteomics Laboratory, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Stoller Biomarker Discovery Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
11
|
Asparaginyl endopeptidase promotes the invasion and metastasis of gastric cancer through modulating epithelial-to-mesenchymal transition and analysis of their phosphorylation signaling pathways. Oncotarget 2018; 7:34356-70. [PMID: 27102302 PMCID: PMC5085161 DOI: 10.18632/oncotarget.8879] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/28/2016] [Indexed: 02/06/2023] Open
Abstract
Asparaginyl endopeptidase (AEP) is a lysosomal protease often overexpressed in gastric cancer. AEP was expressed higher in peritoneal metastatic loci than in primary gastric cancer. Then we overexpressed AEP or knocked it down with a lentiviral vector in gastric cancer cell lines and detected the cell cycle arrest and the changes of the invasive and metastatic ability in vitro and in vivo. When AEP was knocked-down, the proliferative, invasive and metastatic capacity of gastric cancer cells were inhibited, and the population of sub-G1 cells increased. AEP knockdown led to significant decrease of expression of transcription factor Twist and the mesenchymal markers N-cadherin, ß-catenin and Vimentin and to increased expression of epithelial marker E-cadherin. These results showed that AEP could promote invasion and metastasis by modulating EMT. We used phosphorylation-specific antibody microarrays to investigate the mechanism how AEP promotes gastric cancer invasion and metastasis, and found that the phosphorylation level of AKT and MAPK signaling pathways was decreased significantly if AEP was knocked-down. Therefore, AKT and MAPK signaling pathways took part in the modulation.
Collapse
|
12
|
Cui Y, Li Q, Li H, Wang Y, Wang H, Chen W, Zhang S, Cao J, Liu T. Asparaginyl endopeptidase improves the resistance of microtubule-targeting drugs in gastric cancer through IQGAP1 modulating the EGFR/JNK/ERK signaling pathway. Onco Targets Ther 2017; 10:627-643. [PMID: 28223821 PMCID: PMC5304996 DOI: 10.2147/ott.s125579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE In recent years, understanding of the role of asparaginyl endopeptidase (AEP) in tumorigenesis has steadily increased. In this study, we investigated whether AEP expression correlates with sensitivity to chemotherapeutic drugs in gastric cancer and explored the mechanism. PATIENTS AND METHODS AEP expression in the serum of patients' peripheral blood was measured by enzyme-linked immunosorbent assay. Patient survival time was evaluated using univariate and multivariate analyses. Mass spectrometry and co-immunoprecipitation assays were utilized to discover proteins that interact with AEP. Gastric cancer cell lines were established, in which AEP was overexpressed or knocked out using lentiviral CRISPR. The proliferative abilities of these cell lines in response to chemotherapy agents were evaluated using the Cell Counting Kit-8 method. Gene expression changes in these lines were assessed by real-time polymerase chain reaction and Western blot. RESULTS Patients with low expression of AEP were significantly more likely to have a good prognosis and experience complete response or partial response after treatment with docetaxel/S-1 regimen. Mass spectrum analysis showed that several proteins in the focal adhesion and mitogen-activated protein kinase signaling pathways interacted with AEP. IQGAP1 was confirmed to be one of the proteins interacting with AEP, and its protein level increased when AEP was knocked out. AEP knockout decreased resistance to microtubule inhibitors, including paclitaxel, docetaxel, and T-DM1. The expression levels of MDR1, p-EGFR, p-JNK, p-ERK, and p-Rac1/cdc42 were decreased in AEP knockout gastric cancer cell lines, and inhibitors of both JNK and ERK could block AEP-induced expression of MDR1. CONCLUSION AEP was not only a prognostic factor but also a predictive marker. AEP knockout could inhibit the activity of the EGFR/JNK/ERK signaling pathway and improve sensitivity to microtubule inhibitors through interacting with IQGAP1.
Collapse
Affiliation(s)
| | | | | | | | - Hongshan Wang
- General Surgery Department, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Weidong Chen
- General Surgery Department, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Shangmin Zhang
- Pathology Department, Yale School of Medicine, New Haven, CT, USA
| | - Jian Cao
- Pathology Department, Yale School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
13
|
Jafari A, Qanie D, Andersen TL, Zhang Y, Chen L, Postert B, Parsons S, Ditzel N, Khosla S, Johansen HT, Kjærsgaard-Andersen P, Delaisse JM, Abdallah BM, Hesselson D, Solberg R, Kassem M. Legumain Regulates Differentiation Fate of Human Bone Marrow Stromal Cells and Is Altered in Postmenopausal Osteoporosis. Stem Cell Reports 2017; 8:373-386. [PMID: 28162997 PMCID: PMC5312427 DOI: 10.1016/j.stemcr.2017.01.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 12/21/2022] Open
Abstract
Secreted factors are a key component of stem cell niche and their dysregulation compromises stem cell function. Legumain is a secreted cysteine protease involved in diverse biological processes. Here, we demonstrate that legumain regulates lineage commitment of human bone marrow stromal cells and that its expression level and cellular localization are altered in postmenopausal osteoporotic patients. As shown by genetic and pharmacological manipulation, legumain inhibited osteoblast (OB) differentiation and in vivo bone formation through degradation of the bone matrix protein fibronectin. In addition, genetic ablation or pharmacological inhibition of legumain activity led to precocious OB differentiation and increased vertebral mineralization in zebrafish. Finally, we show that localized increased expression of legumain in bone marrow adipocytes was inversely correlated with adjacent trabecular bone mass in a cohort of patients with postmenopausal osteoporosis. Our data suggest that altered proteolytic activity of legumain in the bone microenvironment contributes to decreased bone mass in postmenopausal osteoporosis. Legumain determines differentiation fate of BMSCs in vitro and in vivo Legumain regulates BMSC proliferation independent of its enzymatic activity Inhibition of legumain leads to precocious bone formation in zebrafish Legumain is overexpressed in bone marrow adipocytes of osteoporotic patients
Collapse
Affiliation(s)
- Abbas Jafari
- Department of Cellular and Molecular Medicine, Danish Stem Cell Center (DanStem), University of Copenhagen, 2200 Copenhagen, Denmark; Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology and Metabolism, Odense University Hospital & University of Southern Denmark, J.B. Winsloewsvej 25, 1st Floor, 5000 Odense C, Denmark
| | - Diyako Qanie
- Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology and Metabolism, Odense University Hospital & University of Southern Denmark, J.B. Winsloewsvej 25, 1st Floor, 5000 Odense C, Denmark
| | - Thomas L Andersen
- Department of Clinical Cell Biology, Vejle/ Lillebaelt Hospital, Institute of Regional Health Research, University of Southern Denmark, 7100, Vejle, Denmark
| | - Yuxi Zhang
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Li Chen
- Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology and Metabolism, Odense University Hospital & University of Southern Denmark, J.B. Winsloewsvej 25, 1st Floor, 5000 Odense C, Denmark
| | - Benno Postert
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Stuart Parsons
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Nicholas Ditzel
- Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology and Metabolism, Odense University Hospital & University of Southern Denmark, J.B. Winsloewsvej 25, 1st Floor, 5000 Odense C, Denmark
| | - Sundeep Khosla
- Endocrine Research Unit, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | - Jean-Marie Delaisse
- Department of Clinical Cell Biology, Vejle/ Lillebaelt Hospital, Institute of Regional Health Research, University of Southern Denmark, 7100, Vejle, Denmark
| | - Basem M Abdallah
- Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology and Metabolism, Odense University Hospital & University of Southern Denmark, J.B. Winsloewsvej 25, 1st Floor, 5000 Odense C, Denmark; Department of Biological Sciences, College of Science, King Faisal University, Hofuf 6996, Saudi Arabia
| | - Daniel Hesselson
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, UNSW Australia, Sydney, NSW 2010, Australia
| | - Rigmor Solberg
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, 0363 Oslo, Norway
| | - Moustapha Kassem
- Department of Cellular and Molecular Medicine, Danish Stem Cell Center (DanStem), University of Copenhagen, 2200 Copenhagen, Denmark; Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology and Metabolism, Odense University Hospital & University of Southern Denmark, J.B. Winsloewsvej 25, 1st Floor, 5000 Odense C, Denmark; Stem Cell Unit, Department of Anatomy, Faculty of Medicine, King Saud University, Riyadh 12372, Saudi Arabia.
| |
Collapse
|
14
|
Xu C, Cao L, Liu J, Qian Z, Peng Y, Zhu W, Qiu Y, Lin Y. Suppression of Asparaginyl Endopeptidase Inhibits Polyomavirus Middle T Antigen-Induced Tumor Formation and Metastasis. Oncol Res 2016; 25:407-415. [PMID: 27660925 PMCID: PMC7841005 DOI: 10.3727/096504016x14743350548249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Elevated circulating asparaginyl endopeptidase (AEP), a novel lysosomal protease, has been found in breast cancer, and AEP is thus considered to be a prognostic factor in this disease. However, the pathological functions of circulating AEP in the development of breast cancer and the potential of AEP-targeted therapy remain unclear. We used MMTV-PyVmT transgenic mice, which spontaneously develop mammary tumors. Western blotting showed overexpression of AEP in both primary tumor tissue and lung metastases compared to their normal counterparts. Moreover, the concentration of circulating AEP gradually increased in the serum during the development of mammary tumors. Purified AEP protein injected through the tail vein promoted tumor growth and mammary tumor metastasis and shortened survival, whereas AEP-specific small compound inhibitors (AEPIs) effectively suppressed tumor progression and prolonged host survival. Further analysis of the molecular mechanism revealed that AEP was important for PI3K/AKT pathway activation. Thus, an elevated serum AEP level was closely related to mammary cancer progression and metastasis, and AEP is a potential target for breast cancer therapy in the clinic.
Collapse
|
15
|
Zhang ZQ, Cao Z, Liu C, Li R, Wang WD, Wang XY. MiRNA-Embedded ShRNAs for Radiation-Inducible LGMN Knockdown and the Antitumor Effects on Breast Cancer. PLoS One 2016; 11:e0163446. [PMID: 27656894 PMCID: PMC5033420 DOI: 10.1371/journal.pone.0163446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/08/2016] [Indexed: 11/18/2022] Open
Abstract
Legumain (LGMN) is highly expressed in breast cancer (BC) and other solid tumors and is a potential anticancer target. Here we investigate the anti-tumor effects of short hairpin RNAs (shRNAs) targeting LGMN embedded in a microRNA-155 (miR-155) architecture, which is driven by a radiation-inducible chimeric RNA polymerase II (Pol II) promoter. Lentiviral vectors were generated with the chimeric promoter which controlled the expression of downstream shRNA-miR-155 cassette. Fluorescence was observed by using confocal microscopy. Real-time quantitative PCR and Western blotting were used to determine the expression level of LGMN, MMP2, and MMP9. Furthermore, the proliferation and invasive ability of BC cells was analyzed via plate colony formation and invasion assays. Here we demonstrated that the chimeric promoter could be effectively induced by radiation treatment. Furthermore, the shRNA-miR-155 cassette targeting LGMN could be effectively activated by the chimeric promoter. Radiation plus knockdown of LGMN impairs colony formation and dampens cell migration and invasion in BC cells. Inhibition of LGMN downregulates MMP2 and MMP9 expression in BC cells. Pol II-driven shRNA-miR-155 could effectively suppress the growth and invasiveness of BC cells, and that the interference effects could be regulated by radiation doses. Moreover, knockdown of LGMN alleviates the aggressive phenotype of BC cells through modulating MMPs expression.
Collapse
Affiliation(s)
- Zhi-Qiang Zhang
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing, 400014, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, China
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhi Cao
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu, 610041, China
| | - Cong Liu
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Rong Li
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Wei-Dong Wang
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu, 610041, China
- * E-mail: (WW); (XW)
| | - Xing-Yong Wang
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing, 400014, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, China
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- * E-mail: (WW); (XW)
| |
Collapse
|
16
|
Zhen Y, Chunlei G, Wenzhi S, Shuangtao Z, Na L, Rongrong W, Xiaohe L, Haiying N, Dehong L, Shan J, Xiaoyue T, Rong X. Clinicopathologic significance of legumain overexpression in cancer: a systematic review and meta-analysis. Sci Rep 2015; 5:16599. [PMID: 26607955 PMCID: PMC4660395 DOI: 10.1038/srep16599] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 10/07/2015] [Indexed: 01/13/2023] Open
Abstract
Since reports on the clinical significance of legumain in cancer have shown inconsistent results, we systematically evaluated clinical indicators of legumain in cancer. We searched the Cochrane Library, PubMed, Embase, and EBSCO databases and the Wangfang and CNKI databases in China by using "legumain" and ("neoplasms" OR "cancer") as search terms. We included case-controlled studies of legumain and cancer. The quality of the studies was evaluated by using Lichtenstein's guidelines, and valid data was extracted for analysis. In total, 10 articles were included in this study. Meta-analysis showed that legumain was overexpressed in cancer compared with in normal tissue and was higher in stage III-IV disease than in I-II disease. Moreover, legumain overexpression was correlated with poor prognosis and clinical stage. Furthermore, Cancer Genome Atlas data showed that among patients with rectal cancer, those with tumors overexpressing legumain had shorter overall survival than those in the low expression group (P < 0.05). Legumain appears to be involved in tumor development and deterioration; thus, it can potentially be developed into both a marker for monitoring and diagnosing tumors and a therapeutic target.
Collapse
Affiliation(s)
- Ye Zhen
- Department of Tumor Molecular Biology, Nankai University School of Medicine, Tianjin 371000, China
| | - Guo Chunlei
- Department of Tumor Molecular Biology, Nankai University School of Medicine, Tianjin 371000, China
| | - Shen Wenzhi
- Department of Tumor Molecular Biology, Nankai University School of Medicine, Tianjin 371000, China
| | - Zhao Shuangtao
- Department of Tumor Molecular Biology, Nankai University School of Medicine, Tianjin 371000, China
| | - Luo Na
- Department of Tumor Molecular Biology, Nankai University School of Medicine, Tianjin 371000, China
| | - Wang Rongrong
- Department of Tumor Molecular Biology, Nankai University School of Medicine, Tianjin 371000, China
| | - Luo Xiaohe
- Department of Tumor Molecular Biology, Nankai University School of Medicine, Tianjin 371000, China
| | - Niu Haiying
- Department of Tumor Molecular Biology, Nankai University School of Medicine, Tianjin 371000, China
| | - Luo Dehong
- Department of Tumor Molecular Biology, Nankai University School of Medicine, Tianjin 371000, China
| | - Jiang Shan
- Department of Tumor Molecular Biology, Nankai University School of Medicine, Tianjin 371000, China
| | - Tan Xiaoyue
- Department of Tumor Molecular Biology, Nankai University School of Medicine, Tianjin 371000, China
| | - Xiang Rong
- Department of Tumor Molecular Biology, Nankai University School of Medicine, Tianjin 371000, China
| |
Collapse
|
17
|
Structure and function of legumain in health and disease. Biochimie 2015; 122:126-50. [PMID: 26403494 DOI: 10.1016/j.biochi.2015.09.022] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/18/2015] [Indexed: 12/27/2022]
Abstract
The last years have seen a steady increase in our understanding of legumain biology that is driven from two largely uncoupled research arenas, the mammalian and the plant legumain field. Research on legumain, which is also referred to as asparaginyl endopeptidase (AEP) or vacuolar processing enzyme (VPE), is slivered, however. Here we summarise recent important findings and put them into a common perspective. Legumain is usually associated with its cysteine endopeptidase activity in lysosomes where it contributes to antigen processing for class II MHC presentation. However, newly recognized functions disperse previously assumed boundaries with respect to their cellular compartmentalisation and enzymatic activities. Legumain is also found extracellularly and even translocates to the cytosol and the nucleus, with seemingly incompatible pH and redox potential. These different milieus translate into changes of legumain's molecular properties, including its (auto-)activation, conformational stability and enzymatic functions. Contrasting its endopeptidase activity, legumain can develop a carboxypeptidase activity which remains stable at neutral pH. Moreover, legumain features a peptide ligase activity, with intriguing mechanistic peculiarities in plant and human isoforms. In pathological settings, such as cancer or Alzheimer's disease, the proper association of legumain activities with the corresponding cellular compartments is breached. Legumain's increasingly recognized physiological and pathological roles also indicate future research opportunities in this vibrant field.
Collapse
|
18
|
Abstract
Tumor-associated macrophages (TAMs) are major component of leukocytic infiltrate of tumors and play important roles in progression and regression of tumors. Tumor microenvironment determines the mutual conversion between M1 and M2 macrophages. In many kinds of tumors, M2 type macrophages are of the majority in TAMs and promote tumor progression and metastasis. The dynamic balance and interaction between TAMs and tumor cells have important effects on the occurrence and development of tumor. TAMs in malignant tumors are useful for clinical diagnosis and may provide a novel target for cancer treatment.
Collapse
|