1
|
Pan D, Long L, Li C, Zhou Y, Liu Q, Zhao Z, Zhao H, Lin W, Zheng Z, Peng L, Li E, Xu L. Splicing factor hnRNPA1 regulates alternative splicing of LOXL2 to enhance the production of LOXL2Δ13. J Biol Chem 2024; 300:107414. [PMID: 38810697 PMCID: PMC11259713 DOI: 10.1016/j.jbc.2024.107414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024] Open
Abstract
Lysyl oxidase-like 2 (LOXL2) is a member of the lysyl oxidase family and has the ability to catalyze the cross-linking of extracellular matrix collagen and elastin. High expression of LOXL2 is related to tumor cell proliferation, invasion, and metastasis. LOXL2 contains 14 exons. Previous studies have found that LOXL2 has abnormal alternative splicing and exon skipping in a variety of tissues and cells, resulting in a new alternatively spliced isoform denoted LOXL2Δ13. LOXL2Δ13 lacks LOXL2WT exon 13, but its encoded protein has greater ability to induce tumor cell proliferation, invasion, and metastasis. However, the molecular events that produce LOXL2Δ13 are still unclear. In this study, we found that overexpression of the splicing factor hnRNPA1 in cells can regulate the alternative splicing of LOXL2 and increase the expression of LOXL2Δ13. The exonic splicing silencer exists at the 3' splice site and 5' splice site of LOXL2 exon 13. HnRNPA1 can bind to the exonic splicing silencer and inhibit the inclusion of exon 13. The RRM domain of hnRNPA1 and phosphorylation of hnRNPA1 at S91 and S95 are important for the regulation of LOXL2 alternative splicing. These results show that hnRNPA1 is a splicing factor that enhances the production of LOXL2Δ13.
Collapse
Affiliation(s)
- Deyuan Pan
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China; Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Lin Long
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China; Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Chengyu Li
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province, China; Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Yingxin Zhou
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province, China; Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Qing Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China
| | - Ziting Zhao
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Hui Zhao
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province, China; Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Wan Lin
- Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Zhenyuan Zheng
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province, China; Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Liu Peng
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province, China; Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Enmin Li
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province, China; Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong Province, China.
| | - Liyan Xu
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province, China; Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong Province, China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong Province, China.
| |
Collapse
|
2
|
Dlamini Z, Hull R, Mbatha SZ, Alaouna M, Qiao YL, Yu H, Chatziioannou A. Prognostic Alternative Splicing Signatures in Esophageal Carcinoma. Cancer Manag Res 2021; 13:4509-4527. [PMID: 34113176 PMCID: PMC8186946 DOI: 10.2147/cmar.s305464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/06/2021] [Indexed: 01/10/2023] Open
Abstract
Alternative splicing (AS) is a method of increasing the number of proteins that the genome is capable of coding for, by altering the pre-mRNA during its maturation. This process provides the ability of a broad range of proteins to arise from a single gene. AS events are known to occur in up to 94% of human genes. Cumulative data have shown that aberrant AS functionality is a major factor in human diseases. This review focuses on the contribution made by aberrant AS functionality in the development and progression of esophageal cancer. The changes in the pattern of expression of alternately spliced isoforms in esophageal cancer can be used as diagnostic or prognostic biomarkers. Additionally, these can be used as targets for the development of new treatments for esophageal cancer.
Collapse
Affiliation(s)
- Zodwa Dlamini
- SAMRC Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa
| | - Rodney Hull
- SAMRC Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa
| | - Sikhumbuzo Z Mbatha
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Mohammed Alaouna
- SAMRC Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa.,Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - You-Lin Qiao
- SAMRC Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa.,Cancer Institute/Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Herbert Yu
- SAMRC Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa.,University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Aristotelis Chatziioannou
- SAMRC Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa.,Center of Systems Biology, Biomedical Research Foundation Academy of Athens, Athens, Greece.,e-NIOS Applications PC, Kallithea, Athens, 17676, Greece
| |
Collapse
|
3
|
Ye M, Song Y, Pan S, Chu M, Wang ZW, Zhu X. Evolving roles of lysyl oxidase family in tumorigenesis and cancer therapy. Pharmacol Ther 2020; 215:107633. [PMID: 32693113 DOI: 10.1016/j.pharmthera.2020.107633] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022]
Abstract
The lysyl oxidase (LOX) family is comprised of LOX and four LOX-like proteins (LOXL1, LOXL2, LOXL3, and LOXL4), and mainly functions in the remodeling of extracellular matrix (ECM) and the cross-linking of collagen and elastic fibers. Recently, a growing body of research has demonstrated that LOX family is critically involved in the regulation of cancer cell proliferation, migration, invasion and metastasis. In this review, we discuss the roles of LOX family members in the development and progression of different types of human cancers. Furthermore, we also describe the potential inhibitors of LOX family proteins and highlight that LOX family might be an important therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Miaomiao Ye
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yizuo Song
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Shuya Pan
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Man Chu
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhi-Wei Wang
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China..
| | - Xueqiong Zhu
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
4
|
Zou H, Wen B, Li RL, Zhan XH, Jiao JW, Liao LD, Wu BL, Xie WM, Xu LY, Li EM. Lysyl oxidase-like 2 promotes esophageal squamous cell carcinoma cell migration independent of catalytic activity. Int J Biochem Cell Biol 2020; 125:105795. [PMID: 32580015 DOI: 10.1016/j.biocel.2020.105795] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 02/05/2023]
Abstract
Lysyl oxidase-like 2 (LOXL2) is a member of the lysyl oxidase (LOX) family that contributes to tumor cell metastasis. Our previous data identified two splice variants of LOXL2 (i.e., LOXL2 Δ72 and Δ13) in esophageal squamous cell carcinoma (ESCC) cells that increased cell invasiveness and migration but had lower LOX activities than wild-type LOXL2 (LOXL2 WT). We generated a series of LOXL2 deletion mutants with different deleted biochemical domains and examined the relationship between the cell migration abilities and catalytic activities, as well as subcellular locations, of these deletion mutants compared with LOXL2 WT in ESCC cells to explore the mechanism of LOXL2-driven ESCC cell migration. Our results indicated that the deletion mutants of LOXL2 had impaired deamination enzymatic activity; LOXL2 ΔSRCR4, which lacks the fourth scavenger receptor cysteine-rich (SRCR) domain, had lower enzymatic activity; and LOXL2 Y689F had no catalytic activity compared with LOXL2 WT. However these two mutants stimulated greater cellular migration than LOXL2 WT. Furthermore, the degree of cell migration promoted by LOXL2 ΔLO (in which the LOX-like domain was deleted) was higher than that of LOXL2 WT, and LOXL2 ΔSRCR3, which does not have the third SRCR domain, had lower LOX activity and cellular migration ability than LOXL2 WT. These results suggested that LOXL2 promotes ESCC cell migration independent of catalytic activity.
Collapse
Affiliation(s)
- Haiying Zou
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, China; The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Bing Wen
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, China; The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Run-Liu Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, China; The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xiu-Hui Zhan
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, China; The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Ji-Wei Jiao
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, China; The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Lian-Di Liao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, China; Institute of Oncologic Pathology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, Guangdong, China
| | - Bing-Li Wu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, China; The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Wen-Ming Xie
- Medical Bioinformatics Center, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, Guangdong, China
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, China; Institute of Oncologic Pathology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, Guangdong, China.
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, China; The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, China.
| |
Collapse
|
5
|
Sun D, Han L, Cao R, Wang H, Jiang J, Deng Y, Yu X. Prediction of a miRNA-mRNA functional synergistic network for cervical squamous cell carcinoma. FEBS Open Bio 2019; 9:2080-2092. [PMID: 31642613 PMCID: PMC6886301 DOI: 10.1002/2211-5463.12747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/13/2019] [Accepted: 10/22/2019] [Indexed: 01/16/2023] Open
Abstract
Cervical squamous cell carcinoma (CSCC) accounts for a significant proportion of cervical cancer; thus, there is a need for novel and noninvasive diagnostic biomarkers for this malignancy. In this study, we performed integrated analysis of a dataset from the Gene Expression Omnibus database to identify differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRNAs) between CSCC, cervical intraepithelial neoplasia (CIN) and healthy control subjects. We further established protein-protein interaction and DEmiRNA-target gene interaction networks, and performed functional annotation of the target genes of DEmiRNAs. In total, we identified 1375 DEGs and 19 DEmiRNAs in CIN versus normal control, and 2235 DEGs and 33 DEmiRNAs in CSCC versus CIN by integrated analysis. Our protein-protein interaction network indicates that the common DEGs, Cyclin B/cyclin-dependent kinase 1 (CDK1), CCND1, ESR1 and Aurora kinase A (AURKA), are the top four hub genes. P53 and prostate cancer were identified as significantly enriched signaling pathways of common DEGs and DEmiRNA targets, respectively. We validated that expression levels of three DEGs (TYMS, SASH1 and CDK1) and one DEmiRNA of hsa-miR-99a were altered in blood samples of patients with CSCC. In conclusion, a total of four DEGs (TYMS, SASH1, CDK1 and AURKA) and two DEmiRNAs (hsa-miR-21 and hsa-miR-99a) may be involved in the pathogenesis of CIN and the progression of CIN into CSCC. Of these, TYMS is predicted to be regulated by hsa-miR-99a and SASH1 to be regulated by hsa-miR-21.
Collapse
Affiliation(s)
- Dan Sun
- Obstetrics and Gynecology, Dalian Maternity and Child Health Care Hospital, China
| | - Lu Han
- Obstetrics and Gynecology, Dalian Maternity and Child Health Care Hospital, China
| | - Rui Cao
- Obstetrics and Gynecology, Dalian Maternity and Child Health Care Hospital, China
| | - Huali Wang
- Obstetrics and Gynecology, Dalian Maternity and Child Health Care Hospital, China
| | - Jiyong Jiang
- Obstetrics and Gynecology, Dalian Maternity and Child Health Care Hospital, China
| | - Yanjie Deng
- Obstetrics and Gynecology, Dalian Maternity and Child Health Care Hospital, China
| | - Xiaohui Yu
- Obstetrics and Gynecology, Dalian Maternity and Child Health Care Hospital, China
| |
Collapse
|
6
|
Liu C, Guo T, Sakai A, Ren S, Fukusumi T, Ando M, Sadat S, Saito Y, Califano JA. A novel splice variant of LOXL2 promotes progression of human papillomavirus-negative head and neck squamous cell carcinoma. Cancer 2019; 126:737-748. [PMID: 31721164 DOI: 10.1002/cncr.32610] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is one of the most frequently diagnosed cancers worldwide. LOXL2 demonstrates alternative splicing events in patients with human papillomavirus (HPV)-negative HNSCC. The current study explored the role of a dominant LOXL2 variant in HPV-negative HNSCC. METHODS Expression of the LOXL2 variant was analyzed using The Cancer Genome Atlas cohorts and validated using quantitative reverse transcriptase-polymerase chain reaction in a separate primary tumor set. The authors defined the effect of LOXL2 splice variants in assays for cell proliferation using a cell viability assay and colony formation assay. Cell migration and invasion were examined using a cell scratch assay and transwell cell migration and invasion assay in LOXL2 splice variant gain and loss of expression cells. Western blot analysis and gene set enrichment analysis were used to explore the potential mechanism of the LOXL2 splice variant in HPV-negative HNSCC. RESULTS Expression of a novel LOXL2 variant was found to be upregulated in The Cancer Genome Atlas HPV-negative HNSCC, and confirmed in the separate primary tumor validation set. Analyses of loss and gain of function demonstrated that this LOXL2 variant enhanced proliferation, migration, and invasion in HPV-negative HNSCC cells and activated the FAK/AKT pathway. A total of 837 upregulated and 820 downregulated genes and 526 upregulated and 124 downregulated pathways associated with LOXL2 variant expression were identified using gene set enrichment analysis, which helped in developing a better understanding of the networks activated by this LOXL2 variant in patients with HPV-negative HNSCC. CONCLUSIONS The novel LOXL2 variant can promote the progression of HPV-negative HNSCC, in part through FAK/AKT pathway activation, which may provide a new potential therapeutic target among patients with HPV-negative HNSCC.
Collapse
Affiliation(s)
- Chao Liu
- Moores Cancer Center, University of California at San Diego, San Diego, California.,Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Theresa Guo
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Akihiro Sakai
- Moores Cancer Center, University of California at San Diego, San Diego, California
| | - Shuling Ren
- Moores Cancer Center, University of California at San Diego, San Diego, California.,Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Takahito Fukusumi
- Moores Cancer Center, University of California at San Diego, San Diego, California
| | - Mizuo Ando
- Moores Cancer Center, University of California at San Diego, San Diego, California
| | - Sayed Sadat
- Moores Cancer Center, University of California at San Diego, San Diego, California
| | - Yuki Saito
- Moores Cancer Center, University of California at San Diego, San Diego, California
| | - Joseph A Califano
- Moores Cancer Center, University of California at San Diego, San Diego, California.,Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California at San Diego, San Diego, California
| |
Collapse
|
7
|
Xie W, Huang P, Wu B, Chen S, Huang Z, Wang J, Sun H, Wu J, Xie L, Cheng Y, Xie W, Xu L, Chen LQ, Li E, Zou H. Clinical significance of LOXL4 expression and features of LOXL4-associated protein-protein interaction network in esophageal squamous cell carcinoma. Amino Acids 2019; 51:813-828. [PMID: 30900087 DOI: 10.1007/s00726-019-02723-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/12/2019] [Indexed: 02/05/2023]
Abstract
Lysyl oxidase-like 4 (LOXL4), a member of the LOX family proteins, catalyzes oxidative deamination of lysine residues in collagen and elastin, which are responsible for maintaining extracellular matrix homeostasis. In this study, the mRNA expression of LOXL4 in seven esophageal squamous cell carcinoma (ESCC) cell lines and 15 ESCC pairs of clinical samples were examined. Furthermore, LOXL4 protein levels in the ESCC cell lines were determined using western blotting. With the use of immunofluorescence, LOXL4 was observed to be localized primarily in the cytoplasm, but was also present in the nucleus. In addition, the results indicated that the upregulated expression of LOXL4 was associated with poor survival in patients with ESCC even following curative resection (P = 0.010). Similar Kaplan-Meier estimator curves for proteins that interact with LOXL4, SUV39H1 (P = 0.014) and COL2A1 (P = 0.011), were plotted. The analyses based on the protein-protein interaction network depicted the expression of LOXL4 and its associated proteins as well as their functions, suggesting that LOXL4 and its associated proteins may serve a significant role in the development and progression of ESCC. In conclusion, the results of the present study suggest that LOXL4 is a potential biomarker for patients with ESCC, as well as SUV39H1 and COL2A1, and high expression levels of these genes are associated with poor prognosis in patients with ESCC.
Collapse
Affiliation(s)
- Weijie Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Peiqi Huang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Bingli Wu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Sijie Chen
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Zijian Huang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Junhao Wang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Hong Sun
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Jianyi Wu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Lei Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Yinwei Cheng
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Wenming Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
- Medical Bioinformatics Center, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Liyan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Long-Qi Chen
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Enmin Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China.
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong, People's Republic of China.
| | - Haiying Zou
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China.
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong, People's Republic of China.
| |
Collapse
|
8
|
Zhong XL, Liao XM, Shen F, Yu HJ, Yan WS, Zhang YF, Ye JJ, Lv ZP. Genome-wide profiling of mRNA and lncRNA expression in dengue fever and dengue hemorrhagic fever. FEBS Open Bio 2019; 9:468-477. [PMID: 30868055 PMCID: PMC6396354 DOI: 10.1002/2211-5463.12576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 01/03/2023] Open
Abstract
Dengue fever (DF) and dengue hemorrhagic fever (DHF) are recurrent diseases that are widespread in the tropics. Here, we identified candidate genes associated with these diseases by performing integrated analyses of DF (GSE51808) and DHF (GSE18090) microarray datasets in the Gene Expression Omnibus (GEO). In all, we identified 7635 differentially expressed genes (DEGs) in DF and 8147 DEGs in DHF as compared to healthy controls (P < 0.05). In addition, we discovered 215 differentially expressed long non-coding RNAs (DElncRNAs) in DF and 225 DElncRNAs in DHF. There were 1256 common DEGs and eight common DElncRNAs in DHF vs DF, DHF vs normal control, and DF vs normal control groups. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that signal transduction (false discovery rate = 8.33E-10), 'toxoplasmosis', and 'protein processing in endoplasmic reticulum' were significantly enriched pathways for common DEGs. We conclude that the MAGED1,STAT1, and IL12A genes may play crucial roles in DF and DHF, and suggest that our findings may facilitate the identification of biomarkers and the development of new drug design strategies for DF and DHF treatment.
Collapse
Affiliation(s)
- Xiao-Lan Zhong
- Department of Quality Control Huadu Hospital of Southern Medical University & Guangzhou Huadu District People's Hospital China
| | - Xiao-Ming Liao
- Department of Medicine Huadu Hospital of Southern Medical University & Guangzhou Huadu District People's Hospital China
| | - Fei Shen
- Clinical Laboratory Huadu Hospital of Southern Medical University & Guangzhou Huadu District People's Hospital China
| | - Hai-Jian Yu
- Department of Medicine Huadu Hospital of Southern Medical University & Guangzhou Huadu District People's Hospital China
| | - Wen-Sheng Yan
- Department of Medicine Huadu Hospital of Southern Medical University & Guangzhou Huadu District People's Hospital China
| | - Yun-Fang Zhang
- Department of Medicine Huadu Hospital of Southern Medical University & Guangzhou Huadu District People's Hospital China
| | - Jia-Jun Ye
- Department of Medicine Huadu Hospital of Southern Medical University & Guangzhou Huadu District People's Hospital China
| | - Zhi-Ping Lv
- College of Traditional Chinese Medicine Southern Medical University Guangzhou China
| |
Collapse
|
9
|
Guo C, Li Y, Zhang R, Zhang Y, Zhao J, Yao J, Sun J, Dong J, Liao L. Protective Effect of Salidroside Against Diabetic Kidney Disease Through Inhibiting BIM-Mediated Apoptosis of Proximal Renal Tubular Cells in Rats. Front Pharmacol 2018; 9:1433. [PMID: 30564128 PMCID: PMC6289038 DOI: 10.3389/fphar.2018.01433] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/19/2018] [Indexed: 12/25/2022] Open
Abstract
Background: Accumulating evidences indicate that the apoptosis of proximal tubular epithelial cells (PTECs) play a vital role in the progression of the diabetic kidney disease (DKD). This study aimed to explore the therapeutic potential of salidroside (SAL) in DKD and its underlying mechanism in anti-apoptosis of PTECs. Methods: Twenty-eight male Wistar rats were allocated into four groups: sham-operated, uninephrectomy (unx), diabetes with uninephrectomy (DKD) and DKD treated with SAL (DKD + SAL). SAL (70 mg/kg) was gavage administered for 8 weeks. 24-h albuminuria and serum creatinine (SCr), blood urea nitrogen (BUN), renal histological changes were examined. The silico analysis was used to identify the main therapeutic targets and pathways of SAL involved in DKD treatment. Apoptosis was determined by TUNEL and Annexin V-FITC/PI double staining in vivo and in vitro, respectively. The expression of BIM, BAX, and cleaved caspase-3 were evaluated by western blot and immunostaining. Results: Treatment with SAL significantly attenuated diabetic kidney injury via inhibiting 24-h albuminuria, SCr, BUN, glomerular mesangial dilatation and tubular injury in DKD rats. The silico analysis identified the intrinsic apoptotic pathway as an important pathway responsible for the nephroprotective properties of SAL. Our data validated that SAL effectively inhibited the apoptosis of PTECs induced by high-glucose (HG), both in vitro and in vivo. Silence of BIM by shRNA in HK-2 cells prevented HG-induced apoptosis. The up-regulated BIM and its downstream targets (BAX and cleaved caspase-3) were also inhibited by SAL. Conclusion: In summary, SAL significantly relieved DKD. And the possible mechanisms might be partially attributed to inhibiting apoptosis of proximal renal tubular cells. The apoptotic protein BIM could be an important target of SAL in this process.
Collapse
Affiliation(s)
- Congcong Guo
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China.,Division of Endocrinology, Department of Internal Medicine, Shandong Provincial QianFoShan Hospital, Shandong University, Jinan, China
| | - Yun Li
- Department of General Health Care II, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Rui Zhang
- Division of Endocrinology, Department of Internal Medicine, Shandong Provincial QianFoShan Hospital, Shandong University, Jinan, China
| | - Yaqin Zhang
- Division of Endocrinology, Department of Internal Medicine, Shandong Provincial QianFoShan Hospital, Shandong University, Jinan, China
| | - Junyu Zhao
- Division of Endocrinology, Department of Internal Medicine, Shandong Provincial QianFoShan Hospital, Shandong University, Jinan, China
| | - Jinming Yao
- Division of Endocrinology, Department of Internal Medicine, Shandong Provincial QianFoShan Hospital, Shandong University, Jinan, China
| | - Jie Sun
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jianjun Dong
- Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Lin Liao
- Division of Endocrinology, Department of Internal Medicine, Shandong Provincial QianFoShan Hospital, Shandong University, Jinan, China
| |
Collapse
|
10
|
Du ZP, Wu BL, Xie JJ, Lin XH, Qiu XY, Zhan XF, Wang SH, Shen JH, Li EM, Xu LY. Network Analyses of Gene Expression following Fascin Knockdown in Esophageal Squamous Cell Carcinoma Cells. Asian Pac J Cancer Prev 2015. [DOI: 10.7314/apjcp.2015.16.13.5445] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
11
|
Lv GQ, Zou HY, Liao LD, Cao HH, Zeng FM, Wu BL, Xie JJ, Fang WK, Xu LY, Li EM. Identification of a novel lysyl oxidase-like 2 alternative splicing isoform, LOXL2 Δe13, in esophageal squamous cell carcinoma. Biochem Cell Biol 2014; 92:379-89. [PMID: 25275797 DOI: 10.1139/bcb-2014-0046] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Lysyl oxidase-like 2 (LOXL2) participates in every stage of cancer progression and promotes invasion and metastasis. In this study, we identified a novel alternative splicing isoform of LOXL2, namely LOXL2 Δe13, which lacked exon 13. Deletion of exon 13 caused an open reading frame shift and produced a truncated protein. LOXL2 Δe13 was expressed ubiquitously in cell lines and tissues and was mainly localized to the cytoplasm. Although it showed impaired deamination enzymatic activity compared with full-length LOXL2, LOXL2 Δe13 promoted the cell mobility and invasion of esophageal squamous cell carcinoma (ESCC) cells to greater degrees. In further research on the mechanisms, gene expression profiling and signaling pathway analysis revealed that LOXL2 Δe13 induced the expression of MAPK8 without affecting the FAK, AKT, and ERK signaling pathways. RNAi-mediated knockdown of MAPK8 could block the cell migration promoted by LOXL2De13, but it had little effect on that of full-length LOXL2. Our data suggest that LOXL2 Δe13 modulates the effects of cancer cell migration and invasion through a different mechanism from that of full-length LOXL2 and that it may play a very important role in tumor carcinogenesis and progression.
Collapse
Affiliation(s)
- Guo-Qing Lv
- a The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhou C, Teng WJ, Yang J, Hu ZB, Wang CC, Qin BN, Lv QL, Liu ZW, Sun CG. Construction of a Protein-Protein Interaction Network for Chronic Myelocytic Leukemia and Pathway Prediction of Molecular Complexes. Asian Pac J Cancer Prev 2014; 15:5325-30. [DOI: 10.7314/apjcp.2014.15.13.5325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|