1
|
Wang X, Xiong X. Mitochondrial Reactive Oxygen Species (mROS) Generation and Cancer: Emerging Nanoparticle Therapeutic Approaches. Int J Nanomedicine 2025; 20:6085-6119. [PMID: 40385494 PMCID: PMC12085131 DOI: 10.2147/ijn.s510972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 04/24/2025] [Indexed: 05/20/2025] Open
Abstract
Mitochondrial reactive oxygen species (mROS) are generated as byproducts of mitochondrial oxidative phosphorylation. Changes in mROS levels are involved in tumorigenesis through their effects on cancer genome instability, sustained cancer cell survival, metabolic reprogramming, and tumor metastasis. Recent advances in nanotechnology offer a promising approach for precise regulation of mROS by either enhancing or depleting mROS generation. This review examines the association between dysregulated mROS levels and key cancer hallmarks. We also discuss the potential applications of mROS-targeted nanoparticles that artificially manipulate ROS levels in the mitochondria to achieve precise delivery of antitumor drugs.
Collapse
Affiliation(s)
- Xinyao Wang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
- Queen Mary School of Nanchang University, Nanchang, People’s Republic of China
| | - Xiangyang Xiong
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
2
|
Duraki D, Jabeen M, Mao C, Wang L, Ghosh S, Dai X, Zhu J, Boudreau MW, Nelson ER, Hergenrother PJ, Cheng G, Shapiro DJ. A necrosis inducer promotes an immunogenic response and destroys ovarian cancers in mouse xenografts and patient ascites organoids. Cancer Lett 2025; 625:217738. [PMID: 40311911 DOI: 10.1016/j.canlet.2025.217738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/24/2025] [Accepted: 04/22/2025] [Indexed: 05/03/2025]
Abstract
Most ovarian cancer patients present with advanced disease and there are few targeted therapies; consequently, five-year survival for ovarian cancer remains below 50%. We described the anticipatory unfolded protein response (a-UPR) hyperactivator, ErSO, which induced profound and often complete regression of breast cancer in mouse models. Here we explore the effectiveness of ErSO against ovarian cancer. ErSO induced death of human PEO4 and Caov-3 ovarian cancer cells in vitro. In mouse xenografts, injected ErSO induced rapid complete, or near complete, regression of orthotopic metastatic PEO4 tumors and of Caov-3 ovarian tumors. Ovarian cancer patients often develop malignant ascites containing ovarian cancer organoids that drive metastasis. ErSO showed activity against 7/7 fresh patient derived ascites organoids (PDAOs). Low nanomolar ErSO destroyed 2/7 PDAOs. ErSO-mediated cell death in PDAOs occurred through the same a-UPR activation mechanism seen in cell culture. Moreover, ErSO family compound-induced a-UPR activation in ovarian cancer cells triggers necrotic cell death and release of damage associated molecular patterns (DAMPs), which strongly activated human macrophage and induced monocyte migration. These studies suggest ErSO has unusual potential for treatment of advanced ovarian cancer.
Collapse
Affiliation(s)
- Darjan Duraki
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Musarrat Jabeen
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Chengjian Mao
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Lawrence Wang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Santanu Ghosh
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xinyi Dai
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Junyao Zhu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Matthew W Boudreau
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Paul J Hergenrother
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Georgina Cheng
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Gynecologic Oncology, Carle Health, Urbana IL, 61801, USA; Department of Clinical Sciences, Carle Illinois College of Medicine, Urbana, IL, 61801, USA
| | - David J Shapiro
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
3
|
Liang C, Jiang J, Li J, Lin X, Huang W, Lai KP, Chen J. The anti-melanoma roles and mechanisms of tricholoma isoflavone derivative CA028. NPJ Sci Food 2025; 9:4. [PMID: 39788977 PMCID: PMC11718060 DOI: 10.1038/s41538-025-00370-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025] Open
Abstract
As a form of skin cancer, melanoma's incidence rate is continuing to rise globally. Therefore, there is an urgent need to find new agents to improve survival in melanoma patients. Isoflavones, a class of phytoestrogens, are primarily found in soy and other legumes. Cumulating evidence demonstrates that isoflavones exhibits significant anti-tumor properties and is beneficial for the prevention and treatment of melanoma. In the present study, we aim to investigate the anti-melanoma role of tricholoma isoflavone derivative CA028. By using in vitro melanoma cell line models, A375 and A2058 and in vivo xenograft mouse model, our results indicate that melanoma proliferation, migration, and invasion are attenuated following CA028 treatment. In addition, the treatment of CA028 induced cell apoptosis of melanoma. Finally, we addressed the mechanism of CA028 against melanoma by comparative transcriptomic analysis. The results of gene ontology highlighted the involvement of CA028's targets in the cell proliferation, cell apoptosis, and migration ability of melanoma cells. Furthermore, Ingenuity Pathway Analysis constructed the network involved in the apoptotic roles of CA028 through targeting p53 signaling and death receptor signaling. For the first time, our data suggested the possible use of modified isoflavone for therapeutic applications against melanoma.
Collapse
Affiliation(s)
- Cheng Liang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, PR China
| | - Jianfu Jiang
- Department of Digestive Oncology, Yongfu County People's Hospital, Guilin City, Guangxi Province, PR China
| | - Jinkai Li
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, PR China
| | - Xiao Lin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Wenjun Huang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, PR China
| | - Keng Po Lai
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, PR China.
- Department of Applied Science, Hong Kong Metropolitan University, Hong Kong SAR, PR China.
| | - Jian Chen
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, PR China.
| |
Collapse
|
4
|
Xie W, Li Y, Guo Z, Lu J, Li G, Zhang Z, Zhang F, Wei Y, Wang X, Zhao L. FePd Nanozyme- and SKN-Encapsulated Functional Lipid Nanoparticles for Cancer Nanotherapy via ROS-Boosting Necroptosis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18411-18421. [PMID: 38584383 DOI: 10.1021/acsami.3c18497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Cell necroptosis has presented great potential, acting as an effective approach against tumor apoptotic resistance, and it could be further enhanced via accompanying reactive oxygen species (ROS) overexpression. However, whether overproduced ROS assists the necroptotic pathway remains unclear. Thus, iron-palladium nanozyme (FePd NZ)- and shikonin (SKN)-encapsulated functional lipid nanoparticles (FPS-LNPs) were designed to investigate the ROS overexpression-enhanced SKN-induced necroptosis. In this system, SKN acts as an effective necroptosis inducer for cancer cells, and FePd NZ, a sensitive Fenton reaction catalyst, produces extra-intracellular ROS to reinforce the necroptotic pathway. Both in vitro and in vivo antitumor evaluation revealed that FPS-LNPs presented the best tumor growth inhibition efficacy compared with FP-LNPs or SKN-LNPs alone. Meanwhile, induced necroptosis by FPS-LNPs can further trigger the release of damage-associated molecular patterns (DAMPs) and antigens from dying tumor cells to activate the innate immune response. Taking biosafety into consideration, this study has provided a potential nanoplatform for cancer nanotherapy via inducing necroptosis to avoid apoptosis resistance and activate CD8+ T cell immune response.
Collapse
Affiliation(s)
- Wensheng Xie
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Ying Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Zhenhu Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, P. R. China
| | - Jingsong Lu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Ziyao Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Fangming Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
5
|
Lin SS, Chang TM, Wei AIC, Lee CW, Lin ZC, Chiang YC, Chi MC, Liu JF. Acetylshikonin induces necroptosis via the RIPK1/RIPK3-dependent pathway in lung cancer. Aging (Albany NY) 2023; 15:14900-14914. [PMID: 38126996 PMCID: PMC10781480 DOI: 10.18632/aging.205316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
Despite advances in therapeutic strategies, lung cancer remains the leading cause of cancer-related death worldwide. Acetylshikonin is a derivative of the traditional Chinese medicine Zicao and presents a variety of anticancer properties. However, the effects of acetylshikonin on lung cancer have not been fully understood yet. This study explored the mechanisms underlying acetylshikonin-induced cell death in non-small cell lung cancer (NSCLC). Treating NSCLC cells with acetylshikonin significantly reduced cell viability, as evidenced by chromatin condensation and the appearance of cell debris. Acetylshikonin has also been shown to increase cell membrane permeability and induce cell swelling, leading to an increase in the population of necrotic cells. When investigating the mechanisms underlying acetylshikonin-induced cell death, we discovered that acetylshikonin promoted oxidative stress, decreased mitochondrial membrane potential, and promoted G2/M phase arrest in lung cancer cells. The damage to NSCLC cells induced by acetylshikonin resembled results involving alterations in the cell membrane and mitochondrial morphology. Our analysis of oxidative stress revealed that acetylshikonin induced lipid oxidation and down-regulated the expression of glutathione peroxidase 4 (GPX4), which has been associated with necroptosis. We also determined that acetylshikonin induces the phosphorylation of receptor-interacting serine/threonine-protein kinase 1 (RIPK1)/RIPK3 and mixed lineage kinase domain-like kinase (MLKL). Treatment with RIPK1 inhibitors (necrostatin-1 or 7-Cl-O-Nec-1) significantly reversed acetylshikonin-induced MLKL phosphorylation and NSCLC cell death. These results indicate that acetylshikonin activated the RIPK1/RIPK3/MLKL cascade, leading to necroptosis in NSCLC cells. Our findings indicate that acetylshikonin reduces lung cancer cells by promoting G2/M phase arrest and necroptosis.
Collapse
Affiliation(s)
- Shih-Sen Lin
- Division of Chest Medicine, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan
| | - Tsung-Ming Chang
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Augusta I-Chin Wei
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan
| | - Chiang-Wen Lee
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City 613016, Taiwan
- Department of Nursing, Division of Basic Medical Sciences, Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City 613016, Taiwan
- Department of Safety Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - Zih-Chan Lin
- Department of Nursing, Division of Basic Medical Sciences, Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City 613016, Taiwan
| | - Yao-Chang Chiang
- Department of Nursing, Division of Basic Medical Sciences, Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City 613016, Taiwan
| | - Miao-Ching Chi
- Department of Nursing, Division of Basic Medical Sciences, Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City 613016, Taiwan
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi 613016, Taiwan
| | - Ju-Fang Liu
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404328, Taiwan
| |
Collapse
|
6
|
Ghosh S, Yang R, Duraki D, Zhu J, Kim JE, Jabeen M, Mao C, Dai X, Livezey MR, Boudreau MW, Park BH, Nelson ER, Hergenrother PJ, Shapiro DJ. Plasma Membrane Channel TRPM4 Mediates Immunogenic Therapy-Induced Necrosis. Cancer Res 2023; 83:3115-3130. [PMID: 37522838 PMCID: PMC10635591 DOI: 10.1158/0008-5472.can-23-0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/15/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023]
Abstract
Several emerging therapies kill cancer cells primarily by inducing necrosis. As necrosis activates immune cells, potentially, uncovering the molecular drivers of anticancer therapy-induced necrosis could reveal approaches for enhancing immunotherapy efficacy. To identify necrosis-associated genes, we performed a genome-wide CRISPR-Cas9 screen with negative selection against necrosis-inducing preclinical agents BHPI and conducted follow-on experiments with ErSO. The screen identified transient receptor potential melastatin member 4 (TRPM4), a calcium-activated, ATP-inhibited, sodium-selective plasma membrane channel. Cancer cells selected for resistance to BHPI and ErSO exhibited robust TRPM4 downregulation, and TRPM4 reexpression restored sensitivity to ErSO. Notably, TRPM4 knockout (TKO) abolished ErSO-induced regression of breast tumors in mice. Supporting a broad role for TRPM4 in necrosis, knockout of TRPM4 reversed cell death induced by four additional diverse necrosis-inducing cancer therapies. ErSO induced anticipatory unfolded protein response (a-UPR) hyperactivation, long-term necrotic cell death, and release of damage-associated molecular patterns that activated macrophages and increased monocyte migration, all of which was abolished by TKO. Furthermore, loss of TRPM4 suppressed the ErSO-induced increase in cell volume and depletion of ATP. These data suggest that ErSO triggers initial activation of the a-UPR but that it is TRPM4-mediated sodium influx and cell swelling, resulting in osmotic stress, which sustains and propagates lethal a-UPR hyperactivation. Thus, TRPM4 plays a pivotal role in sustaining lethal a-UPR hyperactivation that mediates the anticancer activity of diverse necrosis-inducing therapies. SIGNIFICANCE A genome-wide CRISPR screen reveals a pivotal role for TRPM4 in cell death and immune activation following treatment with diverse necrosis-inducing anticancer therapies, which could facilitate development of necrosis-based cancer immunotherapies.
Collapse
Affiliation(s)
- Santanu Ghosh
- Departments of Biochemistry, Molecular and Integrative Physiology and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Rachel Yang
- Departments of Biochemistry, Molecular and Integrative Physiology and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Darjan Duraki
- Departments of Biochemistry, Molecular and Integrative Physiology and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Junyao Zhu
- Departments of Biochemistry, Molecular and Integrative Physiology and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ji Eun Kim
- Departments of Biochemistry, Molecular and Integrative Physiology and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Musarrat Jabeen
- Departments of Biochemistry, Molecular and Integrative Physiology and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chengjian Mao
- Departments of Biochemistry, Molecular and Integrative Physiology and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xinyi Dai
- Departments of Biochemistry, Molecular and Integrative Physiology and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mara R. Livezey
- Departments of Biochemistry, Molecular and Integrative Physiology and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry and Biochemistry, University of Detroit Mercy, Detroit, MI 48221, USA (present address)
| | - Matthew W. Boudreau
- Departments of Biochemistry, Molecular and Integrative Physiology and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215 (present address)
| | - Ben H. Park
- Vanderbilt University College of Medicine, Nashville, TN, 37232, USA
| | - Erik R. Nelson
- Departments of Biochemistry, Molecular and Integrative Physiology and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paul J. Hergenrother
- Departments of Biochemistry, Molecular and Integrative Physiology and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - David J. Shapiro
- Departments of Biochemistry, Molecular and Integrative Physiology and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
7
|
Temozolomide, Simvastatin and Acetylshikonin Combination Induces Mitochondrial-Dependent Apoptosis in GBM Cells, Which Is Regulated by Autophagy. BIOLOGY 2023; 12:biology12020302. [PMID: 36829578 PMCID: PMC9953749 DOI: 10.3390/biology12020302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the deadliest cancers. Temozolomide (TMZ) is the most common chemotherapy used for GBM patients. Recently, combination chemotherapy strategies have had more effective antitumor effects and focus on slowing down the development of chemotherapy resistance. A combination of TMZ and cholesterol-lowering medications (statins) is currently under investigation in in vivo and clinical trials. In our current investigation, we have used a triple-combination therapy of TMZ, Simvastatin (Simva), and acetylshikonin, and investigated its apoptotic mechanism in GBM cell lines (U87 and U251). We used viability, apoptosis, reactive oxygen species, mitochondrial membrane potential (MMP), caspase-3/-7, acridine orange (AO) and immunoblotting autophagy assays. Our results showed that a TMZ/Simva/ASH combination therapy induced significantly more apoptosis compared to TMZ, Simva, ASH, and TMZ/Simva treatments in GBM cells. Apoptosis via TMZ/Simva/ASH treatment induced mitochondrial damage (increase of ROS, decrease of MMP) and caspase-3/7 activation in both GBM cell lines. Compared to all single treatments and the TMZ/Simva treatment, TMZ/Simva/ASH significantly increased positive acidic vacuole organelles. We further confirmed that the increase of AVOs during the TMZ/Simva/ASH treatment was due to the partial inhibition of autophagy flux (accumulation of LC3β-II and a decrease in p62 degradation) in GBM cells. Our investigation also showed that TMZ/Simva/ASH-induced cell death was depended on autophagy flux, as further inhibition of autophagy flux increased TMZ/Simva/ASH-induced cell death in GBM cells. Finally, our results showed that TMZ/Simva/ASH treatment potentially depends on an increase of Bax expression in GBM cells. Our current investigation might open new avenues for a more effective treatment of GBM, but further investigations are required for a better identification of the mechanisms.
Collapse
|
8
|
Thakur B, Saha L, Dahiya D, Bhatia A. Effect of aspirin on the TNF-α-mediated cell survival and death pathways in breast cancer. J Basic Clin Physiol Pharmacol 2023; 34:91-102. [PMID: 36378010 DOI: 10.1515/jbcpp-2022-0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/17/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVES Aspirin is an anti-inflammatory drug commonly used as an analgesic and in cardiovascular disorders. However, many studies have highlighted its anti-cancer properties, especially in colorectal, lung, head and neck, and breast cancers. In this work, we tried to study the effect of aspirin on the TNF-α-mediated cell survival and death pathways in two cell lines representing two different subtypes of breast cancer. TNF-α-mediated stimulation of a cell can result in its proliferation via the NF-κB pathway or its death via either apoptosis or a programmed form of necrosis called necroptosis. The latter is believed to come into the picture only when apoptosis is inhibited. METHODS In this work, we studied the effect of aspirin on the TNF-α-mediated cell survival pathway and observed a decrease in expression of the NF-κB pathway regulators, its nuclear translocation, and phosphorylation in a dose-dependent manner. The effect of aspirin on the TNF-α-mediated cell death showed significant cytotoxicity at the higher doses (5-20 mM) of aspirin in both the breast cancer cell lines. The effect of aspirin on necroptosis was investigated after stimulating the cells with TNF-α and inhibiting apoptosis using Z-VAD-FMK. RESULTS Though no significant effect was noted in breast cancer cell lines, the above protocol successfully induced necroptosis in L929, i.e., a positive control cell line for necroptosis having an intact necroptosis machinery. Even when combined with the chemotherapeutic drugs, the above regime failed to induce any significant necroptosis in breast cancer cells but was found effective in L929. CONCLUSIONS Overall, the findings show that while aspirin has the potential to inhibit the TNF-α-mediated cell survival pathway, it does not help sensitize breast cancer cells to necroptotic cell death induction.
Collapse
Affiliation(s)
- Banita Thakur
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Lekha Saha
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Divya Dahiya
- Department of General Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
9
|
Thakur B, Saha L, Bhatia A. Relative refractoriness of breast cancer cells to tumour necrosis factor-α induced necroptosis. Clin Exp Pharmacol Physiol 2022; 49:1294-1306. [PMID: 36054417 DOI: 10.1111/1440-1681.13711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/22/2022] [Accepted: 08/09/2022] [Indexed: 01/31/2023]
Abstract
Necroptosis, a recently identified programmed cell death pathway, has attracted attention as an alternative route to target apoptosis-resistant cancer cells. The status of the necroptosis pathway in different subtypes of breast cancer has not been well explored. Stimulating the cells by TNF-α can trigger cell survival or death depending on the combination of downstream players involved. In this work, we attempted to induce necroptosis in them using a combination of TNF-α and Z-VAD-FMK with and without chemotherapy. Cell viability, apoptosis, and necroptosis were assessed using MTT and Annexin-V/PI assays, respectively. Gene and protein expression was analysed by qPCR and immunophenotyping. Both the cell lines were resistant to induction of cell death by necroptosis. There was no enhancement in cell death when chemotherapeutic drugs were combined with necroptosis induction. Expression studies showed reduced translational expression of key necroptosis molecules like RIP kinases and MLKL in breast cancer cells compared to positive control cell line L929. Also, cell survival molecules were expressed more in MDA-MB-231 in contrast to death pathway molecules which were expressed more in T47D cells. In this work, the two breast cancer cell lines were observed to be resistant to TNF-α induced necroptosis with or without chemotherapy. Expression of key necroptosis players revealed relative insufficiency of the molecular machinery involved in the above pathway. In our opinion this may be the cause for resistance to necroptosis and novel strategies to upregulate these molecules need to be developed to sensitize the breast cancer cells towards cell death by necroptosis.
Collapse
Affiliation(s)
- Banita Thakur
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Lekha Saha
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
10
|
Herbal Ingredients in the Prevention of Breast Cancer: Comprehensive Review of Potential Molecular Targets and Role of Natural Products. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6044640. [PMID: 36017236 PMCID: PMC9398845 DOI: 10.1155/2022/6044640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/06/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
Abstract
Among various cancers, breast cancer is the most prevalent type in women throughout the world. Breast cancer treatment is challenging due to complex nature of the etiology of disease. Cell division cycle alterations are often encountered in a variety of cancer types including breast cancer. Common treatments include chemotherapy, surgery, radiotherapy, and hormonal therapy; however, adverse effects and multidrug resistance lead to complications and noncompliance. Accordingly, there is an increasing demand for natural products from medicinal plants and foods. This review summarizes molecular mechanisms of signaling pathways in breast cancer and identifies mechanisms by which natural compounds may exert their efficacy in the treatment of breast cancer.
Collapse
|
11
|
Zang X, Song J, Li Y, Han Y. Targeting necroptosis as an alternative strategy in tumor treatment: From drugs to nanoparticles. J Control Release 2022; 349:213-226. [PMID: 35793737 DOI: 10.1016/j.jconrel.2022.06.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 01/03/2023]
Abstract
Over last decades, most antitumor therapeutic strategies have focused on apoptosis, however, apoptosis resistance and immunological silence usually led to treatment failure. In this sense, triggering other programmed cell death such as necroptosis may achieve a better therapeutic efficacy and has gained widespread attentions in tumor therapy. Studies in this field have identified several types of necroptosis modulators and highlighted the therapeutic potential of necroptotic cell death in cancer. Nanoparticles further provide possibilities to improve therapeutic outcomes as an efficient drug delivery system, facilitating tumor targeting and controlled cargo release. Furthermore, some nanoparticles themselves can trigger/promote programmed necrosis through hyperthermia, ultrasound and autophagy blockage. These investigations have entered necroptosis for consideration as a promising strategy for tumor therapy, though numerous challenges remain and clinical applications are still distant. In this review, we would briefly introduce molecular mechanism and characteristics of necroptosis, and then summarize recent progress of programmed necrosis and their inducers in tumor therapy. Furthermore, the antitumor strategies that take advantages of nanoparticles to induce necroptosis are also discussed.
Collapse
Affiliation(s)
- Xinlong Zang
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao, PR China.
| | - Jinxiao Song
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao, PR China
| | - Yanfeng Li
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao, PR China
| | - Yantao Han
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao, PR China
| |
Collapse
|
12
|
Özdemir BH. Tumor Microenvironment: Necroptosis Switches the Subtype of Liver Cancer While Necrosis Promotes Tumor Recurrence and Progression. EXP CLIN TRANSPLANT 2022; 21:291-298. [PMID: 35297332 DOI: 10.6002/ect.2021.0457] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Liver cancer is a heterogeneous group of solid tumors that include mainly epithelial tumors. As with other solid carcinomas, tumor development results from an accumulation of genetic and epigenetic alterations. Hepatocellular carcinoma and intrahepatic cholangiocarcinoma, derived from malignant transformation of hepatocytes and cholangiocytes, respectively, are 2 primary types of liver cancers. However, it has been shown that the same kind of cell can give rise to different types of cancer, depending on manner of cell death in the tumor microenvironment. In a recent animal study, hepatocytes gave rise to both hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Oncogenically activated hepatocytes were shown to give rise to intrahepatic cholangiocarcinoma or hepatocellular carcinoma depending on cell death type of neighboring cells. Hepatocytes within the necroptotic microenvironment gave rise to intrahepatic cholangiocarcinoma; however, hepatocytes harboring the same oncogenic driver gave rise to hepatocellular carcinoma within the apoptotic microenvironment. The hepatic cytokine microenvironment structured by the necroptosis can also switch hepatocellular carcinoma to intrahepatic cholangiocarcinoma independently of the oncogenic drivers. Cell death by necrosis in damaged livers can also lead to development of carcinoma. Cancer cells are known to be resistant to apoptosis as a result of p53 mutation. Therefore, necrosis is the primary cell death pathway in cancer therapy. Necrosis is associated with high levels of angiogenesis, tumor-associated macrophages, and increased inflammation in the tumor microenvironment. Patients with hepatocellular carcinoma or intrahepatic cholangiocarcinoma characterized by necrosis and tumor-associated macrophages have reduced overall survival and recurrence-free survival. Cytotoxicity from anticancer therapy can also lead to accelerated necrosis. The content of cells undergoing necrosis triggers cytokine secretion, which designs cancer progression via inflammatory and noninflammatory pathways. Thus, the tumor microenvironment and manner of cell death (necrosis, apoptosis, or necroptosis) are crucial factors in the development of primary liver cancers and tumor progression.
Collapse
Affiliation(s)
- B Handan Özdemir
- From the Pathology Department, Baskent University, Ankara, Turkey
| |
Collapse
|
13
|
Wang Q, Wang J, Wang J, Ju X, Zhang H. Molecular mechanism of shikonin inhibiting tumor growth and potential application in cancer treatment. Toxicol Res (Camb) 2021; 10:1077-1084. [PMID: 34956612 PMCID: PMC8692723 DOI: 10.1093/toxres/tfab107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/13/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022] Open
Abstract
Shikonin is one of the major bioactive components of Lithospermum erythrorhizon. It has a good killing effect in a variety of tumor cells. Its antitumor effect involves multiple targets and pathways and has received extensive attention and study in recent years. In this review, we systematically review recent progress in determining the antitumor mechanism of shikonin and its derivatives, specifically their induction of reactive oxygen species production, inhibition of EGFR and PI3K/AKT signaling pathway activation, inhibition of angiogenesis and induction of apoptosis and necroptosis. We also discuss the application of nanoparticles loaded with shikonin in the targeted therapy of various cancers. Finally, we suggest new strategies for the clinical application of shikonin and its derivatives.
Collapse
Affiliation(s)
- Qiang Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Jing Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Jiayou Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Xiaoli Ju
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Heng Zhang
- Department of General Surgery, Nanjing Lishui District People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| |
Collapse
|
14
|
Liu S, Joshi K, Denning MF, Zhang J. RIPK3 signaling and its role in the pathogenesis of cancers. Cell Mol Life Sci 2021; 78:7199-7217. [PMID: 34654937 PMCID: PMC9044760 DOI: 10.1007/s00018-021-03947-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/04/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
RIPK3 (receptor-interacting protein kinase 3) is a serine/threonine-protein kinase. As a key component of necrosomes, RIPK3 is an essential mediator of inflammatory factors (such as TNFα-tumor necrosis factor α) and infection-induced necroptosis, a programmed necrosis. In addition, RIPK3 signaling is also involved in the regulation of apoptosis, cytokine/chemokine production, mitochondrial metabolism, autophagy, and cell proliferation by interacting with and/or phosphorylating the critical regulators of the corresponding signaling pathways. Similar to apoptosis, RIPK3-signaling-mediated necroptosis is inactivated in most types of cancers, suggesting RIPK3 might play a critical suppressive role in the pathogenesis of cancers. However, in some inflammatory types of cancers, such as pancreatic cancers and colorectal cancers, RIPK3 signaling might promote cancer development by stimulating proliferation signaling in tumor cells and inducing an immunosuppressive response in the tumor environment. In this review, we summarize recent research progress in the regulators of RIPK3 signaling, and discuss the function of this pathway in the regulation of mixed lineage kinase domain-like (MLKL)-mediated necroptosis and MLKL-independent cellular behaviors. In addition, we deliberate the potential roles of RIPK3 signaling in the pathogenesis of different types of cancers and discuss the potential strategies for targeting this pathway in cancer therapy.
Collapse
Affiliation(s)
- Shanhui Liu
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Kanak Joshi
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Mitchell F Denning
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.
- Department of Pathology and Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
15
|
Markowitsch SD, Juetter KM, Schupp P, Hauschulte K, Vakhrusheva O, Slade KS, Thomas A, Tsaur I, Cinatl J, Michaelis M, Efferth T, Haferkamp A, Juengel E. Shikonin Reduces Growth of Docetaxel-Resistant Prostate Cancer Cells Mainly through Necroptosis. Cancers (Basel) 2021; 13:882. [PMID: 33672520 PMCID: PMC7923752 DOI: 10.3390/cancers13040882] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
The prognosis for advanced prostate carcinoma (PCa) remains poor due to development of therapy resistance, and new treatment options are needed. Shikonin (SHI) from Traditional Chinese Medicine has induced antitumor effects in diverse tumor entities, but data related to PCa are scarce. Therefore, the parental (=sensitive) and docetaxel (DX)-resistant PCa cell lines, PC3, DU145, LNCaP, and 22Rv1 were exposed to SHI [0.1-1.5 μM], and tumor cell growth, proliferation, cell cycling, cell death (apoptosis, necrosis, and necroptosis), and metabolic activity were evaluated. Correspondingly, the expression of regulating proteins was assessed. Exposure to SHI time- and dose-dependently inhibited tumor cell growth and proliferation in parental and DX-resistant PCa cells, accompanied by cell cycle arrest in the G2/M or S phase and modulation of cell cycle regulating proteins. SHI induced apoptosis and more dominantly necroptosis in both parental and DX-resistant PCa cells. This was shown by enhanced pRIP1 and pRIP3 expression and returned growth if applying the necroptosis inhibitor necrostatin-1. No SHI-induced alteration in metabolic activity of the PCa cells was detected. The significant antitumor effects induced by SHI to parental and DX-resistant PCa cells make the addition of SHI to standard therapy a promising treatment strategy for patients with advanced PCa.
Collapse
Affiliation(s)
- Sascha D. Markowitsch
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (S.D.M.); (K.M.J.); (P.S.); (K.H.); (O.V.); (K.S.S.); (A.T.); (I.T.); (A.H.)
| | - Kira M. Juetter
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (S.D.M.); (K.M.J.); (P.S.); (K.H.); (O.V.); (K.S.S.); (A.T.); (I.T.); (A.H.)
| | - Patricia Schupp
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (S.D.M.); (K.M.J.); (P.S.); (K.H.); (O.V.); (K.S.S.); (A.T.); (I.T.); (A.H.)
| | - Kristine Hauschulte
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (S.D.M.); (K.M.J.); (P.S.); (K.H.); (O.V.); (K.S.S.); (A.T.); (I.T.); (A.H.)
| | - Olesya Vakhrusheva
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (S.D.M.); (K.M.J.); (P.S.); (K.H.); (O.V.); (K.S.S.); (A.T.); (I.T.); (A.H.)
| | - Kimberly Sue Slade
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (S.D.M.); (K.M.J.); (P.S.); (K.H.); (O.V.); (K.S.S.); (A.T.); (I.T.); (A.H.)
| | - Anita Thomas
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (S.D.M.); (K.M.J.); (P.S.); (K.H.); (O.V.); (K.S.S.); (A.T.); (I.T.); (A.H.)
| | - Igor Tsaur
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (S.D.M.); (K.M.J.); (P.S.); (K.H.); (O.V.); (K.S.S.); (A.T.); (I.T.); (A.H.)
| | - Jindrich Cinatl
- Institute of Medical Virology, Goethe-University, 60596 Frankfurt, Germany;
| | - Martin Michaelis
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK;
| | - Thomas Efferth
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany;
| | - Axel Haferkamp
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (S.D.M.); (K.M.J.); (P.S.); (K.H.); (O.V.); (K.S.S.); (A.T.); (I.T.); (A.H.)
| | - Eva Juengel
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (S.D.M.); (K.M.J.); (P.S.); (K.H.); (O.V.); (K.S.S.); (A.T.); (I.T.); (A.H.)
| |
Collapse
|
16
|
Natural Products as Inducers of Non-Canonical Cell Death: A Weapon against Cancer. Cancers (Basel) 2021; 13:cancers13020304. [PMID: 33467668 PMCID: PMC7830727 DOI: 10.3390/cancers13020304] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Anticancer therapeutic approaches based solely on apoptosis induction are often unsuccessful due to the activation of resistance mechanisms. The identification and characterization of compounds capable of triggering non-apoptotic, also called non-canonical cell death pathways, could represent an important strategy that may integrate or offer alternative approaches to the current anticancer therapies. In this review, we critically discuss the promotion of ferroptosis, necroptosis, and pyroptosis by natural compounds as a new anticancer strategy. Abstract Apoptosis has been considered the main mechanism induced by cancer chemotherapeutic drugs for a long time. This paradigm is currently evolving and changing, as increasing evidence pointed out that antitumor agents could trigger various non-canonical or non-apoptotic cell death types. A considerable number of antitumor drugs derive from natural sources, both in their naturally occurring form or as synthetic derivatives. Therefore, it is not surprising that several natural compounds have been explored for their ability to induce non-canonical cell death. The aim of this review is to highlight the potential antitumor effects of natural products as ferroptosis, necroptosis, or pyroptosis inducers. Natural products have proven to be promising non-canonical cell death inducers, capable of overcoming cancer cells resistance to apoptosis. However, as discussed in this review, they often lack a full characterization of their antitumor activity together with an in-depth investigation of their toxicological profile.
Collapse
|
17
|
Li Z, Chen L, Chen C, Zhou Y, Hu D, Yang J, Chen Y, Zhuo W, Mao M, Zhang X, Xu L, Wang L, Zhou J. Targeting ferroptosis in breast cancer. Biomark Res 2020; 8:58. [PMID: 33292585 PMCID: PMC7643412 DOI: 10.1186/s40364-020-00230-3] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Ferroptosis is a recently discovered distinct type of regulated cell death caused by the accumulation of lipid-based ROS. Metabolism and expression of specific genes affect the occurrence of ferroptosis, making it a promising therapeutic target to manage cancer. Here, we describe the current status of ferroptosis studies in breast cancer and trace the key regulators of ferroptosis back to previous studies. We also compare ferroptosis to common regulated cell death patterns and discuss the sensitivity to ferroptosis in different subtypes of breast cancer. We propose that viewing ferroptosis-related studies from a historical angle will accelerate the development of ferroptosis-based biomarkers and therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Zhaoqing Li
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 310009 Hangzhou, Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Lini Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Cong Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Yulu Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Dengdi Hu
- Cixi People’s Hospital Medical and Health Group, 315300 Ningbo, Zhejiang China
| | - Jingjing Yang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Yongxia Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Wenying Zhuo
- Cixi People’s Hospital Medical and Health Group, 315300 Ningbo, Zhejiang China
| | - Misha Mao
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Xun Zhang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Ling Xu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| |
Collapse
|
18
|
Feld CJ, Johnson A, Xiao Z, Suntharalingam K. Breast Cancer Stem Cell Potency of Nickel(II)-Polypyridyl Complexes Containing Non-steroidal Anti-inflammatory Drugs. Chemistry 2020; 26:14011-14017. [PMID: 32485001 PMCID: PMC7702150 DOI: 10.1002/chem.202001578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/01/2020] [Indexed: 01/10/2023]
Abstract
We report the breast cancer stem cell (CSC) potency of two nickel(II)-3,4,7,8-tetramethyl-1,10-phenanthroline complexes, 1 and 3, containing the non-steroidal anti-inflammatory drugs (NSAIDs), naproxen and indomethacin, respectively. The nickel(II) complexes, 1 and 3 kill breast CSCs and bulk breast cancer cells in the micromolar range. Notably, 1 and 3 display comparable or better potency towards breast CSCs than salinomycin, an established CSC-active agent. The complexes, 1 and 3 also display significantly lower toxicity towards non-cancerous epithelial breast cells than breast CSCs or bulk breast cancer cells (up to 4.6-fold). Mechanistic studies suggest that 1 and 3 downregulate cyclooxygenase-2 (COX-2) in breast CSCs and kill breast CSCs in a COX-2 dependent manner. Furthermore, the potency of 1 and 3 towards breast CSCs decreased upon co-treatment with necroptosis inhibitors (necrostatin-1 and dabrafenib), implying that 1 and 3 induce necroptosis, an ordered form of necrosis, in breast CSCs. As apoptosis resistance is a hallmark of CSCs, compounds like 1 and 3, which potentially provide access to alternative (non-apoptotic) cell death pathways could hold the key to overcoming hard-to-kill CSCs. To the best of our knowledge, 1 and 3 are the first compounds to be associated to COX-2 inhibition and necroptosis induction in CSCs.
Collapse
Affiliation(s)
| | - Alice Johnson
- School of ChemistryUniversity of LeicesterLeicesterLE1 7RHUK
| | - Zhiyin Xiao
- School of ChemistryUniversity of LeicesterLeicesterLE1 7RHUK
| | | |
Collapse
|
19
|
Shen GN, Li J, Jin YH, Sun HN, Hao YY, Jin MH, Liu R, Li WL, Zhang YQ, Yu JB, Yu NN, Wang WD, Yu LY, Kim JS, Kwon T, Han YH. The compound 2-benzylthio-5,8-dimethoxynaphthalene-1,4-dione leads to apoptotic cell death by increasing the cellular reactive oxygen species levels in Ras-mutated liver cancer cells. Exp Ther Med 2020; 20:82. [PMID: 32968439 PMCID: PMC7500053 DOI: 10.3892/etm.2020.9209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
The aim of the present study was to verify the pro-apoptotic anticancer potential of several 5,8-dimethoxy-1,4-phthoquinone (DMNQ) derivatives in Ras-mediated tumorigenesis. MTT assays were used to detect cellular viability and flow cytometry was performed to assess intracellular reactive oxygen species (ROS) levels and apoptosis. The expression levels of proteins were detected via western blotting. Among the 12 newly synthesized DMNQ derivatives, 2-benzylthio-5,8-dimethoxynaphthalene-1,4-dione (BZNQ; component #1) significantly reduced cell viability both in mouse NIH3T3 embryonic fibroblasts cells (NC) and H-RasG12V transfected mouse NIH3T3 embryonic fibroblasts cells (NR). Moreover, BZNQ resulted in increased cytotoxic sensitivity in Ras-mutant transfected cells. Furthermore, the reactive oxygen species (ROS) levels in H-RasG12V transfected HepG2 liver cancer cells (HR) were significantly higher compared with the levels in HepG2 liver cancer cells (HC) following BZNQ treatment, which further resulted in increased cellular apoptosis. Eliminating cellular ROS using an ROS scavenger N-acetyl-L-cysteine markedly reversed BZNQ-induced cellular ROS accumulation and cell apoptosis in HC and HR cells. Western blotting results revealed that BZNQ significantly downregulated H-Ras protein expression and inhibited the Ras-mediated downstream signaling pathways such as protein kinase B, extracellular signal-related kinase and glycogen synthase kinase phosphorylation and β-catenin protein expression. These results indicated that the novel DMNQ derivative BZNQ may be a therapeutic drug for Ras-mediated liver tumorigenesis. The results of the current study suggest that BZNQ exerts its effect by downregulating H-Ras protein expression and Ras-mediated signaling pathways.
Collapse
Affiliation(s)
- Gui-Nan Shen
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Jing Li
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Ying-Hua Jin
- Library and Information Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Hu-Nan Sun
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Ying-Ying Hao
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Mei-Hua Jin
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Ren Liu
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Wei-Long Li
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Yong-Qing Zhang
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Jia-Bin Yu
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Nan-Nan Yu
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Wei-Dong Wang
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Li-Yun Yu
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Ji-Su Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeonbuk 56216, Republic of Korea
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeonbuk 56216, Republic of Korea
| | - Ying-Hao Han
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| |
Collapse
|
20
|
Eskandari A, Flamme M, Xiao Z, Suntharalingam K. The Bulk Osteosarcoma and Osteosarcoma Stem Cell Activity of a Necroptosis-Inducing Nickel(II)-Phenanthroline Complex. Chembiochem 2020; 21:2854-2860. [PMID: 32415808 DOI: 10.1002/cbic.202000231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/14/2020] [Indexed: 12/26/2022]
Abstract
We report the anti-osteosarcoma and anti-osteosarcoma stem cell (OSC) properties of a nickel(II) complex, 1. Complex 1 displays similar potency towards bulk osteosarcoma cells and OSCs, in the micromolar range. Notably, 1 displays similar or better OSC potency than the clinically approved platinum(II) anticancer drugs cisplatin and carboplatin in two- and three-dimensional osteosarcoma cell cultures. Mechanistic studies revealed that 1 induces osteosarcoma cell death by necroptosis, an ordered form of necrosis. The nickel(II) complex, 1 triggers necrosome-dependent mitrochondrial membrane depolarisation and propidium iodide uptake. Interestingly, 1 does not evoke necroptosis by elevating intracellular reactive oxygen species (ROS) or hyperactivation of poly ADP ribose polymerase (PARP-1). ROS elevation and PARP-1 activity are traits that have been observed for established necroptosis inducers such as shikonin, TRAIL and glutamate. Thus the necroptosis pathway evoked by 1 is distinct. To the best of our knowledge, this is the first report into the anti-osteosarcoma and anti-OSC properties of a nickel complex.
Collapse
Affiliation(s)
- Arvin Eskandari
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Marie Flamme
- Department of Structural Biology and Chemistry, Institut Pasteur, Paris, 75015, France
| | - Zhiyin Xiao
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| | | |
Collapse
|
21
|
Shen F, Pan X, Li M, Chen Y, Jiang Y, He J. Pharmacological Inhibition of Necroptosis Promotes Human Breast Cancer Cell Proliferation and Metastasis. Onco Targets Ther 2020; 13:3165-3176. [PMID: 32368076 PMCID: PMC7170643 DOI: 10.2147/ott.s246899] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/25/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Breast cancer remains a great threat to females worldwide. As a recently defined programmed cell death pathway that associates with immune activation, RIP1/RIP3/MLKL necroptosis signaling has been implicated in a variety of diseases. The present study aimed to investigate the role of RIP1/RIP3/MLKL signaling in breast cancer cell proliferation and metastasis in vivo and in vitro. METHODS Western blot and quantitative real-time PCR were performed to evaluate the activation of necroptosis signaling in clinical human breast cancer tissues. Correlation of necroptosis signaling markers with clinicopathological parameters was statistically assessed. Cell viability assay, colony formation assay, wound healing assay, and transwell migration and invasion assays were performed to investigate the effects of necroptosis inhibition on breast cancer cell proliferation and metastasis. RESULTS Clinical breast cancer tissues showed significantly higher levels of tumor necrosis factor alpha (TNFα), RIP1, RIP3 and MLKL at both mRNA and protein levels as compared with their paired non-cancerous tissues. Phosphorylation of RIP3 and MLKL was also remarkably provoked. Statistics showed that both RIP1 and MLKL positively correlated with cancer parameters such as N-cadherin (p=0.002 for RIP1 and p=0.021 for MLKL) and Ki67 (p=0.031 for RIP1 and p=0.05 for MLKL). The MLKL expression level significantly correlated with tumor size (p=0.001) and the proliferation indicator Ki67 (p=0.018). In addition, pharmacological inhibition of the necroptosis signaling using necrostatin-1 promoted breast cancer cell proliferation and colony formation by approximately 50%. Blockade of necroptosis signaling also accelerated wound healing process and cell transmigration in breast cancer cells. CONCLUSION Our results suggested that pharmacological inhibition of necroptosis promoted breast cancer cell proliferation and metastasis. Modulation of tumor cell necroptosis might represent a novel strategy as to breast cancer treatment.
Collapse
Affiliation(s)
- Feng Shen
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai200032, People’s Republic of China
| | - Xiangou Pan
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai200032, People’s Republic of China
| | - Min Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai200032, People’s Republic of China
| | - Yixing Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai200032, People’s Republic of China
| | - Ying Jiang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai200032, People’s Republic of China
| | - Jian He
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai200032, People’s Republic of China
| |
Collapse
|
22
|
Vukic MD, Vukovic NL, Obradovic A, Matic M, Djukic M, Avdovic E. Redox status, DNA and HSA binding study of naturally occurring naphthoquinone derivatives. EXCLI JOURNAL 2020; 19:48-70. [PMID: 32038116 PMCID: PMC7003638 DOI: 10.17179/excli2019-1859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022]
Abstract
In the present work we modified the procedure for isolation of naphthoquinones α-methylbutyrylshikon (1), acetylshikonin (2) and β-hydroxyisovalerylshikonin (3) from Onosma visianii Clem. We also investigated possible mechanisms of 1, 2 and 3 as antitumor agents. Accordingly, we estimated concentrations of superoxide anion radical (O2.-), nitrite (NO2 -) and glutathione in HCT-116 and MDA-MB-231 cell lines. Compounds 1 and 3 expressed significant prooxidative activity, while all tested compounds exhibited significant increase in nitrite levels. Also, all examined compounds significantly increased the concentration of oxidized glutathione (GSSG), suggesting significant prooxidative disbalance. The levels of reduced glutathione (GSH) were also elevated as a part of antioxidative cell response. The data indicate that induced oxidative imbalance could be one of the triggers for previously recorded decreased viability of HCT-116 and MDA-MB-231 cells exposed to tested naphthoquinone derivatives. Moreover, we examined interactions mode of compounds 1, 2 and 3 with CT-DNA as one of the crucial targets of many molecules that express cytotoxic activity. The results obtained by UV-visible, fluorescence and molecular docking study revealed that 1, 2 and 3 bound to CT-DNA through minor groove binding. Furthermore, the interactions between HSA and 1, 2 and 3 were examined employing the same methods as for the CT-DNA interaction study. Based on the obtained results, it can be concluded that naphthoquinones 1, 2 and 3 could be effectively transported by human serum albumin. As a conclusion, this study provides further insight of antitumor activity of selected naphthoquinones.
Collapse
Affiliation(s)
- Milena D Vukic
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovica 12, 34000 Kragujevac, Serbia
| | - Nenad L Vukovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovica 12, 34000 Kragujevac, Serbia
| | - Ana Obradovic
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovica 12, 34000 Kragujevac, Serbia
| | - Milos Matic
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovica 12, 34000 Kragujevac, Serbia
| | - Maja Djukic
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovica 12, 34000 Kragujevac, Serbia
| | - Edina Avdovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovica 12, 34000 Kragujevac, Serbia.,Department of Sciences, Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| |
Collapse
|
23
|
Niu Y, Tang E, Zhang Q. Cytotoxic effect of silica nanoparticles against hepatocellular carcinoma cells through necroptosis induction. Toxicol Res (Camb) 2019; 8:1042-1049. [PMID: 32153770 DOI: 10.1039/c9tx00240e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/05/2019] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common cancer that affects people worldwide with high morbidity and mortality, and its resistance to current chemotherapeutic drugs is a serious concern. Cytotoxicity of silica nanoparticles (Nano-SiO2) towards cancer cells has been reported previously, but the specific mechanism is not fully clear. In this study, Nano-SiO2 showed a remarkable cytotoxic effect against HCC cells, regardless of whether the cells were drug resistant or not. Further study showed that Nano-SiO2 treatment leads to cell cycle arrest, apoptosis enhancement and necroptosis induction in the HCC cells. RNA-seq data, together with bioinformatics analysis, revealed that a series of genes involved in cancer cell death could be regulated by Nano-SiO2, among which ZBP-1 was up-regulated the most by Nano-SiO2 treatment. The siRNA based experiments demonstrated that ZBP-1 might play a key role in mediating Nano-SiO2 cytotoxic functions against HCC cells. These results have evidently signified the anti-tumor potential of Nano-SiO2 in the treatment of HCC.
Collapse
Affiliation(s)
- Yuexiang Niu
- Department of Infectious Diseases , Linyi Central Hospital , Linyi , P.R. China .
| | - Engong Tang
- Department of Infectious Diseases , Linyi Central Hospital , Linyi , P.R. China .
| | - Qingan Zhang
- Department of Infectious Diseases , Linyi Central Hospital , Linyi , P.R. China .
| |
Collapse
|
24
|
Ding Y, He C, Lu S, Wang X, Wang C, Wang L, Zhang J, Piao M, Chi G, Luo Y, Sai K, Ge P. MLKL contributes to shikonin-induced glioma cell necroptosis via promotion of chromatinolysis. Cancer Lett 2019; 467:58-71. [PMID: 31560934 DOI: 10.1016/j.canlet.2019.09.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 01/25/2023]
Abstract
Chromatinolysis refers to enzymatic degradation of nuclear DNA and is regarded as one of the crucial events leading to cell death. Mixed-lineage kinase domain-like protein (MLKL) has been identified as a key executor of necroptosis, but it remains unclear whether MLKL contributes to necroptosis via regulation of chromatinolysis. In this study, we find that shikonin induces MLKL activation and chromatinolysis in glioma cells in vitro and in vivo, which are accompanied with nuclear translocation of AIF and γ-H2AX formation. In vitro studies reveal that inhibition of MLKL with its specific inhibitor NSA or knockdown of MLKL with siRNA abrogates shikonin-induced glioma cell necroptosis, as well as chromatinolysis. Mechanistically, activated MLKL targets mitochondria and triggers excessive generation of mitochondrial superoxide, which promotes AIF translocation into nucleus via causing mitochondrial depolarization and aggravates γ-H2AX formation via improving intracellular accumulation of ROS. Inhibition of nuclear level of AIF by knockdown of AIF with siRNA or mitigation of γ-H2AX formation by suppressing ROS with antioxidant NAC effectively prevents shikonin-induced chromatinolysis. Then, we found that RIP3 accounts for shikonin-induced activation of MLKL, and activated MLKL reversely up-regulates the protein level of CYLD and promotes the activation of RIP1 and RIP3. Taken together, our data suggest that MLKL contributes to shikonin-induced glioma cell necroptosis via promotion of chromatinolysis, and shikonin induces a positive feedback between MLKL and its upstream signals RIP1 and RIP3.
Collapse
Affiliation(s)
- Ye Ding
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Chuan He
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Shan Lu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Xuanzhong Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Chongcheng Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Lei Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Ji Zhang
- Department of Neurosurgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Meihua Piao
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, 130021, China
| | - Guangfan Chi
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Yinan Luo
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Ke Sai
- Department of Neurosurgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| | - Pengfei Ge
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
25
|
Thakur B, Kumar Y, Bhatia A. Programmed necrosis and its role in management of breast cancer. Pathol Res Pract 2019; 215:152652. [PMID: 31570277 DOI: 10.1016/j.prp.2019.152652] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
Breast cancer is one of the major causes of cancer related deaths in women worldwide. A major factor responsible for treatment failure in breast cancer is the development of resistance to commonly used chemotherapeutic drugs leading to disease relapse. Several studies have shown dysregulation of molecular machinery of apoptosis, the major programmed cell death pathway in breast malignancies. Thus, there is an unmet need to search for an alternative cell death pathway which can work when apoptosis is compromised. Necroptosis or programmed necrosis is a relatively recently described entity which has attracted attention in this context. Classically, even in physiological conditions necroptosis is found to act if apoptosis is not functional due to some reason. Recently, more and more studies are being conducted in different malignancies to explore the possibility and utility of inducing cell death by necroptosis. The present review describes the key molecular players involved in necroptotic pathway and their status in breast cancer. In addition, the research done to utilize this pathway for treatment of breast cancer has also been highlighted.
Collapse
Affiliation(s)
- Banita Thakur
- Department of Experimental Medicine & Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Yashwant Kumar
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine & Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
26
|
Liu T, Sun X, Cao Z. Shikonin-induced necroptosis in nasopharyngeal carcinoma cells via ROS overproduction and upregulation of RIPK1/RIPK3/MLKL expression. Onco Targets Ther 2019; 12:2605-2614. [PMID: 31118661 PMCID: PMC6498394 DOI: 10.2147/ott.s200740] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/09/2019] [Indexed: 12/27/2022] Open
Abstract
Objective: Shikonin has inhibitory effects against nasopharyngeal carcinoma that are mediated through the apoptotic pathway. However, necroptosis signaling pathways may enable the elimination of apoptosis-resistant cancers when induced with targeted therapeutic agents. Thus, there is a need to clarify whether shikonin can cause necroptosis in nasopharyngeal carcinoma and to elucidate the underlying mechanisms. Methods: In this study, we used the nasopharyngeal carcinoma cell line 5-8F and a 5-8F xenograft mouse model to evaluate the anticancer effects of shikonin. The viability and morphology of cells treated with shikonin were evaluated using CCK-8 assay and transmission electron microscopy, respectively. In addition, the expression levels of RIPK1, RIPK3, and MLKL were analyzed by western blotting, and the activities of caspase-3 and caspase-8 and levels of reactive oxygen species (ROS) were assessed. Results: Shikonin exhibited a strong inhibitory effect on 5-8F cells in vitro and in vivo. The shikonin-treated 5-8F cells presented an electron-lucent cytoplasm, loss of plasma membrane integrity, and an intact nuclear membrane, indicating that shikonin induced necroptosis. Shikonin-induced cell death was inhibited by necrostatin-1. Moreover, RIPK1, RIPK3, and MLKL were upregulated by shikonin in a dose-dependent manner. Furthermore, shikonin significantly inhibited tumor growth in the 5-8F xenograft mouse model. Conclusion: Shikonin induced 5-8F cell death via increased ROS production and the upregulation of RIPK1/RIPK3/MLKL expression, resulting in necroptosis. Thus, shikonin may represent a novel agent to treat nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Tiancong Liu
- Department of Otorhinolaryngology - Head and Neck Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xun Sun
- Department of Immunology, College of Basic Medicine, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Zhiwei Cao
- Department of Otorhinolaryngology - Head and Neck Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
27
|
Florean C, Song S, Dicato M, Diederich M. Redox biology of regulated cell death in cancer: A focus on necroptosis and ferroptosis. Free Radic Biol Med 2019; 134:177-189. [PMID: 30639617 DOI: 10.1016/j.freeradbiomed.2019.01.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/23/2018] [Accepted: 01/06/2019] [Indexed: 12/20/2022]
Abstract
Redox changes and generation of reactive oxygen species (ROS) are part of normal cell metabolism. While low ROS levels are implicated in cellular signaling pathways necessary for survival, higher levels play major roles in cancer development as well as cell death signaling and execution. A role for redox changes in apoptosis has been long established; however, several new modalities of regulated cell death have been brought to light, for which the importance of ROS production as well as ROS source and targets are being actively investigated. In this review, we summarize recent findings on the role of ROS and redox changes in the activation and execution of two major forms of regulated cell death, necroptosis and ferroptosis. We also discuss the potential of using modulators of these two forms of cell death to exacerbate ROS as a promising anticancer therapy.
Collapse
Affiliation(s)
- Cristina Florean
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Hôpital Kirchberg, L-2540 Luxembourg, Luxembourg
| | - Sungmi Song
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Hôpital Kirchberg, L-2540 Luxembourg, Luxembourg
| | - Marc Diederich
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
28
|
Zhang S, Gao Q, Li W, Zhu L, Shang Q, Feng S, Jia J, Jia Q, Shen S, Su Z. Shikonin inhibits cancer cell cycling by targeting Cdc25s. BMC Cancer 2019; 19:20. [PMID: 30616572 PMCID: PMC6323793 DOI: 10.1186/s12885-018-5220-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 12/13/2018] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Shikonin, a natural naphthoquinone, is abundant in Chinese herb medicine Zicao (purple gromwell) and has a wide range of biological activities, especially for cancer. Shikonin and its analogues have been reported to induce cell-cycle arrest, but target information is still unclear. We hypothesized that shikonin, with a structure similar to that of quinone-type compounds, which are inhibitors of cell division cycle 25 (Cdc25) phosphatases, will have similar effects on Cdc25s. To test this hypothesis, the effects of shikonin on Cdc25s and cell-cycle progression were determined in this paper. METHODS The in vitro effects of shikonin and its analogues on Cdc25s were detected by fluorometric assay kit. The binding mode between shikonin and Cdc25B was modelled by molecular docking. The dephosphorylating level of cyclin-dependent kinase 1 (CDK1), a natural substrate of Cdc25B, was tested by Western blotting. The effect of shikonin on cell cycle progression was investigated by flow cytometry analysis. We also tested the anti-proliferation activity of shikonin on cancer cell lines by MTT assay. Moreover, in vivo anti-proliferation activity was tested in a mouse xenograft tumour model. RESULTS Shikonin and its analogues inhibited recombinant human Cdc25 A, B, and C phosphatase with IC50 values ranging from 2.14 ± 0.21 to 13.45 ± 1.45 μM irreversibly. The molecular modelling results showed that shikonin bound to the inhibitor binding pocket of Cdc25B with a favourable binding mode through hydrophobic interactions and hydrogen bonds. In addition, an accumulation of the tyrosine 15-phosphorylated form of CDK1 was induced by shikonin in a concentration-dependent manner in vitro and in vivo. We also confirmed that shikonin showed an anti-proliferation effect on three cancer cell lines with IC50 values ranging from 6.15 ± 0.46 to 9.56 ± 1.03 μM. Furthermore, shikonin showed a promising anti-proliferation effect on a K562 mouse xenograph tumour model. CONCLUSION In this study, we provide evidence for how shikonin induces cell cycle arrest and functions as a Cdc25s inhibitor. It shows an anti-proliferation effect both in vitro and in vivo by mediating Cdc25s.
Collapse
Affiliation(s)
- Shoude Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251# Ningda Road, Xining, 810016, Qinghai, China. .,Department of Pharmacy, Medical College of Qinghai University, 16# Kunlun Road, Xining, 810016, Qinghai, China.
| | - Qiang Gao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251# Ningda Road, Xining, 810016, Qinghai, China
| | - Wei Li
- Qinghai Academy of Agriculture and Forestry Science, 251# Ningda Road, Xining, 810016, China
| | - Luwei Zhu
- Department of Pharmacy, Medical College of Qinghai University, 16# Kunlun Road, Xining, 810016, Qinghai, China
| | - Qianhan Shang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251# Ningda Road, Xining, 810016, Qinghai, China
| | - Shuo Feng
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251# Ningda Road, Xining, 810016, Qinghai, China
| | - Junmei Jia
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251# Ningda Road, Xining, 810016, Qinghai, China
| | - Qiangqiang Jia
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251# Ningda Road, Xining, 810016, Qinghai, China
| | - Shuo Shen
- Qinghai Academy of Agriculture and Forestry Science, 251# Ningda Road, Xining, 810016, China
| | - Zhanhai Su
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251# Ningda Road, Xining, 810016, Qinghai, China. .,Department of Pharmacy, Medical College of Qinghai University, 16# Kunlun Road, Xining, 810016, Qinghai, China.
| |
Collapse
|
29
|
The cytotoxic effects of propolis on breast cancer cells involve PI3K/Akt and ERK1/2 pathways, mitochondrial membrane potential, and reactive oxygen species generation. Inflammopharmacology 2018; 27:1081-1089. [DOI: 10.1007/s10787-018-0492-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/29/2018] [Indexed: 02/07/2023]
|
30
|
Meng MB, Wang HH, Cui YL, Wu ZQ, Shi YY, Zaorsky NG, Deng L, Yuan ZY, Lu Y, Wang P. Necroptosis in tumorigenesis, activation of anti-tumor immunity, and cancer therapy. Oncotarget 2018; 7:57391-57413. [PMID: 27429198 PMCID: PMC5302997 DOI: 10.18632/oncotarget.10548] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/20/2016] [Indexed: 02/05/2023] Open
Abstract
While the mechanisms underlying apoptosis and autophagy have been well characterized over recent decades, another regulated cell death event, necroptosis, remains poorly understood. Elucidating the signaling networks involved in the regulation of necroptosis may allow this form of regulated cell death to be exploited for diagnosis and treatment of cancer, and will contribute to the understanding of the complex tumor microenvironment. In this review, we have summarized the mechanisms and regulation of necroptosis, the converging and diverging features of necroptosis in tumorigenesis, activation of anti-tumor immunity, and cancer therapy, as well as attempts to exploit this newly gained knowledge to provide therapeutics for cancer.
Collapse
Affiliation(s)
- Mao-Bin Meng
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Huan-Huan Wang
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yao-Li Cui
- Department of Lymphoma, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Zhi-Qiang Wu
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yang-Yang Shi
- Stanford University School of Medicine, Stanford, CA, United States of America
| | - Nicholas G Zaorsky
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States of America
| | - Lei Deng
- Department of Thoracic Cancer and Huaxi Student Society of Oncology Research, West China Hospital, West China School of Medicine, Sichuan University, Sichuan Province, China
| | - Zhi-Yong Yuan
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - You Lu
- Department of Thoracic Cancer and Huaxi Student Society of Oncology Research, West China Hospital, West China School of Medicine, Sichuan University, Sichuan Province, China
| | - Ping Wang
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
31
|
Anticancer Efficacy of Targeted Shikonin Liposomes Modified with RGD in Breast Cancer Cells. Molecules 2018; 23:molecules23020268. [PMID: 29382149 PMCID: PMC6017468 DOI: 10.3390/molecules23020268] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 12/04/2022] Open
Abstract
Shikonin (SHK) has been proven to have a good anti-tumor effect. However, poor water solubility and low bioavailability limit its wide application in clinical practice. In this study, to overcome these drawbacks, RGD-modified shikonin-loaded liposomes (RGD-SSLs-SHK) were successfully prepared. It exhibited excellent physicochemical characteristics including particle size, zeta potential, encapsulation efficiency, and delayed release time. Meanwhile, the targeting activity of the RGD-modified liposomes was demonstrated by flow cytometry and confocal microscopy in the αvβ3-positive MDA-MB-231 cells. Besides exhibiting greater cytotoxicity in vitro, compared with non-targeted shikonin-loaded liposomes (SSLs-SHK), RGD-SSLs-SHK could also evidently induce apoptosis by decreasing the expression of Bcl-2 and increasing the expression of Bax. It could also inhibit cell proliferation, migration, invasion, and adhesion by reducing the expression of MMP-9 and the level of NF-κB p65, but did not affect the expression of MMP-2 in the MDA-MB-231 cells. Therefore, these findings indicated that the strategy to use RGD-modified liposomes as carriers for targeted delivery of shikonin is a very promising approach to achieve breast cancer targeted therapy.
Collapse
|
32
|
Liang W, Cui J, Zhang K, Xi H, Cai A, Li J, Gao Y, Hu C, Liu Y, Lu Y, Wang N, Wu X, Wei B, Chen L. Shikonin induces ROS-based mitochondria-mediated apoptosis in colon cancer. Oncotarget 2017; 8:109094-109106. [PMID: 29312593 PMCID: PMC5752506 DOI: 10.18632/oncotarget.22618] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 08/26/2017] [Indexed: 12/21/2022] Open
Abstract
Colon cancer is the third most common malignancy worldwide, and chemotherapy is a widely used strategy in clinical therapy. Chemotherapy-resistant of colon cancer is the main cause of recurrence and progression. Novel drugs with efficacy and safety in treating colon cancer are urgently needed. Shikonin, a naphthoquinone derived from the roots of the herbal plant Lithospermum erythrorhizon, has been determined to be a potent anti-tumor agent. The aim of the present study was to detect the underlying anti-tumor mechanism of shikonin in colon cancer. We found that shikonin suppressed the growth of colon cancer cells in a dose-dependent manner in vitro and in vivo. Shikonin induced mitochondria-mediated apoptosis, which was regulated by Bcl-2 family proteins. Shikonin increased the generation of intracellular ROS, which played an upstream role in shikonin-induced apoptosis. Our data indicated that generation of ROS, down-regulated expression of Bcl-2 and Bcl-xL, depolarization of the mitochondrial membrane potential and activation of the caspase cascade were components of the programmed event of shikonin-induced apoptosis in colon cancer cells. In addition, shikonin presented minimal toxicity to non-neoplastic colon cells and no liver injury in xenograft models, showing safety in the control of colon cancer cell growth in vitro and in vivo. Taken together, our findings suggest that shikonin might serve as a potential novel therapeutic drug in the treatment of human colon cancer.
Collapse
Affiliation(s)
- Wenquan Liang
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China.,Institute of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Jianxin Cui
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China.,Institute of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Kecheng Zhang
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China.,Institute of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Hongqing Xi
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China.,Institute of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Aizhen Cai
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Jiyang Li
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China.,Institute of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Yunhe Gao
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China.,Institute of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Chong Hu
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China.,Institute of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Yi Liu
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China.,Institute of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Yixun Lu
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China.,Institute of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Ning Wang
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Xiaosong Wu
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Bo Wei
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China.,Institute of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Lin Chen
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China.,Institute of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| |
Collapse
|
33
|
LU B, GONG X, WANG ZQ, DING Y, WANG C, LUO TF, PIAO MH, MENG FK, CHI GF, LUO YN, GE PF. Shikonin induces glioma cell necroptosis in vitro by ROS overproduction and promoting RIP1/RIP3 necrosome formation. Acta Pharmacol Sin 2017; 38:1543-1553. [PMID: 28816233 PMCID: PMC5672068 DOI: 10.1038/aps.2017.112] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 04/19/2017] [Indexed: 02/06/2023]
Abstract
Necroptosis is a type of programmed necrosis regulated by receptor interacting protein kinase 1 (RIP1) and RIP3. Necroptosis is found to be accompanied by an overproduction of reactive oxygen species (ROS), but the role of ROS in regulation of necroptosis remains elusive. In this study, we investigated how shikonin, a necroptosis inducer for cancer cells, regulated the signaling leading to necroptosis in glinoma cells in vitro. Treatment with shikonin (2-10 μmol/L) dose-dependently triggered necrosis and induced overproduction of intracellular ROS in rat C6 and human SHG-44, U87 and U251 glioma cell lines. Moreover, shikonin treatment dose-dependently upregulated the levels of RIP1 and RIP3 and reinforced their interaction in the glioma cells. Pretreatment with the specific RIP1 inhibitor Nec-1 (100 μmol/L) or the specific RIP3 inhibitor GSK-872 (5 μmol/L) not only prevented shikonin-induced glioma cell necrosis but also significantly mitigated the levels of intracellular ROS and mitochondrial superoxide. Mitigation of ROS with MnTBAP (40 μmol/L), which was a cleaner of mitochondrial superoxide, attenuated shikonin-induced glioma cell necrosis, whereas increasing ROS levels with rotenone, which improved the mitochondrial generation of superoxide, significantly augmented shikonin-caused glioma cell necrosis. Furthermore, pretreatment with MnTBAP prevented the shikonin-induced upregulation of RIP1 and RIP3 expression and their interaction while pretreatment with rotenone reinforced these effects. These findings suggest that ROS is not only an executioner of shikonin-induced glioma cell necrosis but also a regulator of RIP1 and RIP3 expression and necrosome assembly.
Collapse
Affiliation(s)
- Bin LU
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun 130021, China
| | - Xu GONG
- Department of Hand Surgery, First Hospital of Jilin University, Changchun 130021, China
| | - Zong-qi WANG
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun 130021, China
| | - Ye DING
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun 130021, China
| | - Chen WANG
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun 130021, China
| | - Tian-fei LUO
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun 130021, China
- Department of Neurology, First Hospital of Jilin University, Changchun 130021, China
| | - Mei-hua PIAO
- Department of Anesthesiology, First Hospital of Jilin University, Changchun 130021, China
| | - Fan-kai MENG
- Department of Neurosurgery, People's Hospital of Jilin Province, Changchun 130021, China
| | - Guang-fan CHI
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Yi-nan LUO
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Peng-fei GE
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
34
|
Shikonin suppresses pulmonary fibroblasts proliferation and activation by regulating Akt and p38 MAPK signaling pathways. Biomed Pharmacother 2017; 95:1119-1128. [PMID: 28922731 DOI: 10.1016/j.biopha.2017.09.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/03/2017] [Accepted: 09/06/2017] [Indexed: 01/23/2023] Open
Abstract
Fibroblast is believed to be the primary effector in idiopathic pulmonary fibrosis (IPF), a progressive lung disorder characterized by aberrant tissue remodeling and the formation of fibroblastic foci. Due to the complicated etiology and mechanism, there are few effective drugs for this fatal disease. Shikonin (SHI), which is the major ingredient isolated from the plant Lithospermum Erythrorhizon, has long been used as traditional medicine for many diseases including inflammation and cancer. The roles of SHI in attenuating skin scar and renal fibrosis by reducing TGFβ1-stimulated fibroblast activation are also reported. But whether SHI works on IPF which exhibits both inflammatory and carcinoma-like features remains unknown. In this study, using isolated pulmonary fibroblasts, we demonstrated that SHI inhibited the proliferation, migration of fibroblasts, enhanced cell apoptosis and led to cell cycle arrest at G1 and G2/M phase. Moreover, SHI reduced the production of α-SMA, fibronectin, collagen I and III in response to TGF-β induction in pulmonary fibroblasts, and all of these gene production is the key component of extracellular matrix for tissue remodeling for IPF. The phosphorylation of Akt was down-regulated, p53 increased, the mRNA levels of p21 and p27 enhanced after SHI treatments. The phosphorylation of both p38 MAPK and Akt stimulated by TGF-β was reduced after SHI treatments. Collectively, these data indicate that SHI has a strong cytotoxicity in pulmonary fibroblast via inhibiting Akt activation signaling pathway, and attenuates TGF-β induced extracellular matrix genes production in pulmonary fibroblasts via modulating the activities of p38 MAPK and Akt. SHI might serve as a therapeutically candidate for IPF patients.
Collapse
|
35
|
Zhang Z, Zhang Z, Li Q, Jiao H, Chong D, Sun X, Zhang P, Huo Q, Liu H. Shikonin induces necroptosis by reactive oxygen species activation in nasopharyngeal carcinoma cell line CNE-2Z. J Bioenerg Biomembr 2017; 49:265-272. [DOI: 10.1007/s10863-017-9714-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/05/2017] [Indexed: 11/25/2022]
|
36
|
Wegner KW, Saleh D, Degterev A. Complex Pathologic Roles of RIPK1 and RIPK3: Moving Beyond Necroptosis. Trends Pharmacol Sci 2017; 38:202-225. [PMID: 28126382 DOI: 10.1016/j.tips.2016.12.005] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/09/2016] [Accepted: 12/15/2016] [Indexed: 02/07/2023]
Abstract
A process of regulated necrosis, termed necroptosis, has been recognized as a major contributor to cell death and inflammation occurring under a wide range of pathologic settings. The core event in necroptosis is the formation of the detergent-insoluble 'necrosome' complex of homologous Ser/Thr kinases, receptor protein interacting kinase 1 (RIPK1) and receptor interacting protein kinase 3 (RIPK3), which promotes phosphorylation of a key prodeath effector, mixed lineage kinase domain-like (MLKL), by RIPK3. Core necroptosis mediators are under multiple controls, which have been a subject of intense investigation. Additional, non-necroptotic functions of these factors, primarily in controlling apoptosis and inflammatory responses, have also begun to emerge. This review will provide an overview of the current understanding of the human disease relevance of this pathway, and potential therapeutic strategies, targeting necroptosis mediators in various pathologies.
Collapse
Affiliation(s)
- Kelby W Wegner
- Master of Science in Biomedical Sciences Program, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Danish Saleh
- Medical Scientist Training Program and Program in Neuroscience, Sackler Graduate School, Tufts University, Boston, MA 02111, USA
| | - Alexei Degterev
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|