1
|
Chen F, Ren P, Xu R, Zhang J, Liang C, Qiang G. FAM65A promotes the progression and growth of lung squamous cell carcinoma in vivo and vitro. BMC Cancer 2024; 24:944. [PMID: 39095743 PMCID: PMC11295694 DOI: 10.1186/s12885-024-12701-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUNDS Currently, family with sequence similarity 65 member A (FAM65A) is reported as a pivotal regulator in various cancers. However, the effect of FAM65A in lung squamous cell carcinoma (LSCC) is still unclear, the prime objective of this research is to explore the role of FAM65A in LSCC. METHODS Gene expression data and correlated clinical information were downloaded from the public database and the expression of FAM65A was detected. The expression of FAM65A was also detected in our collected clinical samples and LSCC cell lines. Survival package of R language was used to determine the survival significance of FAM65A. Proteins expression level was determined via western blot assay. Cell function experiments and in vivo experiments were performed to explore the effect of FAM65A on LSCC cell biological behaviors. RESULTS FAM65A expression was significantly increased in LSCC clinical samples and cell lines. High FAM65A expression predicted poor prognosis in LSCC patients. After silencing FAM65A, the ability of LSCC cell proliferation, invasion and migration was decreased, and LSCC cell cycle was blocked. Moreover, in vivo experiments revealed that silencing FAM65A could inhibit LSCC cell proliferation. CONCLUSIONS High FAM65A expression could enhance proliferative, invasive and migratory abilities of LSCC. FAM65A might be a novel biomarker of LSCC.
Collapse
Affiliation(s)
- Fangjun Chen
- Department of Thoracic Surgery, Chine-Japan Friendship Institute of Clinical Medicine, Beijing, China
| | - Peng Ren
- Department of Thoracic Surgery, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, 100191, China
| | - Rui Xu
- Department of Nuclear Medicine, Chine-Japan Friendship Hospital, Beijing, China
| | - Jin Zhang
- Department of Thoracic Surgery, Chine-Japan Friendship Hospital, Beijing, China
| | - Chaoyang Liang
- Department of Thoracic Surgery, Chine-Japan Friendship Hospital, Beijing, China
| | - Guangliang Qiang
- Department of Thoracic Surgery, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, 100191, China.
| |
Collapse
|
2
|
Phosphorylated Proteins from Serum: A Promising Potential Diagnostic Biomarker of Cancer. Int J Mol Sci 2022; 23:ijms232012359. [PMID: 36293212 PMCID: PMC9604268 DOI: 10.3390/ijms232012359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is a fatal disease worldwide. Each year ten million people are diagnosed around the world, and more than half of patients eventually die from it in many countries. A majority of cancer remains asymptomatic in the earlier stages, with specific symptoms appearing in the advanced stages when the chances of adequate treatment are low. Cancer screening is generally executed by different imaging techniques like ultrasonography (USG), mammography, CT-scan, and magnetic resonance imaging (MRI). Imaging techniques, however, fail to distinguish between cancerous and non-cancerous cells for early diagnosis. To confirm the imaging result, solid and liquid biopsies are done which have certain limitations such as invasive (in case of solid biopsy) or missed early diagnosis due to extremely low concentrations of circulating tumor DNA (in case of liquid biopsy). Therefore, it is essential to detect certain biomarkers by a noninvasive approach. One approach is a proteomic or glycoproteomic study which mostly identifies proteins and glycoproteins present in tissues and serum. Some of these studies are approved by the Food and Drug Administration (FDA). Another non-expensive and comparatively easier method to detect glycoprotein biomarkers is by ELISA, which uses lectins of diverse specificities. Several of the FDA approved proteins used as cancer biomarkers do not show optimal sensitivities for precise diagnosis of the diseases. In this regard, expression of phosphoproteins is associated with a more specific stage of a particular disease with high sensitivity and specificity. In this review, we discuss the expression of different serum phosphoproteins in various cancers. These phosphoproteins are detected either by phosphoprotein enrichment by immunoprecipitation using phosphospecific antibody and metal oxide affinity chromatography followed by LC-MS/MS or by 2D gel electrophoresis followed by MALDI-ToF/MS analysis. The updated knowledge on phosphorylated proteins in clinical samples from various cancer patients would help to develop these serum phophoproteins as potential diagnostic/prognostic biomarkers of cancer.
Collapse
|
3
|
Liang W, Mo C, Wei J, Chen W, Gong W, Shi J, Hou X, Li C, Deng Y, Ou M. FAM65A as a novel prognostic biomarker in human tumors reveal by a pan-cancer analysis. Discov Oncol 2021; 12:60. [PMID: 35201499 PMCID: PMC8777545 DOI: 10.1007/s12672-021-00456-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Family with sequence similarity 65 member A (FAM65A), also known as RIPOR1, is differentially expressed between human tumor and non-tumor tissues in kinds of cancers. In addition, it was reported that the product of FAM65A may be a biomarker for cholangiocarcinoma patients. However, there is still no evidence on the relationship between the FAM65A and different types of tumors. Our study is mainly for exploring the prognostic values of FAM65A in pan-cancer and for further discovering a potential therapeutics target. METHODS We analyzed FAM65A expression, prognostic values, genetic alteration, protein phosphorylation, immune infiltration and enrichment analysis across different types of human malignant tumors based on The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. Additionally, Real-Time PCR (RT-qPCR) was performed to further confirm the roles of FAM65A in the pathogenesis of colorectal cancer. RESULTS We found that FAM65A expression was associated with the prognosis of multiple human tumors, especially colorectal cancer. Moreover, we also observed that FAM65A was highly expressed in colorectal cancer through RT-qPCR. We observed that decreasing phosphorylation level of the S351 locus in colon adenocarcinoma, uterine corpus endometrial carcinoma and lung adenocarcinoma. And the expression of FAM65A was positively related to cancer-associated fibroblasts (CAFs) infiltration in many tumors, such as colon adenocarcinoma. Therefore, FAM65A may be a potential prognostic biomarker of human tumors.
Collapse
Affiliation(s)
- Wenken Liang
- College of Life Science, Guangxi Normal University, No. 1, Yanshan Middle Road, Guilin, 541000, China
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, No. 212, Renmin Road, Guilin, 541000, China
| | - Chune Mo
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, No. 212, Renmin Road, Guilin, 541000, China
| | - Jianfen Wei
- College of Life Science, Guangxi Normal University, No. 1, Yanshan Middle Road, Guilin, 541000, China
| | - Wei Chen
- Gastrointestinal Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541000, China
| | - Weiwei Gong
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, No. 212, Renmin Road, Guilin, 541000, China
| | - Jianling Shi
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, No. 212, Renmin Road, Guilin, 541000, China
| | - Xianliang Hou
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, No. 212, Renmin Road, Guilin, 541000, China
| | - Chunhong Li
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, No. 212, Renmin Road, Guilin, 541000, China
| | - Yecheng Deng
- College of Life Science, Guangxi Normal University, No. 1, Yanshan Middle Road, Guilin, 541000, China.
| | - Minglin Ou
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, No. 212, Renmin Road, Guilin, 541000, China.
| |
Collapse
|
4
|
Kotawong K, Chajaroenkul W, Roytrakul S, Phaonakrop N, Na-Bangchang K. The Proteomics and Metabolomics Analysis for Screening the Molecular Targets of Action of β-Eudesmol in Cholangiocarcinoma. Asian Pac J Cancer Prev 2021; 22:909-918. [PMID: 33773557 PMCID: PMC8286696 DOI: 10.31557/apjcp.2021.22.3.909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE β-eudesmol is the active compound isolated from Atractylodes lancea (Thunb) D.C. The actions of this compound against cholangiocarcinoma (CCA) cells include anti-angiogenesis and anti-cell proliferation and growth. For more understanding of the molecular targets of action of β-eudesmol, the CCA cells (CL-6) were exposed to β-eudesmol for 24 and 48 hours. METHODS Proteins and metabolites from the intra- and extra-cellular components of the CL-6 cells were extracted and identified by LC-MS/MS. Protein analysis was performed using the Venn diagram (protein grouping), PANTHER (gene ontology), and STITCH software (protein-protein interaction). Metabolite analysis including their interactions with proteins, was performed using MetaboAnalyst software. RESULTS The analysis showed that the actions of β-eudesmol were associated with various biological processes particularly apoptosis and cell cycle. These included blood coagulation, wound healing, DNA repair, PI3K-Akt signaling pathway, immune system process, MAPK cascade, urea cycle, purine metabolism, ammonia recycling, and methionine metabolism. CONCLUSION Possible molecular targets of action of β-eudesmol against CL-6 for cell apoptosis induction were TNFRSf6, cytochrome C, BAX3, DHCR24, CD29, and ATP. On the other hand, possible targets for cell cycle arrest induction were CDKN2B, MLF1, TFDP2, CDK11-p110, and nicotinamide.
Collapse
Affiliation(s)
- Kanawut Kotawong
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Paholyothin Road, Klonglung, Pathumthani Thailand
| | - Wanna Chajaroenkul
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Paholyothin Road, Klonglung, Pathumthani Thailand.,Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Thammasat University, Paholyothin Road, Klonglung, Pathumthani Thailand
| | - Sittiruk Roytrakul
- Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Narumon Phaonakrop
- Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Kesara Na-Bangchang
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Paholyothin Road, Klonglung, Pathumthani Thailand.,Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Thammasat University, Paholyothin Road, Klonglung, Pathumthani Thailand
| |
Collapse
|
5
|
Screening of Molecular Targets of Action of Atractylodin in Cholangiocarcinoma by Applying Proteomic and Metabolomic Approaches. Metabolites 2019; 9:metabo9110260. [PMID: 31683902 PMCID: PMC6918361 DOI: 10.3390/metabo9110260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 12/21/2022] Open
Abstract
Cholangiocarcinoma (CCA) is cancer of the bile duct and the highest incidence of CCA in the world is reported in Thailand. Our previous in vitro and in vivo studies identified Atractylodes lancea (Thunb) D.C. as a promising candidate for CCA treatment. The present study aimed to examine the molecular targets of action of atractylodin, the bioactive compound isolated from A. lancea, in CCA cell line by applying proteomic and metabolomic approaches. Intra- and extracellular proteins and metabolites were identified by LC-MS/MS following exposure of CL-6, the CCA cell line, to atractylodin for 24 and 48 h. Analysis of the protein functions and pathways involved was performed using a Venn diagram, PANTHER, and STITCH software. Analysis of the metabolite functions and pathways involved, including the correlation between proteins and metabolites identified was performed using MetaboAnalyst software. Results suggested the involvement of atractylodin in various cell biology processes. These include the cell cycle, apoptosis, DNA repair, immune response regulation, wound healing, blood vessel development, pyrimidine metabolism, the citrate cycle, purine metabolism, arginine and proline metabolism, glyoxylate and dicarboxylate metabolism, the pentose phosphate pathway, and fatty acid biosynthesis. Therefore, it was proposed that the action of atractylodin may involve the destruction of the DNA of cancer cells, leading to cell cycle arrest and cell apoptosis.
Collapse
|
6
|
Weeraphan C, Phongdara A, Chaiyawat P, Diskul-Na-Ayudthaya P, Chokchaichamnankit D, Verathamjamras C, Netsirisawan P, Yingchutrakul Y, Roytrakul S, Champattanachai V, Svasti J, Srisomsap C. Phosphoproteome Profiling of Isogenic Cancer Cell-Derived Exosome Reveals HSP90 as a Potential Marker for Human Cholangiocarcinoma. Proteomics 2019; 19:e1800159. [PMID: 31054213 DOI: 10.1002/pmic.201800159] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 03/18/2019] [Indexed: 12/19/2022]
Abstract
The northeastern region of Thailand is well known to have a high incidence and mortality of cholangiocarcinoma (CCA). Protein phosphorylation status has been reported to reflect a key determinant of cellular physiology, but identification of phosphoproteins can be a problem due to the presence of phosphatase. Exosomes are stable toward circulating proteases and other enzymes in human blood and can be recognized before the onset of cancer progression. Here an in vitro metastatic model of isogenic CCA cells is used to provide insight into the phosphorylation levels of exosomal proteins derived from highly invasive cells. Gel-based and gel-free proteomics approaches are used to reveal the proteins differentially phosphorylated in relation to tumor cell phenotypes. Forty-three phosphoproteins are identified with a significant change in phosphorylation level. Phos-tag western blotting and immunohistochemistry staining are then employed to validate the candidate phosphoproteins. Heat shock protein 90 is successfully confirmed as being differentially phosphorylated in relation to tumor malignancy. Importantly, the aberrant phosphorylation of exosomal proteins might serve as a promising tool for the development of a biomarker for metastatic CCA.
Collapse
Affiliation(s)
- Churat Weeraphan
- Department of Molecular, Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Songkla, 90112, Thailand
| | - Amornrat Phongdara
- Department of Molecular, Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Songkla, 90112, Thailand.,Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Songkla, 90112, Thailand
| | - Parunya Chaiyawat
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand
| | - Penchatr Diskul-Na-Ayudthaya
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Chungcheongnam-do, 31151, Republic of Korea
| | | | - Chris Verathamjamras
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | | | - Yodying Yingchutrakul
- Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | | | - Jisnuson Svasti
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand.,Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Chantragan Srisomsap
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| |
Collapse
|