1
|
Liu Z, Pu X. Orosomucoid 1 interacts with S100A12 and activates ERK signalling to expedite the advancement of bladder cancer. Cell Adh Migr 2025; 19:1-11. [PMID: 39644201 PMCID: PMC11633163 DOI: 10.1080/19336918.2024.2434209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/19/2024] [Accepted: 11/20/2024] [Indexed: 12/09/2024] Open
Abstract
The research endeavors to expound the role of ORM1 in bladder cancer (BCa) and the implied response mechanism. RT-qPCR and Western blotting examined ORM1 and S100A12 expression. Functional experiments assessed the cellular phenotypes. HDOCK and Co-IP confirmed the interaction of ORM1 and S100A12. Western blotting tested apoptosis- and ERK signaling-associated proteins. ORM1 and S100A12 were abundant in the BCa cells. ORM1 or S100A12 loss impaired cell proliferation, migration, and invasion, and aggravated cell apoptosis. ORM1 interacted with S100A12. ORM1 knockdown down-regulated S100A12 expression and inactivated ERK signaling.S100A12 overexpression or ERK activator reversed the impacts of ORM1 interference on ERK signaling and BCa cells. ORM1 mightdrive BCa via binding to S100A12 and activating ERK signaling.
Collapse
Affiliation(s)
- Zhe Liu
- Department of Urology, Wuxi No. 2 People’s Hospital (Jiangnan University Medical Center), Wuxi, China
| | - Xiaofeng Pu
- Department of Urology, Chongqing General Hospital, Chongqing University, Chongqing, China
| |
Collapse
|
2
|
Alhujaily M. Glyoxalase System in Breast and Ovarian Cancers: Role of MEK/ERK/SMAD1 Pathway. Biomolecules 2024; 14:584. [PMID: 38785990 PMCID: PMC11117840 DOI: 10.3390/biom14050584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024] Open
Abstract
The glyoxalase system, comprising GLO1 and GLO2 enzymes, is integral in detoxifying methylglyoxal (MGO) generated during glycolysis, with dysregulation implicated in various cancer types. The MEK/ERK/SMAD1 signaling pathway, crucial in cellular processes, influences tumorigenesis, metastasis, and angiogenesis. Altered GLO1 expression in cancer showcases its complex role in cellular adaptation and cancer aggressiveness. GLO2 exhibits context-dependent functions, contributing to both proapoptotic and antiapoptotic effects in different cancer scenarios. Research highlights the interconnected nature of these systems, particularly in ovarian cancer and breast cancer. The glyoxalase system's involvement in drug resistance and its impact on the MEK/ERK/SMAD1 signaling cascade underscore their clinical significance. Furthermore, this review delves into the urgent need for effective biomarkers, exemplified in ovarian cancer, where the RAGE-ligand pathway emerges as a potential diagnostic tool. While therapeutic strategies targeting these pathways hold promise, this review emphasizes the challenges posed by context-dependent effects and intricate crosstalk within the cellular milieu. Insights into the molecular intricacies of these pathways offer a foundation for developing innovative therapeutic approaches, providing hope for enhanced cancer diagnostics and tailored treatment strategies.
Collapse
Affiliation(s)
- Muhanad Alhujaily
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| |
Collapse
|
3
|
Oliveira AL, de Oliveira MG, Mónica FZ, Antunes E. Methylglyoxal and Advanced Glycation End Products (AGEs): Targets for the Prevention and Treatment of Diabetes-Associated Bladder Dysfunction? Biomedicines 2024; 12:939. [PMID: 38790901 PMCID: PMC11118115 DOI: 10.3390/biomedicines12050939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
Methylglyoxal (MGO) is a highly reactive α-dicarbonyl compound formed endogenously from 3-carbon glycolytic intermediates. Methylglyoxal accumulated in plasma and urine of hyperglycemic and diabetic individuals acts as a potent peptide glycation molecule, giving rise to advanced glycation end products (AGEs) like arginine-derived hydroimidazolone (MG-H1) and carboxyethyl-lysine (CEL). Methylglyoxal-derived AGEs exert their effects mostly via activation of RAGE, a cell surface receptor that initiates multiple intracellular signaling pathways, favoring a pro-oxidant environment through NADPH oxidase activation and generation of high levels of reactive oxygen species (ROS). Diabetic bladder dysfunction is a bothersome urological complication in patients with poorly controlled diabetes mellitus and may comprise overactive bladder, urge incontinence, poor emptying, dribbling, incomplete emptying of the bladder, and urinary retention. Preclinical models of type 1 and type 2 diabetes have further confirmed the relationship between diabetes and voiding dysfunction. Interestingly, healthy mice supplemented with MGO for prolonged periods exhibit in vivo and in vitro bladder dysfunction, which is accompanied by increased AGE formation and RAGE expression, as well as by ROS overproduction in bladder tissues. Drugs reported to scavenge MGO and to inactivate AGEs like metformin, polyphenols, and alagebrium (ALT-711) have shown favorable outcomes on bladder dysfunction in diabetic obese leptin-deficient and MGO-exposed mice. Therefore, MGO, AGEs, and RAGE levels may be critically involved in the pathogenesis of bladder dysfunction in diabetic individuals. However, there are no clinical trials designed to test drugs that selectively inhibit the MGO-AGEs-RAGE signaling, aiming to reduce the manifestations of diabetes-associated bladder dysfunction. This review summarizes the current literature on the role of MGO-AGEs-RAGE-ROS axis in diabetes-associated bladder dysfunction. Drugs that directly inactivate MGO and ameliorate bladder dysfunction are also reviewed here.
Collapse
Affiliation(s)
| | | | | | - Edson Antunes
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas 13084-971, SP, Brazil; (A.L.O.); (M.G.d.O.); (F.Z.M.)
| |
Collapse
|
4
|
Moadab A, Valizadeh MR, Nazari A, Khorramdelazad H. Association of interleukin-17A and chemokine/vascular endothelial growth factor-induced angiogenesis in newly diagnosed patients with bladder cancer. BMC Immunol 2024; 25:20. [PMID: 38515019 PMCID: PMC10956274 DOI: 10.1186/s12865-024-00612-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND The human interleukin-17 (IL-17) family comprises IL-17A to IL-17 F; their receptors are IL-17RA to IL-17RE. Evidence revealed that these cytokines can have a tumor-supportive or anti-tumor impact on human malignancies. The purpose of this study was to assess the expression of CXCR2, IL-17RA, and IL-17RC genes at the mRNA level as well as tissue and serum levels of IL-17A, vascular endothelial growth factor (VEGF), and transforming growth factor β (TGF-β) in patients with bladder cancer (BC) compared to control. RESULTS This study showed that gene expression of IL-17RA, IL-17RC, and CXCR2 in the tumoral tissue of BC patients was significantly upregulated compared with normal tissue. The findings disclosed a significant difference in the serum and tissue concentrations of IL-17A, VEGF, and TGF-β between the patient and the control groups, as well as tumor and normal tissues. CONCLUSION This study reveals notable dysregulation of CXCR2, IL-17RA, and IL-17RC genes, alongside changes in IL-17A, VEGF, and TGF-β levels in patients with BC than in controls. These findings indicate their possible involvement in BC development and their potential as diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Ali Moadab
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Rafie Valizadeh
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Alireza Nazari
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
- Department of Surgery, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
5
|
Jacobs LM, Helder LS, Albers KI, Kranendonk J, Keijzer C, Joosten LA, Strobbe LJ, Warlé MC. The role of surgical tissue injury and intraoperative sympathetic activation in postoperative immunosuppression after breast-conserving surgery versus mastectomy: a prospective observational study. Breast Cancer Res 2024; 26:42. [PMID: 38468349 PMCID: PMC10926636 DOI: 10.1186/s13058-024-01801-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/28/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Breast cancer is the second most common cause of death from cancer in women worldwide. Counterintuitively, large population-based retrospective trials report better survival after breast-conserving surgery (BCS) compared to mastectomy, corrected for tumour- and patient variables. More extensive surgical tissue injury and activation of the sympathetic nervous system by nociceptive stimuli are associated with immune suppression. We hypothesized that mastectomy causes a higher expression of plasma damage associated molecular patterns (DAMPs) and more intraoperative sympathetic activation which induce postoperative immune dysregulation. Immune suppression can lead to postoperative complications and affect tumour-free survival. METHODS In this prospective observational study, plasma DAMPs (HMGB1, HSP70, S100A8/A9 and S100A12), intraoperative sympathetic activation (Nociception Level (NOL) index from 0 to 100), and postoperative immune function (plasma cytokine concentrations and ex vivo cytokine production capacity) were compared in patients undergoing elective BCS (n = 20) versus mastectomy (n = 20). RESULTS Ex vivo cytokine production capacity of TNF, IL-6 and IL-1β was nearly absent in both groups one hour after surgery. Levels appeared recovered on postoperative day 3 (POD3), with significantly higher ex vivo production capacity of IL-1β after BCS (p = .041) compared to mastectomy. Plasma concentration of IL-6 was higher one hour after mastectomy (p = .045). Concentrations of plasma alarmins S100A8/A9 and S100A12 were significantly higher on POD3 after mastectomy (p = .003 and p = .041, respectively). Regression analysis showed a significantly lower percentage of NOL measurements ≤ 8 (absence of nociception) during mastectomy when corrected for norepinephrine equivalents (36% versus 45% respectively, p = .038). Percentage of NOL measurements ≤ 8 of all patients correlated with ex vivo cytokine production capacity of IL-1β and TNF on POD3 (r = .408; p = .011 and r = .500; p = .001, respectively). CONCLUSIONS This pilot study revealed substantial early postoperative immune suppression after BCS and mastectomy that appears to recover in the following days. Differences between BCS and mastectomy in release of DAMPs and intraoperative sympathetic activation could affect postoperative immune homeostasis and thereby contribute to the better survival reported after BCS in previous large population-based retrospective trials. These results endorse further exploration of (1) S100 alarmins as potential therapeutic targets in breast cancer surgery and (2) suppression of intraoperative sympathetic activation to substantiate the observed association with postoperative immune dysregulation.
Collapse
Affiliation(s)
- Lotte Mc Jacobs
- Department of Surgery, Radboud University Medical Center, Geert Grooteplein zuid 10, Nijmegen, 6525 GA, The Netherlands
| | - Leonie S Helder
- Department of Anaesthesiology, Radboudumc, Nijmegen, The Netherlands
| | - Kim I Albers
- Department of Anaesthesiology, Radboudumc, Nijmegen, The Netherlands
| | - Josephine Kranendonk
- Department of Surgery, Radboud University Medical Center, Geert Grooteplein zuid 10, Nijmegen, 6525 GA, The Netherlands
| | | | - Leo Ab Joosten
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj- Napoca, Romania
| | - Luc Ja Strobbe
- Department of Surgery, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Michiel C Warlé
- Department of Surgery, Radboud University Medical Center, Geert Grooteplein zuid 10, Nijmegen, 6525 GA, The Netherlands.
| |
Collapse
|
6
|
Sadri M, Najafi A, Rahimi A, Behranvand N, Hossein Kazemi M, Khorramdelazad H, Falak R. Hypoxia effects on oncolytic virotherapy in Cancer: Friend or Foe? Int Immunopharmacol 2023; 122:110470. [PMID: 37433246 DOI: 10.1016/j.intimp.2023.110470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/13/2023]
Abstract
Researchers have tried to find novel strategies for cancer treatment in the past decades. Among the utilized methods, administering oncolytic viruses (OVs) alone or combined with other anticancer therapeutic approaches has had promising outcomes, especially in solid tumors. Infecting the tumor cells by these viruses can lead to direct lysis or induction of immune responses. However, the immunosuppressive tumor microenvironment (TME) is considered a significant challenge for oncolytic virotherapy in treating cancer. Based on OV type, hypoxic conditions in the TME can accelerate or repress virus replication. Therefore, genetic manipulation of OVs or other molecular modifications to reduce hypoxia can induce antitumor responses. Moreover, using OVs with tumor lysis capability in the hypoxic TME may be an attractive strategy to overcome the limitations of the therapy. This review summarizes the latest information available in the field of cancer virotherapy and discusses the dual effect of hypoxia on different types of OVs to optimize available related therapeutic methods.
Collapse
Affiliation(s)
- Maryam Sadri
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Najafi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Behranvand
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Kazemi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Weinekötter J, Gurtner C, Protschka M, von Bomhard W, Böttcher D, Schlinke A, Alber G, Rösch S, Steiner JM, Seeger J, Oechtering GU, Heilmann RM. Tissue S100/calgranulin expression and blood neutrophil-to-lymphocyte ratio (NLR) in dogs with lower urinary tract urothelial carcinoma. BMC Vet Res 2022; 18:412. [PMID: 36411489 PMCID: PMC9680134 DOI: 10.1186/s12917-022-03513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Urothelial carcinoma (UC) is the most common neoplasm of the canine lower urinary tract, affecting approximately 2% of dogs. Elderly female patients of certain breeds are predisposed, and clinical signs of UC can easily be confused with urinary tract infection or urolithiasis. Diagnosis and treatment are challenging given the lack of disease-specific markers and treatments. The S100A8/A9 complex and S100A12 protein are Ca2+-binding proteins expressed by cells of the innate immune system and have shown promise as urinary screening markers for UC. The neutrophil-to-lymphocyte ratio (NLR) can also aid in distinguishing certain neoplastic from inflammatory conditions. Our study aimed to evaluate the tissue expression of S100/calgranulins and the blood NLR in dogs with UC. Urinary bladder and/or urethral tissue samples from dogs with UC (n = 10), non-neoplastic inflammatory lesions (NNUTD; n = 6), and no histologic changes (n = 11) were evaluated using immunohistochemistry. Blood NLRs were analyzed in dogs with UC (n = 22) or NNUTD (n = 26). RESULTS Tissue S100A12-positive cell counts were significantly higher in dogs with lower urinary tract disease than healthy controls (P = 0.0267 for UC, P = 0.0049 for NNUTD), with no significant difference between UC and NNUTD patients. Tissue S100A8/A9-positivity appeared to be higher with NNUTD than UC, but this difference did not reach statistical significance. The S100A8/A9+-to-S100A12+ ratio was significantly decreased in neoplastic and inflamed lower urinary tract tissue compared to histologically normal specimens (P = 0.0062 for UC, P = 0.0030 for NNUTD). NLRs were significantly higher in dogs with UC than in dogs with NNUTD, and a cut-off NLR of ≤ 2.83 distinguished UC from NNUTD with 41% sensitivity and 100% specificity. Higher NLRs were also associated with a poor overall survival time (P = 0.0417). CONCLUSIONS These results confirm that the S100/calgranulins play a role in the immune response to inflammatory and neoplastic lower urinary tract diseases in dogs, but the tissue expression of these proteins appears to differ from their concentrations reported in urine samples. Further investigations of the S100/calgranulin pathways in UC and their potential as diagnostic or prognostic tools and potential therapeutic targets are warranted. The NLR as a routinely available marker might be a useful surrogate to distinguish UC from inflammatory conditions.
Collapse
Affiliation(s)
- Jana Weinekötter
- grid.9647.c0000 0004 7669 9786Department for Small Animals, College of Veterinary Medicine, Leipzig University, An den Tierkliniken 23, 04103 Leipzig, SN Germany
| | - Corinne Gurtner
- grid.5734.50000 0001 0726 5157Institute of Animal Pathology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, CH-3001 Bern, BE Switzerland
| | - Martina Protschka
- grid.9647.c0000 0004 7669 9786Institute of Immunology, College of Veterinary Medicine, Biotechnological-Biomedical Center, Leipzig University, Deutscher Platz 5, 04103 Leipzig, SN Germany
| | - Wolf von Bomhard
- Specialty Center for Veterinary Pathology, Hartelstrasse 30, E80689 Munich, BY Germany
| | - Denny Böttcher
- grid.9647.c0000 0004 7669 9786Institute for Veterinary Pathology, College of Veterinary Medicine, Leipzig University, An Den Tierkliniken 33, E04103 Leipzig, SN Germany
| | - Annika Schlinke
- grid.9647.c0000 0004 7669 9786Department for Small Animals, College of Veterinary Medicine, Leipzig University, An den Tierkliniken 23, 04103 Leipzig, SN Germany
| | - Gottfried Alber
- grid.9647.c0000 0004 7669 9786Institute of Immunology, College of Veterinary Medicine, Biotechnological-Biomedical Center, Leipzig University, Deutscher Platz 5, 04103 Leipzig, SN Germany
| | - Sarah Rösch
- grid.9647.c0000 0004 7669 9786Department for Small Animals, College of Veterinary Medicine, Leipzig University, An den Tierkliniken 23, 04103 Leipzig, SN Germany ,grid.412970.90000 0001 0126 6191Small Animal Clinic, University of Veterinary Medicine Hannover Foundation, Bünteweg 9, 30559 Hannover, NI Germany
| | - Joerg M. Steiner
- grid.264756.40000 0004 4687 2082Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TAMU 4474, College Station, TX 77843-4474 USA
| | - Johannes Seeger
- grid.9647.c0000 0004 7669 9786Institute of Anatomy, Histology and Embryology, College of Veterinary Medicine, Leipzig University, An den Tierkliniken 43, 04103 Leipzig, SN Germany
| | - Gerhard U. Oechtering
- grid.9647.c0000 0004 7669 9786Department for Small Animals, College of Veterinary Medicine, Leipzig University, An den Tierkliniken 23, 04103 Leipzig, SN Germany
| | - Romy M. Heilmann
- grid.9647.c0000 0004 7669 9786Department for Small Animals, College of Veterinary Medicine, Leipzig University, An den Tierkliniken 23, 04103 Leipzig, SN Germany
| |
Collapse
|
8
|
Wang J, Yang X, Wang Z, Wang J. Role of the Glyoxalase System in Breast Cancer and Gynecological Cancer-Implications for Therapeutic Intervention: a Review. Front Oncol 2022; 12:857746. [PMID: 35898868 PMCID: PMC9309216 DOI: 10.3389/fonc.2022.857746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/17/2022] [Indexed: 12/24/2022] Open
Abstract
Methyglyoxal (MGO), an essential endogenous dicarbonyl metabolite, can lead to multiple physiological problems including hyperglycemia, kidney diseases, malignant tumors, beyond its normal concentration range. The glyoxalase system, making MGO maintained at a low level, links glycation to carcinogenesis, growth, metastasis, and cancer chemotherapy. The glyoxalase system comprises glyoxalase 1 (Glo1) and glyoxalase 2 (Glo2), which is often overexpressed in various tumor tissues. However, very little is known about the glyoxalase system in breast cancer and gynecological cancer. In this review, we introduce the role of the glyoxalase system in breast cancer, endometrial cancer, ovarian cancer and cervical cancer, and highlight the potential of the glyoxalase system to be both as a marker for diagnosis and a novel target for antitumor therapy. However, the intrinsic molecular biology and mechanisms of the glyoxalase system in breast cancer and gynecological cancer need further exploration.
Collapse
|
9
|
Oliveira AL, Medeiros ML, de Oliveira MG, Teixeira CJ, Mónica FZ, Antunes E. Enhanced RAGE Expression and Excess Reactive-Oxygen Species Production Mediates Rho Kinase-Dependent Detrusor Overactivity After Methylglyoxal Exposure. Front Physiol 2022; 13:860342. [PMID: 35418871 PMCID: PMC8996136 DOI: 10.3389/fphys.2022.860342] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/11/2022] [Indexed: 12/23/2022] Open
Abstract
Methylglyoxal (MGO) is a highly reactive dicarbonyl compound implicated in diabetes-associated diseases. In vascular tissues, MGO induces the formation of advanced glycation end products (AGEs) that bounds its receptor RAGE, initiating the downstream tissue injury. Outside the cardiovascular system, MGO intake produces mouse voiding dysfunction and bladder overactivity. We have sought that MGO-induced bladder overactivity is due to activation of AGE-RAGE-reactive-oxygen species (ROS) signaling cascade, leading to Rho kinase activation. Therefore, female mice received 0.5% MGO orally for 12 weeks, after which in vitro bladder contractions were evaluated in the presence or not of superoxide dismutase (PEG-SOD) or the Rho kinase inhibitor Y27632. Treatment with MGO significantly elevated the serum levels of MGO and fluorescent AGEs, as well as the RAGE immunostaining in the urothelium, detrusor, and vascular endothelium. RAGE mRNA expression in the bladder was also higher in the MGO group. Methylglyoxal significantly increased the ROS production in both urothelium and detrusor smooth muscle, with the increases in detrusor markedly higher than urothelium. The bladder activity of superoxide dismutase (SOD) was significantly reduced in the MGO group. Gene expressions of L-type Ca2+ channels, RhoA, ROCK-1, and ROCK-2 in bladder tissues were significantly elevated in the MGO group. Increased bladder contractions to electrical-field stimulation, carbachol α,β-methylene ATP, and extracellular Ca2+ were observed after MGO exposure, which was significantly reduced by prior incubation with either PEG-SOD or Y27632. Overall, our data indicate serum MGO accumulation elevates the AGEs levels and activates the RAGE-ROS signaling leading to Rho kinase-induced muscle sensitization, ultimately leading to detrusor overactivity.
Collapse
Affiliation(s)
- Akila L Oliveira
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Matheus L Medeiros
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Caio Jordão Teixeira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Fabíola Z Mónica
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Edson Antunes
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
10
|
Singh A, Gupta N, Khandakar H, Kaushal S, Seth A, Pandey RM, Sharma A. Autophagy-associated HMGB-1 as a novel potential circulating non-invasive diagnostic marker for detection of Urothelial Carcinoma of Bladder. Mol Cell Biochem 2022; 477:493-505. [PMID: 34796446 PMCID: PMC8601373 DOI: 10.1007/s11010-021-04299-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/04/2021] [Indexed: 01/04/2023]
Abstract
Urothelial carcinoma of bladder (UBC), a highly prevalent urological malignancy associated with high mortality and recurrence rate. Standard diagnostic method currently being used is cystoscopy but its invasive nature and low sensitivity stresses for identifying predictive diagnostic marker. Autophagy, a cellular homeostasis maintaining process, is usually dysregulated in cancer and its role is still enigmatic in UBC. In this study, 30 UBC patients and healthy controls were enrolled. Histopathologically confirmed tumor and adjacent normal tissue were acquired from patients. Molecular expression and tissue localization of autophagy-associated molecules (HMGB-1, RAGE, beclin, LC-3, and p62) were investigated. Serum HMGB-1 concentration was measured in UBC patients and healthy controls. ROC curves were plotted to evaluate diagnostic potential. Transcript, protein, and IHC expression of HMGB-1, RAGE, beclin, and LC-3 displayed upregulated expression, while p62 was downregulated in bladder tumor tissue. Serum HMGB-1 levels were elevated in UBC patients. Transcript and circulatory levels of HMGB-1 showed positive correlation and displayed a positive trend with disease severity. Upon comparison with clinicopathological parameters, HMGB-1 emerged as molecule of statistical significance to exhibit association. HMGB-1 exhibited optimum sensitivity and specificity in serum. The positive correlation between tissue and serum levels of HMGB-1 showcases serum as a representation of in situ scenario, suggesting its clinical applicability for non-invasive testing. Moreover, optimum sensitivity and specificity displayed by HMGB-1 along with significant association with clinicopathological parameters makes it a potential candidate to be used as diagnostic marker for early detection of UBC but requires further validation in larger cohort.
Collapse
Affiliation(s)
- Aishwarya Singh
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Nidhi Gupta
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Hena Khandakar
- Department of Pathology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Seema Kaushal
- Department of Pathology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Amlesh Seth
- Department of Urology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - R M Pandey
- Department of Biostatistics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India.
| |
Collapse
|
11
|
Karkin K, İzol V, Kaplan M, Değer M, Akdoğan N, Tansuğ MZ. Demonstration of advanced glycation end product (AGE) expression in bladder cancer tissue in type-2 diabetic and non-diabetic patients and the relationship between AGE accumulation and endoplasmic reticulum stress with bladder cancer. Int J Clin Pract 2021; 75:e14526. [PMID: 34120398 DOI: 10.1111/ijcp.14526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/12/2021] [Accepted: 06/11/2021] [Indexed: 11/30/2022] Open
Abstract
PURPOSE This study aimed to investigate the relationship between advanced glycation end product (AGE) expression and accumulation in transurethral resection (TUR-B) material taken from type-2 diabetes mellitus (DM) and non-DM bladder cancer patients and endoplasmic reticulum stress (ERS) with bladder cancer. METHOD The patients who had TUR-B between May 2016 and September 2018 were included in the study. After the tissue samples had been taken and frozen at -80°C, they were homogenised to be used in enzyme-linked immunosorbent assay (ELISA) experiments. The patients were grouped as DM and non-DM. In both groups, mean AGE, IRE1, PERK and ATF6 expression amounts were evaluated through ELISA method in the pathological material. RESULTS The expression amounts in tissue samples were AGE 0.59 ± 0.03 µg/mL, ATF6 1.08 ± 0.11 µg/mL, IRE1 30.71 ± 1.68 ng/mL, PERK 0.28 ± 0.02 ng. It was /mL. While there was no significant difference amongst AGE µg/mL (P = .146), ATF6 µg/mL (P = .175), IRE1 ng/mL (P = NA) and PERK ng/mL (P = .125) (P > .05) in the presence of DM, a positive correlation was observed between AGE values and PERK ng/mL values (r = .629; P < .05). CONCLUSION Bladder cancer may develop as a result of accumulation of AGEs and ERS. Demonstration of the expression of proteins resulting from AGEs and ERS may be useful biomarkers for the diagnosis, prognosis, prevention and development of treatment alternatives for bladder cancer.
Collapse
Affiliation(s)
- Kadir Karkin
- Department of Urology, Adana City Training and Research Hospital, Health Sciences University, Adana, Turkey
| | - Volkan İzol
- Department of Urology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| | - Mahir Kaplan
- Department of Pharmacology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| | - Mutlu Değer
- Department of Urology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| | - Nebil Akdoğan
- Department of Urology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| | - Mustafa Zühtü Tansuğ
- Department of Urology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| |
Collapse
|
12
|
Marancik DP, Perrault JR, Komoroske LM, Stoll JA, Kelley KN, Manire CA. Plasma proteomics of green turtles ( Chelonia mydas) reveals pathway shifts and potential biomarker candidates associated with health and disease. CONSERVATION PHYSIOLOGY 2021; 9:coab018. [PMID: 33959286 PMCID: PMC8084024 DOI: 10.1093/conphys/coab018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/10/2021] [Accepted: 03/25/2021] [Indexed: 05/08/2023]
Abstract
Evaluating sea turtle health can be challenging due to an incomplete understanding of pathophysiologic responses in these species. Proteome characterization of clinical plasma samples can provide insights into disease progression and prospective biomarker targets. A TMT-10-plex-LC-MS/MS platform was used to characterize the plasma proteome of five, juvenile, green turtles (Chelonia mydas) and compare qualitative and quantitative protein changes during moribund and recovered states. The 10 plasma samples yielded a total of 670 unique proteins. Using ≥1.2-fold change in protein abundance as a benchmark for physiologic upregulation or downregulation, 233 (34.8%) were differentially regulated in at least one turtle between moribund and recovered states. Forty-six proteins (6.9%) were differentially regulated in all five turtles with two proteins (0.3%) demonstrating a statistically significant change. A principle component analysis showed protein abundance loosely clustered between moribund samples or recovered samples and for turtles that presented with trauma (n = 3) or as intestinal floaters (n = 2). Gene Ontology terms demonstrated that moribund samples were represented by a higher number of proteins associated with blood coagulation, adaptive immune responses and acute phase response, while recovered turtle samples included a relatively higher number of proteins associated with metabolic processes and response to nutrients. Abundance levels of 48 proteins (7.2%) in moribund samples significantly correlated with total protein, albumin and/or globulin levels quantified by biochemical analysis. Differentially regulated proteins identified with immunologic and physiologic functions are discussed for their possible role in the green turtle pathophysiologic response and for their potential use as diagnostic biomarkers. These findings enhance our ability to interpret sea turtle health and further progress conservation, research and rehabilitation programs for these ecologically important species.
Collapse
Affiliation(s)
- David P Marancik
- Department of Pathobiology, School of Veterinary Medicine, St. George’s University, True Blue, Grenada, West Indies
- Corresponding author: Tel: 473-444-4175.
| | - Justin R Perrault
- Loggerhead Marinelife Center, 14200 US Highway One, Juno Beach, FL 33408, USA
| | - Lisa M Komoroske
- College of Natural Resources, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, MA 01003, USA
| | - Jamie A Stoll
- College of Natural Resources, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, MA 01003, USA
| | - Kristina N Kelley
- Department of Pathobiology, School of Veterinary Medicine, St. George’s University, True Blue, Grenada, West Indies
| | - Charles A Manire
- Loggerhead Marinelife Center, 14200 US Highway One, Juno Beach, FL 33408, USA
| |
Collapse
|
13
|
Masoumi J, Vakilian A, Sayadi A, Shekari N, Khorramdelazad H. Assessing the gene expression of interleukin-36 in Alzheimer's patients. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Abbasifard M, Kamiab Z, Noori M, Khorramdelazad H. The S100 proteins expression in newly diagnosed systemic lupus erythematosus patients: Can they be potential diagnostic biomarkers? GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Mohammad-Sadeghipour M, Mahmoodi M, Noroozi Karimabad M, Mirzaei MR, Hajizadeh MR. Diosgenin and 4-Hydroxyisoleucine from Fenugreek Are Regulators of Genes Involved in Lipid Metabolism in The Human Colorectal Cancer Cell Line SW480. CELL JOURNAL 2020; 22:514-522. [PMID: 32347045 PMCID: PMC7211281 DOI: 10.22074/cellj.2021.6751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/08/2019] [Indexed: 01/20/2023]
Abstract
Objective Diosignin and 4-hydroxy-L-isulosine (4-OH-Ile) are the two active ingredients of Fenugreek (Trigonella foenumgraecum). Thus, in this study, we examined the effects of hydroalcoholic extract of fenugreek seeds (HEFS), diosgenin and 4-OH-Ile on the expression of acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), peroxisome proliferator-activated receptor gamma (PPARγ) and low-density lipoprotein (LDL) receptor (LDLR) which are involved in lipid metabolism in SW480 cell line. Materials and Methods In this experimental study, SW480 cells were cultured in RPMI-1640 medium and treated with HEFS, diosignin, 4-OH-Ile or orlistat for 24 and 48 hours. Inhibitory concentration of 20% (IC20) was calculated using MTT method and cells were then pre-treated with the IC20 concentrations for 24 and 48 hours before RNA extraction and cDNA synthesis. Changes in the expression of ACC, FAS, PPARγ and LDLR genes were assayed by employing the real time-polymerase chain reaction (PCR) method. Results Our results showed a significant down-regulation in the expression of ACC (P<0.001 and P<0.001 after 24 and 48 hours, respectively) and FAS genes (P<0.001 and P<0.001 after 24 and 48 hours, respectively) in SW480 cells treated with HEFS, diosignin, 4-OH-Ile, or orlistat, but significant up-regulation in the expression of PPARγ (P<0.001 and P<0.001 after 24 and 48 hours, respectively) and LDLR (P=0.005 and P=0.001 after 24 and 48 hours, respectively). Conclusion According to the results of the present study, HEFS, diosgenin and 4-OH-Ile up or down-regulate the expression of some predominant genes involved in lipid metabolism pathway, similar to that observed for orlistat. These types of regulatory effects are presumably proper for the treatment of obesity and overweight.
Collapse
Affiliation(s)
- Maryam Mohammad-Sadeghipour
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Department of Clinical Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Mahmoodi
- Department of Clinical Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Molecular Medicine Research Center, Institute of Basic Medical Sciences Research, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mojgan Noroozi Karimabad
- Molecular Medicine Research Center, Institute of Basic Medical Sciences Research, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Reza Mirzaei
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Molecular Medicine Research Center, Institute of Basic Medical Sciences Research, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Reza Hajizadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Molecular Medicine Research Center, Institute of Basic Medical Sciences Research, Rafsanjan University of Medical Sciences, Rafsanjan, Iran. Electronic Address:
| |
Collapse
|
16
|
Haque E, Kamil M, Hasan A, Irfan S, Sheikh S, Khatoon A, Nazir A, Mir SS. Advanced glycation end products (AGEs), protein aggregation and their cross talk: new insight in tumorigenesis. Glycobiology 2020; 30:49-57. [PMID: 31508802 DOI: 10.1093/glycob/cwz073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 08/21/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022] Open
Abstract
Protein glycation and protein aggregation are two distinct phenomena being observed in cancer cells as factors promoting cancer cell viability. Protein aggregation is an abnormal interaction between proteins caused as a result of structural changes in them after any mutation or environmental assault. Protein aggregation is usually associated with neurodegenerative diseases like Alzheimer's and Parkinson's, but of late, research findings have shown its association with the development of different cancers like lung, breast and ovarian cancer. On the contrary, protein glycation is a cascade of irreversible nonenzymatic reaction of reducing sugar with the amino group of the protein resulting in the modification of protein structure and formation of advanced glycation end products (AGEs). These AGEs are reported to obstruct the normal function of proteins. Lately, it has been reported that protein aggregation occurs as a result of AGEs. This aggregation of protein promotes the transformation of healthy cells to neoplasia leading to tumorigenesis. In this review, we underline the current knowledge of protein aggregation and glycation along with the cross talk between the two, which may eventually lead to the development of cancer.
Collapse
Affiliation(s)
- Ejazul Haque
- Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India.,Department of Immunology and Medical Genetics, School of Medicine, University of Split, Soltanskaul. 2, 21000, Split, Croatia
| | - Mohd Kamil
- Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India.,Department of Immunology and Medical Genetics, School of Medicine, University of Split, Soltanskaul. 2, 21000, Split, Croatia.,Department of Microbiology, Beykoz Life Sciences and Biotechnology Institute (BILSAB), Bezmialem Vakif University, Istanbul, Turkey
| | - Adria Hasan
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| | - Safia Irfan
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| | - Saba Sheikh
- Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India
| | - Aisha Khatoon
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram extension, Sitapur Road, Lucknow, 226031, India
| | - Snober S Mir
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| |
Collapse
|
17
|
Mojarrad M, Moghbeli M. Genetic and molecular biology of bladder cancer among Iranian patients. Mol Genet Genomic Med 2020; 8:e1233. [PMID: 32253828 PMCID: PMC7284045 DOI: 10.1002/mgg3.1233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/16/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022] Open
Abstract
Background Bladder cancer (BC) is the sixth common cancer among Iranians. Various risk factors such as smoking, body mass index, chronic infection, age, and genetic factors are associated with BC progression. Methods It has been shown that a significant ratio of patients have tumors with muscle bladder layer invasion and poor prognosis at the time of diagnosis. Therefore, the early detection of tumors is required to reduce the mortality rate of BC cases. Since there is a wide geographical incidence variation in BC in Iran, it seems that the ethnic and genetic factors can be the main risk factors among Iranian BC patients. Results For the first time, in present review we have summarized all of the reported genes among Iranian BC patients until now which were significantly associated with tumorigenesis. Moreover, we categorized all of the reported genes based on their cell and molecular functions to clarify the genetic and molecular biology of BC among Iranian population. Conclusion This review paves the way of determination of a population‐based genetic panel markers for the early detection of BC in this population.
Collapse
Affiliation(s)
- Majid Mojarrad
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Elamin AA, Klunkelfuß S, Kämpfer S, Oehlmann W, Stehr M, Smith C, Simpson GR, Morgan R, Pandha H, Singh M. A Specific Blood Signature Reveals Higher Levels of S100A12: A Potential Bladder Cancer Diagnostic Biomarker Along With Urinary Engrailed-2 Protein Detection. Front Oncol 2020; 9:1484. [PMID: 31993369 PMCID: PMC6962349 DOI: 10.3389/fonc.2019.01484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022] Open
Abstract
Urothelial carcinoma of the urinary bladder (UCB) or bladder cancer remains a major health problem with high morbidity and mortality rates, especially in the western world. UCB is also associated with the highest cost per patient. In recent years numerous markers have been evaluated for suitability in UCB detection and surveillance. However, to date none of these markers can replace or even reduce the use of routine tools (cytology and cystoscopy). Our current study described UCB's extensive expression profile and highlighted the variations with normal bladder tissue. Our data revealed that JUP, PTGDR, KLRF1, MT-TC, and RNU6-135P are associated with prognosis in patients with UCB. The microarray expression data identified also S100A12, S100A8, and NAMPT as potential UCB biomarkers. Pathway analysis revealed that natural killer cell mediated cytotoxicity is the most involved pathway. Our analysis showed that S100A12 protein may be useful as a biomarker for early UCB detection. Plasma S100A12 has been observed in patients with UCB with an overall sensitivity of 90.5% and a specificity of 75%. S100A12 is highly expressed preferably in high-grade and high-stage UCB. Furthermore, using a panel of more than hundred urine samples, a prototype lateral flow test for the transcription factor Engrailed-2 (EN2) also showed reasonable sensitivity (85%) and specificity (71%). Such findings provide confidence to further improve and refine the EN2 rapid test for use in clinical practice. In conclusion, S100A12 and EN2 have shown potential value as biomarker candidates for UCB patients. These results can speed up the discovery of biomarkers, improving diagnostic accuracy and may help the management of UCB.
Collapse
Affiliation(s)
- Ayssar A Elamin
- LIONEX Diagnostics and Therapeutics GmbH, Brunswick, Germany
| | | | - Susanne Kämpfer
- LIONEX Diagnostics and Therapeutics GmbH, Brunswick, Germany
| | - Wulf Oehlmann
- LIONEX Diagnostics and Therapeutics GmbH, Brunswick, Germany
| | - Matthias Stehr
- LIONEX Diagnostics and Therapeutics GmbH, Brunswick, Germany
| | - Christopher Smith
- Department of Oncology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Guy R Simpson
- Department of Oncology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Richard Morgan
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Hardev Pandha
- Department of Oncology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Mahavir Singh
- LIONEX Diagnostics and Therapeutics GmbH, Brunswick, Germany
| |
Collapse
|
19
|
Integrated analysis of quantitative proteome and transcriptional profiles reveals abnormal gene expression and signal pathway in bladder cancer. Genes Genomics 2019; 41:1493-1503. [PMID: 31576517 DOI: 10.1007/s13258-019-00868-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/04/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Bladder cancer (BCa) is a tumor associated with high morbidity and mortality and its incidence is increasing worldwide. However, the pathogenesis of bladder cancer is not well understood. OBJECTIVE To further illustrate the molecular mechanisms involved in the pathogenesis of BCa and identify potential therapeutic targets, we combined the transcriptomic analysis with RNA sequencing and tandem mass tags (TMT)-based proteomic methods to quantitatively screen the differentially expressed genes and proteins between bladder cancer tissues (BC) and adjacent normal tissues (AN). RESULTS Transcriptome and proteome studies indicated 7094 differentially expressed genes (DEGs) and 596 differentially expressed proteins (DEPs) between BC and AN, respectively. GO enrichment analyses revealed that cell adhesion, calcium ion transport, and regulation of ATPase activity were highly enriched in BCa. Moreover, several key signaling pathway were identified as of relevance to BCa, in particular the ECM-receptor interaction, cell adhesion molecules (CAMs), and PPAR signaling pathway. Interestingly, 367 genes were shared by DEGs and DEPs, and a significant positive correlation between mRNA and translation profiles was found. CONCLUSION In summary, this joint analysis of transcript and protein profiles provides a comprehensive reference map of gene activity regarding the disease status of BCa.
Collapse
|
20
|
Hung SC, Wang SS, Li JR, Chen CS, Lin CY, Chang LW, Chiu KY, Cheng CL, Ou YC, Yang SF. Impact of RAGE polymorphisms on urothelial cell carcinoma clinicopathologic characteristics and long-term survival. Urol Oncol 2019; 37:573.e9-573.e17. [DOI: 10.1016/j.urolonc.2019.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/12/2019] [Accepted: 02/18/2019] [Indexed: 12/15/2022]
|
21
|
Allegra A, Musolino C, Pace E, Innao V, Di Salvo E, Ferraro M, Casciaro M, Spatari G, Tartarisco G, Allegra AG, Gangemi S. Evaluation of the AGE/sRAGE Axis in Patients with Multiple Myeloma. Antioxidants (Basel) 2019; 8:antiox8030055. [PMID: 30836666 PMCID: PMC6466542 DOI: 10.3390/antiox8030055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/26/2019] [Accepted: 03/03/2019] [Indexed: 02/06/2023] Open
Abstract
Glycative stress influences tumor progression. The aim of the present study was to evaluate the advanced glycation end products/soluble receptor of advanced glycation end products (AGE/sRAGE) axis in patients with multiple myeloma (MM). Blood samples were taken from 19 patients affected by MM and from 16 sex-matched and age-matched healthy subjects. AGE and sRAGE axis were dosed in patients with MM and matched with controls. AGEs were measured by spectrofluorimetric methods. Blood samples for the determination of sRAGE were analyzed by ELISA. AGE levels were significantly reduced in patients with respect to controls. Instead, sRAGE was significantly elevated in patients affected by MM compared to healthy subjects. Moreover, we showed that there was a statistically significant difference in sRAGE according to the heavy and light chain. IgA lambda had significantly higher sRAGE values than IgA kappa, IgG kappa, and IgG Lambda MM patients. From our data emerges the role of the sRAGE/AGE axis in MM. Since AGE is a positive regulator of the activity of RAGE, circulating sRAGE concentrations may reflect RAGE expression and may be raised in parallel with serum AGE concentrations as a counter-system against AGE-caused tissue damage. Serum concentrations of AGE and sRAGE could therefore become potential therapeutic targets.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy.
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy.
| | - Elisabetta Pace
- Institute of Biomedicine and Molecular Immunology "A. Monroy" (IBIM), National Research Council (CNR), 90146 Palermo, Italy.
| | - Vanessa Innao
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy.
| | - Eleonora Di Salvo
- National Research Council of Italy (CNR)-Institute of Applied Science and Intelligent System (ISASI), 98164 Messina, Italy.
| | - Maria Ferraro
- Institute of Biomedicine and Molecular Immunology "A. Monroy" (IBIM), National Research Council (CNR), 90146 Palermo, Italy.
| | - Marco Casciaro
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy.
| | - Giovanna Spatari
- Department of Biomedical Sciences, Dental, Morphological and Functional Investigations, University of Messina, 98125 Messina, Italy.
| | - Gennaro Tartarisco
- National Research Council of Italy (CNR)-Institute of Applied Science and Intelligent System (ISASI), 98164 Messina, Italy.
| | - Andrea Gaetano Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy.
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy.
| |
Collapse
|
22
|
Li QH, Yu L, Yu ZW, Fan XL, Yao WX, Ji C, Deng F, Luo XZ, Sun JL. Relation of postoperative serum S100A12 levels to delirium and cognitive dysfunction occurring after hip fracture surgery in elderly patients. Brain Behav 2019; 9:e01176. [PMID: 30548434 PMCID: PMC6346413 DOI: 10.1002/brb3.1176] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/27/2018] [Accepted: 10/30/2018] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Brain injury is implicated in pathogenesis of postoperative delirium (POD) and cognitive dysfunction (POCD). S100A12 is involved in inflammatory process and is recently known as a biomarker for brain injury. Herein, we clarified whether serum S100A12 levels are related to POD and POCD after hip fracture surgery in elderly patients. MATERIALS AND METHODS In this prospective, observational study, we gauged S100A12 levels in preoperative and postoperative serum from 186 patients and serum from 186 controls. Patients were categorized according to the presence of POD and POCD. RESULTS Postoperative, but not preoperative serum S100A12 levels were significantly higher in patients than in controls. There was a positive and independent correlation between postoperative C-reactive protein and S100A12 levels (t = 8.797, p < 0.001). Postoperative S10012 levels and age were independently associated with the risk of developing POD (S100A12 levels: odds ratio [OR] = 1.166, 95% confidence interval [CI] = 1.045-2.087, p = 0.001; age: OR = 1.243, 95% CI = 1.073-1.419, p = 0.012) and POCD (S100A12: OR = 1.157, 95% CI = 1.030-1.986, p = 0.003; age: OR = 1.228, 95% CI = 1.054-1.387, p = 0.014). In terms of area under receiver operating characteristic curve, postoperative S100A12 levels had a higher predictive ability than age and their combination dramatically exceeded that of each one alone. CONCLUSIONS Postoperative elevated serum S100A12 levels have a strong relation to inflammation and are associated independently with the development of POD and POCD, substantializing serum S100A12 as a potential biomarker for predicting POD and POCD in elderly patients undergoing hip fracture surgery.
Collapse
Affiliation(s)
- Qing-Hua Li
- Department of Anesthesia and Pain, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liang Yu
- Department of Anesthesia and Pain, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zheng-Wei Yu
- Department of Anesthesia and Pain, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Liang Fan
- Department of Orthopedics, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wang-Xiang Yao
- Department of Orthopedics, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Ji
- Department of Orthopedics, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Deng
- Department of Anesthesia and Pain, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xian-Zhe Luo
- Department of Anesthesia and Pain, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian-Liang Sun
- Department of Anesthesia and Pain, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
23
|
Feng MJ, Ning WB, Wang W, Lv ZH, Liu XB, Zhu Y, Gao W, Jin HZ, Gao SS. Serum S100A12 as a prognostic biomarker of severe traumatic brain injury. Clin Chim Acta 2018; 480:84-91. [DOI: 10.1016/j.cca.2018.01.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 02/06/2023]
|
24
|
El-Far AHAM, Munesue S, Harashima A, Sato A, Shindo M, Nakajima S, Inada M, Tanaka M, Takeuchi A, Tsuchiya H, Yamamoto H, Shaheen HME, El-Sayed YS, Kawano S, Tanuma SI, Yamamoto Y. In vitro anticancer effects of a RAGE inhibitor discovered using a structure-based drug design system. Oncol Lett 2018. [PMID: 29541234 DOI: 10.3892/ol.2018.7902] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Receptor for advanced glycation end-products (RAGE) is a pattern recognition receptor implicated in the pathogenesis of certain types of cancer. In the present study, papaverine was identified as a RAGE inhibitor using the conversion to small molecules through optimized-peptide strategy drug design system. Papaverine significantly inhibited RAGE-dependent nuclear factor κ-B activation driven by high mobility group box-1, a RAGE ligand. Using RAGE- or dominant-negative RAGE-expressing HT1080 human fibrosarcoma cells, the present study revealed that papaverine suppressed RAGE-dependent cell proliferation and migration dose-dependently. Furthermore, papaverine significantly inhibited cell invasion. The results of the present study suggested that papaverine could inhibit RAGE, and provided novel insights into the field of RAGE biology, particularly anticancer therapies.
Collapse
Affiliation(s)
- Ali Hafez Ali Mohammed El-Far
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa 920-8640, Japan.,Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Seiichi Munesue
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa 920-8640, Japan
| | - Ai Harashima
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa 920-8640, Japan
| | - Akira Sato
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan
| | - Mika Shindo
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan
| | - Shingo Nakajima
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan
| | - Mana Inada
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan
| | - Mariko Tanaka
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa 920-8640, Japan
| | - Akihiko Takeuchi
- Department of Orthopedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa 920-8641, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopedic Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa 920-8641, Japan
| | - Hiroshi Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa 920-8640, Japan
| | - Hazem M E Shaheen
- Department of Pharmacology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Yasser S El-Sayed
- Department of Veterinary Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Shuhei Kawano
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa 920-8640, Japan
| | - Sei-Ichi Tanuma
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa 920-8640, Japan
| |
Collapse
|
25
|
Nazari A, Khorramdelazad H, Hassanshahi G, Day AS, Sardoo AM, Fard ET, Abedinzadeh M, Nadimi AE. S100A12 in renal and cardiovascular diseases. Life Sci 2017; 191:253-258. [PMID: 29080693 DOI: 10.1016/j.lfs.2017.10.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/12/2017] [Accepted: 10/25/2017] [Indexed: 12/21/2022]
Abstract
Expression of S100A12, a small calcium-binding protein, by neutrophils and monocytes/macrophages induces proinflammatory responses via ligation with the receptor for advanced glycation end-products (RAGE) and subsequent activation of intracellular signal transduction pathways such as the nuclear factor (NF)-κB pathway. Although S100A12 has been demonstrated to be a useful biomarker during inflammatory conditions, its precise role in the pathogenesis of renal and cardiovascular diseases has not been fully understood. Recently, several studies have employed S100A12 transgenic mice to investigate its pathological effects. Further studies using these models are required before we can translate these findings to human diseases such as renal and cardiovascular diseases.
Collapse
Affiliation(s)
- Alireza Nazari
- Department of Surgery, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Khorramdelazad
- Molecular Medicine Research Center, Rafsanjan University of Medical Science, Rafsanjan, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Rafsanjan University of Medical Science, Rafsanjan, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Andrew S Day
- Department of Pediatrics, University of Otago Christchurch, Christchurch, New Zealand
| | - Atlas Mashayekhi Sardoo
- School of Engineering and Design and Physical Sciences, Brunel University London, London, United Kingdom
| | | | - Mehdi Abedinzadeh
- Department of Urology, Shahid Rahnemoon Hospital, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Ali Esmaeili Nadimi
- Non Communicable Diseases Research Center, Rafsanjan University of Medical Science, Rafsanjan, Iran; Department of Cardiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
26
|
Farokhzadian J, Mangolian Shahrbabaki P, Bagheri V. S100A12-CD36 axis: A novel player in the pathogenesis of atherosclerosis? Cytokine 2017; 122:154104. [PMID: 28756107 DOI: 10.1016/j.cyto.2017.07.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/16/2017] [Accepted: 07/14/2017] [Indexed: 12/15/2022]
Abstract
S100A12 is a member of the S100 family of EF-hand calcium-binding proteins and have a variety of intracellular and extracellular activities. It exerts its proinflammatory effects by binding to the receptor for advanced glycation end products (RAGE) and Toll-like receptor 4 (TLR4). CD36 is a class B scavenger receptor that acts as a fatty acid transporter. Both S100A12 and CD36 are implicated in vascular inflammation and atherosclerosis. It has recently been demonstrated that S100A12 binds with high affinity to CD36. On the other hand, RAGE and TLR4 play a key role in the regulation of CD36 expression. These observations point to the fact that S100A12 is an interesting molecular target for the development of therapeutics. This Cytokine stimulus will focus on the possible mechanisms of S100A12-CD36 axis in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Jamileh Farokhzadian
- Nursing Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Community Health Nursing, School of Nursing and Midwifery, Kerman University of Medical Sciences, Kerman, Iran
| | - Parvin Mangolian Shahrbabaki
- Nursing Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Medical Surgical Nursing, School of Nursing and Midwifery, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Bagheri
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
27
|
Heilmann RM, McNiel EA, Grützner N, Lanerie DJ, Suchodolski JS, Steiner JM. Diagnostic performance of the urinary canine calgranulins in dogs with lower urinary or urogenital tract carcinoma. BMC Vet Res 2017; 13:112. [PMID: 28431528 PMCID: PMC5401473 DOI: 10.1186/s12917-017-1032-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/17/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Onset of canine transitional cell carcinoma (TCC) and prostatic carcinoma (PCA) is usually insidious with dogs presenting at an advanced stage of the disease. A biomarker that can facilitate early detection of TCC/PCA and improve patient survival would be useful. S100A8/A9 (calgranulin A/B or calprotectin) and S100A12 (calgranulin C) are expressed by cells of the innate immune system and are associated with several inflammatory disorders. S100A8/A9 is also expressed by epithelial cells after malignant transformation and is involved in the regulation of cell proliferation and metastasis. S100A8/A9 is up-regulated in human PCA and TCC, whereas the results for S100A12 have been ambiguous. Also, the urine S100A8/A9-to-S100A12 ratio (uCalR) may have potential as a marker for canine TCC/PCA. Aim of the study was to evaluate the diagnostic accuracy of the urinary S100/calgranulins to detect TCC/PCA in dogs by using data and urine samples from 164 dogs with TCC/PCA, non-neoplastic urinary tract disease, other neoplasms, or urinary tract infections, and 75 healthy controls (nested case-control study). Urine S100A8/A9 and S100A12 (measured by species-specific radioimmunoassays and normalized against urine specific gravity [S100A8/A9USG; S100A12USG], urine creatinine concentration, and urine protein concentration and the uCalR were compared among the groups of dogs. RESULTS S100A8/A9USG had the highest sensitivity (96%) and specificity (66%) to detect TCC/PCA, with specificity reaching 75% after excluding dogs with a urinary tract infection. The uCalR best distinguished dogs with TCC/PCA from dogs with a urinary tract infection (sensitivity: 91%, specificity: 60%). Using a S100A8/A9USG ≥ 109.9 to screen dogs ≥6 years of age for TCC/PCA yielded a negative predictive value of 100%. CONCLUSIONS S100A8/A9USG and uCalR may have utility for diagnosing TCC/PCA in dogs, and S100A8/A9USG may be a good screening test for canine TCC/PCA.
Collapse
Affiliation(s)
- Romy M Heilmann
- College of Veterinary Medicine, University of Leipzig, An den Tierkliniken 23, DE-04103, Leipzig, Germany. .,Gastrointestinal Laboratory, Texas A&M University, TAMU 4474, College Station, TX, 77843-4474, USA.
| | - Elizabeth A McNiel
- Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Rd, North Grafton, MA, 01536, USA.,College of Veterinary Medicine, Michigan State University, 784 Wilson Rd, East Lansing, MI, 48824, USA
| | - Niels Grützner
- Gastrointestinal Laboratory, Texas A&M University, TAMU 4474, College Station, TX, 77843-4474, USA.,Farm Animal Clinic, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, CH-3012, Bern, BE, Switzerland
| | - David J Lanerie
- Gastrointestinal Laboratory, Texas A&M University, TAMU 4474, College Station, TX, 77843-4474, USA
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Texas A&M University, TAMU 4474, College Station, TX, 77843-4474, USA
| | - Jörg M Steiner
- Gastrointestinal Laboratory, Texas A&M University, TAMU 4474, College Station, TX, 77843-4474, USA
| |
Collapse
|
28
|
Rahimi F, Karimi J, Goodarzi MT, Saidijam M, Khodadadi I, Razavi ANE, Nankali M. Overexpression of receptor for advanced glycation end products (RAGE) in ovarian cancer. Cancer Biomark 2017; 18:61-68. [DOI: 10.3233/cbm-160674] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Farzaneh Rahimi
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Jamshid Karimi
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taghi Goodarzi
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Khodadadi
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Nader Emami Razavi
- Iran National Tumor Bank, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Nankali
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
29
|
S100A12: Friend or foe in pulmonary tuberculosis? Cytokine 2017; 92:80-82. [PMID: 28110121 DOI: 10.1016/j.cyto.2017.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/08/2017] [Accepted: 01/10/2017] [Indexed: 11/23/2022]
Abstract
In humans, S100A12 (also named Calgranulin C and EN-RAGE) is mainly expressed and secreted by neutrophil granulocytes. Extracellular S100A12 is involved in innate immune responses against microorganisms and parasites. S100A12 is a ligand for the receptor for advanced glycation end products (RAGE), which is a cell surface receptor on macrophages, endothelium, and lymphocytes. In a recent study, Realegeno et al. showed that S100A12 exerts antimicrobial activity against Mycobacterium leprae in infected human macrophages. Recently, some interesting data on the antimicrobial activity of S100A12 have been reported. Proinflammatory role of S100A12 is supported by another newly found receptor, Toll-like receptor 4 (TLR4). These observations emphasize the importance of S100A12 for the development of potential therapeutic approaches to increase protective immunity or reduce immunopathogenesis.
Collapse
|
30
|
Ramasamy R, Shekhtman A, Schmidt AM. The multiple faces of RAGE--opportunities for therapeutic intervention in aging and chronic disease. Expert Opin Ther Targets 2015; 20:431-46. [PMID: 26558318 DOI: 10.1517/14728222.2016.1111873] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION This review focuses on the multi-ligand receptor of the immunoglobulin superfamily--receptor for advanced glycation endproducts (RAGE). The accumulation of the multiple ligands of RAGE in cellular stress milieux links RAGE to the pathobiology of chronic disease and natural aging. AREAS COVERED In this review, we present a discussion on the ligands of RAGE and the implications of these ligand families in disease. We review the recent literature on the role of ligand-RAGE interaction in the consequences of natural aging; the macro- and microvascular complications of diabetes; obesity and insulin resistance; autoimmune disorders and chronic inflammation; and tumors and Alzheimer's disease. We discuss the mechanisms of RAGE signaling through its intracellular binding effector molecule--the formin DIAPH1. Physicochemical evidence of how the RAGE cytoplasmic domain binds to the FH1 (formin homology 1) domain of DIAPH1, and the consequences thereof, are also reviewed. EXPERT OPINION We discuss the modalities of RAGE antagonism currently in preclinical and clinical studies. Finally, we present the rationale behind potentially targeting the RAGE cytoplasmic domain-DIAPH1 interaction as a logical strategy for therapeutic intervention in the pathological settings of chronic diseases and aging wherein RAGE ligands accumulate and signal.
Collapse
Affiliation(s)
- Ravichandran Ramasamy
- a Diabetes Research Program, Division of Endocrinology, Department of Medicine , New York University Langone Medical Center , New York , NY 10016 , USA
| | - Alexander Shekhtman
- b Department of Chemistry , University at Albany, State University of New York , Albany , NY 12222 , USA
| | - Ann Marie Schmidt
- a Diabetes Research Program, Division of Endocrinology, Department of Medicine , New York University Langone Medical Center , New York , NY 10016 , USA
| |
Collapse
|
31
|
Zeinali M, Adelinik A, Papian S, Khorramdelazad H, Abedinzadeh M. Role of galectin-3 in the pathogenesis of bladder transitional cell carcinoma. Hum Immunol 2015; 76:770-4. [PMID: 26429330 DOI: 10.1016/j.humimm.2015.09.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 08/19/2015] [Accepted: 09/27/2015] [Indexed: 01/30/2023]
Abstract
Galectins constitute an evolutionary conserved family that binds to β-galactosides. There is growing evidence that galectins are implicated in essential biological processes such as cellular communication, inflammation, differentiation and apoptosis. Galectin-3 is one of the best-known galectins, which is found in vertebrates. Galectin-3 has been shown to be expressed in some cell lines and plays important roles in several physiological and pathological processes, including cell adhesion, cell activation and chemoattraction, cell cycle, apoptosis, cell growth, and differentiation. Moreover, this galectin is of interest due to its involvement in regulation of cancer. Changes in galectin-3 expression are commonly seen in cancerous and pre-cancerous conditions and galectin-3 may be involved in the regulation of cancer cell activities that contribute to tumourigenesis, cancer progression and metastasis. Finally, galectin-3 seems to be involved in cell events in tumor microenvironment, and therefore it could be considered as a target in transitional cell carcinoma therapies. This review aims to describe recent progress in understanding the role of galectin-3 in cancer biology, with emphasis on bladder tumor progression and metastasis.
Collapse
Affiliation(s)
- Masoud Zeinali
- Social Determinants of Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Armin Adelinik
- Department of Reproductive Genetics and Biotechnology, Avicenna Research Institute, Tehran, Iran
| | - Shaghayegh Papian
- Department of Medical Bacteriology, Tarbiat Modares University, Tehran, Iran
| | - Hossein Khorramdelazad
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mehdi Abedinzadeh
- Department of Urology, Shahid Rahnemoon Hospital, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran.
| |
Collapse
|