1
|
Ng WK, Thanusha G, Chong PP, Chuah C. The Power of Antibodies: Advancing Biomarker-Based Disease Detection and Surveillance. Immunol Invest 2025:1-25. [PMID: 40256875 DOI: 10.1080/08820139.2025.2492246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
BACKGROUND Antibodies have long served as fundamental tools in disease diagnosis and surveillance. Their utility as biomarkers has expanded beyond infectious diseases to encompass a wide range of health conditions. OBJECTIVES This review aims to explore recent advancements in antibody biomarker discovery and their applications in diagnosing and monitoring diverse health conditions. It also examines the role of antibody surveillance in public health and epidemiological studies. METHODS A comprehensive analysis of recent literature was conducted, focusing on studies that identify and characterize disease-specific antibodies. Particular attention was given to their relevance in autoimmune diseases, infections, cancers, and neurological disorders. CONTENT The review highlights disease-specific antibody biomarkers and their clinical significance. It also discusses the utility and challenges of antibody-based surveillance in assessing disease prevalence, tracking immunity trends, and supporting One Health strategies. CONCLUSIONS Recent advancements in antibody biomarker discovery demonstrate significant potential in improving early diagnosis, personalized treatment, and population-level health management. Antibody surveillance continues to play a pivotal role in guiding public health responses and understanding disease dynamics.
Collapse
Affiliation(s)
- Woei Kean Ng
- Unit of Microbiology, Faculty of Medicine, AIMST University, Bedong, Malaysia
| | - Gunasegran Thanusha
- Unit of Microbiology, Faculty of Medicine, AIMST University, Bedong, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Taylor's University, Subang Jaya, Malaysia
| | - Candy Chuah
- Unit of Microbiology, Faculty of Medicine, AIMST University, Bedong, Malaysia
| |
Collapse
|
2
|
Wan HH, Zhu H, Chiang CC, Li JS, Ren F, Tsai CT, Liao YT, Neal D, Esquivel-Upshaw JF, Pearton SJ. High sensitivity saliva-based biosensor in detection of breast cancer biomarkers: HER2 and CA15-3. JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY. B, NANOTECHNOLOGY & MICROELECTRONICS : MATERIALS, PROCESSING, MEASUREMENT, & PHENOMENA : JVST B 2024; 42:023202. [PMID: 38362284 PMCID: PMC10866624 DOI: 10.1116/6.0003370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/03/2024] [Indexed: 02/17/2024]
Abstract
The prevalence of breast cancer in women underscores the urgent need for innovative and efficient detection methods. This study addresses this imperative by harnessing salivary biomarkers, offering a noninvasive and accessible means of identifying breast cancer. In this study, commercially available disposable based strips similar to the commonly used glucose detection strips were utilized and functionalized to detect breast cancer with biomarkers of HER2 and CA15-3. The results demonstrated limits of detection for these two biomarkers reached as low as 1 fg/ml much lower than those of conventional enzyme-linked immunosorbent assay in the range of 1∼4 ng/ml. By employing a synchronized double-pulse method to apply 10 of 1.2 ms voltage pulses to the electrode of sensing strip and drain electrode of the transistor for amplifying the detected signal, and the detected signal was the average of 10 digital output readings corresponding to those 10 voltage pulses. The sensor sensitivities were achieved approximately 70/dec and 30/dec for HER2 and CA15-3, respectively. Moreover, the efficiency of this novel technique is underscored by its swift testing time of less than 15 ms and its minimal sample requirement of only 3 μl of saliva. The simplicity of operation and the potential for widespread public use in the future position this approach as a transformative tool in the early detection of breast cancer. This research not only provides a crucial advancement in diagnostic methodologies but also holds the promise of revolutionizing public health practices.
Collapse
Affiliation(s)
- Hsiao-Hsuan Wan
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611
| | - Haochen Zhu
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611
| | - Chao-Ching Chiang
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611
| | - Jian-Sian Li
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611
| | - Fan Ren
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611
| | - Cheng-Tse Tsai
- Department of Electronics and Electrical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Hsinchu, Taiwan
| | - Yu-Te Liao
- Department of Electronics and Electrical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Hsinchu, Taiwan
| | - Dan Neal
- Department of Surgery, University of Florida, Gainesville, Florida 32610
| | - Josephine F Esquivel-Upshaw
- Department of Restorative Dental Science, Division of Prosthodontics, University of Florida, Gainesville, Florida 32611
| | - Stephen J Pearton
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
3
|
Kumari S, Samara M, Ampadi Ramachandran R, Gosh S, George H, Wang R, Pesavento RP, Mathew MT. A Review on Saliva-Based Health Diagnostics: Biomarker Selection and Future Directions. BIOMEDICAL MATERIALS & DEVICES (NEW YORK, N.Y.) 2023:1-18. [PMID: 37363139 PMCID: PMC10243891 DOI: 10.1007/s44174-023-00090-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/12/2023] [Indexed: 06/28/2023]
Abstract
The human body has a unique way of saying when something is wrong with it. The molecules in the body fluids can be helpful in the early detection of diseases by enabling health and preventing disease progression. These biomarkers enabling better healthcare are becoming an extensive area of research interest. Biosensors that detect these biomarkers are becoming the future, especially Point Of Care (POC) biosensors that remove the need to be physically present in the hospital. Detection of complex and systemic diseases using biosensors has a long way to go. Saliva-based biosensors are gaining attention among body fluids due to their non-invasive collection and ability to detect periodontal disease and identify systemic diseases. The possibility of saliva-based diagnostic biosensors has gained much publicity, with companies sending home kits for ancestry prediction. Saliva-based testing for covid 19 has revealed effective clinical use and relevance of the economic collection. Based on universal biomarkers, the detection of systemic diseases is a booming research arena. Lots of research on saliva-based biosensors is available, but it still poses challenges and limitations as POC devices. This review paper talks about the relevance of saliva and its usefulness as a biosensor. Also, it has recommendations that need to be considered to enable it as a possible diagnostic tool. Graphical Abstract
Collapse
Affiliation(s)
- Swati Kumari
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL USA
| | - Mesk Samara
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL USA
| | | | - Sujoy Gosh
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL USA
| | - Haritha George
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL USA
| | - Rong Wang
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, IL USA
| | - Russell P. Pesavento
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL USA
| | - Mathew T. Mathew
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL USA
| |
Collapse
|
4
|
Gautam SK, Khan P, Natarajan G, Atri P, Aithal A, Ganti AK, Batra SK, Nasser MW, Jain M. Mucins as Potential Biomarkers for Early Detection of Cancer. Cancers (Basel) 2023; 15:1640. [PMID: 36980526 PMCID: PMC10046558 DOI: 10.3390/cancers15061640] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/10/2023] Open
Abstract
Early detection significantly correlates with improved survival in cancer patients. So far, a limited number of biomarkers have been validated to diagnose cancers at an early stage. Considering the leading cancer types that contribute to more than 50% of deaths in the USA, we discuss the ongoing endeavors toward early detection of lung, breast, ovarian, colon, prostate, liver, and pancreatic cancers to highlight the significance of mucin glycoproteins in cancer diagnosis. As mucin deregulation is one of the earliest events in most epithelial malignancies following oncogenic transformation, these high-molecular-weight glycoproteins are considered potential candidates for biomarker development. The diagnostic potential of mucins is mainly attributed to their deregulated expression, altered glycosylation, splicing, and ability to induce autoantibodies. Secretory and shed mucins are commonly detected in patients' sera, body fluids, and tumor biopsies. For instance, CA125, also called MUC16, is one of the biomarkers implemented for the diagnosis of ovarian cancer and is currently being investigated for other malignancies. Similarly, MUC5AC, a secretory mucin, is a potential biomarker for pancreatic cancer. Moreover, anti-mucin autoantibodies and mucin-packaged exosomes have opened new avenues of biomarker development for early cancer diagnosis. In this review, we discuss the diagnostic potential of mucins in epithelial cancers and provide evidence and a rationale for developing a mucin-based biomarker panel for early cancer detection.
Collapse
Affiliation(s)
- Shailendra K. Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Gopalakrishnan Natarajan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Abhijit Aithal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Apar K. Ganti
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Division of Oncology-Hematology, Department of Internal Medicine, VA Nebraska Western Iowa Health Care System, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd W. Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
5
|
Liu J, Huang D, Cai Y, Cao Z, Liu Z, Zhang S, Zhao L, Wang X, Wang Y, Huang F, Wu Z. Saliva diagnostics: emerging techniques and biomarkers for salivaomics in cancer detection. Expert Rev Mol Diagn 2022; 22:1077-1097. [PMID: 36631426 DOI: 10.1080/14737159.2022.2167556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
INTRODUCTION The pursuit of easy-to-use, non-invasive and inexpensive diagnostics is an urgent task for clinicians and scientists. Saliva is an important component of body fluid with regular changes of contents under various pathophysiological conditions, and the biomarkers identified from saliva shows high application potentials and values in disease diagnostics. This review introduces the latest developments in saliva research, with an emphasis on the detection and application of salivary biomarkers in cancer detection. AREAS COVERED Detection of disease-specific biomarkers in saliva samples by existing salivaomic methods can be used to diagnose various human pathological conditions and was introduced in details. This review also covers the saliva collection methods, the analytical techniques as well as the corresponding commercial products, with an aim to describe an holistic process for saliva-based diagnostics. EXPERT OPINION Saliva, as a non-invasive and collectable body fluid, can reflect the pathophysiological changes of the human body to a certain extent. Identification of reliable saliva biomarkers can provide a convenient way for cancer detection in clinical applications.
Collapse
Affiliation(s)
- Jieren Liu
- Graduate School of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Futian District, Shenzhen, Guangdong, China
| | - Dongna Huang
- School of Big Data and Internet, Shenzhen Technology University, Pingshan District, Shenzhen, Guangdong, China
| | - Yuanzhe Cai
- School of Big Data and Internet, Shenzhen Technology University, Pingshan District, Shenzhen, Guangdong, China
| | - Zhihua Cao
- School of Big Data and Internet, Shenzhen Technology University, Pingshan District, Shenzhen, Guangdong, China
| | - Zhiyu Liu
- School of Big Data and Internet, Shenzhen Technology University, Pingshan District, Shenzhen, Guangdong, China
| | - Shuo Zhang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Lin Zhao
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xin Wang
- School of Big Data and Internet, Shenzhen Technology University, Pingshan District, Shenzhen, Guangdong, China
| | - Yuchuan Wang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Feijuan Huang
- Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Futian District, Shenzhen, Guangdong, China
| | - Zhengzhi Wu
- Graduate School of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Futian District, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Opolski MM, Maito VT, Kawassaki ACB, da Silva JC, Kern R, Rech D, de Oliveira ST, Lonardoni Micheletti P, Panis C, Grassiolli S. Salivary and plasmatic levels of
tumor necrosis factor‐alpha
do not correlate with the clinicopathological profile in breast cancer patients. PRECISION MEDICAL SCIENCES 2022. [DOI: 10.1002/prm2.12082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Affiliation(s)
- Marcelo Marcos Opolski
- Post‐Graduation Program of Health‐Applied Sciences. Laboratory of Tumor Biology Universidade Estadual do Oeste do Paraná Francisco Beltrão Brazil
| | - Vitor Teixeira Maito
- Post‐Graduation Program of Health‐Applied Sciences. Laboratory of Tumor Biology Universidade Estadual do Oeste do Paraná Francisco Beltrão Brazil
| | - Aedra Carla Bufalo Kawassaki
- Post‐Graduation Program of Health‐Applied Sciences. Laboratory of Tumor Biology Universidade Estadual do Oeste do Paraná Francisco Beltrão Brazil
| | - Janaína Carla da Silva
- Post‐Graduation Program of Health‐Applied Sciences. Laboratory of Tumor Biology Universidade Estadual do Oeste do Paraná Francisco Beltrão Brazil
| | - Rodrigo Kern
- Post‐Graduation Program of Health‐Applied Sciences. Laboratory of Tumor Biology Universidade Estadual do Oeste do Paraná Francisco Beltrão Brazil
| | - Daniel Rech
- Post‐Graduation Program of Health‐Applied Sciences. Laboratory of Tumor Biology Universidade Estadual do Oeste do Paraná Francisco Beltrão Brazil
| | - Stefania Tagliari de Oliveira
- Post‐Graduation Program of Health‐Applied Sciences. Laboratory of Tumor Biology Universidade Estadual do Oeste do Paraná Francisco Beltrão Brazil
| | - Pâmela Lonardoni Micheletti
- Post‐Graduation Program of Health‐Applied Sciences. Laboratory of Tumor Biology Universidade Estadual do Oeste do Paraná Francisco Beltrão Brazil
| | - Carolina Panis
- Post‐Graduation Program of Health‐Applied Sciences. Laboratory of Tumor Biology Universidade Estadual do Oeste do Paraná Francisco Beltrão Brazil
| | | |
Collapse
|
7
|
Abdelwhab A, Shaker O, Aggour RL. Expression of Mucin1 in saliva in oral squamous cell carcinoma and oral potentially malignant disorders (case control study). Oral Dis 2022; 29:1487-1494. [PMID: 35080082 DOI: 10.1111/odi.14138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Overexpression of mucin1 is found in head and neck squamous cell carcinoma tissues compared with adjacent non-neoplastic tissues and higher levels are associated with metastasis and invasion. The expression level of mucin1 in saliva of normal individuals, oral potentially malignant disorders and oral squamous cell carcinoma patients and its correlation to clinical and histological variables was evaluated. SUBJECTS AND METHODS Forty oral potentially malignant disorders, 40 oral squamous cell carcinoma subjects, and 20 age matched-controls were included. Stimulated salivary samples were collected from all participants, and mucin1 expression was measured by real-time PCR. RESULTS Mucin1 expression in saliva was significantly elevated in oral potentially malignant disorders when compared with controls. Similarly, mucin1 expression was significantly elevated in oral squamous cell carcinoma group when compared with oral potentially malignant disorders and controls. Mucin1 expression in OSCC patient showed significant positive correlations with T classification and distant Metastasis. Mucin1 expression in oral potentially malignant disorders patients showed significant positive correlations with degree of dysplasia. CONCLUSIONS The expression level of mucin1 in saliva might be a potential biomarker for diagnosing oral potentially malignant disorders and oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Amira Abdelwhab
- Lecturer of Oral Medicine, Diagnosis and Periodontology Faculty of dentistry‐ October 6 University
| | - Olfat Shaker
- Professor of Medical Biochemistry and Molecular Biology Faculty of Medicine Cairo University
| | - Reham Lotfy Aggour
- Associate Professor of Oral Medicine, Diagnosis and Periodontology Faculty of dentistry ‐ October 6 University
| |
Collapse
|
8
|
Eftekhari A, Maleki Dizaj S, Sharifi S, Salatin S, Khalilov R, Samiei M, Zununi Vahed S, Ahmadian E. Salivary biomarkers in cancer. Adv Clin Chem 2022; 110:171-192. [PMID: 36210075 DOI: 10.1016/bs.acc.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Zubair M, Wang S, Ali N. Advanced Approaches to Breast Cancer Classification and Diagnosis. Front Pharmacol 2021; 11:632079. [PMID: 33716731 PMCID: PMC7952319 DOI: 10.3389/fphar.2020.632079] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
The International Agency for Research on Cancer (IARC) has recently reported a 66% increase in the global number of cancer deaths since 1960. In the US alone, about one in eight women is expected to develop invasive breast cancer(s) (breast cancer) at some point in their lifetime. Traditionally, a BC diagnosis includes mammography, ultrasound, and some high-end molecular bioimaging. Unfortunately, these techniques detect BC at a later stage. So early and advanced molecular diagnostic tools are still in demand. In the past decade, various histological and immuno-molecular studies have demonstrated that BC is highly heterogeneous in nature. Its growth pattern, cytological features, and expression of key biomarkers in BC cells including hormonal receptor markers can be utilized to develop advanced diagnostic and therapeutic tools. A cancer cell's progression to malignancy exhibits various vital biomarkers, many of which are still underrepresented in BC diagnosis and treatment. Advances in genetics have also enabled the development of multigene assays to detect genetic heterogeneity in BC. However, thus far, the FDA has approved only four such biomarkers-cancer antigens (CA); CA 15-3, CA 27-29, Human epidermal growth factor receptor 2 (HER2), and circulating tumor cells (CTC) in assessing BC in body fluids. An adequately structured portable-biosensor with its non-invasive and inexpensive point-of-care analysis can quickly detect such biomarkers without significantly compromising its specificity and selectivity. Such advanced techniques are likely to discriminate between BC and a healthy patient by accurately measuring the cell shape, structure, depth, intracellular and extracellular environment, and lipid membrane compositions. Presently, BC treatments include surgery and systemic chemo- and targeted radiation therapy. A biopsied sample is then subjected to various multigene assays to predict the heterogeneity and recurrence score, thus guiding a specific treatment by providing complete information on the BC subtype involved. Thus far, we have seven prognostic multigene signature tests for BC providing a risk profile that can avoid unnecessary treatments in low-risk patients. Many comparative studies on multigene analysis projected the importance of integrating clinicopathological information with genomic-imprint analysis. Current cohort studies such as MINDACT, TAILORx, Trans-aTTOM, and many more, are likely to provide positive impact on long-term patient outcome. This review offers consolidated information on currently available BC diagnosis and treatment options. It further describes advanced biomarkers for the development of state-of-the-art early screening and diagnostic technologies.
Collapse
Affiliation(s)
- M. Zubair
- Department of Biology, University of Arkansas at Little Rock, Little Rock, AR, United States
| | - S. Wang
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, AR, United States
| | - N. Ali
- Department of Biology, University of Arkansas at Little Rock, Little Rock, AR, United States
| |
Collapse
|
10
|
Ranjan P, Parihar A, Jain S, Kumar N, Dhand C, Murali S, Mishra D, Sanghi SK, Chaurasia JP, Srivastava AK, Khan R. Biosensor-based diagnostic approaches for various cellular biomarkers of breast cancer: A comprehensive review. Anal Biochem 2020; 610:113996. [PMID: 33080213 DOI: 10.1016/j.ab.2020.113996] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 02/05/2023]
Abstract
Breast cancer is the most commonly occurring cancer among women which leads to thousands of deaths worldwide. The chances of survival are more if the breast cancer is diagnosed at early stage. At present, mammography, magnetic resonance imaging, ultrasound and tissue biopsies are the main diagnostic techniques available for the detection of breast cancer. However, despite of offering promising results, requirement of expensive setup, skilled supervision, expert analysis, invasive procedure (biopsy) and low capacity of multiplexing are the main limitations of these diagnostic techniques. Due to high cost, these screening tests are out of reach of people belonging to low socioeconomic groups and this poses serious health burden to the society. Recently, biosensor-based diagnostic technology for early detection of various types of cancers and other non-oncological disorders have gained considerable attention because of their several advantageous features over existing diagnostic technologies such as high throughput, noninvasive nature, cost effectiveness, easy interpretable results and capacity for multiplexing. Further, biosensors can be designed for biomarkers which are confined to particular type of cancer. In this review, we have discussed about various genomic, transcriptomic, proteomic and metabolomic biomarkers associated with breast cancer, various biosensors-based diagnostic approaches designed for detection of specific biomarkers associated with breast cancer are also described. Further, this review throws insight on various biomarkers linked with breast cancer which can be effectively exploited to develop new diagnostic technology. The assessment of these biomarkers associated with BC using biosensors in large population are cost-effective, non-invasive and high throughput. They help in risk assessment of disease at very initial stage even in backward areas and also help to lower the disease burden of society and economic cost of treatment for a common man. This review would provide new avenues for the development of biosensor based diagnostic technology for the detection of biomarkers associated with breast cancer.
Collapse
Affiliation(s)
- Pushpesh Ranjan
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-AMPRI, Bhopal, 462026, India
| | - Arpana Parihar
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, Madhya Pradesh, 462026, India
| | - Surbhi Jain
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, Madhya Pradesh, 462026, India
| | - Neeraj Kumar
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-AMPRI, Bhopal, 462026, India
| | - Chetna Dhand
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India
| | - S Murali
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India
| | - Deepti Mishra
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India
| | - Sunil K Sanghi
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India
| | - J P Chaurasia
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India
| | - Avanish K Srivastava
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India.
| | - Raju Khan
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India.
| |
Collapse
|
11
|
Zhang Y, Wang K, Zhao Y, Fan J, Han T, Si YA, Zhou B, Zhang J, Hu Z, Xie M. Dual-label time-resolved fluoroimmunoassay for simultaneous measurement of human epidermal growth factor receptor 2 and human epididymis protein 4 in serum. J Anal Sci Technol 2020. [DOI: 10.1186/s40543-019-0201-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AbstractIn this study, a novel dual-label time-resolved fluoroimmunoassay (TRFIA) is described for simultaneous quantification of human epidermal growth factor receptor 2 (HER-2) and human epididymis protein 4 (HE4) in serum to screen gynecologic cancers. A double-antibody sandwich TRFIA was introduced with europium and samarium chelates to simultaneously detect the concentrations of HER-2 and HE4. Under optimal conditions, the proposed method exhibited wide linear ranges for HER-2 of 0.07–500 ng ml−1 and for HE4 of 0.32–1000 pmol l−1 with the average coefficient of variation below 10%. The specificity was satisfied through determining the other common tumor markers. The recovery rates were 94.5% and 96.6% on average for HER-2 and HE4, respectively. Good correlations were observed in clinical samples between developed method and commercial chemiluminescence immunoassay kits. The results demonstrated that dual-label TRFIA for HER-2 and HE4 was rapid and precise, and therefore could have a promising use in large sample detection for gynecological cancer screening.
Collapse
|
12
|
de Oliveira WF, dos Santos Silva PM, Coelho LCBB, dos Santos Correia MT. Biomarkers, Biosensors and Biomedicine. Curr Med Chem 2020; 27:3519-3533. [DOI: 10.2174/0929867326666190124103125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/31/2018] [Accepted: 01/17/2019] [Indexed: 02/06/2023]
Abstract
The discovery of new biomarkers associated with cancer, neurological and cardiovascular
diseases is necessary, since these are common, recurrent diseases considered as leading causes of
death in the human population. Molecular signatures of these disorders that can be identified at the
outset of their pathogenesis leading to prompt and targeted treatment may increase patient survival.
Cancer is a heterogeneous disease that can be expressed differently among individuals; in addition,
treatments may have a differentiated approach according to the type of malignant neoplasm. Thus,
these neoplastic cells can synthesize and release specific molecules depending on the site where
carcinogenesis begins. Moreover, life expectancy is increasing especially in developed countries,
however, cases of neurodegenerative diseases have grown in the older members of the population.
Commonly, some neurological disorders, which can occur physiologically by the process of senescence,
are confused with Alzheimer's Disease (AD). In addition, cardiovascular diseases are the
main cause of death in the world; studies capable of identifying, through molecular probes, the beginning
of development of an atherosclerotic process can lead to early treatment to avoid an acute
myocardial infarction. Accuracy in the detection of these biomarkers can be obtained through biosensors
whose design has been increasingly studied to elaborate inexpensive sensory platforms capable
of precise detection, even at low concentrations, of the molecule to be measured. The aim of
this review is to address biomarkers to be used in diagnoses instead of invasive exams; biosensors
for the specific and sensitive detection of these biological markers are also investigated.
Collapse
Affiliation(s)
- Weslley Felix de Oliveira
- Departamento de Bioquimica, Centro de Biociencias, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | | | | |
Collapse
|
13
|
Buzalaf MAR, Ortiz ADC, Carvalho TS, Fideles SOM, Araújo TT, Moraes SM, Buzalaf NR, Reis FN. Saliva as a diagnostic tool for dental caries, periodontal disease and cancer: is there a need for more biomarkers? Expert Rev Mol Diagn 2020; 20:543-555. [PMID: 32223655 DOI: 10.1080/14737159.2020.1743686] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Introduction: A biomarker is a biological indicator of normal or pathogenic processes. Identification of biomarkers is useful for the prevention, diagnosis and prognosis of diseases as well as for monitoring the progression of pathological disorders. Several types of molecules present in biological fluids can act as biomarkers such as DNA, coding and non-coding RNA, lipids, metabolites, proteins and even microbes. In this context, saliva emerges as a useful diagnostic tool for the detection of biomarkers involved with oral and systemic diseases, since it reflects the pathophysiological conditions of the organism and allows early, rapid, practical and noninvasive detection of biomarkers.Areas covered: This review discusses the properties of saliva as a diagnostic tool and addresses the main identified biomarkers related to dental caries, periodontal disease, head and neck cancer and other types of cancer of considerable incidence among the world population.Expert commentary: Despite extensive efforts which have been directed toward the identification of one or a combination of biomarkers with good predictive values for the early detection of dental caries, periodontal disease and cancer, these biomarkers still need validation before chairside point-of-care devices can be widely used in the clinic.
Collapse
|
14
|
Meleti M, Cassi D, Vescovi P, Setti G, Pertinhez TA, Pezzi ME. Salivary biomarkers for diagnosis of systemic diseases and malignant tumors. A systematic review. Med Oral Patol Oral Cir Bucal 2020; 25:e299-e310. [PMID: 32040469 PMCID: PMC7103445 DOI: 10.4317/medoral.23355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 08/06/2019] [Indexed: 12/18/2022] Open
Abstract
Background Saliva evaluation could be a possible alternative to blood and/or tissue analyses, for researching specific molecules associated to the presence of systemic diseases and malignancies.
The present systematic review has been designed in order to answer to the question “are there significant associations between specific salivary biomarkers and diagnosis of systemic diseases or malignancies?”.
Material and Methods The Preferred Reporting Item for Systematic Reviews and Meta-analysis (PRISMA) statement was used to guide the review.
The combinations of “saliva” and “systemic diseases” or “diagnosis” or “biomarkers” or “cancers” or “carcinoma” or “tumors”, were used to search Medline, Scopus and Web of Science databases. Endpoint of research has been set at May 2019.
Studies were classified into 3 groups according to the type of disease investigated for diagnosis: 1) malignant tumors; 2) neurologic diseases and 3) inflammatory/metabolic/cardiovascular diseases.
Assessment of quality has been assigned according to a series of questions proposed by the National Institute of Health. Level of evidence was assessed using the categories proposed in the Oxford Center for Evidence-Based medicine (CEMB) levels for diagnosis (2011).
Results Seventy-nine studies met the inclusion and exclusion criteria. Fifty-one (64%) investigated malignant tumors, 14 (17.5%) neurologic and 14 (18.5%) inflammatory/cardiovascular/metabolic diseases.
Among studies investigating malignant tumors, 12 (23.5%) were scored as “good” and 11 of these reported statistically significant associations between salivary molecules and pathology. Two and 5 studies were found to have a good quality, among those evaluating the association between salivary biomarkers and neurologic and inflammatory/metabolic/cardiovascular diseases, respectively.
Conclusions The present systematic review confirms the existence of some “good” quality evidence to support the role of peculiar salivary biomarkers for diagnosis of systemic diseases (e.g. lung cancer and EGFR). Key words:Salivary diagnostics, biomarkers, systemic diseases, malignant tumors, early diagnosis.
Collapse
Affiliation(s)
- M Meleti
- Centro Universitario di Odontoiatria Via Gramsci 14. 43126, Parma, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Abrao Nemeir I, Saab J, Hleihel W, Errachid A, Jafferzic-Renault N, Zine N. The Advent of Salivary Breast Cancer Biomarker Detection Using Affinity Sensors. SENSORS (BASEL, SWITZERLAND) 2019; 19:E2373. [PMID: 31126047 PMCID: PMC6566681 DOI: 10.3390/s19102373] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/09/2019] [Accepted: 05/20/2019] [Indexed: 12/14/2022]
Abstract
Breast Cancer is one of the world's most notorious diseases affecting two million women in 2018 worldwide. It is a highly heterogeneous disease, making it difficult to treat. However, its linear progression makes it a candidate for early screening programs, and the earlier its detection the higher the chance of recovery. However, one key hurdle for breast cancer screening is the fact that most screening techniques are expensive, time-consuming, and cumbersome, making them impractical for use in several parts of the world. One current trend in breast cancer detection has pointed to a possible solution, the use of salivary breast cancer biomarkers. Saliva is an attractive medium for diagnosis because it is readily available in large quantities, easy to obtain at low cost, and contains all the biomarkers present in blood, albeit in lower quantities. Affinity sensors are devices that detect molecules through their interactions with biological recognition molecules. Their low cost, high sensitivity, and selectivity, as well as rapid detection time make them an attractive alternative to traditional means of detection. In this review article, we discuss the current status of breast cancer diagnosis, its salivary biomarkers, as well as the current trends in the development of affinity sensors for their detection.
Collapse
Affiliation(s)
- Imad Abrao Nemeir
- Faculty of Sciences, Holy Spirit University of Kaslik, 446 Jounieh, Mount Lebanon, Lebanon.
- Institut des Sciences Analytiques, Université de Lyon, Claude Bernard Lyon 1, UMR 5280, CNRS - 5, rue de la Doua, 69100 Villeurbanne, France.
| | - Joseph Saab
- Faculty of Sciences, Holy Spirit University of Kaslik, 446 Jounieh, Mount Lebanon, Lebanon.
| | - Walid Hleihel
- Faculty of Sciences, Holy Spirit University of Kaslik, 446 Jounieh, Mount Lebanon, Lebanon.
| | - Abdelhamid Errachid
- Institut des Sciences Analytiques, Université de Lyon, Claude Bernard Lyon 1, UMR 5280, CNRS - 5, rue de la Doua, 69100 Villeurbanne, France.
| | - Nicole Jafferzic-Renault
- Institut des Sciences Analytiques, Université de Lyon, Claude Bernard Lyon 1, UMR 5280, CNRS - 5, rue de la Doua, 69100 Villeurbanne, France.
| | - Nadia Zine
- Institut des Sciences Analytiques, Université de Lyon, Claude Bernard Lyon 1, UMR 5280, CNRS - 5, rue de la Doua, 69100 Villeurbanne, France.
| |
Collapse
|
16
|
Liu X, Yu H, Qiao Y, Yang J, Shu J, Zhang J, Zhang Z, He J, Li Z. Salivary Glycopatterns as Potential Biomarkers for Screening of Early-Stage Breast Cancer. EBioMedicine 2018; 28:70-79. [PMID: 29402727 PMCID: PMC5898026 DOI: 10.1016/j.ebiom.2018.01.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVE We systematically investigated and assessed the alterations of salivary glycopatterns and possibility as biomarkers for diagnosis of early-stage breast cancer. DESIGN Alterations of salivary glycopatterns were probed using lectin microarrays and blotting analysis from 337 patients with breast benign cyst or tumor (BB) or breast cancer (I/II stage) and 110 healthy humans. Their diagnostic models were constructed by a logistic stepwise regression in the retrospective cohort. Then, the performance of the diagnostic models were assessed by ROC analysis in the validation cohort. Finally, a double-blind cohort was tested to confirm the application potential of the diagnostic models. RESULTS The diagnostic models were constructed based on 9 candidate lectins (e.g., PHA-E+L, BS-I, and NPA) that exhibited significant alterations of salivary glycopatterns, which achieved better diagnostic powers with an AUC value >0.750 (p<0.001) for the diagnosis of BB (AUC: 0.752, sensitivity: 0.600, and specificity: 0.835) and I stage breast cancer (AUC: 0.755, sensitivity: 0.733, and specificity: 0.742) in the validation cohort. The diagnostic model of I stage breast cancer exhibited a high accuracy of 0.902 in double-blind cohort. CONCLUSIONS This study could contribute to the screening for patients with early-stage breast cancer based on precise alterations of salivary glycopatterns.
Collapse
Affiliation(s)
- Xiawei Liu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yan Qiao
- Department of Surgical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiajun Yang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jian Shu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jiaxu Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Zhiwei Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jianjun He
- Department of Surgical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
17
|
The roles and applications of autoantibodies in progression, diagnosis, treatment and prognosis of human malignant tumours. Autoimmun Rev 2017; 16:1270-1281. [PMID: 29042252 DOI: 10.1016/j.autrev.2017.10.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 02/07/2023]
Abstract
The existence of autoantibodies towards an individual's own proteins or nucleic acids has been established for more than 100years, and for a long period, these autoantibodies have been believed to be closely associated with autoimmune diseases. However, in recent years, researchers have become more interested in the role and application of autoantibodies in progression, diagnosis, treatment and prognosis of human malignant tumours. Over the past few decades, numerous epidemiological studies have shown that the risk of certain cancers is significantly altered (increased or decreased) in patients with autoimmune diseases, which suggests that autoantibodies may play either promoting or suppressing roles in cancer progression. The idea that autoantibodies are directly involved in tumour progression gains special support by the findings that some antibodies secreted by a variety of cancer cells can promote their proliferation and metastasis. Because the cancer cells generate cell antigenic changes (neoantigens), which trigger the immune system to produce autoantibodies, serum autoantibodies against tumour-associated antigens have been established as a novel type of cancer biomarkers and have been extensively studied in different types of cancer. The autoantibodies as biomarkers in cancer diagnosis are not only more sensitive and specific than antigens, but also could appear before clinical evidences of the tumours, thus disclosing them. The observations that cancer risk is lower in patients with some autoimmune diseases suggest that certain autoantibodies may be protective from certain cancers. Moreover, the presence of autoantibodies in healthy individuals implies that it could be safe to employ autoantibodies to treat cancer. Of note, an autoantibodies derived from lupus murine model received much attention due to their selective cytotoxicity for malignant tumour cell without harming normal ones. These studies showed the therapeutic value of autoantibodies in cancer. In this review, we revisited the pathological or protective role of autoantibodies in cancer progression, summarize the application of autoantibodies in cancer diagnosis and prognosis, and discuss the value of autoantibodies in cancer therapy. The studies established to date suggest that autoantibodies not only regulate cancer progression but also promise to be valuable instruments in oncological diagnosis and therapy.
Collapse
|
18
|
Le Bars P, Matamoros S, Montassier E, Le Vacon F, Potel G, Soueidan A, Jordana F, de La Cochetière MF. The oral cavity microbiota: between health, oral disease, and cancers of the aerodigestive tract. Can J Microbiol 2017; 63:475-492. [PMID: 28257583 DOI: 10.1139/cjm-2016-0603] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many studies show that the human microbiome plays a critical role in the chronic pathologies of obesity, inflammatory bowel diseases, and diabetes. More recently, the interaction between cancer and the microbiome has been highlighted. Most studies have focused on the gut microbiota because it represents the most extensive bacterial community, and the body of evidence correlating it with gut syndromes is increasing. However, in the strict sense, the gastrointestinal (GI) tract begins in the oral cavity, and special attention should be paid to the specific flora of this cavity. This study reviewed the current knowledge about the various microbial ecosystems of the upper part of the GI tract and discussed their potential link to carcinogenesis. The overall composition of the microbial communities, as well as the presence or absence of "key species", in relation to carcinogenesis is addressed. Alterations in the oral microbiota can potentially be used to predict the risk of cancer. Molecular advances and the further monitoring of the microbiota will increase our understanding of the role of the microbiota in carcinogenesis and open new perspectives for future therapeutic and prophylactic modalities.
Collapse
Affiliation(s)
- Pierre Le Bars
- a UFR d'odontologie, UIC Odontologie, CHU hôtel-Dieu, Université de Nantes, 1, place Alexis Ricordeau, B.P. 84215, 44042 Nantes CEDEX 1, France
| | - Sébastien Matamoros
- b Walloon Excellence in Life Sciences and Biotechnology, Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1, place de l'Université, 1348 Brussels, Belgium
| | - Emmanuel Montassier
- c EA 3826 Thérapeutiques cliniques et expérimentales des infections, Faculté de médecine, CHU hôtel-Dieu, Université de Nantes, 1, rue G. Veil, 44000 Nantes, France
| | - Françoise Le Vacon
- d Biofortis Innovation Services - Mérieux NutriSciences, 3, route de la Chatterie, 44800 Saint-Herblain, France
| | - Gilles Potel
- c EA 3826 Thérapeutiques cliniques et expérimentales des infections, Faculté de médecine, CHU hôtel-Dieu, Université de Nantes, 1, rue G. Veil, 44000 Nantes, France
| | - Assem Soueidan
- a UFR d'odontologie, UIC Odontologie, CHU hôtel-Dieu, Université de Nantes, 1, place Alexis Ricordeau, B.P. 84215, 44042 Nantes CEDEX 1, France
| | - Fabienne Jordana
- a UFR d'odontologie, UIC Odontologie, CHU hôtel-Dieu, Université de Nantes, 1, place Alexis Ricordeau, B.P. 84215, 44042 Nantes CEDEX 1, France
| | - Marie-France de La Cochetière
- c EA 3826 Thérapeutiques cliniques et expérimentales des infections, Faculté de médecine, CHU hôtel-Dieu, Université de Nantes, 1, rue G. Veil, 44000 Nantes, France
| |
Collapse
|
19
|
Salivary biomarkers in the diagnosis of breast cancer: A review. Crit Rev Oncol Hematol 2017; 110:62-73. [DOI: 10.1016/j.critrevonc.2016.12.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 09/14/2016] [Accepted: 12/15/2016] [Indexed: 01/12/2023] Open
|
20
|
Mittal S, Kaur H, Gautam N, Mantha AK. Biosensors for breast cancer diagnosis: A review of bioreceptors, biotransducers and signal amplification strategies. Biosens Bioelectron 2016; 88:217-231. [PMID: 27567264 DOI: 10.1016/j.bios.2016.08.028] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 11/19/2022]
Abstract
Breast cancer is highly prevalent in females and accounts for second highest number of deaths, worldwide. Cumbersome, expensive and time consuming detection techniques presently available for detection of breast cancer potentiates the need for development of novel, specific and ultrasensitive devices. Biosensors are the promising and selective detection devices which hold immense potential as point of care (POC) tools. Present review comprehensively scrutinizes various breast cancer biosensors developed so far and their technical evaluation with respect to efficiency and potency of selected bioreceptors and biotransducers. Use of glycoproteins, DNA biomarkers, micro-RNA, circulatory tumor cells (CTC) and some potential biomarkers are introduced briefly. The review also discusses various strategies used in signal amplification such as nanomaterials, redox mediators, p19 protein, duplex specific nucleases (DSN) and redox cycling.
Collapse
Affiliation(s)
- Sunil Mittal
- Centre for Environmental Science and Technology, Central University of Punjab, Bathinda, 151001 India.
| | - Hardeep Kaur
- Centre for Environmental Science and Technology, Central University of Punjab, Bathinda, 151001 India.
| | - Nandini Gautam
- Centre for Environmental Science and Technology, Central University of Punjab, Bathinda, 151001 India.
| | - Anil K Mantha
- Centre for Animal Sciences, Central University of Punjab, Bathinda, 151001 India.
| |
Collapse
|