1
|
Hayashi Y, Alamir N, Sun G, Tamagnini F, Hayashi Y, Williams C, Zheng Y. An effective textured Novel Object Recognition Test (tNORT) for repeated measure of whisker sensitivity of rodents. Behav Brain Res 2024; 472:115153. [PMID: 39025432 DOI: 10.1016/j.bbr.2024.115153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Rodents use their whisker system to discriminate surface texture. Whisker-based texture discrimination tasks are often used to investigate the mechanisms encoding tactile sensation. One such task is the textured Novel Object Recognition Test (tNORT). It takes advantage of a tendency of rodents to explore novel objects more than familiar ones and assesses the sensitivity of whiskers in discriminating different textures of objects. It requires little training of the animals and the equipment involved is a simple arena with typically two objects placed inside. The success of the test relies on rodents spending sufficient time exploring these objects. Animals may lose interests in such tasks when performed repetitively within a limited time frame. However, such repeated tests may be crucial when establishing a sensitivity threshold of the whisker system. Here we present an adapted rodent tNORT protocol designed to maintain sustained interest in the objects even with repeated testing. We constructed complex objects from three simple-shaped objects. Different textures were provided by sandpapers of varying grit sizes. To minimise olfactory clues, we used the sandy and the laminar side of the same sandpaper as the familiar and novel textures assigned at random. We subsequently conducted repeated tNORTs on eight rats in order to identify a critical threshold of the sandpaper grit size below which rats would be unable to discriminate the sandy from the laminar side. With an inter-test-interval of seven days and after five tNORTs, the protocol enabled us to successfully identify the threshold. We suggest that the proposed tNORT is a useful tool for investigating the sensitivity threshold of the whisker system of rodent, and for testing the effectiveness of an intervention by comparing sensitivity threshold pre- and post-intervention.
Collapse
Affiliation(s)
- Yurie Hayashi
- School of Biological Sciences, Whiteknights, University of Reading, Reading RG6 7AY, UK
| | - Najeeba Alamir
- School of Biological Sciences, Whiteknights, University of Reading, Reading RG6 7AY, UK
| | - Guoyang Sun
- School of Biological Sciences, Whiteknights, University of Reading, Reading RG6 7AY, UK
| | - Francesco Tamagnini
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6LA, UK; Centre for Integrative Neuroscience and Neurodynamics (CINN), University of Reading, Reading RG6 6AL, UK
| | - Yoshikatsu Hayashi
- School of Biological Sciences, Whiteknights, University of Reading, Reading RG6 7AY, UK
| | - Claire Williams
- Centre for Integrative Neuroscience and Neurodynamics (CINN), University of Reading, Reading RG6 6AL, UK; School of Psychology and Clinical Language Science, Whiteknights, University of Reading, Reading RG6 6AL, UK
| | - Ying Zheng
- School of Biological Sciences, Whiteknights, University of Reading, Reading RG6 7AY, UK; Centre for Integrative Neuroscience and Neurodynamics (CINN), University of Reading, Reading RG6 6AL, UK.
| |
Collapse
|
2
|
Brandt N, Köper F, Hausmann J, Bräuer AU. Spotlight on plasticity-related genes: Current insights in health and disease. Pharmacol Ther 2024; 260:108687. [PMID: 38969308 DOI: 10.1016/j.pharmthera.2024.108687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/07/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
The development of the central nervous system is highly complex, involving numerous developmental processes that must take place with high spatial and temporal precision. This requires a series of complex and well-coordinated molecular processes that are tighly controlled and regulated by, for example, a variety of proteins and lipids. Deregulations in these processes, including genetic mutations, can lead to the most severe maldevelopments. The present review provides an overview of the protein family Plasticity-related genes (PRG1-5), including their role during neuronal differentiation, their molecular interactions, and their participation in various diseases. As these proteins can modulate the function of bioactive lipids, they are able to influence various cellular processes. Furthermore, they are dynamically regulated during development, thus playing an important role in the development and function of synapses. First studies, conducted not only in mouse experiments but also in humans, revealed that mutations or dysregulations of these proteins lead to changes in lipid metabolism, resulting in severe neurological deficits. In recent years, as more and more studies have shown their involvement in a broad range of diseases, the complexity and broad spectrum of known and as yet unknown interactions between PRGs, lipids, and proteins make them a promising and interesting group of potential novel therapeutic targets.
Collapse
Affiliation(s)
- Nicola Brandt
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Franziska Köper
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Jens Hausmann
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Anja U Bräuer
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany; Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| |
Collapse
|
3
|
Sharma H, Azouz R. Reliability and stability of tactile perception in the whisker somatosensory system. Front Neurosci 2024; 18:1344758. [PMID: 38872944 PMCID: PMC11169650 DOI: 10.3389/fnins.2024.1344758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
Rodents rely on their whiskers as vital sensory tools for tactile perception, enabling them to distinguish textures and shapes. Ensuring the reliability and constancy of tactile perception under varying stimulus conditions remains a fascinating and fundamental inquiry. This study explores the impact of stimulus configurations, including whisker movement velocity and object spatial proximity, on texture discrimination and stability in rats. To address this issue, we employed three distinct approaches for our investigation. Stimulus configurations notably affected tactile inputs, altering whisker vibration's kinetic and kinematic aspects with consistent effects across various textures. Through a texture discrimination task, rats exhibited consistent discrimination performance irrespective of changes in stimulus configuration. However, alterations in stimulus configuration significantly affected the rats' ability to maintain stability in texture perception. Additionally, we investigated the influence of stimulus configurations on cortical neuronal responses by manipulating them experimentally. Notably, cortical neurons demonstrated substantial and intricate changes in firing rates without compromising the ability to discriminate between textures. Nevertheless, these changes resulted in a reduction in texture neuronal response stability. Stimulating multiple whiskers led to improved neuronal texture discrimination and maintained coding stability. These findings emphasize the importance of considering numerous factors and their interactions when studying the impact of stimulus configuration on neuronal responses and behavior.
Collapse
Affiliation(s)
| | - Rony Azouz
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| |
Collapse
|
4
|
Sharma H, Azouz R. Global and local neuronal coding of tactile information in the barrel cortex. Front Neurosci 2024; 17:1291864. [PMID: 38249584 PMCID: PMC10796699 DOI: 10.3389/fnins.2023.1291864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/24/2023] [Indexed: 01/23/2024] Open
Abstract
During tactile sensation in rodents, the whisker movements across surfaces give rise to intricate whisker motions that encompass discrete and transient stick-slip events, effectively conveying valuable information regarding surface properties. These surface characteristics are transformed into cortical neuronal responses. This study examined the coding strategies underlying these transformations in rat whiskers. We found that changes in surface coarseness modified the number and magnitude of stick-slip events, which in turn both modulated properties of neuronal responses. Global changes in the number of stick-slip events primarily affected neuronal discharge rates and the degree of neuronal synchronization. In contrast, local changes in the magnitude of stick-slip events affected the transformation of these kinematic and kinetic characteristics into neuronal discharges. Most cortical neurons exhibited surface coarseness selectivity through global and local stick-slip event properties. However, this selectivity varied across coding strategies in the same neurons, given that each coding strategy reflected different aspects of changes in whisker-surface interactions. The degree of spatial similarity in surface coarseness preference in adjacently recorded neurons differed among these coding strategies. Adjacently recorded neurons exhibited the same surface coarseness preference in their firing rates but not through other coding strategies. Through these results, we were able to show that local stick-slip event properties contribute to texture discrimination, complementing and surpassing global coding in this context. These findings suggest that the representation of surface coarseness in the cortex may rely on concurrent coding strategies that integrate tactile information across different spatiotemporal scales.
Collapse
Affiliation(s)
| | - Rony Azouz
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Southern District, Israel
| |
Collapse
|
5
|
Marmor O, Pollak Y, Doron C, Helmchen F, Gilad A. History information emerges in the cortex during learning. eLife 2023; 12:e83702. [PMID: 37921842 PMCID: PMC10624423 DOI: 10.7554/elife.83702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
We learn from our experience but the underlying neuronal mechanisms incorporating past information to facilitate learning is relatively unknown. Specifically, which cortical areas encode history-related information and how is this information modulated across learning? To study the relationship between history and learning, we continuously imaged cortex-wide calcium dynamics as mice learn to use their whiskers to discriminate between two different textures. We mainly focused on comparing the same trial type with different trial history, that is, a different preceding trial. We found trial history information in barrel cortex (BC) during stimulus presentation. Importantly, trial history in BC emerged only as the mouse learned the task. Next, we also found learning-dependent trial history information in rostrolateral (RL) association cortex that emerges before stimulus presentation, preceding activity in BC. Trial history was also encoded in other cortical areas and was not related to differences in body movements. Interestingly, a binary classifier could discriminate trial history at the single trial level just as well as current information both in BC and RL. These findings suggest that past experience emerges in the cortex around the time of learning, starting from higher-order association area RL and propagating down (i.e., top-down projection) to lower-order BC where it can be integrated with incoming sensory information. This integration between the past and present may facilitate learning.
Collapse
Affiliation(s)
- Odeya Marmor
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of JerusalemJerusalemIsrael
| | - Yael Pollak
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of JerusalemJerusalemIsrael
| | - Chen Doron
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of JerusalemJerusalemIsrael
| | - Fritjof Helmchen
- Brain Research Institute, University of ZurichZurichSwitzerland
- Neuroscience Center ZurichZurichSwitzerland
| | - Ariel Gilad
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
6
|
Khateb M, Schiller J, Schiller Y. State-Dependent Synchrony and Functional Connectivity in the Primary and Secondary Whisker Somatosensory Cortices. Front Syst Neurosci 2021; 15:713397. [PMID: 34616281 PMCID: PMC8489558 DOI: 10.3389/fnsys.2021.713397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/16/2021] [Indexed: 12/04/2022] Open
Abstract
Synchronized activity plays an important role in sensory coding and memory and is a hallmark of functional network connectivity. However, the effect of sensory activation on synchronization and cortical functional connectivity is largely unknown. In this study, we investigated the effect of whisker activation on synchronization and functional connectivity of the primary (wS1) and secondary (wS2) whisker somatosensory cortices at the single-cell level. The results showed that during the spontaneous pre-stimulus state, neurons tended to be functionally connected with nearby neurons which shared similar tuning characteristics. Whisker activation using either ramp-and-hold stimulation or artificial whisking against sandpaper has significantly reduced the average overall pairwise synchronization and functional connectivity within the wS1 barrel and wS2 cortices. Whisker stimulation disconnected approximately a third of neuronal pairs that were functionally connected during the unstimulated state. Nearby neurons with congruent tuning properties were more likely to remain functionally connected during whisker activation. The findings of this study indicated that cortical somatosensory networks are organized in non-random small world networks composed of neurons sharing relatively similar tuning properties. Sensory whisker activation intensifies these properties and further subdivides the cortical network into smaller more functionally uniform subnetworks, which possibly serve to increase the computational capacity of the network.
Collapse
Affiliation(s)
- Mohamed Khateb
- The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Department of Neurology, Rambam Medical Center, Haifa, Israel
| | - Jackie Schiller
- The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yitzhak Schiller
- The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Department of Neurology, Rambam Medical Center, Haifa, Israel
| |
Collapse
|
7
|
Lu J, Tjia M, Mullen B, Cao B, Lukasiewicz K, Shah-Morales S, Weiser S, Cameron LP, Olson DE, Chen L, Zuo Y. An analog of psychedelics restores functional neural circuits disrupted by unpredictable stress. Mol Psychiatry 2021; 26:6237-6252. [PMID: 34035476 PMCID: PMC8613316 DOI: 10.1038/s41380-021-01159-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/28/2021] [Accepted: 05/05/2021] [Indexed: 12/18/2022]
Abstract
Psychological stress affects a wide spectrum of brain functions and poses risks for many mental disorders. However, effective therapeutics to alleviate or revert its deleterious effects are lacking. A recently synthesized psychedelic analog tabernanthalog (TBG) has demonstrated anti-addictive and antidepressant potential. Whether TBG can rescue stress-induced affective, sensory, and cognitive deficits, and how it may achieve such effects by modulating neural circuits, remain unknown. Here we show that in mice exposed to unpredictable mild stress (UMS), administration of a single dose of TBG decreases their anxiety level and rescues deficits in sensory processing as well as in cognitive flexibility. Post-stress TBG treatment promotes the regrowth of excitatory neuron dendritic spines lost during UMS, decreases the baseline neuronal activity, and enhances whisking-modulation of neuronal activity in the somatosensory cortex. Moreover, calcium imaging in head-fixed mice performing a whisker-dependent texture discrimination task shows that novel textures elicit responses from a greater proportion of neurons in the somatosensory cortex than do familiar textures. Such differential response is diminished by UMS and is restored by TBG. Together, our study reveals the effects of UMS on cortical neuronal circuit activity patterns and demonstrate that TBG combats the detrimental effects of stress by modulating basal and stimulus-dependent neural activity in cortical networks.
Collapse
Affiliation(s)
- Ju Lu
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA.
| | - Michelle Tjia
- grid.205975.c0000 0001 0740 6917Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA USA
| | - Brian Mullen
- grid.205975.c0000 0001 0740 6917Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA USA
| | - Bing Cao
- grid.168010.e0000000419368956Departments of Neurosurgery, Neuropsychiatry and Behavioral Sciences, Stanford Neuroscience Institute, Stanford University School of Medicine, Stanford, CA USA
| | - Kacper Lukasiewicz
- grid.205975.c0000 0001 0740 6917Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA USA
| | - Sajita Shah-Morales
- grid.205975.c0000 0001 0740 6917Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA USA
| | - Sydney Weiser
- grid.205975.c0000 0001 0740 6917Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA USA
| | - Lindsay P. Cameron
- grid.27860.3b0000 0004 1936 9684Neuroscience Graduate Program, University of California, Davis, Davis, CA USA
| | - David E. Olson
- grid.27860.3b0000 0004 1936 9684Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA USA ,grid.27860.3b0000 0004 1936 9684Department of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA USA ,grid.27860.3b0000 0004 1936 9684Center for Neuroscience, University of California, Davis, Davis, CA USA
| | - Lu Chen
- grid.168010.e0000000419368956Departments of Neurosurgery, Neuropsychiatry and Behavioral Sciences, Stanford Neuroscience Institute, Stanford University School of Medicine, Stanford, CA USA
| | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
8
|
Kim YR, Kim CE, Yoon H, Kim SK, Kim SJ. Multiplexed Processing of Vibrotactile Information in the Mouse Primary Somatosensory Cortex. Exp Neurobiol 2020; 29:425-432. [PMID: 33372168 PMCID: PMC7788311 DOI: 10.5607/en20041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 11/25/2022] Open
Abstract
The primary somatosensory (S1) cortex plays a key role in distinguishing different sensory stimuli. Vibrotactile touch information is conveyed from the periphery to the S1 cortex through three major classes of mechanoreceptors: slowly adapting type 1 (SA1), rapidly adapting (RA), and Pacinian (PC) afferents. It has been a long-standing question whether specific populations in the S1 cortex preserve the peripheral segregation by the afferent submodalities. Here, we investigated whether S1 neurons exhibit specific responses to two distinct vibrotactile stimuli, which excite different types of mechanoreceptors (e.g., SA1 and PC afferents). Using in vivo two-photon microscopy and genetically encoded calcium indicator, GCaMP6s, we recorded calcium activities of S1 L2/3 neurons. At the same time, static (<1 Hz) and dynamic (150 Hz) vibrotactile stimuli, which are known to excite SA1 and PC, respectively, were pseudorandomly applied to the right hind paw in lightly anesthetized mice. We found that most active S1 neurons responded to both static and dynamic stimuli, but more than half of them showed preferred responses to either type of stimulus. Only a small fraction of the active neurons exhibited specific responses to either static or dynamic stimuli. However, the S1 population activity patterns by the two stimuli were markedly distinguished. These results indicate that the vibrotactile inputs driven by excitation of distinct submodalities are converged on the single cells of the S1 cortex, but are well discriminated by population activity patterns composed of neurons that have a weighted preference for each type of stimulus.
Collapse
Affiliation(s)
- Yoo Rim Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 08826, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 08826, Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 08826, Korea
| | - Chang-Eop Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 08826, Korea.,Department of Physiology, College of Korean Medicine, Gachon University, Seongnam 13120, Korea
| | - Heera Yoon
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Sun Kwang Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea.,Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 08826, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 08826, Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 08826, Korea
| |
Collapse
|
9
|
Voigts J, Deister CA, Moore CI. Layer 6 ensembles can selectively regulate the behavioral impact and layer-specific representation of sensory deviants. eLife 2020; 9:48957. [PMID: 33263283 PMCID: PMC7817180 DOI: 10.7554/elife.48957] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 12/01/2020] [Indexed: 11/21/2022] Open
Abstract
Predictive models can enhance the salience of unanticipated input. Here, we tested a key potential node in neocortical model formation in this process, layer (L) 6, using behavioral, electrophysiological and imaging methods in mouse primary somatosensory neocortex. We found that deviant stimuli enhanced tactile detection and were encoded in L2/3 neural tuning. To test the contribution of L6, we applied weak optogenetic drive that changed which L6 neurons were sensory responsive, without affecting overall firing rates in L6 or L2/3. This stimulation selectively suppressed behavioral sensitivity to deviant stimuli, without impacting baseline performance. This stimulation also eliminated deviance encoding in L2/3 but did not impair basic stimulus responses across layers. In contrast, stronger L6 drive inhibited firing and suppressed overall sensory function. These findings indicate that, despite their sparse activity, specific ensembles of stimulus-driven L6 neurons are required to form neocortical predictions, and to realize their behavioral benefit.
Collapse
Affiliation(s)
- Jakob Voigts
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, United States.,Department of Brain and Cognitive Sciences, MIT, Cambridge, United States
| | - Christopher A Deister
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, United States
| | - Christopher I Moore
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, United States
| |
Collapse
|
10
|
Chéreau R, Bawa T, Fodoulian L, Carleton A, Pagès S, Holtmaat A. Dynamic perceptual feature selectivity in primary somatosensory cortex upon reversal learning. Nat Commun 2020; 11:3245. [PMID: 32591523 PMCID: PMC7319990 DOI: 10.1038/s41467-020-17005-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 06/05/2020] [Indexed: 11/09/2022] Open
Abstract
Neurons in primary sensory cortex encode a variety of stimulus features upon perceptual learning. However, it is unclear whether the acquired stimulus selectivity remains stable when the same input is perceived in a different context. Here, we monitor the activity of individual neurons in the mouse primary somatosensory cortex during reward-based texture discrimination. We track their stimulus selectivity before and after changing reward contingencies, which allows us to identify various classes of neurons. We find neurons that stably represented a texture or the upcoming behavioral choice, but the majority is dynamic. Among those, a subpopulation of neurons regains texture selectivity contingent on the associated reward value. These value-sensitive neurons forecast the onset of learning by displaying a distinct and transient increase in activity, depending on past behavioral experience. Thus, stimulus selectivity of excitatory neurons during perceptual learning is dynamic and largely relies on behavioral contingencies, even in primary sensory cortex. Do cortical neurons stably represent stimulus features in different contexts? Here, using calcium imaging, the authors show that texture selectivity of individual neurons is dynamic during reversal learning. For a subclass this is contingent on the associated reward and forecasts the onset of learning.
Collapse
Affiliation(s)
- Ronan Chéreau
- Department of Basic Neurosciences and the Center for Neuroscience, CMU, University of Geneva, Rue Michel Servet 1, 1211, Geneva, Switzerland
| | - Tanika Bawa
- Department of Basic Neurosciences and the Center for Neuroscience, CMU, University of Geneva, Rue Michel Servet 1, 1211, Geneva, Switzerland.,Lemanic Neuroscience Doctoral School, University of Geneva, Geneva, Switzerland
| | - Leon Fodoulian
- Department of Basic Neurosciences and the Center for Neuroscience, CMU, University of Geneva, Rue Michel Servet 1, 1211, Geneva, Switzerland.,Lemanic Neuroscience Doctoral School, University of Geneva, Geneva, Switzerland
| | - Alan Carleton
- Department of Basic Neurosciences and the Center for Neuroscience, CMU, University of Geneva, Rue Michel Servet 1, 1211, Geneva, Switzerland
| | - Stéphane Pagès
- Department of Basic Neurosciences and the Center for Neuroscience, CMU, University of Geneva, Rue Michel Servet 1, 1211, Geneva, Switzerland
| | - Anthony Holtmaat
- Department of Basic Neurosciences and the Center for Neuroscience, CMU, University of Geneva, Rue Michel Servet 1, 1211, Geneva, Switzerland.
| |
Collapse
|
11
|
Cell-Type-Specific Outcome Representation in the Primary Motor Cortex. Neuron 2020; 107:954-971.e9. [PMID: 32589878 DOI: 10.1016/j.neuron.2020.06.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/14/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022]
Abstract
Adaptive movements are critical for animal survival. To guide future actions, the brain monitors various outcomes, including achievement of movement and appetitive goals. The nature of these outcome signals and their neuronal and network realization in the motor cortex (M1), which directs skilled movements, is largely unknown. Using a dexterity task, calcium imaging, optogenetic perturbations, and behavioral manipulations, we studied outcome signals in the murine forelimb M1. We found two populations of layer 2-3 neurons, termed success- and failure-related neurons, that develop with training, and report end results of trials. In these neurons, prolonged responses were recorded after success or failure trials independent of reward and kinematics. In addition, the initial state of layer 5 pyramidal tract neurons contained a memory trace of the previous trial's outcome. Intertrial cortical activity was needed to learn new task requirements. These M1 layer-specific performance outcome signals may support reinforcement motor learning of skilled behavior.
Collapse
|
12
|
Aeed F, Shnitzer T, Talmon R, Schiller Y. Layer- and Cell-Specific Recruitment Dynamics during Epileptic Seizures In Vivo. Ann Neurol 2019; 87:97-115. [PMID: 31657482 DOI: 10.1002/ana.25628] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To investigate the network dynamics mechanisms underlying differential initiation of epileptic interictal spikes and seizures. METHODS We performed combined in vivo 2-photon calcium imaging from different targeted neuronal subpopulations and extracellular electrophysiological recordings during 4-aminopyridine-induced neocortical spikes and seizures. RESULTS Both spikes and seizures were associated with intense synchronized activation of excitatory layer 2/3 pyramidal neurons (PNs) and to a lesser degree layer 4 neurons, as well as inhibitory parvalbumin-expressing interneurons (INs). In sharp contrast, layer 5 PNs and somatostatin-expressing INs were gradually and asynchronously recruited into the ictal activity during the course of seizures. Within layer 2/3, the main difference between onset of spikes and seizures lay in the relative recruitment dynamics of excitatory PNs compared to parvalbumin- and somatostatin-expressing inhibitory INs. Whereas spikes exhibited balanced recruitment of PNs and parvalbumin-expressing INs, during seizures IN responses were reduced and less synchronized than in layer 2/3 PNs. Similar imbalance was not observed in layers 4 or 5 of the neocortex. Machine learning-based algorithms we developed were able to distinguish spikes from seizures based solely on activation dynamics of layer 2/3 PNs at discharge onset. INTERPRETATION During onset of seizures, the recruitment dynamics markedly differed between neuronal subpopulations, with rapid synchronous recruitment of layer 2/3 PNs, layer 4 neurons, and parvalbumin-expressing INs and gradual asynchronous recruitment of layer 5 PNs and somatostatin-expressing INs. Seizures initiated in layer 2/3 due to a dynamic mismatch between local PNs and inhibitory INs, and only later spread to layer 5 by gradually and asynchronously recruiting PNs in this layer. ANN NEUROL 2020;87:97-115.
Collapse
Affiliation(s)
- Fadi Aeed
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tal Shnitzer
- Viterbi Faculty of Electrical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ronen Talmon
- Viterbi Faculty of Electrical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yitzhak Schiller
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Neurology, Rambam Medical Center, Haifa, Israel
| |
Collapse
|
13
|
Kim YR, Kim CE, Yoon H, Kim SK, Kim SJ. S1 Employs Feature-Dependent Differential Selectivity of Single Cells and Distributed Patterns of Populations to Encode Mechanosensations. Front Cell Neurosci 2019; 13:132. [PMID: 31024261 PMCID: PMC6460949 DOI: 10.3389/fncel.2019.00132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/18/2019] [Indexed: 11/23/2022] Open
Abstract
The primary somatosensory (S1) cortex plays an important role in the perception and discrimination of touch and pain mechanosensations. Conventionally, neurons in the somatosensory system including S1 cortex have been classified into low/high threshold (HT; non-nociceptive/nociceptive) or wide dynamic range (WDR; convergent) neurons by their electrophysiological responses to innocuous brush-stroke and noxious forceps-pinch stimuli. Besides this “noxiousness” (innocuous/noxious) feature, each stimulus also includes other stimulus features: “texture” (brush hairs/forceps-steel arm), “dynamics” (dynamic stroke/static press) and “intensity” (weak/strong). However, it remains unknown how S1 neurons inclusively process such diverse features of brushing and pinch at the single-cell and population levels. Using in vivo two-photon Ca2+ imaging in the layer 2/3 neurons of the mouse S1 cortex, we identified clearly separated response patterns of the S1 neural population with distinct tuning properties of individual cells to texture, dynamics and noxiousness features of cutaneous mechanical stimuli. Among cells other than broadly tuned neurons, the majority of the cells showed a highly selective response to the difference in texture, but low selectivity to the difference in dynamics or noxiousness. Between the two low selectivity features, the difference in dynamics was slightly more specific, yet both could be decoded using the response patterns of neural populations. In addition, more neurons are recruited and stronger Ca2+ responses are evoked as the intensity of forceps-pinch is gradually increased. Our results suggest that S1 neurons encode various features of mechanosensations with feature-dependent differential selectivity of single cells and distributed response patterns of populations. Moreover, we raise a caution about describing neurons by a single stimulus feature ignoring other aspects of the sensory stimuli.
Collapse
Affiliation(s)
- Yoo Rim Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Chang-Eop Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Physiology, College of Korean Medicine, Gachon University, Gyeonggi-do, South Korea
| | - Heera Yoon
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Sun Kwang Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea.,Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
14
|
Martini FJ, Molano-Mazón M, Maravall M. Interspersed Distribution of Selectivity to Kinematic Stimulus Features in Supragranular Layers of Mouse Barrel Cortex. Cereb Cortex 2018; 27:3782-3789. [PMID: 28334121 DOI: 10.1093/cercor/bhx019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 12/14/2016] [Indexed: 01/17/2023] Open
Abstract
Neurons in the primary sensory regions of neocortex have heterogeneous response properties. The spatial arrangement of neurons with particular response properties is a key aspect of population representations and can shed light on how local circuits are wired. Here, we investigated how neurons with sensitivity to different kinematic features of whisker stimuli are distributed across local circuits in supragranular layers of the barrel cortex. Using 2-photon calcium population imaging in anesthetized mice, we found that nearby neurons represent diverse kinematic features, providing a rich population representation at the local scale. Neurons interspersed in space therefore responded differently to a common stimulus kinematic feature. Conversely, neurons with similar feature selectivity were located no closer to each other than predicted by a random distribution null hypothesis. This finding relied on defining a null hypothesis that was specific for testing the spatial distribution of tuning across neurons. We also measured how neurons sensitive to specific features were distributed relative to barrel boundaries, and found no systematic organization. Our results are compatible with randomly distributed selectivity to kinematic features, with no systematic ordering superimposed upon the whisker map.
Collapse
Affiliation(s)
- Francisco J Martini
- Instituto de Neurociencias de Alicante UMH-CSIC, Avda. Ramón y Cajal s/n, Campus de San Juan, 03550 Sant Joan d'Alacant, Spain
| | - Manuel Molano-Mazón
- Instituto de Neurociencias de Alicante UMH-CSIC, Avda. Ramón y Cajal s/n, Campus de San Juan, 03550 Sant Joan d'Alacant, Spain.,Laboratory of Neural Computation, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Miguel Maravall
- Instituto de Neurociencias de Alicante UMH-CSIC, Avda. Ramón y Cajal s/n, Campus de San Juan, 03550 Sant Joan d'Alacant, Spain.,Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
15
|
Postnatal Ablation of Synaptic Retinoic Acid Signaling Impairs Cortical Information Processing and Sensory Discrimination in Mice. J Neurosci 2018; 38:5277-5288. [PMID: 29760176 DOI: 10.1523/jneurosci.3028-17.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 04/28/2018] [Accepted: 05/03/2018] [Indexed: 12/28/2022] Open
Abstract
Retinoic acid (RA) and its receptors (RARs) are well established essential transcriptional regulators during embryonic development. Recent findings in cultured neurons identified an independent and critical post-transcriptional role of RA and RARα in the homeostatic regulation of excitatory and inhibitory synaptic transmission in mature neurons. However, the functional relevance of synaptic RA signaling in vivo has not been established. Here, using somatosensory cortex as a model system and the RARα conditional knock-out mouse as a tool, we applied multiple genetic manipulations to delete RARα postnatally in specific populations of cortical neurons, and asked whether synaptic RA signaling observed in cultured neurons is involved in cortical information processing in vivo Indeed, conditional ablation of RARα in mice via a CaMKIIα-Cre or a layer 5-Cre driver line or via somatosensory cortex-specific viral expression of Cre-recombinase impaired whisker-dependent texture discrimination, suggesting a critical requirement of RARα expression in L5 pyramidal neurons of somatosensory cortex for normal tactile sensory processing. Transcranial two-photon imaging revealed a significant increase in dendritic spine elimination on apical dendrites of somatosensory cortical layer 5 pyramidal neurons in these mice. Interestingly, the enhancement of spine elimination is whisker experience-dependent as whisker trimming rescued the spine elimination phenotype. Additionally, experiencing an enriched environment improved texture discrimination in RARα-deficient mice and reduced excessive spine pruning. Thus, RA signaling is essential for normal experience-dependent cortical circuit remodeling and sensory processing.SIGNIFICANCE STATEMENT The importance of synaptic RA signaling has been demonstrated in in vitro studies. However, whether RA signaling mediated by RARα contributes to neural circuit functions in vivo remains largely unknown. In this study, using a RARα conditional knock-out mouse, we performed multiple regional/cell-type-specific manipulation of RARα expression in the postnatal brain, and show that RARα signaling contributes to normal whisker-dependent texture discrimination as well as regulating spine dynamics of apical dendrites from layer (L5) pyramidal neurons in S1. Deletion of RARα in excitatory neurons in the forebrain induces elevated spine elimination and impaired sensory discrimination. Our study provides novel insights into the role of RARα signaling in cortical processing and experience-dependent spine maturation.
Collapse
|
16
|
Abstract
The animal kingdom contains species with a wide variety of sensory systems that have been selected to function in different environmental niches, but that are also subject to modification by experience during an organism’s lifetime. The modification of such systems by experience is often called perceptual learning. In rodents, the classic example of perceptual learning is the observation that simple preexposure to two visual stimuli facilitates a subsequent (reinforced) discrimination between them. However, until recently very little behavioral research had investigated perceptual learning with tactile stimuli in rodents, in marked contrast to the wealth of information about plasticity in the rodent somatosensory system. Here we present a selective review of behavioral analyses of perceptual learning with tactile stimuli, alongside evidence concerning the potential bases of such effects within the somatosensory system.
Collapse
|
17
|
Isett BR, Feasel SH, Lane MA, Feldman DE. Slip-Based Coding of Local Shape and Texture in Mouse S1. Neuron 2018; 97:418-433.e5. [PMID: 29307709 PMCID: PMC5773356 DOI: 10.1016/j.neuron.2017.12.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/23/2017] [Accepted: 12/14/2017] [Indexed: 01/13/2023]
Abstract
Tactile objects have both local geometry (shape) and broader macroscopic texture, but how these different spatial scales are simultaneously encoded during active touch is unknown. In the whisker system, we tested for a shared code based on localized whisker micromotions (stick-slips) and slip-evoked spikes. We trained mice to discriminate smooth from rough surfaces, including ridged gratings and sandpaper. Whisker slips locked to ridges and evoked temporally precise spikes (<10 ms jitter) in somatosensory cortex (S1) that could resolve ridges with ∼1 mm accuracy. Slip-sensitive neurons also encoded touch and texture. On rough surfaces, both slip-evoked spikes and an additional non-slip signal elevated mean firing rate, allowing accurate rough-smooth texture decoding from population firing rate. Eighteen percent of neurons were selective among rough surfaces. Thus, slips elicit spatially and temporally precise spiking in S1 that simultaneously encodes local shape (ridges) and is integrated into a macroscopic firing rate code for roughness.
Collapse
Affiliation(s)
- Brian R Isett
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sierra H Feasel
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Monet A Lane
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Daniel E Feldman
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
18
|
Abstract
Somatosensory areas containing topographic maps of the body surface are a major feature of parietal cortex. In primates, parietal cortex contains four somatosensory areas, each with its own map, with the primary cutaneous map in area 3b. Rodents have at least three parietal somatosensory areas. Maps are not isomorphic to the body surface, but magnify behaviorally important skin regions, which include the hands and face in primates, and the whiskers in rodents. Within each map, intracortical circuits process tactile information, mediate spatial integration, and support active sensation. Maps may also contain fine-scale representations of touch submodalities, or direction of tactile motion. Functional representations are more overlapping than suggested by textbook depictions of map topography. The whisker map in rodent somatosensory cortex is a canonic system for studying cortical microcircuits, sensory coding, and map plasticity. Somatosensory maps are plastic throughout life in response to altered use or injury. This chapter reviews basic principles and recent findings in primate, human, and rodent somatosensory maps.
Collapse
Affiliation(s)
- Samuel Harding-Forrester
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States
| | - Daniel E Feldman
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States.
| |
Collapse
|
19
|
Barrel Cortex: What is it Good for? Neuroscience 2018; 368:3-16. [DOI: 10.1016/j.neuroscience.2017.05.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 12/21/2022]
|
20
|
Allitt BJ, Alwis DS, Rajan R. Laminar-specific encoding of texture elements in rat barrel cortex. J Physiol 2017; 595:7223-7247. [PMID: 28929510 PMCID: PMC5709323 DOI: 10.1113/jp274865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/06/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS For rats texture discrimination is signalled by the large face whiskers by stick-slip events. Neural encoding of repetitive stick-slip events will be influenced by intrinsic properties of adaptation. We show that texture coding in the barrel cortex is laminar specific and follows a power function. Our results also show layer 2 codes for novel feature elements via robust firing rates and temporal fidelity. We conclude that texture coding relies on a subtle neural ensemble to provide important object information. ABSTRACT Texture discrimination by rats is exquisitely guided by fine-grain mechanical stick-slip motions of the face whiskers as they encounter, stick to and slip past successive texture-defining surface features such as bumps and grooves. Neural encoding of successive stick-slip texture events will be shaped by adaptation, common to all sensory systems, whereby receptor and neural responses to a stimulus are affected by responses to preceding stimuli, allowing resetting to signal novel information. Additionally, when a whisker is actively moved to contact and brush over surfaces, that motion itself generates neural responses that could cause adaptation of responses to subsequent stick-slip events. Nothing is known about encoding in the rat whisker system of stick-slip events defining textures of different grain or the influence of adaptation from whisker protraction or successive texture-defining stick-slip events. Here we recorded responses from halothane-anaesthetized rats in response to texture-defining stimuli applied to passive whiskers. We demonstrate that: across the columnar network of the whisker-recipient barrel cortex, adaptation in response to repetitive stick-slip events is strongest in uppermost layers and equally lower thereafter; neither whisker protraction speed nor stick-slip frequency impede encoding of stick-slip events at rates up to 34.08 Hz; and layer 2 normalizes responses to whisker protraction to resist effects on texture signalling. Thus, within laminar-specific response patterns, barrel cortex reliably encodes texture-defining elements even to high frequencies.
Collapse
Affiliation(s)
| | - Dasuni S. Alwis
- Department of PhysiologyMonash UniversityClaytonVIC3800Australia
| | - Ramesh Rajan
- Department of PhysiologyMonash UniversityClaytonVIC3800Australia
| |
Collapse
|
21
|
Bale MR, Maravall M. Organization of sensory feature selectivity in the whisker system. Neuroscience 2017; 368:70-80. [PMID: 28918260 PMCID: PMC5798594 DOI: 10.1016/j.neuroscience.2017.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 12/14/2022]
Abstract
Neurons in the whisker system are selective to spatial and dynamical properties – features – of sensory stimuli. At each stage of the pathway, different neurons encode distinct features, generating a rich population representation. Whisker touch is robustly represented; neurons respond to touch-driven fast fluctuations in forces at the whisker base. Cortical neurons have more complex and context-dependent selectivity than subcortical, e.g., to collective whisker motion. Understanding how these signals are integrated to construct whisker-mediated percepts requires further research.
Our sensory receptors are faced with an onslaught of different environmental inputs. Each sensory event or encounter with an object involves a distinct combination of physical energy sources impinging upon receptors. In the rodent whisker system, each primary afferent neuron located in the trigeminal ganglion innervates and responds to a single whisker and encodes a distinct set of physical stimulus properties – features – corresponding to changes in whisker angle and shape and the consequent forces acting on the whisker follicle. Here we review the nature of the features encoded by successive stages of processing along the whisker pathway. At each stage different neurons respond to distinct features, such that the population as a whole represents diverse properties. Different neuronal types also have distinct feature selectivity. Thus, neurons at the same stage of processing and responding to the same whisker nevertheless play different roles in representing objects contacted by the whisker. This diversity, combined with the precise timing and high reliability of responses, enables populations at each stage to represent a wide range of stimuli. Cortical neurons respond to more complex stimulus properties – such as correlated motion across whiskers – than those at early subcortical stages. Temporal integration along the pathway is comparatively weak: neurons up to barrel cortex (BC) are sensitive mainly to fast (tens of milliseconds) fluctuations in whisker motion. The topographic organization of whisker sensitivity is paralleled by systematic organization of neuronal selectivity to certain other physical features, but selectivity to touch and to dynamic stimulus properties is distributed in “salt-and-pepper” fashion.
Collapse
Affiliation(s)
- Michael R Bale
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Miguel Maravall
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom.
| |
Collapse
|
22
|
Kwon SE, Tsytsarev V, Erzurumlu RS, O'Connor DH. Organization of orientation-specific whisker deflection responses in layer 2/3 of mouse somatosensory cortex. Neuroscience 2017; 368:46-56. [PMID: 28827090 DOI: 10.1016/j.neuroscience.2017.07.067] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/24/2017] [Accepted: 07/27/2017] [Indexed: 11/18/2022]
Abstract
The rodent whisker-barrel system is characterized by its patterned somatotopic mapping between the sensory periphery and multiple regions of the brain. While somatotopy in the whisker system is established, we know far less about how preferences for stimulus orientation or other features are organized. Mouse somatosensation is an increasingly popular model for circuit-based dissection of perceptual decision making and learning, yet our understanding of how stimulus feature representations are organized in the cortex is incomplete. Here, we used in vivo two-photon calcium imaging to monitor activity of populations of layer (L) 2/3 neurons in the mouse primary somatosensory cortex during deflections of a single whisker in two orthogonal orientations (azimuthal or elevational). We split the population response to whisker deflections into an orientation-specific component and a non-specific component that reflected overall excitability in response to deflection of a single whisker. Orientation-specific responses were organized in a locally heterogeneous and spatially distributed manner. Correlations in the stimulus-independent trial-to-trial variability of pairs of neurons were higher among neurons that preferred the same orientation. These correlations depended on similarity in both orientation-specific and non-specific components of responses to single-whisker deflections. Our results shed light on L2/3 organization in mouse somatosensory cortex, and lay a foundation for dissecting circuit mechanisms of perceptual learning and decision-making during orientation discrimination tasks.
Collapse
Affiliation(s)
- Sung Eun Kwon
- The Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Brain Science Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Vassiliy Tsytsarev
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Reha S Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Daniel H O'Connor
- The Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Brain Science Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
23
|
Khateb M, Schiller J, Schiller Y. Feedforward motor information enhances somatosensory responses and sharpens angular tuning of rat S1 barrel cortex neurons. eLife 2017; 6. [PMID: 28059699 PMCID: PMC5271607 DOI: 10.7554/elife.21843] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 01/05/2017] [Indexed: 12/18/2022] Open
Abstract
The primary vibrissae motor cortex (vM1) is responsible for generating whisking movements. In parallel, vM1 also sends information directly to the sensory barrel cortex (vS1). In this study, we investigated the effects of vM1 activation on processing of vibrissae sensory information in vS1 of the rat. To dissociate the vibrissae sensory-motor loop, we optogenetically activated vM1 and independently passively stimulated principal vibrissae. Optogenetic activation of vM1 supra-linearly amplified the response of vS1 neurons to passive vibrissa stimulation in all cortical layers measured. Maximal amplification occurred when onset of vM1 optogenetic activation preceded vibrissa stimulation by 20 ms. In addition to amplification, vM1 activation also sharpened angular tuning of vS1 neurons in all cortical layers measured. Our findings indicated that in addition to output motor signals, vM1 also sends preparatory signals to vS1 that serve to amplify and sharpen the response of neurons in the barrel cortex to incoming sensory input signals. DOI:http://dx.doi.org/10.7554/eLife.21843.001
Collapse
Affiliation(s)
- Mohamed Khateb
- The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Jackie Schiller
- The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yitzhak Schiller
- The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Department of Neurology, Rambam Medical Center, Haifa, Israel
| |
Collapse
|
24
|
Ranjbar-Slamloo Y, Arabzadeh E. High-velocity stimulation evokes "dense" population response in layer 2/3 vibrissal cortex. J Neurophysiol 2016; 117:1218-1228. [PMID: 28003414 DOI: 10.1152/jn.00815.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 12/23/2022] Open
Abstract
Supragranular layers of sensory cortex are known to exhibit sparse firing. In rodent vibrissal cortex, a small fraction of neurons in layer 2 and 3 (L2/3) respond to whisker stimulation. In this study, we combined whole cell recording and two-photon imaging in anesthetized mice and quantified the synaptic response and spiking profile of L2/3 neurons. Previous literature has shown that neurons across layers of vibrissal cortex are tuned to the velocity of whisker movement. We therefore used a broad range of stimuli that included the standard range of velocities (0-1.2 deg/ms) and extended to a "sharp" high-velocity deflection (3.8 deg/ms). Consistent with previous literature, whole cell recording revealed a sparse response to the standard range of velocities: although all recorded cells showed tuning to velocity in their postsynaptic potentials, only a small fraction produced stimulus-evoked spikes. In contrast, the sharp stimulus evoked reliable spiking in the majority of neurons. The action potential threshold of spikes evoked by the sharp stimulus was significantly lower than that of the spontaneous spikes. Juxtacellular recordings confirmed that application of sharp stimulus to single or multiple whiskers produced temporally precise spiking with minimal trial-to-trial spike count variability (Fano factors equal or close to the theoretical minimum). Two-photon imaging further confirmed that most neurons that were not responsive to the standard deflections responded to the sharp stimulus. Altogether, our results indicate that sparseness in L2/3 cortex depends on the choice of stimulus: strong single- or multiwhisker stimulation can induce the transition from sparse to "dense" population response.NEW & NOTEWORTHY In superficial layers of sensory cortex, only a small fraction of neurons fire most of the spontaneous and sensory evoked spikes. However, the functional relevance of such "sparse" activity remains unknown. We found that a "dense" population response is evoked by high-velocity micromotions applied to whiskers. Our results suggest that flashes of precisely timed population response on an almost silent background can provide a high capacity for coding of ecologically salient stimuli.
Collapse
Affiliation(s)
- Yadollah Ranjbar-Slamloo
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 0200, Australia; and.,Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University Node, Canberra, Australia
| | - Ehsan Arabzadeh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 0200, Australia; and .,Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University Node, Canberra, Australia
| |
Collapse
|
25
|
Cheng J, Sahani S, Hausrat TJ, Yang JW, Ji H, Schmarowski N, Endle H, Liu X, Li Y, Böttche R, Radyushkin K, Maric HM, Hoerder-Suabedissen A, Molnár Z, Prouvot PH, Trimbuch T, Ninnemann O, Huai J, Fan W, Visentin B, Sabbadini R, Strømgaard K, Stroh A, Luhmann HJ, Kneussel M, Nitsch R, Vogt J. Precise Somatotopic Thalamocortical Axon Guidance Depends on LPA-Mediated PRG-2/Radixin Signaling. Neuron 2016; 92:126-142. [PMID: 27641493 PMCID: PMC5065528 DOI: 10.1016/j.neuron.2016.08.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 06/15/2016] [Accepted: 08/16/2016] [Indexed: 11/30/2022]
Abstract
Precise connection of thalamic barreloids with their corresponding cortical barrels is critical for processing of vibrissal sensory information. Here, we show that PRG-2, a phospholipid-interacting molecule, is important for thalamocortical axon guidance. Developing thalamocortical fibers both in PRG-2 full knockout (KO) and in thalamus-specific KO mice prematurely entered the cortical plate, eventually innervating non-corresponding barrels. This misrouting relied on lost axonal sensitivity toward lysophosphatidic acid (LPA), which failed to repel PRG-2-deficient thalamocortical fibers. PRG-2 electroporation in the PRG-2-/- thalamus restored the aberrant cortical innervation. We identified radixin as a PRG-2 interaction partner and showed that radixin accumulation in growth cones and its LPA-dependent phosphorylation depend on its binding to specific regions within the C-terminal region of PRG-2. In vivo recordings and whisker-specific behavioral tests demonstrated sensory discrimination deficits in PRG-2-/- animals. Our data show that bioactive phospholipids and PRG-2 are critical for guiding thalamic axons to their proper cortical targets.
Collapse
Affiliation(s)
- Jin Cheng
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Sadhna Sahani
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Torben Johann Hausrat
- University Medical Center Hamburg-Eppendorf, Institute for Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg (ZMNH), 20251 Hamburg, Germany
| | - Jenq-Wei Yang
- Institute of Physiology, University Medical Center, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Haichao Ji
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Nikolai Schmarowski
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Heiko Endle
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Xinfeng Liu
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Yunbo Li
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Rahel Böttche
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Konstantin Radyushkin
- Focus Program Translational Neuroscience, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Hans M Maric
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | - Zoltán Molnár
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Pierre-Hugues Prouvot
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Thorsten Trimbuch
- Institute for Cell Biology and Neurobiology, Charité, 10117 Berlin, Germany
| | - Olaf Ninnemann
- Institute for Cell Biology and Neurobiology, Charité, 10117 Berlin, Germany
| | - Jisen Huai
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Wei Fan
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | | | | | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Albrecht Stroh
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Matthias Kneussel
- University Medical Center Hamburg-Eppendorf, Institute for Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg (ZMNH), 20251 Hamburg, Germany
| | - Robert Nitsch
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany.
| | - Johannes Vogt
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany.
| |
Collapse
|
26
|
Unichenko P, Kirischuk S, Yang JW, Baumgart J, Roskoden T, Schneider P, Sommer A, Horta G, Radyushkin K, Nitsch R, Vogt J, Luhmann HJ. Plasticity-Related Gene 1 Affects Mouse Barrel Cortex Function via Strengthening of Glutamatergic Thalamocortical Transmission. Cereb Cortex 2016; 26:3260-72. [PMID: 26980613 PMCID: PMC4898676 DOI: 10.1093/cercor/bhw066] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Plasticity-related gene-1 (PRG-1) is a brain-specific protein that modulates glutamatergic synaptic transmission. Here we investigated the functional role of PRG-1 in adolescent and adult mouse barrel cortex both in vitro and in vivo. Compared with wild-type (WT) animals, PRG-1-deficient (KO) mice showed specific behavioral deficits in tests assessing sensorimotor integration and whisker-based sensory discrimination as shown in the beam balance/walking test and sandpaper tactile discrimination test, respectively. At P25-31, spontaneous network activity in the barrel cortex in vivo was higher in KO mice compared with WT littermates, but not at P16-19. At P16-19, sensory evoked cortical responses in vivo elicited by single whisker stimulation were comparable in KO and WT mice. In contrast, at P25-31 evoked responses were smaller in amplitude and longer in duration in WT animals, whereas KO mice revealed no such developmental changes. In thalamocortical slices from KO mice, spontaneous activity was increased already at P16-19, and glutamatergic thalamocortical inputs to Layer 4 spiny stellate neurons were potentiated. We conclude that genetic ablation of PRG-1 modulates already at P16-19 spontaneous and evoked excitability of the barrel cortex, including enhancement of thalamocortical glutamatergic inputs to Layer 4, which distorts sensory processing in adulthood.
Collapse
Affiliation(s)
- Petr Unichenko
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, D-55128 Mainz, Germany
| | - Sergei Kirischuk
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, D-55128 Mainz, Germany
| | - Jenq-Wei Yang
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, D-55128 Mainz, Germany
| | - Jan Baumgart
- Institute for Microanatomy and Neurobiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, Building 708, D-55131 Mainz, Germany
| | - Thomas Roskoden
- Institute of Anatomy, Otto-von-Guericke-University of Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Patrick Schneider
- Institute of Anatomy, Otto-von-Guericke-University of Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Angela Sommer
- Institute of Anatomy, Otto-von-Guericke-University of Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Guilherme Horta
- Institute for Microanatomy and Neurobiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, Building 708, D-55131 Mainz, Germany
| | - Konstantin Radyushkin
- Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Robert Nitsch
- Institute for Microanatomy and Neurobiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, Building 708, D-55131 Mainz, Germany
| | - Johannes Vogt
- Institute for Microanatomy and Neurobiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, Building 708, D-55131 Mainz, Germany
| | - Heiko J. Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, D-55128 Mainz, Germany
| |
Collapse
|
27
|
Lucianna FA, Albarracín AL, Vrech SM, Farfán FD, Felice CJ. The mathematical whisker: A review of numerical models of the rat׳s vibrissa biomechanics. J Biomech 2016; 49:2007-2014. [PMID: 27260019 DOI: 10.1016/j.jbiomech.2016.05.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/27/2016] [Accepted: 05/15/2016] [Indexed: 11/25/2022]
Abstract
The vibrissal system of the rat refers to specialized hairs the animal uses for tactile sensory perception. Rats actively move their whiskers in a characteristic way called "whisking". Interaction with the environment produces elastic deformation of the whiskers, generating mechanical signals in the whisker-follicle complex. Advances in our understanding of the vibrissal complex biomechanics is of interest not only for the biological research field, but also for biomimetic approaches. The recent development of whisker numerical models has contributed to comprehending its sophisticated movements and its interactions with the follicle. The great diversity of behavioral patterns and complexities of the whisker-follicle ensemble encouraged the creation of many different biomechanical models. This review analyzes most of the whisker biomechanical models that have been developed so far. This review was written so as to render it accessible to readers coming from different research areas.
Collapse
Affiliation(s)
- Facundo Adrián Lucianna
- Laboratorio de Medios e Interfases (LAMEIN), Instituto Superior de Investigaciones Biológicas (INSIBIO), Universidad Nacional de Tucumán (UNT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Miguel de Tucumán, Argentina.
| | - Ana Lía Albarracín
- Laboratorio de Medios e Interfases (LAMEIN), Instituto Superior de Investigaciones Biológicas (INSIBIO), Universidad Nacional de Tucumán (UNT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Miguel de Tucumán, Argentina
| | - Sonia Mariel Vrech
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Center for Numerical and Computational Methods in Engineering (CEMCI), Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán, Argentina
| | - Fernando Daniel Farfán
- Laboratorio de Medios e Interfases (LAMEIN), Instituto Superior de Investigaciones Biológicas (INSIBIO), Universidad Nacional de Tucumán (UNT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Miguel de Tucumán, Argentina
| | - Carmelo José Felice
- Laboratorio de Medios e Interfases (LAMEIN), Instituto Superior de Investigaciones Biológicas (INSIBIO), Universidad Nacional de Tucumán (UNT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Miguel de Tucumán, Argentina
| |
Collapse
|