1
|
Lalwani P, Polk T, Garrett DD. Modulation of brain signal variability in visual cortex reflects aging, GABA, and behavior. eLife 2025; 14:e83865. [PMID: 40243542 PMCID: PMC12005714 DOI: 10.7554/elife.83865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/30/2024] [Indexed: 04/18/2025] Open
Abstract
Moment-to-moment neural variability has been shown to scale positively with the complexity of stimulus input. However, the mechanisms underlying the ability to align variability to input complexity are unknown. Using a combination of behavioral methods, computational modeling, fMRI, MR spectroscopy, and pharmacological intervention, we investigated the role of aging and GABA in neural variability during visual processing. We replicated previous findings that participants expressed higher variability when viewing more complex visual stimuli. Additionally, we found that such variability modulation was associated with higher baseline visual GABA levels and was reduced in older adults. When pharmacologically increasing GABA activity, we found that participants with lower baseline GABA levels showed a drug-related increase in variability modulation while participants with higher baseline GABA showed no change or even a reduction, consistent with an inverted-U account. Finally, higher baseline GABA and variability modulation were jointly associated with better visual-discrimination performance. These results suggest that GABA plays an important role in how humans utilize neural variability to adapt to the complexity of the visual world.
Collapse
Affiliation(s)
- Poortata Lalwani
- Department of Psychology, University of MichiganAnn ArborUnited States
| | - Thad Polk
- Department of Psychology, University of MichiganAnn ArborUnited States
| | - Douglas D Garrett
- Max Planck UCL Centre for Computational Psychiatry and Ageing ResearchBerlinGermany
- Center for Lifespan Psychology, Max Planck Institute for Human DevelopmentBerlinGermany
| |
Collapse
|
2
|
Stern M, Guzman M, Martins F, Liu AJ, Balasubramanian V. Physical Networks Become What They Learn. PHYSICAL REVIEW LETTERS 2025; 134:147402. [PMID: 40279598 DOI: 10.1103/physrevlett.134.147402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/10/2024] [Accepted: 03/10/2025] [Indexed: 04/27/2025]
Abstract
Physical networks can develop tuned responses, or functions, by design, by evolution, or by learning via local rules. In all of these cases, tunable degrees of freedom characterizing internal interactions are modified to lower a cost penalizing deviations from desired outputs. An important class of such networks follows dynamics that minimize a global physical quantity, or Lyapunov function, with respect to physical degrees of freedom. In such networks, learning is a "double optimization" process in which two quantities, one defined by the task and the other prescribed by physics, are minimized with respect to different but coupled sets of variables. Here, we show how this learning process couples the high-dimensional "cost landscape" to the "physical landscape," linking the physical and cost Hessian matrices. Physical responses of trained networks to random perturbations thus reveal the functions to which they were tuned. Our results, illustrated using electrical networks with adaptable resistors, are generic to networks that perform tasks in the linear response regime.
Collapse
Affiliation(s)
- Menachem Stern
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania 19104, USA
- AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Marcelo Guzman
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania 19104, USA
| | - Felipe Martins
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania 19104, USA
| | - Andrea J Liu
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania 19104, USA
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA
| | - Vijay Balasubramanian
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania 19104, USA
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA
- University of Oxford, Rudolf Peierls Centre for Theoretical Physics, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
3
|
Balla E, Nabbefeld G, Wiesbrock C, Linde J, Graff S, Musall S, Kampa BM. Broadband visual stimuli improve neuronal representation and sensory perception. Nat Commun 2025; 16:2957. [PMID: 40140355 PMCID: PMC11947450 DOI: 10.1038/s41467-025-58003-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Natural scenes consist of complex feature distributions that shape neural responses and perception. However, in contrast to single features like stimulus orientations, the impact of broadband feature distributions remains unclear. We, therefore, presented visual stimuli with parametrically-controlled bandwidths of orientations and spatial frequencies to awake mice while recording neural activity in their primary visual cortex (V1). Increasing orientation but not spatial frequency bandwidth strongly increased the number and response amplitude of V1 neurons. This effect was not explained by single-cell orientation tuning but rather a broadband-specific relief from center-surround suppression. Moreover, neurons in deeper V1 and the superior colliculus responded much stronger to broadband stimuli, especially when mixing orientations and spatial frequencies. Lastly, broadband stimuli increased the separability of neural responses and improved the performance of mice in a visual discrimination task. Our results show that surround modulation increases neural responses to complex natural feature distributions to enhance sensory perception.
Collapse
Affiliation(s)
- Elisabeta Balla
- Systems Neurophysiology, Department of Neurobiology, RWTH Aachen University, Aachen, Germany
- JARA BRAIN Institute of Neuroscience and Medicine (INM-10), Forschungszentrum Jülich, Jülich, Germany
- Research Training Group 2416 MultiSenses - MultiScales, RWTH Aachen University, Aachen, Germany
| | - Gerion Nabbefeld
- Systems Neurophysiology, Department of Neurobiology, RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 MultiSenses - MultiScales, RWTH Aachen University, Aachen, Germany
| | - Christopher Wiesbrock
- Systems Neurophysiology, Department of Neurobiology, RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 MultiSenses - MultiScales, RWTH Aachen University, Aachen, Germany
| | - Jenice Linde
- Systems Neurophysiology, Department of Neurobiology, RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 MultiSenses - MultiScales, RWTH Aachen University, Aachen, Germany
| | - Severin Graff
- Systems Neurophysiology, Department of Neurobiology, RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 MultiSenses - MultiScales, RWTH Aachen University, Aachen, Germany
- Institute of Biological Information Processing, Department for Bioelectronics, Forschungszentrum Jülich, Jülich, Germany
| | - Simon Musall
- Systems Neurophysiology, Department of Neurobiology, RWTH Aachen University, Aachen, Germany.
- Research Training Group 2416 MultiSenses - MultiScales, RWTH Aachen University, Aachen, Germany.
- Institute of Biological Information Processing, Department for Bioelectronics, Forschungszentrum Jülich, Jülich, Germany.
- Faculty of Medicine, Institute of Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany.
| | - Björn M Kampa
- Systems Neurophysiology, Department of Neurobiology, RWTH Aachen University, Aachen, Germany.
- JARA BRAIN Institute of Neuroscience and Medicine (INM-10), Forschungszentrum Jülich, Jülich, Germany.
- Research Training Group 2416 MultiSenses - MultiScales, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
4
|
Rooke S, Wang Z, Di Tullio RW, Balasubramanian V. Trading Place for Space: Increasing Location Resolution Reduces Contextual Capacity in Hippocampal Codes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.29.620785. [PMID: 39554091 PMCID: PMC11565849 DOI: 10.1101/2024.10.29.620785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Many animals learn cognitive maps of their environment - a simultaneous representation of context, experience, and position. Place cells in the hippocampus, named for their explicit encoding of position, are believed to be a neural substrate of these maps, with place cell "remapping" explaining how this system can represent different contexts. Briefly, place cells alter their firing properties, or "remap", in response to changes in experiential or sensory cues. Substantial sensory changes, produced, e.g., by moving between environments, cause large subpopulations of place cells to change their tuning entirely. While many studies have looked at the physiological basis of remapping, we lack explicit calculations of how the contextual capacity of the place cell system changes as a function of place field firing properties. Here, we propose a geometric approach to understanding population level activity of place cells. Using known firing field statistics, we investigate how changes to place cell firing properties affect the distances between representations of different environments within firing rate space. Using this approach, we find that the number of contexts storable by the hippocampus grows exponentially with the number of place cells, and calculate this exponent for environments of different sizes. We identify a fundamental trade-off between high resolution encoding of position and the number of storable contexts. This trade-off is tuned by place cell width, which might explain the change in firing field scale along the dorsal-ventral axis of the hippocampus. We demonstrate that clustering of place cells near likely points of confusion, such as boundaries, increases the contextual capacity of the place system within our framework and conclude by discussing how our geometric approach could be extended to include other cell types and abstract spaces.
Collapse
Affiliation(s)
| | | | | | - Vijay Balasubramanian
- Departments of Physics
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford
- Santa Fe Institute
| |
Collapse
|
5
|
Waschke L, Kamp F, van den Elzen E, Krishna S, Lindenberger U, Rutishauser U, Garrett DD. Single-neuron spiking variability in hippocampus dynamically tracks sensory content during memory formation in humans. Nat Commun 2025; 16:236. [PMID: 39747026 PMCID: PMC11696175 DOI: 10.1038/s41467-024-55406-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
During memory formation, the hippocampus is presumed to represent the content of stimuli, but how it does so is unknown. Using computational modelling and human single-neuron recordings, we show that the more precisely hippocampal spiking variability tracks the composite features of each individual stimulus, the better those stimuli are later remembered. We propose that moment-to-moment spiking variability may provide a new window into how the hippocampus constructs memories from the building blocks of our sensory world.
Collapse
Affiliation(s)
- Leonhard Waschke
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Max Planck Institute for Human Development, Berlin, Germany
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Fabian Kamp
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Max Planck Institute for Human Development, Berlin, Germany
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck School of Cognition, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Evi van den Elzen
- Tilburg School of Social and Behavioral Sciences, Tilburg University, Tilburg, The Netherlands
| | - Suresh Krishna
- Department of Physiology, McGill University, Montreal, Canada
| | - Ulman Lindenberger
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Max Planck Institute for Human Development, Berlin, Germany
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Douglas D Garrett
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Max Planck Institute for Human Development, Berlin, Germany.
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.
| |
Collapse
|
6
|
Yamane Y. Adaptation of the inferior temporal neurons and efficient visual processing. Front Behav Neurosci 2024; 18:1398874. [PMID: 39132448 PMCID: PMC11310006 DOI: 10.3389/fnbeh.2024.1398874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024] Open
Abstract
Numerous studies examining the responses of individual neurons in the inferior temporal (IT) cortex have revealed their characteristics such as two-dimensional or three-dimensional shape tuning, objects, or category selectivity. While these basic selectivities have been studied assuming that their response to stimuli is relatively stable, physiological experiments have revealed that the responsiveness of IT neurons also depends on visual experience. The activity changes of IT neurons occur over various time ranges; among these, repetition suppression (RS), in particular, is robustly observed in IT neurons without any behavioral or task constraints. I observed a similar phenomenon in the ventral visual neurons in macaque monkeys while they engaged in free viewing and actively fixated on one consistent object multiple times. This observation indicates that the phenomenon also occurs in natural situations during which the subject actively views stimuli without forced fixation, suggesting that this phenomenon is an everyday occurrence and widespread across regions of the visual system, making it a default process for visual neurons. Such short-term activity modulation may be a key to understanding the visual system; however, the circuit mechanism and the biological significance of RS remain unclear. Thus, in this review, I summarize the observed modulation types in IT neurons and the known properties of RS. Subsequently, I discuss adaptation in vision, including concepts such as efficient and predictive coding, as well as the relationship between adaptation and psychophysical aftereffects. Finally, I discuss some conceptual implications of this phenomenon as well as the circuit mechanisms and the models that may explain adaptation as a fundamental aspect of visual processing.
Collapse
Affiliation(s)
- Yukako Yamane
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
7
|
Di Tullio RW, Wei L, Balasubramanian V. Slow and steady: auditory features for discriminating animal vocalizations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599962. [PMID: 39005308 PMCID: PMC11244870 DOI: 10.1101/2024.06.20.599962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
We propose that listeners can use temporal regularities - spectro-temporal correlations that change smoothly over time - to discriminate animal vocalizations within and between species. To test this idea, we used Slow Feature Analysis (SFA) to find the most temporally regular components of vocalizations from birds (blue jay, house finch, American yellow warbler, and great blue heron), humans (English speakers), and rhesus macaques. We projected vocalizations into the learned feature space and tested intra-class (same speaker/species) and inter-class (different speakers/species) auditory discrimination by a trained classifier. We found that: 1) Vocalization discrimination was excellent (> 95%) in all cases; 2) Performance depended primarily on the ~10 most temporally regular features; 3) Most vocalizations are dominated by ~10 features with high temporal regularity; and 4) These regular features are highly correlated with the most predictable components of animal sounds.
Collapse
Affiliation(s)
- Ronald W Di Tullio
- David Rittenhouse Laboratory, Department of Physics and Astronomy, University of Pennsylvania, USA
- Computational Neuroscience Initiative, University of Pennsylvania, USA
| | - Linran Wei
- David Rittenhouse Laboratory, Department of Physics and Astronomy, University of Pennsylkvania, USA
| | - Vijay Balasubramanian
- David Rittenhouse Laboratory, Department of Physics and Astronomy, University of Pennsylvania, USA
- Computational Neuroscience Initiative, University of Pennsylvania, USA
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
8
|
Waschke L, Kamp F, van den Elzen E, Krishna S, Lindenberger U, Rutishauser U, Garrett DD. Single-neuron spiking variability in hippocampus dynamically tracks sensory content during memory formation in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.23.529684. [PMID: 36865320 PMCID: PMC9980052 DOI: 10.1101/2023.02.23.529684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
During memory formation, the hippocampus is presumed to represent the content of stimuli, but how it does so is unknown. Using computational modelling and human single-neuron recordings, we show that the more precisely hippocampal spiking variability tracks the composite features of each individual stimulus, the better those stimuli are later remembered. We propose that moment-to-moment spiking variability may provide a new window into how the hippocampus constructs memories from the building blocks of our sensory world.
Collapse
|
9
|
Matteucci G, Piasini E, Zoccolan D. Unsupervised learning of mid-level visual representations. Curr Opin Neurobiol 2024; 84:102834. [PMID: 38154417 DOI: 10.1016/j.conb.2023.102834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023]
Abstract
Recently, a confluence between trends in neuroscience and machine learning has brought a renewed focus on unsupervised learning, where sensory processing systems learn to exploit the statistical structure of their inputs in the absence of explicit training targets or rewards. Sophisticated experimental approaches have enabled the investigation of the influence of sensory experience on neural self-organization and its synaptic bases. Meanwhile, novel algorithms for unsupervised and self-supervised learning have become increasingly popular both as inspiration for theories of the brain, particularly for the function of intermediate visual cortical areas, and as building blocks of real-world learning machines. Here we review some of these recent developments, placing them in historical context and highlighting some research lines that promise exciting breakthroughs in the near future.
Collapse
Affiliation(s)
- Giulio Matteucci
- Department of Basic Neurosciences, University of Geneva, Geneva, 1206, Switzerland. https://twitter.com/giulio_matt
| | - Eugenio Piasini
- International School for Advanced Studies (SISSA), Trieste, 34136, Italy
| | - Davide Zoccolan
- International School for Advanced Studies (SISSA), Trieste, 34136, Italy.
| |
Collapse
|
10
|
Nardin M, Csicsvari J, Tkačik G, Savin C. The Structure of Hippocampal CA1 Interactions Optimizes Spatial Coding across Experience. J Neurosci 2023; 43:8140-8156. [PMID: 37758476 PMCID: PMC10697404 DOI: 10.1523/jneurosci.0194-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 10/03/2023] Open
Abstract
Although much is known about how single neurons in the hippocampus represent an animal's position, how circuit interactions contribute to spatial coding is less well understood. Using a novel statistical estimator and theoretical modeling, both developed in the framework of maximum entropy models, we reveal highly structured CA1 cell-cell interactions in male rats during open field exploration. The statistics of these interactions depend on whether the animal is in a familiar or novel environment. In both conditions the circuit interactions optimize the encoding of spatial information, but for regimes that differ in the informativeness of their spatial inputs. This structure facilitates linear decodability, making the information easy to read out by downstream circuits. Overall, our findings suggest that the efficient coding hypothesis is not only applicable to individual neuron properties in the sensory periphery, but also to neural interactions in the central brain.SIGNIFICANCE STATEMENT Local circuit interactions play a key role in neural computation and are dynamically shaped by experience. However, measuring and assessing their effects during behavior remains a challenge. Here, we combine techniques from statistical physics and machine learning to develop new tools for determining the effects of local network interactions on neural population activity. This approach reveals highly structured local interactions between hippocampal neurons, which make the neural code more precise and easier to read out by downstream circuits, across different levels of experience. More generally, the novel combination of theory and data analysis in the framework of maximum entropy models enables traditional neural coding questions to be asked in naturalistic settings.
Collapse
Affiliation(s)
- Michele Nardin
- Institute of Science and Technology Austria, Klosterneuburg AT-3400, Austria
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147
| | - Jozsef Csicsvari
- Institute of Science and Technology Austria, Klosterneuburg AT-3400, Austria
| | - Gašper Tkačik
- Institute of Science and Technology Austria, Klosterneuburg AT-3400, Austria
| | - Cristina Savin
- Center for Neural Science, New York University, New York, New York 10003
- Center for Data Science, New York University, New York, New York 10011
| |
Collapse
|
11
|
Abbey CK, Zuley ML, Victor JD. Local texture statistics augment the power spectrum in modeling radiographic judgments of breast density. J Med Imaging (Bellingham) 2023; 10:065502. [PMID: 38074625 PMCID: PMC10704190 DOI: 10.1117/1.jmi.10.6.065502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 02/12/2024] Open
Abstract
Purpose Anatomical "noise" is an important limitation of full-field digital mammography. Understanding its impact on clinical judgments is made difficult by the complexity of breast parenchyma, which results in image texture not fully captured by the power spectrum. While the number of possible parameters for characterizing anatomical noise is quite large, a specific set of local texture statistics has been shown to be visually salient, and human sensitivity to these statistics corresponds to their informativeness in natural scenes. Approach We evaluate these local texture statistics in addition to standard power-spectral measures to determine whether they have additional explanatory value for radiologists' breast density judgments. We analyzed an image database consisting of 111 disease-free mammographic screening exams (4 views each) acquired at the University of Pittsburgh Medical Center. Each exam had a breast density score assigned by the examining radiologist. Power-spectral descriptors and local image statistics were extracted from images of breast parenchyma. Model-selection criteria and accuracy were used to assess the explanatory and predictive value of local image statistics for breast density judgments. Results The model selection criteria show that adding local texture statistics to descriptors of the power spectra produce better explanatory and predictive models of radiologists' judgments of breast density. Thus, local texture statistics capture, in some form, non-Gaussian aspects of texture that radiologists are using. Conclusions Since these local texture statistics are expected to be impacted by imaging factors like modality, dose, and image processing, they suggest avenues for understanding and optimizing observer performance.
Collapse
Affiliation(s)
- Craig K. Abbey
- University of California, Santa Barbara, Department of Psychological and Brain Sciences, Santa Barbara, California, United States
| | - Margarita L. Zuley
- University of Pittsburgh Medical Center, Department of Radiology, Pittsburgh, Pennsylvania, United States
| | - Jonathan D. Victor
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, United States
| |
Collapse
|
12
|
Abstract
Some visual properties are consistent across a wide range of environments, while other properties are more labile. The efficient coding hypothesis states that many of these regularities in the environment can be discarded from neural representations, thus allocating more of the brain's dynamic range to properties that are likely to vary. This paradigm is less clear about how the visual system prioritizes different pieces of information that vary across visual environments. One solution is to prioritize information that can be used to predict future events, particularly those that guide behavior. The relationship between the efficient coding and future prediction paradigms is an area of active investigation. In this review, we argue that these paradigms are complementary and often act on distinct components of the visual input. We also discuss how normative approaches to efficient coding and future prediction can be integrated.
Collapse
Affiliation(s)
- Michael B Manookin
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA;
- Vision Science Center, University of Washington, Seattle, Washington, USA
- Karalis Johnson Retina Center, University of Washington, Seattle, Washington, USA
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA;
- Vision Science Center, University of Washington, Seattle, Washington, USA
| |
Collapse
|
13
|
Victor JD, Rizvi SM, Bush JW, Conte MM. Discrimination of textures with spatial correlations and multiple gray levels. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2023; 40:237-258. [PMID: 36821194 PMCID: PMC9971653 DOI: 10.1364/josaa.472553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/05/2022] [Indexed: 06/18/2023]
Abstract
Analysis of visual texture is important for many key steps in early vision. We study visual sensitivity to image statistics in three families of textures that include multiple gray levels and correlations in two spatial dimensions. Sensitivities to positive and negative correlations are approximately independent of correlation sign, and signals from different kinds of correlations combine quadratically. We build a computational model, fully constrained by prior studies of sensitivity to uncorrelated textures and black-and-white textures with spatial correlations. The model accounts for many features of the new data, including sign-independence, quadratic combination, and the dependence on gray-level distribution.
Collapse
Affiliation(s)
- Jonathan D. Victor
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Syed M. Rizvi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
- Currently with Centerlight Healthcare, 136-65 37th Ave., Flushing, NY 11354, USA
| | - Jacob W. Bush
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
- Currently with Shopify, 151 O’Connor St Ground floor, Ottawa, ON K2P 2L8, Canada
| | - Mary M. Conte
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| |
Collapse
|
14
|
Tesileanu T, Piasini E, Balasubramanian V. Efficient processing of natural scenes in visual cortex. Front Cell Neurosci 2022; 16:1006703. [PMID: 36545653 PMCID: PMC9760692 DOI: 10.3389/fncel.2022.1006703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Neural circuits in the periphery of the visual, auditory, and olfactory systems are believed to use limited resources efficiently to represent sensory information by adapting to the statistical structure of the natural environment. This "efficient coding" principle has been used to explain many aspects of early visual circuits including the distribution of photoreceptors, the mosaic geometry and center-surround structure of retinal receptive fields, the excess OFF pathways relative to ON pathways, saccade statistics, and the structure of simple cell receptive fields in V1. We know less about the extent to which such adaptations may occur in deeper areas of cortex beyond V1. We thus review recent developments showing that the perception of visual textures, which depends on processing in V2 and beyond in mammals, is adapted in rats and humans to the multi-point statistics of luminance in natural scenes. These results suggest that central circuits in the visual brain are adapted for seeing key aspects of natural scenes. We conclude by discussing how adaptation to natural temporal statistics may aid in learning and representing visual objects, and propose two challenges for the future: (1) explaining the distribution of shape sensitivity in the ventral visual stream from the statistics of object shape in natural images, and (2) explaining cell types of the vertebrate retina in terms of feature detectors that are adapted to the spatio-temporal structures of natural stimuli. We also discuss how new methods based on machine learning may complement the normative, principles-based approach to theoretical neuroscience.
Collapse
Affiliation(s)
- Tiberiu Tesileanu
- Center for Computational Neuroscience, Flatiron Institute, New York, NY, United States
| | - Eugenio Piasini
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Vijay Balasubramanian
- Department of Physics and Astronomy, David Rittenhouse Laboratory, University of Pennsylvania, Philadelphia, PA, United States
- Santa Fe Institute, Santa Fe, NM, United States
| |
Collapse
|
15
|
Guidolin A, Desroches M, Victor JD, Purpura KP, Rodrigues S. Geometry of spiking patterns in early visual cortex: a topological data analytic approach. J R Soc Interface 2022; 19:20220677. [PMID: 36382589 PMCID: PMC9667368 DOI: 10.1098/rsif.2022.0677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022] Open
Abstract
In the brain, spiking patterns live in a high-dimensional space of neurons and time. Thus, determining the intrinsic structure of this space presents a theoretical and experimental challenge. To address this challenge, we introduce a new framework for applying topological data analysis (TDA) to spike train data and use it to determine the geometry of spiking patterns in the visual cortex. Key to our approach is a parametrized family of distances based on the timing of spikes that quantifies the dissimilarity between neuronal responses. We applied TDA to visually driven single-unit and multiple single-unit spiking activity in macaque V1 and V2. TDA across timescales reveals a common geometry for spiking patterns in V1 and V2 which, among simple models, is most similar to that of a low-dimensional space endowed with Euclidean or hyperbolic geometry with modest curvature. Remarkably, the inferred geometry depends on timescale and is clearest for the timescales that are important for encoding contrast, orientation and spatial correlations.
Collapse
Affiliation(s)
- Andrea Guidolin
- MCEN Team, BCAM – Basque Center for Applied Mathematics, 48009 Bilbao, Basque Country, Spain
- Department of Mathematics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Mathieu Desroches
- MathNeuro Team, Inria at Université Côte d’Azur, 06902 Sophia Antipolis, France
| | - Jonathan D. Victor
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Keith P. Purpura
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Serafim Rodrigues
- MCEN Team, BCAM – Basque Center for Applied Mathematics, 48009 Bilbao, Basque Country, Spain
- Ikerbasque – The Basque Foundation for Science, 48009 Bilbao, Basque Country, Spain
| |
Collapse
|
16
|
Seenivasan P, Narayanan R. Efficient information coding and degeneracy in the nervous system. Curr Opin Neurobiol 2022; 76:102620. [PMID: 35985074 PMCID: PMC7613645 DOI: 10.1016/j.conb.2022.102620] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022]
Abstract
Efficient information coding (EIC) is a universal biological framework rooted in the fundamental principle that system responses should match their natural stimulus statistics for maximizing environmental information. Quantitatively assessed through information theory, such adaptation to the environment occurs at all biological levels and timescales. The context dependence of environmental stimuli and the need for stable adaptations make EIC a daunting task. We argue that biological complexity is the principal architect that subserves deft execution of stable EIC. Complexity in a system is characterized by several functionally segregated subsystems that show a high degree of functional integration when they interact with each other. Complex biological systems manifest heterogeneities and degeneracy, wherein structurally different subsystems could interact to yield the same functional outcome. We argue that complex systems offer several choices that effectively implement EIC and homeostasis for each of the different contexts encountered by the system.
Collapse
Affiliation(s)
- Pavithraa Seenivasan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India. https://twitter.com/PaveeSeeni
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
17
|
Edmondson LR, Jiménez Rodríguez A, Saal HP. Expansion and contraction of resource allocation in sensory bottlenecks. eLife 2022; 11:70777. [PMID: 35924884 PMCID: PMC9391039 DOI: 10.7554/elife.70777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/29/2022] [Indexed: 11/22/2022] Open
Abstract
Topographic sensory representations often do not scale proportionally to the size of their input regions, with some expanded and others contracted. In vision, the foveal representation is magnified cortically, as are the fingertips in touch. What principles drive this allocation, and how should receptor density, for example, the high innervation of the fovea or the fingertips, and stimulus statistics, for example, the higher contact frequencies on the fingertips, contribute? Building on work in efficient coding, we address this problem using linear models that optimally decorrelate the sensory signals. We introduce a sensory bottleneck to impose constraints on resource allocation and derive the optimal neural allocation. We find that bottleneck width is a crucial factor in resource allocation, inducing either expansion or contraction. Both receptor density and stimulus statistics affect allocation and jointly determine convergence for wider bottlenecks. Furthermore, we show a close match between the predicted and empirical cortical allocations in a well-studied model system, the star-nosed mole. Overall, our results suggest that the strength of cortical magnification depends on resource limits.
Collapse
Affiliation(s)
- Laura R Edmondson
- Department of Psychology, University of Sheffield, Sheffield, United Kingdom
| | | | - Hannes P Saal
- Department of Psychology, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
18
|
Functional recursion of orientation cues in figure-ground separation. Vision Res 2022; 197:108047. [PMID: 35691090 PMCID: PMC9262819 DOI: 10.1016/j.visres.2022.108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 11/23/2022]
Abstract
Visual texture is an important cue to figure-ground organization. While processing of texture differences is a prerequisite for the use of this cue to extract figure-ground organization, these stages are distinct processes. One potential indicator of this distinction is the possibility that texture statistics play a different role in the figure vs. in the ground. To determine whether this is the case, we probed figure-ground processing with a family of local image statistics that specified textures that varied in the strength and spatial scale of structure, and the extent to which features are oriented. For image statistics that generated approximately isotropic textures, the threshold for identification of figure-ground structure was determined by the difference in correlation strength in figure vs. ground, independent of whether the correlations were present in figure, ground, or both. However, for image statistics with strong orientation content, thresholds were up to two times higher for correlations in the ground, vs. the figure. This held equally for texture-defined objects with convex or concave boundaries, indicating that these threshold differences are driven by border ownership, not boundary shape. Similar threshold differences were found for presentation times ranging from 125 to 500 ms. These findings identify a qualitative difference in how texture is used for figure-ground analysis, vs. texture discrimination. Additionally, it reveals a functional recursion: texture differences are needed to identify tentative boundaries and consequent scene organization into figure and ground, but then scene organization modifies sensitivity to texture differences according to the figure-ground assignment.
Collapse
|
19
|
Yu Y, Stirman JN, Dorsett CR, Smith SL. Selective representations of texture and motion in mouse higher visual areas. Curr Biol 2022; 32:2810-2820.e5. [PMID: 35609609 DOI: 10.1016/j.cub.2022.04.091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/22/2022] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
Abstract
The mouse visual cortex contains interconnected higher visual areas, but their functional specializations are unclear. Here, we used a data-driven approach to examine the representations of complex visual stimuli by L2/3 neurons across mouse higher visual areas, measured using large-field-of-view two-photon calcium imaging. Using specialized stimuli, we found higher fidelity representations of texture in area LM, compared to area AL. Complementarily, we found higher fidelity representations of motion in area AL, compared to area LM. We also observed this segregation of information in response to naturalistic videos. Finally, we explored how receptive field models of visual cortical neurons could produce the segregated representations of texture and motion we observed. These selective representations could aid in behaviors such as visually guided navigation.
Collapse
Affiliation(s)
- Yiyi Yu
- Department of Electrical & Computer Engineering, Center for BioEngineering, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Jeffrey N Stirman
- Neuroscience Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christopher R Dorsett
- Neuroscience Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Spencer L Smith
- Department of Electrical & Computer Engineering, Center for BioEngineering, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
20
|
Karimi-Rouzbahani H, Woolgar A. When the Whole Is Less Than the Sum of Its Parts: Maximum Object Category Information and Behavioral Prediction in Multiscale Activation Patterns. Front Neurosci 2022; 16:825746. [PMID: 35310090 PMCID: PMC8924472 DOI: 10.3389/fnins.2022.825746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/24/2022] [Indexed: 11/19/2022] Open
Abstract
Neural codes are reflected in complex neural activation patterns. Conventional electroencephalography (EEG) decoding analyses summarize activations by averaging/down-sampling signals within the analysis window. This diminishes informative fine-grained patterns. While previous studies have proposed distinct statistical features capable of capturing variability-dependent neural codes, it has been suggested that the brain could use a combination of encoding protocols not reflected in any one mathematical feature alone. To check, we combined 30 features using state-of-the-art supervised and unsupervised feature selection procedures (n = 17). Across three datasets, we compared decoding of visual object category between these 17 sets of combined features, and between combined and individual features. Object category could be robustly decoded using the combined features from all of the 17 algorithms. However, the combination of features, which were equalized in dimension to the individual features, were outperformed across most of the time points by the multiscale feature of Wavelet coefficients. Moreover, the Wavelet coefficients also explained the behavioral performance more accurately than the combined features. These results suggest that a single but multiscale encoding protocol may capture the EEG neural codes better than any combination of protocols. Our findings put new constraints on the models of neural information encoding in EEG.
Collapse
Affiliation(s)
- Hamid Karimi-Rouzbahani
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
- Department of Cognitive Science, Perception in Action Research Centre, Macquarie University, Sydney, NSW, Australia
- Department of Computing, Macquarie University, Sydney, NSW, Australia
| | - Alexandra Woolgar
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
- Department of Cognitive Science, Perception in Action Research Centre, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
21
|
Caramellino R, Piasini E, Buccellato A, Carboncino A, Balasubramanian V, Zoccolan D. Rat sensitivity to multipoint statistics is predicted by efficient coding of natural scenes. eLife 2021; 10:e72081. [PMID: 34872633 PMCID: PMC8651284 DOI: 10.7554/elife.72081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/18/2021] [Indexed: 01/23/2023] Open
Abstract
Efficient processing of sensory data requires adapting the neuronal encoding strategy to the statistics of natural stimuli. Previously, in Hermundstad et al., 2014, we showed that local multipoint correlation patterns that are most variable in natural images are also the most perceptually salient for human observers, in a way that is compatible with the efficient coding principle. Understanding the neuronal mechanisms underlying such adaptation to image statistics will require performing invasive experiments that are impossible in humans. Therefore, it is important to understand whether a similar phenomenon can be detected in animal species that allow for powerful experimental manipulations, such as rodents. Here we selected four image statistics (from single- to four-point correlations) and trained four groups of rats to discriminate between white noise patterns and binary textures containing variable intensity levels of one of such statistics. We interpreted the resulting psychometric data with an ideal observer model, finding a sharp decrease in sensitivity from two- to four-point correlations and a further decrease from four- to three-point. This ranking fully reproduces the trend we previously observed in humans, thus extending a direct demonstration of efficient coding to a species where neuronal and developmental processes can be interrogated and causally manipulated.
Collapse
Affiliation(s)
| | - Eugenio Piasini
- Computational Neuroscience Initiative, University of PennsylvaniaPhiladelphiaUnited States
| | - Andrea Buccellato
- Visual Neuroscience Lab, International School for Advanced StudiesTriesteItaly
| | - Anna Carboncino
- Visual Neuroscience Lab, International School for Advanced StudiesTriesteItaly
| | - Vijay Balasubramanian
- Computational Neuroscience Initiative, University of PennsylvaniaPhiladelphiaUnited States
| | - Davide Zoccolan
- Visual Neuroscience Lab, International School for Advanced StudiesTriesteItaly
| |
Collapse
|
22
|
Ziemba CM, Simoncelli EP. Opposing effects of selectivity and invariance in peripheral vision. Nat Commun 2021; 12:4597. [PMID: 34321483 PMCID: PMC8319169 DOI: 10.1038/s41467-021-24880-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
Sensory processing necessitates discarding some information in service of preserving and reformatting more behaviorally relevant information. Sensory neurons seem to achieve this by responding selectively to particular combinations of features in their inputs, while averaging over or ignoring irrelevant combinations. Here, we expose the perceptual implications of this tradeoff between selectivity and invariance, using stimuli and tasks that explicitly reveal their opposing effects on discrimination performance. We generate texture stimuli with statistics derived from natural photographs, and ask observers to perform two different tasks: Discrimination between images drawn from families with different statistics, and discrimination between image samples with identical statistics. For both tasks, the performance of an ideal observer improves with stimulus size. In contrast, humans become better at family discrimination but worse at sample discrimination. We demonstrate through simulations that these behaviors arise naturally in an observer model that relies on a common set of physiologically plausible local statistical measurements for both tasks.
Collapse
Affiliation(s)
- Corey M Ziemba
- Center for Perceptual Systems, The University of Texas at Austin, Austin, TX, USA.
- Center for Neural Science, New York University, New York, NY, USA.
| | - Eero P Simoncelli
- Center for Neural Science, New York University, New York, NY, USA
- Flatiron Institute, Simons Foundation, New York, NY, USA
| |
Collapse
|
23
|
Piasini E, Soltuzu L, Muratore P, Caramellino R, Vinken K, Op de Beeck H, Balasubramanian V, Zoccolan D. Temporal stability of stimulus representation increases along rodent visual cortical hierarchies. Nat Commun 2021; 12:4448. [PMID: 34290247 PMCID: PMC8295255 DOI: 10.1038/s41467-021-24456-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 06/14/2021] [Indexed: 11/09/2022] Open
Abstract
Cortical representations of brief, static stimuli become more invariant to identity-preserving transformations along the ventral stream. Likewise, increased invariance along the visual hierarchy should imply greater temporal persistence of temporally structured dynamic stimuli, possibly complemented by temporal broadening of neuronal receptive fields. However, such stimuli could engage adaptive and predictive processes, whose impact on neural coding dynamics is unknown. By probing the rat analog of the ventral stream with movies, we uncovered a hierarchy of temporal scales, with deeper areas encoding visual information more persistently. Furthermore, the impact of intrinsic dynamics on the stability of stimulus representations grew gradually along the hierarchy. A database of recordings from mouse showed similar trends, additionally revealing dependencies on the behavioral state. Overall, these findings show that visual representations become progressively more stable along rodent visual processing hierarchies, with an important contribution provided by intrinsic processing.
Collapse
Affiliation(s)
- Eugenio Piasini
- Computational Neuroscience Initiative, University of Pennsylvania, Philadelphia, PA, United States
| | - Liviu Soltuzu
- Visual Neuroscience Lab, International School for Advanced Studies (SISSA), Trieste, Italy
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Paolo Muratore
- Visual Neuroscience Lab, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Riccardo Caramellino
- Visual Neuroscience Lab, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Kasper Vinken
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Hans Op de Beeck
- Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Vijay Balasubramanian
- Computational Neuroscience Initiative, University of Pennsylvania, Philadelphia, PA, United States
| | - Davide Zoccolan
- Visual Neuroscience Lab, International School for Advanced Studies (SISSA), Trieste, Italy.
| |
Collapse
|
24
|
Redundancy between spectral and higher-order texture statistics for natural image segmentation. Vision Res 2021; 187:55-65. [PMID: 34217005 DOI: 10.1016/j.visres.2021.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/23/2022]
Abstract
Visual texture, defined by local image statistics, provides important information to the human visual system for perceptual segmentation. Second-order or spectral statistics (equivalent to the Fourier power spectrum) are a well-studied segmentation cue. However, the role of higher-order statistics (HOS) in segmentation remains unclear, particularly for natural images. Recent experiments indicate that, in peripheral vision, the HOS of the widely adopted Portilla-Simoncelli texture model are a weak segmentation cue compared to spectral statistics, despite the fact that both are necessary to explain other perceptual phenomena and to support high-quality texture synthesis. Here we test whether this discrepancy reflects a property of natural image statistics. First, we observe that differences in spectral statistics across segments of natural images are redundant with differences in HOS. Second, using linear and nonlinear classifiers, we show that each set of statistics individually affords high performance in natural scenes and texture segmentation tasks, but combining spectral statistics and HOS produces relatively small improvements. Third, we find that HOS improve segmentation for a subset of images, although these images are difficult to identify. We also find that different subsets of HOS improve segmentation to a different extent, in agreement with previous physiological and perceptual work. These results show that the HOS add modestly to spectral statistics for natural image segmentation. We speculate that tuning to natural image statistics under resource constraints could explain the weak contribution of HOS to perceptual segmentation in human peripheral vision.
Collapse
|
25
|
Waschke L, Kloosterman NA, Obleser J, Garrett DD. Behavior needs neural variability. Neuron 2021; 109:751-766. [PMID: 33596406 DOI: 10.1016/j.neuron.2021.01.023] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/16/2020] [Accepted: 01/22/2021] [Indexed: 01/26/2023]
Abstract
Human and non-human animal behavior is highly malleable and adapts successfully to internal and external demands. Such behavioral success stands in striking contrast to the apparent instability in neural activity (i.e., variability) from which it arises. Here, we summon the considerable evidence across scales, species, and imaging modalities that neural variability represents a key, undervalued dimension for understanding brain-behavior relationships at inter- and intra-individual levels. We believe that only by incorporating a specific focus on variability will the neural foundation of behavior be comprehensively understood.
Collapse
Affiliation(s)
- Leonhard Waschke
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Max Planck Institute for Human Development, 14195 Berlin, Germany; Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany.
| | - Niels A Kloosterman
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Max Planck Institute for Human Development, 14195 Berlin, Germany; Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, 23562 Lübeck, Germany; Center of Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Douglas D Garrett
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Max Planck Institute for Human Development, 14195 Berlin, Germany; Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany
| |
Collapse
|
26
|
Vidal Y, Viviani E, Zoccolan D, Crepaldi D. A general-purpose mechanism of visual feature association in visual word identification and beyond. Curr Biol 2021; 31:1261-1267.e3. [PMID: 33417881 DOI: 10.1016/j.cub.2020.12.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/12/2020] [Accepted: 12/14/2020] [Indexed: 10/22/2022]
Abstract
As writing systems are a relatively novel invention (slightly over 5 kya),1 they could not have influenced the evolution of our species. Instead, reading might recycle evolutionary older mechanisms that originally supported other tasks2,3 and preceded the emergence of written language. Accordingly, it has been shown that baboons and pigeons can be trained to distinguish words from nonwords based on orthographic regularities in letter co-occurrence.4,5 This suggests that part of what is usually considered reading-specific processing could be performed by domain-general visual mechanisms. Here, we tested this hypothesis in humans: if the reading system relies on domain-general visual mechanisms, some of the effects that are often found with orthographic material should also be observable with non-orthographic visual stimuli. We performed three experiments using the same exact design but with visual stimuli that progressively departed from orthographic material. Subjects were passively familiarized with a set of composite visual items and tested in an oddball paradigm for their ability to detect novel stimuli. Participants showed robust sensitivity to the co-occurrence of features ("bigram" coding) with strings of letter-like symbols but also with made-up 3D objects and sinusoidal gratings. This suggests that the processing mechanisms involved in the visual recognition of novel words also support the recognition of other novel visual objects. These mechanisms would allow the visual system to capture statistical regularities in the visual environment.6-9 We hope that this work will inspire models of reading that, although addressing its unique aspects, place it within the broader context of vision.
Collapse
Affiliation(s)
- Yamil Vidal
- Language, Learning and Reading Lab, International School for Advanced Studies (SISSA), Cognitive Neuroscience Sector, Via Bonomea 265, Trieste 34136, Italy.
| | - Eva Viviani
- Language, Learning and Reading Lab, International School for Advanced Studies (SISSA), Cognitive Neuroscience Sector, Via Bonomea 265, Trieste 34136, Italy
| | - Davide Zoccolan
- Visual Neuroscience Lab, International School for Advanced Studies (SISSA), Cognitive Neuroscience Sector, Via Bonomea 265, Trieste 34136, Italy
| | - Davide Crepaldi
- Language, Learning and Reading Lab, International School for Advanced Studies (SISSA), Cognitive Neuroscience Sector, Via Bonomea 265, Trieste 34136, Italy.
| |
Collapse
|
27
|
Herrera-Esposito D, Coen-Cagli R, Gomez-Sena L. Flexible contextual modulation of naturalistic texture perception in peripheral vision. J Vis 2021; 21:1. [PMID: 33393962 PMCID: PMC7794279 DOI: 10.1167/jov.21.1.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 12/01/2020] [Indexed: 11/24/2022] Open
Abstract
Peripheral vision comprises most of our visual field, and is essential in guiding visual behavior. Its characteristic capabilities and limitations, which distinguish it from foveal vision, have been explained by the most influential theory of peripheral vision as the product of representing the visual input using summary statistics. Despite its success, this account may provide a limited understanding of peripheral vision, because it neglects processes of perceptual grouping and segmentation. To test this hypothesis, we studied how contextual modulation, namely the modulation of the perception of a stimulus by its surrounds, interacts with segmentation in human peripheral vision. We used naturalistic textures, which are directly related to summary-statistics representations. We show that segmentation cues affect contextual modulation, and that this is not captured by our implementation of the summary-statistics model. We then characterize the effects of different texture statistics on contextual modulation, providing guidance for extending the model, as well as for probing neural mechanisms of peripheral vision.
Collapse
Affiliation(s)
- Daniel Herrera-Esposito
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Ruben Coen-Cagli
- Department of Systems and Computational Biology and Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Leonel Gomez-Sena
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
28
|
Tesileanu T, Conte MM, Briguglio JJ, Hermundstad AM, Victor JD, Balasubramanian V. Efficient coding of natural scene statistics predicts discrimination thresholds for grayscale textures. eLife 2020; 9:e54347. [PMID: 32744505 PMCID: PMC7494356 DOI: 10.7554/elife.54347] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 07/31/2020] [Indexed: 11/13/2022] Open
Abstract
Previously, in Hermundstad et al., 2014, we showed that when sampling is limiting, the efficient coding principle leads to a 'variance is salience' hypothesis, and that this hypothesis accounts for visual sensitivity to binary image statistics. Here, using extensive new psychophysical data and image analysis, we show that this hypothesis accounts for visual sensitivity to a large set of grayscale image statistics at a striking level of detail, and also identify the limits of the prediction. We define a 66-dimensional space of local grayscale light-intensity correlations, and measure the relevance of each direction to natural scenes. The 'variance is salience' hypothesis predicts that two-point correlations are most salient, and predicts their relative salience. We tested these predictions in a texture-segregation task using un-natural, synthetic textures. As predicted, correlations beyond second order are not salient, and predicted thresholds for over 300 second-order correlations match psychophysical thresholds closely (median fractional error <0.13).
Collapse
Affiliation(s)
| | - Mary M Conte
- Feil Family Brain and Mind Institute, Weill Cornell Medical CollegeNew YorkUnited States
| | | | | | - Jonathan D Victor
- Feil Family Brain and Mind Institute, Weill Cornell Medical CollegeNew YorkUnited States
| | | |
Collapse
|
29
|
Puckett AM, Schira MM, Isherwood ZJ, Victor JD, Roberts JA, Breakspear M. Manipulating the structure of natural scenes using wavelets to study the functional architecture of perceptual hierarchies in the brain. Neuroimage 2020; 221:117173. [PMID: 32682991 PMCID: PMC8239382 DOI: 10.1016/j.neuroimage.2020.117173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 05/11/2020] [Accepted: 07/14/2020] [Indexed: 01/08/2023] Open
Abstract
Functional neuroimaging experiments that employ naturalistic stimuli (natural scenes, films, spoken narratives) provide insights into cognitive function "in the wild". Natural stimuli typically possess crowded, spectrally dense, dynamic, and multimodal properties within a rich multiscale structure. However, when using natural stimuli, various challenges exist for creating parametric manipulations with tight experimental control. Here, we revisit the typical spectral composition and statistical dependences of natural scenes, which distinguish them from abstract stimuli. We then demonstrate how to selectively degrade subtle statistical dependences within specific spatial scales using the wavelet transform. Such manipulations leave basic features of the stimuli, such as luminance and contrast, intact. Using functional neuroimaging of human participants viewing degraded natural images, we demonstrate that cortical responses at different levels of the visual hierarchy are differentially sensitive to subtle statistical dependences in natural images. This demonstration supports the notion that perceptual systems in the brain are optimally tuned to the complex statistical properties of the natural world. The code to undertake these stimulus manipulations, and their natural extension to dynamic natural scenes (films), is freely available.
Collapse
Affiliation(s)
- Alexander M Puckett
- School of Psychology, The University of Queensland, Brisbane QLD 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Australia.
| | - Mark M Schira
- School of Psychology, University of Wollongong, Wollongong NSW 2522, Australia
| | - Zoey J Isherwood
- School of Psychology, University of Nevada, Reno NV 89557, United States
| | - Jonathan D Victor
- Feil Family Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medical College, New York NY 10065, United States
| | - James A Roberts
- Brain Modelling Group, QIMR Berghofer Medical Research Institute, Brisbane QLD 4006, Australia
| | - Michael Breakspear
- Brain and Mind PRC, University of Newcastle, Newcastle NSW 2308, Australia
| |
Collapse
|
30
|
Garrett DD, Epp SM, Kleemeyer M, Lindenberger U, Polk TA. Higher performers upregulate brain signal variability in response to more feature-rich visual input. Neuroimage 2020; 217:116836. [PMID: 32283277 DOI: 10.1016/j.neuroimage.2020.116836] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 02/20/2020] [Accepted: 04/07/2020] [Indexed: 11/18/2022] Open
Abstract
The extent to which brain responses differ across varying cognitive demands is referred to as "neural differentiation," and greater neural differentiation has been associated with better cognitive performance in older adults. An emerging approach has examined within-person neural differentiation using moment-to-moment brain signal variability. A number of studies have found that brain signal variability differs by cognitive state; however, the factors that cause signal variability to rise or fall on a given task remain understudied. We hypothesized that top performers would modulate signal variability according to the complexity of sensory input, upregulating variability when processing more feature-rich stimuli. In the current study, 46 older adults passively viewed face and house stimuli during fMRI. Low-level analyses showed that house images were more feature-rich than faces, and subsequent computational modelling of ventral visual stream responses (HMAX) revealed that houses were more feature-rich especially in V1/V2-like model layers. Notably, we then found that participants exhibiting greater face-to-house upregulation of brain signal variability in V1/V2 (higher for house relative to face stimuli) also exhibited more accurate, faster, and more consistent behavioral performance on a battery of offline visuo-cognitive tasks. Further, control models revealed that face-house modulation of mean brain signal was relatively insensitive to offline cognition, providing further evidence for the importance of brain signal variability for understanding human behavior. We conclude that the ability to align brain signal variability to the richness of perceptual input may mark heightened trait-level behavioral performance in older adults.
Collapse
Affiliation(s)
- Douglas D Garrett
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, London, UK; Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany.
| | - Samira M Epp
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, London, UK; Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany
| | - Maike Kleemeyer
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany
| | - Ulman Lindenberger
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, London, UK; Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany
| | - Thad A Polk
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
31
|
Barta T, Kostal L. The effect of inhibition on rate code efficiency indicators. PLoS Comput Biol 2019; 15:e1007545. [PMID: 31790384 PMCID: PMC6907877 DOI: 10.1371/journal.pcbi.1007545] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/12/2019] [Accepted: 11/12/2019] [Indexed: 11/30/2022] Open
Abstract
In this paper we investigate the rate coding capabilities of neurons whose input signal are alterations of the base state of balanced inhibitory and excitatory synaptic currents. We consider different regimes of excitation-inhibition relationship and an established conductance-based leaky integrator model with adaptive threshold and parameter sets recreating biologically relevant spiking regimes. We find that given mean post-synaptic firing rate, counter-intuitively, increased ratio of inhibition to excitation generally leads to higher signal to noise ratio (SNR). On the other hand, the inhibitory input significantly reduces the dynamic coding range of the neuron. We quantify the joint effect of SNR and dynamic coding range by computing the metabolic efficiency-the maximal amount of information per one ATP molecule expended (in bits/ATP). Moreover, by calculating the metabolic efficiency we are able to predict the shapes of the post-synaptic firing rate histograms that may be tested on experimental data. Likewise, optimal stimulus input distributions are predicted, however, we show that the optimum can essentially be reached with a broad range of input distributions. Finally, we examine which parameters of the used neuronal model are the most important for the metabolically efficient information transfer.
Collapse
Affiliation(s)
- Tomas Barta
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Charles University, First Medical Faculty, Prague, Czech Republic
- Institute of Ecology and Environmental Sciences, INRA, Versailles, France
| | - Lubomir Kostal
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
32
|
Laminar Differences in Responses to Naturalistic Texture in Macaque V1 and V2. J Neurosci 2019; 39:9748-9756. [PMID: 31666355 DOI: 10.1523/jneurosci.1743-19.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/02/2019] [Accepted: 10/16/2019] [Indexed: 11/21/2022] Open
Abstract
Most single units recorded from macaque secondary visual cortex (V2) respond with higher firing rates to synthetic texture images containing "naturalistic" higher-order statistics than to spectrally matched "noise" images lacking these statistics. In contrast, few single units in V1 show this property. We explored how the strength and dynamics of response vary across the different layers of visual cortex by recording multiunit (defined as high-frequency power in the local field potential) and gamma-band activity evoked by brief presentations of naturalistic and noise images in V1 and V2 of anesthetized macaque monkeys of both sexes. As previously reported, recordings in V2 showed consistently stronger responses to naturalistic texture than to spectrally matched noise. In contrast to single-unit recordings, V1 multiunit activity showed a preference for images with naturalistic statistics, and in gamma-band activity this preference was comparable across V1 and V2. Sensitivity to naturalistic image structure was strongest in the supragranular and infragranular layers of V1, but weak in granular layers, suggesting that it might reflect feedback from V2. Response timing was consistent with this idea. Visual responses appeared first in V1, followed by V2. Sensitivity to naturalistic texture emerged first in V2, followed by the supragranular and infragranular layers of V1, and finally in the granular layers of V1. Our results demonstrate laminar differences in the encoding of higher-order statistics of natural texture, and suggest that this sensitivity first arises in V2 and is fed back to modulate activity in V1.SIGNIFICANCE STATEMENT The circuit mechanisms responsible for visual representations of intermediate complexity are largely unknown. We used a well validated set of synthetic texture stimuli to probe the temporal and laminar profile of sensitivity to the higher-order statistical structure of natural images. We found that this sensitivity emerges first and most strongly in V2 but soon after in V1. However, sensitivity in V1 is higher in the laminae (extragranular) and recording modalities (local field potential) most likely affected by V2 connections, suggesting a feedback origin. Our results show how sensitivity to naturalistic image structure emerges across time and circuitry in the early visual cortex.
Collapse
|
33
|
Chen J, Mandel HB, Fitzgerald JE, Clark DA. Asymmetric ON-OFF processing of visual motion cancels variability induced by the structure of natural scenes. eLife 2019; 8:e47579. [PMID: 31613221 PMCID: PMC6884396 DOI: 10.7554/elife.47579] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 10/12/2019] [Indexed: 02/05/2023] Open
Abstract
Animals detect motion using a variety of visual cues that reflect regularities in the natural world. Experiments in animals across phyla have shown that motion percepts incorporate both pairwise and triplet spatiotemporal correlations that could theoretically benefit motion computation. However, it remains unclear how visual systems assemble these cues to build accurate motion estimates. Here, we used systematic behavioral measurements of fruit fly motion perception to show how flies combine local pairwise and triplet correlations to reduce variability in motion estimates across natural scenes. By generating synthetic images with statistics controlled by maximum entropy distributions, we show that the triplet correlations are useful only when images have light-dark asymmetries that mimic natural ones. This suggests that asymmetric ON-OFF processing is tuned to the particular statistics of natural scenes. Since all animals encounter the world's light-dark asymmetries, many visual systems are likely to use asymmetric ON-OFF processing to improve motion estimation.
Collapse
Affiliation(s)
- Juyue Chen
- Interdepartmental Neuroscience ProgramYale UniversityNew HavenUnited States
| | - Holly B Mandel
- Department of Molecular, Cellular and Developmental BiologyYale UniversityNew HavenUnited States
| | - James E Fitzgerald
- Janelia Research CampusHoward Hughes Medical InstituteAshburnUnited States
| | - Damon A Clark
- Interdepartmental Neuroscience ProgramYale UniversityNew HavenUnited States
- Department of Molecular, Cellular and Developmental BiologyYale UniversityNew HavenUnited States
- Department of PhysicsYale UniversityNew HavenUnited States
- Department of NeuroscienceYale UniversityNew HavenUnited States
| |
Collapse
|
34
|
Xu Y, Raj A, Victor JD. Systematic Differences Between Perceptually Relevant Image Statistics of Brain MRI and Natural Images. Front Neuroinform 2019; 13:46. [PMID: 31293409 PMCID: PMC6603243 DOI: 10.3389/fninf.2019.00046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/03/2019] [Indexed: 11/13/2022] Open
Abstract
It is well-known that the human visual system is adapted to the statistical structure of natural scenes. Yet there are important classes of images - for example, medical images - that are not natural scenes, and therefore, that are expected to have statistical properties that deviate from the class of images that shaped the evolution and development of human vision. Here, focusing on structural brain MRI images, we quantify and characterize these deviations in terms of a set of local image statistics to which human visual sensitivity has been well-characterized, and that has previously been used for natural image analysis. We analyzed MRI images in multiple databases including T1-weighted and FLAIR sequence types, and simulated MRI images based on a published image simulation procedure for T1 images, which we also modified to generate FLAIR images. We first computed the power spectra of MRI images; spectral slopes were in the range -2.6 to -3.1 for T1 sequences, and -2.2 to -2.7 for FLAIR sequences. Analysis of local image statistics was then carried out on whitened images. For all of the databases as well as for the simulated images, we found that the three-point correlations contributed substantially to the differences between the "texture" of randomly selected ROIs. The informative nature of three-point correlations for brain MRI was greater than for natural images, and also disproportionate to human visual sensitivity. As this finding was consistent across databases, it is likely to result from brain geometry at the scale of brain MRI resolution, rather than characteristics of specific imaging and reconstruction methods.
Collapse
Affiliation(s)
- Yueyang Xu
- Department of Electrical Engineering, Stanford University, Stanford, CA, United States
| | - Ashish Raj
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Jonathan D. Victor
- Department of Neurology and Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
35
|
Olfactory Navigation and the Receptor Nonlinearity. J Neurosci 2019; 39:3713-3727. [PMID: 30846614 DOI: 10.1523/jneurosci.2512-18.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/29/2019] [Accepted: 02/23/2019] [Indexed: 11/21/2022] Open
Abstract
The demands on a sensory system depend not only on the statistics of its inputs but also on the task. In olfactory navigation, for example, the task is to find the plume source; allocation of sensory resources may therefore be driven by aspects of the plume that are informative about source location, rather than concentration per se. Here we explore the implications of this idea for encoding odor concentration. To formalize the notion that sensory resources are limited, we considered coding strategies that partitioned the odor concentration range into a set of discriminable intervals. We developed a dynamic programming algorithm that, given the distribution of odor concentrations at several locations, determines the partitioning that conveys the most information about location. We applied this analysis to planar laser-induced fluorescence measurements of spatiotemporal odor fields with realistic advection speeds (5-20 cm/s), with or without a nearby boundary or obstacle. Across all environments, the optimal coding strategy allocated more resources (i.e., more and finer discriminable intervals) to the upper end of the concentration range than would be expected from histogram equalization, the optimal strategy if the goal were to reconstruct the plume, rather than to navigate. Finally, we show that ligand binding, as captured by the Hill equation, transforms odorant concentration into response levels in a way that approximates information maximization for navigation. This behavior occurs when the Hill dissociation constant is near the mean odor concentration, an adaptive set-point that has been observed in the olfactory system of flies.SIGNIFICANCE STATEMENT The first step of olfactory processing is receptor binding, and the resulting relationship between odorant concentration and the bound receptor fraction is a saturating one. While this Hill nonlinearity can be viewed as a distortion that is imposed by the biophysics of receptor binding, here we show that it also plays an important information-processing role in olfactory navigation. Specifically, by combining a novel dynamic-programming algorithm with physical measurements of turbulent plumes, we determine the optimal strategy for encoding odor concentration when the goal is to determine location. This strategy is distinct from histogram equalization, the strategy that maximizes information about plume concentration, and is closely approximated by the Hill nonlinearity when the binding constant is near the ambient mean.
Collapse
|
36
|
Sanchez-Giraldo LG, Laskar MNU, Schwartz O. Normalization and pooling in hierarchical models of natural images. Curr Opin Neurobiol 2019; 55:65-72. [PMID: 30785005 DOI: 10.1016/j.conb.2019.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/29/2018] [Accepted: 01/13/2019] [Indexed: 11/17/2022]
Abstract
Divisive normalization and subunit pooling are two canonical classes of computation that have become widely used in descriptive (what) models of visual cortical processing. Normative (why) models from natural image statistics can help constrain the form and parameters of such classes of models. We focus on recent advances in two particular directions, namely deriving richer forms of divisive normalization, and advances in learning pooling from image statistics. We discuss the incorporation of such components into hierarchical models. We consider both hierarchical unsupervised learning from image statistics, and discriminative supervised learning in deep convolutional neural networks (CNNs). We further discuss studies on the utility and extensions of the convolutional architecture, which has also been adopted by recent descriptive models. We review the recent literature and discuss the current promises and gaps of using such approaches to gain a better understanding of how cortical neurons represent and process complex visual stimuli.
Collapse
Affiliation(s)
- Luis G Sanchez-Giraldo
- Computational Neuroscience Lab, Dept. of Computer Science, University of Miami, FL 33146, United States.
| | - Md Nasir Uddin Laskar
- Computational Neuroscience Lab, Dept. of Computer Science, University of Miami, FL 33146, United States
| | - Odelia Schwartz
- Computational Neuroscience Lab, Dept. of Computer Science, University of Miami, FL 33146, United States
| |
Collapse
|
37
|
Abstract
This is the Editorial article summarizing the scope and contents of the Special Issue, Information Theory in Neuroscience.
Collapse
|
38
|
Victor JD, Rizvi SM, Conte MM. Image segmentation driven by elements of form. Vision Res 2019; 159:21-34. [PMID: 30611696 DOI: 10.1016/j.visres.2018.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 11/27/2022]
Abstract
While luminance, contrast, orientation, and terminators are well-established features that are extracted in early visual processing and support the parsing of an image into its component regions, the role of more complex features, such as closure and convexity, is less clear. A main barrier in understanding the roles of such features is that manipulating their occurrence typically entails changes in the occurrence of more elementary features as well. To address this problem, we developed a set of synthetic visual textures, constructed by replacing the binary coloring of standard maximum-entropy textures with tokens (tiles) containing curved or angled elements. The tokens were designed so that there were no discontinuities at their edges, and so that changing the correlation structure of the underlying binary texture changed the shapes that were produced. The resulting textures were then used in psychophysical studies, demonstrating that the resulting feature differences sufficed to drive segmentation. However, in contrast to previous findings for lower-level features, sensitivities to increases and decreases of feature occurrence were unequal. Moreover, the texture-segregation response depended on the kind of token (curved vs. angular, filled-in vs. outlined), and not just on the correlation structure. Analysis of this dependence indicated that simple closed contours and convex elements suffice to drive image segmentation, in the absence of changes in lower-level cues.
Collapse
Affiliation(s)
- Jonathan D Victor
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, United States.
| | - Syed M Rizvi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, United States
| | - Mary M Conte
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, United States
| |
Collapse
|
39
|
Teşileanu T, Cocco S, Monasson R, Balasubramanian V. Adaptation of olfactory receptor abundances for efficient coding. eLife 2019; 8:39279. [PMID: 30806351 PMCID: PMC6398974 DOI: 10.7554/elife.39279] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 02/13/2019] [Indexed: 01/27/2023] Open
Abstract
Olfactory receptor usage is highly heterogeneous, with some receptor types being orders of magnitude more abundant than others. We propose an explanation for this striking fact: the receptor distribution is tuned to maximally represent information about the olfactory environment in a regime of efficient coding that is sensitive to the global context of correlated sensor responses. This model predicts that in mammals, where olfactory sensory neurons are replaced regularly, receptor abundances should continuously adapt to odor statistics. Experimentally, increased exposure to odorants leads variously, but reproducibly, to increased, decreased, or unchanged abundances of different activated receptors. We demonstrate that this diversity of effects is required for efficient coding when sensors are broadly correlated, and provide an algorithm for predicting which olfactory receptors should increase or decrease in abundance following specific environmental changes. Finally, we give simple dynamical rules for neural birth and death processes that might underlie this adaptation.
Collapse
Affiliation(s)
- Tiberiu Teşileanu
- Center for Computational BiologyFlatiron InstituteNew YorkUnited States,Initiative for the Theoretical Sciences, The Graduate CenterCity University of New YorkNew YorkUnited States,David Rittenhouse LaboratoriesUniversity of PennsylvaniaPhiladelphiaUnited States
| | - Simona Cocco
- Laboratoire de Physique StatistiqueÉcole Normale Supérieure and CNRS UMR 8550, PSL Research, UPMC Sorbonne UniversitéParisFrance
| | - Rémi Monasson
- Laboratoire de Physique ThéoriqueÉcole Normale Supérieure and CNRS UMR 8550, PSL Research, UPMC Sorbonne UniversitéParisFrance
| | - Vijay Balasubramanian
- Initiative for the Theoretical Sciences, The Graduate CenterCity University of New YorkNew YorkUnited States,David Rittenhouse LaboratoriesUniversity of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
40
|
Network constraints on learnability of probabilistic motor sequences. Nat Hum Behav 2018; 2:936-947. [PMID: 30988437 PMCID: PMC6474692 DOI: 10.1038/s41562-018-0463-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 09/28/2018] [Indexed: 11/22/2022]
Abstract
Human learners are adept at grasping the complex relationships underlying incoming sequential input1. In the present work, we formalize complex relationships as graph structures2 derived from temporal associations3,4 in motor sequences. Next, we explore the extent to which learners are sensitive to key variations in the topological properties5 inherent to those graph structures. Participants performed a probabilistic motor sequence task in which the order of button presses was determined by the traversal of graphs with modular, lattice-like, or random organization. Graph nodes each represented a unique button press and edges represented a transition between button presses. Results indicate that learning, indexed here by participants’ response times, was strongly mediated by the graph’s meso-scale organization, with modular graphs being associated with shorter response times than random and lattice graphs. Moreover, variations in a node’s number of connections (degree) and a node’s role in mediating long-distance communication (betweenness centrality) impacted graph learning, even after accounting for level of practice on that node. These results demonstrate that the graph architecture underlying temporal sequences of stimuli fundamentally constrains learning, and moreover that tools from network science provide a valuable framework for assessing how learners encode complex, temporally structured information.
Collapse
|
41
|
Młynarski WF, Hermundstad AM. Adaptive coding for dynamic sensory inference. eLife 2018; 7:32055. [PMID: 29988020 PMCID: PMC6039184 DOI: 10.7554/elife.32055] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 04/11/2018] [Indexed: 12/30/2022] Open
Abstract
Behavior relies on the ability of sensory systems to infer properties of the environment from incoming stimuli. The accuracy of inference depends on the fidelity with which behaviorally relevant properties of stimuli are encoded in neural responses. High-fidelity encodings can be metabolically costly, but low-fidelity encodings can cause errors in inference. Here, we discuss general principles that underlie the tradeoff between encoding cost and inference error. We then derive adaptive encoding schemes that dynamically navigate this tradeoff. These optimal encodings tend to increase the fidelity of the neural representation following a change in the stimulus distribution, and reduce fidelity for stimuli that originate from a known distribution. We predict dynamical signatures of such encoding schemes and demonstrate how known phenomena, such as burst coding and firing rate adaptation, can be understood as hallmarks of optimal coding for accurate inference.
Collapse
Affiliation(s)
- Wiktor F Młynarski
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Ann M Hermundstad
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
42
|
Cortical Neural Activity Predicts Sensory Acuity Under Optogenetic Manipulation. J Neurosci 2018; 38:2094-2105. [PMID: 29367406 DOI: 10.1523/jneurosci.2457-17.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/14/2017] [Accepted: 12/15/2017] [Indexed: 11/21/2022] Open
Abstract
Excitatory and inhibitory neurons in the mammalian sensory cortex form interconnected circuits that control cortical stimulus selectivity and sensory acuity. Theoretical studies have predicted that suppression of inhibition in such excitatory-inhibitory networks can lead to either an increase or, paradoxically, a decrease in excitatory neuronal firing, with consequent effects on stimulus selectivity. We tested whether modulation of inhibition or excitation in the auditory cortex of male mice could evoke such a variety of effects in tone-evoked responses and in behavioral frequency discrimination acuity. We found that, indeed, the effects of optogenetic manipulation on stimulus selectivity and behavior varied in both magnitude and sign across subjects, possibly reflecting differences in circuitry or expression of optogenetic factors. Changes in neural population responses consistently predicted behavioral changes for individuals separately, including improvement and impairment in acuity. This correlation between cortical and behavioral change demonstrates that, despite the complex and varied effects that these manipulations can have on neuronal dynamics, the resulting changes in cortical activity account for accompanying changes in behavioral acuity.SIGNIFICANCE STATEMENT Excitatory and inhibitory interactions determine stimulus specificity and tuning in sensory cortex, thereby controlling perceptual discrimination acuity. Modeling has predicted that suppressing the activity of inhibitory neurons can lead to increased or, paradoxically, decreased excitatory activity depending on the architecture of the network. Here, we capitalized on differences between subjects to test whether suppressing/activating inhibition and excitation can in fact exhibit such paradoxical effects for both stimulus sensitivity and behavioral discriminability. Indeed, the same optogenetic manipulation in the auditory cortex of different mice could improve or impair frequency discrimination acuity, predictable from the effects on cortical responses to tones. The same manipulations sometimes produced opposite changes in the behavior of different individuals, supporting theoretical predictions for inhibition-stabilized networks.
Collapse
|
43
|
Chalk M, Marre O, Tkačik G. Toward a unified theory of efficient, predictive, and sparse coding. Proc Natl Acad Sci U S A 2018; 115:186-191. [PMID: 29259111 PMCID: PMC5776796 DOI: 10.1073/pnas.1711114115] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A central goal in theoretical neuroscience is to predict the response properties of sensory neurons from first principles. To this end, "efficient coding" posits that sensory neurons encode maximal information about their inputs given internal constraints. There exist, however, many variants of efficient coding (e.g., redundancy reduction, different formulations of predictive coding, robust coding, sparse coding, etc.), differing in their regimes of applicability, in the relevance of signals to be encoded, and in the choice of constraints. It is unclear how these types of efficient coding relate or what is expected when different coding objectives are combined. Here we present a unified framework that encompasses previously proposed efficient coding models and extends to unique regimes. We show that optimizing neural responses to encode predictive information can lead them to either correlate or decorrelate their inputs, depending on the stimulus statistics; in contrast, at low noise, efficiently encoding the past always predicts decorrelation. Later, we investigate coding of naturalistic movies and show that qualitatively different types of visual motion tuning and levels of response sparsity are predicted, depending on whether the objective is to recover the past or predict the future. Our approach promises a way to explain the observed diversity of sensory neural responses, as due to multiple functional goals and constraints fulfilled by different cell types and/or circuits.
Collapse
Affiliation(s)
- Matthew Chalk
- Department of Physical Sciences, Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria;
- Sorbonne Universités, Université de Pierre et Marie Curie Paris 06, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Olivier Marre
- Sorbonne Universités, Université de Pierre et Marie Curie Paris 06, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Gašper Tkačik
- Department of Physical Sciences, Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
44
|
Victor JD, Rizvi SM, Conte MM. Two representations of a high-dimensional perceptual space. Vision Res 2017; 137:1-23. [PMID: 28549921 DOI: 10.1016/j.visres.2017.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 04/27/2017] [Accepted: 05/03/2017] [Indexed: 12/01/2022]
Abstract
A perceptual space is a mental workspace of points in a sensory domain that supports similarity and difference judgments and enables further processing such as classification and naming. Perceptual spaces are present across sensory modalities; examples include colors, faces, auditory textures, and odors. Color is perhaps the best-studied perceptual space, but it is atypical in two respects. First, the dimensions of color space are directly linked to the three cone absorption spectra, but the dimensions of generic perceptual spaces are not as readily traceable to single-neuron properties. Second, generic perceptual spaces have more than three dimensions. This is important because representing each distinguishable point in a high-dimensional space by a separate neuron or population is unwieldy; combinatorial strategies may be needed to overcome this hurdle. To study the representation of a complex perceptual space, we focused on a well-characterized 10-dimensional domain of visual textures. Within this domain, we determine perceptual distances in a threshold task (segmentation) and a suprathreshold task (border salience comparison). In N=4 human observers, we find both quantitative and qualitative differences between these sets of measurements. Quantitatively, observers' segmentation thresholds were inconsistent with their uncertainty determined from border salience comparisons. Qualitatively, segmentation thresholds suggested that distances are determined by a coordinate representation with Euclidean geometry. Border salience comparisons, in contrast, indicated a global curvature of the space, and that distances are determined by activity patterns across broadly tuned elements. Thus, our results indicate two representations of this perceptual space, and suggest that they use differing combinatorial strategies. SIGNIFICANCE STATEMENT To move from sensory signals to decisions and actions, the brain carries out a sequence of transformations. An important stage in this process is the construction of a "perceptual space" - an internal workspace of sensory information that captures similarities and differences, and enables further processing, such as classification and naming. Perceptual spaces for color, faces, visual and haptic textures and shapes, sounds, and odors (among others) are known to exist. How such spaces are represented is at present unknown. Here, using visual textures as a model, we investigate this. Psychophysical measurements suggest roles for two combinatorial strategies: one based on projections onto coordinate-like axes, and one based on patterns of activity across broadly tuned elements scattered throughout the space.
Collapse
Affiliation(s)
- Jonathan D Victor
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, United States.
| | - Syed M Rizvi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, United States
| | - Mary M Conte
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, United States
| |
Collapse
|
45
|
Abstract
In complex environments, there are costs to both ignorance and perception. An organism needs to track fitness-relevant information about its world, but the more information it tracks, the more resources it must devote to perception. As a first step towards a general understanding of this trade-off, we use a tool from information theory, rate-distortion theory, to study large, unstructured environments with fixed, randomly drawn penalties for stimuli confusion ('distortions'). We identify two distinct regimes for organisms in these environments: a high-fidelity regime where perceptual costs grow linearly with environmental complexity, and a low-fidelity regime where perceptual costs are, remarkably, independent of the number of environmental states. This suggests that in environments of rapidly increasing complexity, well-adapted organisms will find themselves able to make, just barely, the most subtle distinctions in their environment.
Collapse
Affiliation(s)
- Sarah E Marzen
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Redwood Center for Theoretical Neuroscience, and Department of Physics, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Simon DeDeo
- Department of Social and Decision Sciences, Carnegie Mellon University, 5000 Forbes Avenue, BP 208, Pittsburgh, PA 15213, USA
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
46
|
Joukes J, Yu Y, Victor JD, Krekelberg B. Recurrent Network Dynamics; a Link between Form and Motion. Front Syst Neurosci 2017; 11:12. [PMID: 28360844 PMCID: PMC5350104 DOI: 10.3389/fnsys.2017.00012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/21/2017] [Indexed: 11/28/2022] Open
Abstract
To discriminate visual features such as corners and contours, the brain must be sensitive to spatial correlations between multiple points in an image. Consistent with this, macaque V2 neurons respond selectively to patterns with well-defined multipoint correlations. Here, we show that a standard feedforward model (a cascade of linear–non-linear filters) does not capture this multipoint selectivity. As an alternative, we developed an artificial neural network model with two hierarchical stages of processing and locally recurrent connectivity. This model faithfully reproduced neurons’ selectivity for multipoint correlations. By probing the model, we gained novel insights into early form processing. First, the diverse selectivity for multipoint correlations and complex response dynamics of the hidden units in the model were surprisingly similar to those observed in V1 and V2. This suggests that both transient and sustained response dynamics may be a vital part of form computations. Second, the model self-organized units with speed and direction selectivity that was correlated with selectivity for multipoint correlations. In other words, the model units that detected multipoint spatial correlations also detected space-time correlations. This leads to the novel hypothesis that higher-order spatial correlations could be computed by the rapid, sequential assessment and comparison of multiple low-order correlations within the receptive field. This computation links spatial and temporal processing and leads to the testable prediction that the analysis of complex form and motion are closely intertwined in early visual cortex.
Collapse
Affiliation(s)
- Jeroen Joukes
- Center for Molecular and Behavioral Neuroscience, Rutgers University, NewarkNJ, USA; Behavioral and Neural Sciences Graduate Program, Rutgers University, NewarkNJ, USA
| | - Yunguo Yu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York NY, USA
| | - Jonathan D Victor
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York NY, USA
| | - Bart Krekelberg
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark NJ, USA
| |
Collapse
|
47
|
Abstract
Using our own brains to study our brains is extraordinary. For example, in vision this makes us naturally blind to our own blindness, since our impression of seeing our world clearly is consistent with our ignorance of what we do not see. Our brain employs its 'conscious' part to reason and make logical deductions using familiar rules and past experience. However, human vision employs many 'subconscious' brain parts that follow rules alien to our intuition. Our blindness to our unknown unknowns and our presumptive intuitions easily lead us astray in asking and formulating theoretical questions, as witnessed in many unexpected and counter-intuitive difficulties and failures encountered by generations of scientists. We should therefore pay a more than usual amount of attention and respect to experimental data when studying our brain. I show that this can be productive by reviewing two vision theories that have provided testable predictions and surprising insights.
Collapse
Affiliation(s)
- Li Zhaoping
- Department of Computer Science, University College London, London, UK
| |
Collapse
|
48
|
Fitzgerald JE, Clark DA. Nonlinear circuits for naturalistic visual motion estimation. eLife 2015; 4:e09123. [PMID: 26499494 PMCID: PMC4663970 DOI: 10.7554/elife.09123] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/23/2015] [Indexed: 11/13/2022] Open
Abstract
Many animals use visual signals to estimate motion. Canonical models suppose that animals estimate motion by cross-correlating pairs of spatiotemporally separated visual signals, but recent experiments indicate that humans and flies perceive motion from higher-order correlations that signify motion in natural environments. Here we show how biologically plausible processing motifs in neural circuits could be tuned to extract this information. We emphasize how known aspects of Drosophila's visual circuitry could embody this tuning and predict fly behavior. We find that segregating motion signals into ON/OFF channels can enhance estimation accuracy by accounting for natural light/dark asymmetries. Furthermore, a diversity of inputs to motion detecting neurons can provide access to more complex higher-order correlations. Collectively, these results illustrate how non-canonical computations improve motion estimation with naturalistic inputs. This argues that the complexity of the fly's motion computations, implemented in its elaborate circuits, represents a valuable feature of its visual motion estimator. DOI:http://dx.doi.org/10.7554/eLife.09123.001 Many animals have evolved the ability to estimate the speed and direction of visual motion. They use these estimates to judge their own motion, so that they can navigate through an environment, and to judge how other animals are moving, which allows them to avoid predators or detect prey. In the 1950s, a physicist and a biologist used measurements of beetle behavior in response to visual stimuli to develop a model for how the brain estimates motion. The model became known as the Hassenstein-Reichardt correlator (HRC). The HRC and related models accurately predict the behavioral and neural responses of insects and mammals to many types of motion stimuli. However, there are visual stimuli that generate motion percepts in fruit flies (and humans) that cannot be accounted for by the HRC. Are these differences between real brains and the HRC simply imperfections in visual circuits, whose neurons cannot perform idealized mathematical operations, or are these deviations intentional, somehow improving motion estimates? In other words: are the observed deviations a bug or a feature of visual circuits? To address this question, Fitzgerald and Clark evaluated how different models of motion detection performed when presented with natural scenes. Natural scenes are fundamentally different from most stimuli used in lab, since they contain a rich set of regularities that are not present in simple stimuli. Fitzgerald and Clark compared the ability of the HRC, along with new, more general models, to estimate the speed and direction at which images moved across a screen. This revealed that many models could out-perform the HRC by taking advantage of regularities in natural scenes. Those models that were tuned to perform well with natural scenes could also predict the paradoxical motion percepts that were not predicted by the HRC. This suggests that visual circuits may have evolved to perform well with natural inputs, and the paradoxical motion percepts represent a feature of the real circuit, rather than a bug. Models that performed well with natural inputs treated light and dark visual information differently. This different treatment of light and dark is a property of most visual systems, but not of the HRC or related models. In the future, these models of motion processing may help us understand how biological details of the fruit fly's visual circuits help it to estimate motion. DOI:http://dx.doi.org/10.7554/eLife.09123.002
Collapse
Affiliation(s)
| | - Damon A Clark
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States.,Department of Physics, Yale University, New Haven, United States
| |
Collapse
|
49
|
Victor JD, Thengone DJ, Rizvi SM, Conte MM. A perceptual space of local image statistics. Vision Res 2015; 117:117-35. [PMID: 26130606 DOI: 10.1016/j.visres.2015.05.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 05/28/2015] [Accepted: 05/30/2015] [Indexed: 11/17/2022]
Abstract
Local image statistics are important for visual analysis of textures, surfaces, and form. There are many kinds of local statistics, including those that capture luminance distributions, spatial contrast, oriented segments, and corners. While sensitivity to each of these kinds of statistics have been well-studied, much less is known about visual processing when multiple kinds of statistics are relevant, in large part because the dimensionality of the problem is high and different kinds of statistics interact. To approach this problem, we focused on binary images on a square lattice - a reduced set of stimuli which nevertheless taps many kinds of local statistics. In this 10-parameter space, we determined psychophysical thresholds to each kind of statistic (16 observers) and all of their pairwise combinations (4 observers). Sensitivities and isodiscrimination contours were consistent across observers. Isodiscrimination contours were elliptical, implying a quadratic interaction rule, which in turn determined ellipsoidal isodiscrimination surfaces in the full 10-dimensional space, and made predictions for sensitivities to complex combinations of statistics. These predictions, including the prediction of a combination of statistics that was metameric to random, were verified experimentally. Finally, check size had only a mild effect on sensitivities over the range from 2.8 to 14min, but sensitivities to second- and higher-order statistics was substantially lower at 1.4min. In sum, local image statistics form a perceptual space that is highly stereotyped across observers, in which different kinds of statistics interact according to simple rules.
Collapse
Affiliation(s)
- Jonathan D Victor
- Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, United States.
| | - Daniel J Thengone
- Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, United States
| | - Syed M Rizvi
- Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, United States
| | - Mary M Conte
- Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, United States
| |
Collapse
|
50
|
Yu Y, Schmid AM, Victor JD. Visual processing of informative multipoint correlations arises primarily in V2. eLife 2015; 4:e06604. [PMID: 25915622 PMCID: PMC4426555 DOI: 10.7554/elife.06604] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/24/2015] [Indexed: 11/29/2022] Open
Abstract
Using the visual system as a model, we recently showed that the efficient coding principle accounted for the allocation of computational resources in central sensory processing: when sampling an image is the main limitation, resources are devoted to compute the statistical features that are the most variable, and therefore the most informative (eLife 2014;3:e03722. DOI: 10.7554/eLife.03722 Hermundstad et al., 2014). Building on these results, we use single-unit recordings in the macaque monkey to determine where these computations—sensitivity to specific multipoint correlations—occur. We find that these computations take place in visual area V2, primarily in its supragranular layers. The demonstration that V2 neurons are sensitive to the multipoint correlations that are informative about natural images provides a common computational underpinning for diverse but well-recognized aspects of neural processing in V2, including its sensitivity to corners, junctions, illusory contours, figure/ground, and ‘naturalness.’ DOI:http://dx.doi.org/10.7554/eLife.06604.001
Collapse
Affiliation(s)
- Yunguo Yu
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, United States
| | - Anita M Schmid
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, United States
| | - Jonathan D Victor
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, United States
| |
Collapse
|