1
|
Broer T, Tsintolas N, Hammond S, Helfer A, Lee J, Purkey K, DeLuca S, Khodabukus A, Bursac N. Human Myobundle Platform for Studying the Role of Notch Signaling in Satellite Cell Phenotype and Function. Adv Healthc Mater 2025; 14:e2404695. [PMID: 40123310 DOI: 10.1002/adhm.202404695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/27/2025] [Indexed: 03/25/2025]
Abstract
Notch signaling plays a pivotal role in regulating satellite cell (SC) behavior during skeletal muscle development, homeostasis, and repair. While well-characterized in mouse models, the impact of Notch signaling in human muscle tissues remains largely underexplored. Here, a 3D tissue-engineered model of human skeletal muscle ("myobundles") is utilized as an in vitro platform for temporal control and studies of Notch singaling. Myofiber-specific overexpression of the Notch ligand, DLL1, early in myobundle differentiation increases the abundance of 3D SCs and shifts their phenotype to a more quiescent-like state, along with decreasing muscle mass and function. In contrast, myofiber-specific DLL1 overexpression after one week of myobundle differentiation does not affect 3D SC abundance or muscle function, but increases transcriptomic markers of SC quiescence, confirming the temporal dependence of SC activation and self-renewal on Notch signaling activity. Finally, for the first time these studies show that even after a transient, myofiber-specific upregulation of Notch signaling in myobundles, 3D SCs expanded from these tissues can re-form functional "secondary" myobundles containing an amplified SC pool. Future studies in the described human myobundle platform are expected to aid the development of novel Notch-targeted therapies for muscular dystrophies and aging.
Collapse
Affiliation(s)
- Torie Broer
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Nick Tsintolas
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Stewart Hammond
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Abbigail Helfer
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Joonbum Lee
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Karly Purkey
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Sophia DeLuca
- Department of Cell Biology, Duke University, Durham, NC, 27708, USA
| | - Alastair Khodabukus
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
2
|
Andonian BJ, Patel H, Xu M, Sudnick AM, Johnson JL, Kraus WE, Truskey GA, Huffman KM. Alterations in skeletal muscle health and biomechanical properties in patients with early rheumatoid arthritis: an exploratory cross-sectional study. Front Physiol 2025; 16:1575689. [PMID: 40337246 PMCID: PMC12055543 DOI: 10.3389/fphys.2025.1575689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/13/2025] [Indexed: 05/09/2025] Open
Abstract
Background Skeletal muscle disease in patients with early-stage rheumatoid arthritis (RA) is understudied. The objective of this study was to identify whether patients with early RA (symptoms <6 months) have impaired skeletal muscle health. Methods Participants with early RA (n = 10) and age-, sex-, and BMI-matched healthy controls (n = 10) underwent cross-sectional clinical, physiological, and muscle biomechanical property assessments. Upper and lower extremity muscles underwent in vivo passive biomechanical property-tone, stiffness, and elasticity-assessments via myotonometry (MyotonPro®). In vitro muscle force production and stiffness were assessed using 3D bioengineered myobundles derived from myoblasts obtained from vastus lateralis muscle biopsies. Results Despite similar muscle mass and self-reported physical activity behaviors for patients with early RA and healthy controls, patients with early RA had poorer self-reported physical function, self-reported physical health, and right-hand grip strength (p < 0.05 for all). Early RA muscle tone and stiffness were lower than in controls (p < 0.05) and had an inverse association with prednisone use (rho = -0.72, p = 0.02). While 3D bioengineered myobundle force production and passive stiffness were similar to controls, early RA myobundle stiffness correlated with swollen joint count (rho = -0.67, p = 0.04). Conclusion In this exploratory study, patients with early RA exhibited multiple skeletal muscle deficits across clinical, physiologic, and biomechanical domains compared to controls with similar muscle mass and physical activity. In vivo and in vitro skeletal muscle biomechanical assessments may be useful to identify these deficits to better understand and improve RA muscle health.
Collapse
Affiliation(s)
- Brian J. Andonian
- Division of Rheumatology and Immunology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| | - Hailee Patel
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Mingzhi Xu
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Alyssa M. Sudnick
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| | - Johanna L. Johnson
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| | - William E. Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| | - George A. Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Kim M. Huffman
- Division of Rheumatology and Immunology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
3
|
Sonaye SY, Sikder P. Bioengineered Constructs as a Tissue Engineering-Based Therapy for Volumetric Muscle Loss. TISSUE ENGINEERING. PART B, REVIEWS 2025. [PMID: 40265282 DOI: 10.1089/ten.teb.2025.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Severe skeletal muscle injuries involving substantial tissue loss can significantly impair muscle strength and functionality, reducing the quality of life for affected individuals. Such injuries, termed volumetric muscle loss, require extensive clinical intervention, as the body's innate healing mechanisms are insufficient to regenerate functional muscle. The current standard of care primarily involves autologous muscle tissue transfer, with some consideration of acellular synthetic constructs. However, both approaches have limited therapeutic efficacy, presenting challenges such as donor-site morbidity, infection risks, and suboptimal functional recovery. Over the past decade, skeletal muscle tissue engineering (SMTE) has emerged as a promising strategy for regenerating functional muscle through bioengineered constructs. Advanced biofabrication techniques, including bioprinting, have further enabled the development of synthetic constructs that closely mimic native muscle architecture. Given these advancements, a critical review of recent therapeutic strategies, their achievements, and limitations is necessary. This review examines the spectrum of bioengineered constructs developed from various biomaterials and evaluates their therapeutic potential. Special emphasis is placed on 3D bioprinting strategies and their role in creating physiologically relevant constructs for functional muscle restoration. In addition, the integration of machine learning in optimizing construct design, predicting cellular behavior, and enhancing tissue integration is discussed. The review indicates that despite significant progress in SMTE, key challenges remain, including replicating the complex structural organization of muscle tissue, minimizing fibrosis, and achieving vascularization and innervation to regenerate functional, strengthened muscle. Future research should address these barriers while prioritizing the development of translational, clinically relevant regenerative constructs. In addition, efforts should focus on advancing scalable, construct-based regenerative treatments that are readily available at the point of care and easily managed in surgical settings.
Collapse
Affiliation(s)
| | - Prabaha Sikder
- Department of Mechanical Engineering, Cleveland State University, Cleveland, Ohio, USA
| |
Collapse
|
4
|
Heisser RH, Bawa M, Shah J, Bu A, Raman R. Soft Biological Actuators for Meter-Scale Homeostatic Biohybrid Robots. Chem Rev 2025; 125:3976-4007. [PMID: 40138615 DOI: 10.1021/acs.chemrev.4c00785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Skeletal muscle's elegant protein-based architecture powers motion throughout the animal kingdom, with its constituent actomyosin complexes driving intra- and extra-cellular motion. Classical motors and recently developed soft actuators cannot match the packing density and contractility of individual muscle fibers that scale to power the motion of ants and elephants alike. Accordingly, the interdisciplinary fields of robotics and tissue engineering have combined efforts to build living muscle actuators that can power a new class of robots to be more energy-efficient, dexterous, and safe than existing motor-powered and hydraulic paradigms. Doing so ethically and at scale─creating meter-scale tissue constructs from sustainable muscle progenitor cell lines─has inspired innovations in biomaterials and tissue culture methodology. We weave discussions of muscle cell biology, materials chemistry, tissue engineering, and biohybrid design to review the state of the art in soft actuator biofabrication. Looking forward, we outline a vision for meter-scale biohybrid robotic systems and tie discussions of recent progress to long-term research goals.
Collapse
Affiliation(s)
- Ronald H Heisser
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
| | - Maheera Bawa
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
| | - Jessica Shah
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 45 Carleton St., Cambridge, Massachusetts 02142, United States of America
| | - Angel Bu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
| | - Ritu Raman
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
| |
Collapse
|
5
|
Oliver CE, Carter JL, Hong JS, Xu M, Kraus WE, Huffman KM, Truskey GA. Differential response of tissue engineered skeletal muscle from rheumatoid arthritis patients and healthy controls. Commun Biol 2025; 8:583. [PMID: 40200033 PMCID: PMC11978753 DOI: 10.1038/s42003-025-07970-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 03/20/2025] [Indexed: 04/10/2025] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease affecting articular joints and skeletal muscle. To assess the role of cytokines upon muscle strength in RA, we developed an in vitro tissue-engineered human skeletal muscle model (myobundle). Myobundles were generated using primary skeletal muscle cells from the vastus lateralis muscle of RA patients and age-matched healthy controls. RA myobundles were more sensitive to 5 ng/mL IFN-γ, exhibiting reduced contractile force and altered contraction kinetics. Addition of IL-6 with or without IFN-γ led to a small but significant increase in striated fibers. Gene sets involved in the response to hypoxia, MTOR1 signaling, and the unfolded protein response were enriched in IFN-γ-treated RA myobundles, but not IFN-γ-treated controls. Tofacitinib increased contractile force, myosin heavy chain, and PIM1 protein levels in RA myobundles treated with IFN-γ. Thus, in RA muscle, low levels of IFN-γ selectively increase gene pathways that reduce contractile force.
Collapse
Affiliation(s)
| | - Jonathan L Carter
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - James S Hong
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Mingzhi Xu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - William E Kraus
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Kim M Huffman
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
6
|
Tiper Y, Xie Z, Hofemeier A, Lad H, Luber M, Krawetz R, Betz T, Zimmermann WH, Morton AB, Segal SS, Gilbert PM. Optimizing electrical field stimulation parameters reveals the maximum contractile function of human skeletal muscle microtissues. Am J Physiol Cell Physiol 2025; 328:C1160-C1176. [PMID: 40019026 DOI: 10.1152/ajpcell.00308.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 02/20/2025] [Indexed: 03/01/2025]
Abstract
Skeletal muscle microtissues are engineered to develop therapies for restoring muscle function in patients. However, optimal electrical field stimulation (EFS) parameters to evaluate the function of muscle microtissues remain unestablished. This study reports a protocol to optimize EFS parameters for eliciting contractile force of muscle microtissues cultured in micropost platforms. Muscle microtissues were produced across an opposing pair of microposts in polydimethylsiloxane and polymethyl methacrylate culture platforms using primary, immortalized, and induced pluripotent stem cell-derived myoblasts. In response to EFS between needle electrodes, contraction deflects microposts proportional to developed force. At 5 V, pulse durations used for native muscle (0.1-1 ms) failed to elicit contraction of microtissues; durations reported for engineered muscle (5-10 ms) failed to elicit peak force. Instead, pulse durations of 20-80 ms were required to elicit peak twitch force across microtissues derived from five myoblast lines. Similarly, although peak tetanic force occurs at 20-50 Hz for native human muscles, it varied across microtissues depending on the cell line type, ranging from 7 to 60 Hz. A new parameter, the dynamic oscillation of force, captured trends during rhythmic contractions, whereas quantifying the duration-at-peak force provides an extended kinetics parameter. Our findings indicate that muscle microtissues have cell line type-specific contractile properties, yet all contract and relax more slowly than native muscle, implicating underdeveloped excitation-contraction coupling. Failure to optimize EFS parameters can mask the functional potential of muscle microtissues by underestimating force production. Optimizing and reporting EFS parameters and metrics is necessary to leverage muscle microtissues for advancing skeletal muscle therapies.NEW & NOTEWORTHY Electrical field stimulation (EFS) parameters remain to be standardized for engineered skeletal muscle. Herein, we report a protocol for defining EFS parameters that elicit the maximal contractile force of muscle microtissues cultivated in micropost devices and highlight the value of developing appropriate metrics. The dynamic oscillation of force and duration-at-peak force are introduced as novel metrics of contraction kinetics.
Collapse
Affiliation(s)
- Yekaterina Tiper
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Zhuoye Xie
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Arne Hofemeier
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Lower Saxony, Göttingen, Germany
| | - Heta Lad
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Mattias Luber
- Third Institute of Physics, University of Göttingen, Göttingen, Germany
| | - Roman Krawetz
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Cummings School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Timo Betz
- Third Institute of Physics, University of Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells", University of Göttingen, Göttingen, Germany
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Lower Saxony, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells", University of Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- German Center for Child and Adolescent Health (DZKJ), Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, Göttingen, Germany
| | - Aaron B Morton
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, United States
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, Texas, United States
| | - Steven S Segal
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Penney M Gilbert
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Yoshida A, Baba K, Takahashi H, Nagese K, Shimizu T. One-step fabrication of 3D-aligned human skeletal muscle tissue and measurement of contractile force for preclinical drug testing. Mater Today Bio 2025; 31:101456. [PMID: 39896285 PMCID: PMC11783003 DOI: 10.1016/j.mtbio.2025.101456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/18/2024] [Accepted: 01/03/2025] [Indexed: 02/04/2025] Open
Abstract
Human muscle tissue models are critical to understanding the complex physiology of skeletal muscle in studies of drug discovery, development, and toxicity profiling in the human body. However, due to the challenges in in vitro maturation of human muscle cells, few research groups developing their own tissue engineering techniques have succeeded in producing contractile human muscle tissues. Moreover, a more sophisticated method is necessary to measure contractile forces generated by the muscle tissues for preclinical studies in muscle physiology and drug discovery. Although a few research groups have established their own tissue model systems that measure contractile force, they require multi-step fabrication processes to produce human muscle tissues sufficiently functional to be able to measure the contractile forces. To improve the usability of our tissue model system, this study focused on simplifying the tissue engineering approach to produce a practical muscle tissue model. In this study, muscle satellite cells were simply mixed with a combination of fibrinogen, thrombin, and Matrigel before gel formation. The presence of muscle satellite cells induces gel compaction and spontaneously induces unidirectional stretching of the gel, resulting in the muscle satellite cells being aligned three-dimensionally with the direction of stretching. Furthermore, this gel environment promotes the maturation of the human muscle progenitor cells into aligned myofibers, also provides the tissue with an elastic platform for muscle contraction, and allows the attachment of the muscle tissue to a device for measurement of contractile force. Therefore, this one-step tissue fabrication allowed us to produce 3D-aligned human muscle tissues and this tissue model is ready to use for the measurement of contractile forces. In fact, the muscle contractions created by electrical and chemical stimulation were quantitatively determined using our measurement system. In addition, the impact of some representative drugs on this muscle tissue were able to be monitored in real-time throughout the changes in contractile forces. In conclusion, our tissue model system, produced by a simple fabrication method, can be used for preclinical in vitro studies in muscle physiology and drug discovery.
Collapse
Affiliation(s)
- Azumi Yoshida
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - Kazuki Baba
- Faculty of Pharmacy, Keio University, Tokyo, 105-8512, Japan
| | - Hironobu Takahashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - Kenichi Nagese
- Faculty of Pharmacy, Keio University, Tokyo, 105-8512, Japan
- Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| |
Collapse
|
8
|
Wroblewski OM, Kennedy CS, Vega-Soto EE, Forester CE, Su EY, Nguyen MH, Cederna PS, Larkin LM. Impact of Passaging Primary Skeletal Muscle Cell Isolates on the Engineering of Skeletal Muscle. Tissue Eng Part A 2025; 31:315-324. [PMID: 38874526 DOI: 10.1089/ten.tea.2024.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
Volumetric muscle loss (VML) is a clinical state that results in impaired skeletal muscle function. Engineered skeletal muscle can serve as a treatment for VML. Currently, large biopsies are required to achieve the cells necessary for the fabrication of engineered muscle, leading to donor-site morbidity. Amplification of cell numbers using cell passaging may increase the usefulness of a single muscle biopsy for engineering muscle tissue. In this study, we evaluated the impact of passaging cells obtained from donor muscle tissue by analyzing characteristics of in vitro cellular growth and tissue-engineered skeletal muscle unit (SMU) structure and function. Human skeletal muscle cell isolates from three separate donors (P0-Control) were compared with cells passaged once (P1), twice (P2), or three times (P3) by monitoring SMU force production and determining muscle content and structure using immunohistochemistry. Data indicated that passaging decreased the number of satellite cells and increased the population doubling time. P1 SMUs had slightly greater contractile force and P2 SMUs showed statistically significant greater force production compared with P0 SMUs with no change in SMU muscle content. In conclusion, human skeletal muscle cells can be passaged twice without negatively impacting SMU muscle content or contractile function, providing the opportunity to potentially create larger SMUs from smaller biopsies, thereby producing clinically relevant sized grafts to aid in VML repair.
Collapse
Affiliation(s)
- Olga M Wroblewski
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Christopher S Kennedy
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Emmanuel E Vega-Soto
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Celeste E Forester
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Eileen Y Su
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthew H Nguyen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Paul S Cederna
- Department of Plastic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Lisa M Larkin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Santoso J, Do SK, Verma R, Do AV, Hendricks E, Ichida JK, McCain ML. Human iPSC-Derived Motor Neuron Innervation Enhances the Differentiation of Muscle Bundles Engineered with Benchtop Fabrication Techniques. ACS Biomater Sci Eng 2025; 11:1731-1740. [PMID: 39973396 PMCID: PMC11897949 DOI: 10.1021/acsbiomaterials.4c02225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Abstract
Engineered skeletal muscle tissues are critical tools for disease modeling, drug screening, and regenerative medicine, but are limited by insufficient maturation. Because innervation is a critical regulator of skeletal muscle development and regeneration in vivo, motor neurons are hypothesized to improve the maturity of engineered skeletal muscle tissues. However, the impact of motor neurons on muscle phenotype when added prior to the onset of muscle differentiation is not clearly established. In this study, benchtop fabrication equipment was used to facilely fabricate chambers for engineering three-dimensional (3D) skeletal muscles bundles and measuring their contractile performance. Primary chick myoblasts were embedded in an extracellular matrix hydrogel solution and differentiated into engineered muscle bundles, with or without the addition of human induced pluripotent stem cell (hiPSC)-derived motor neurons. Muscle bundles differentiated with motor neurons had neurites distributed throughout their volume and a higher myogenic index compared to muscle bundles without motor neurons. Innervated muscle bundles also generated significantly higher twitch and tetanus forces in response to electrical field stimulation after 1 and 2 weeks of differentiation compared to noninnervated muscle bundles cultured with or without neurotrophic factors. Noninnervated muscle bundles also experienced a decline in rise and fall times as the culture progressed, whereas innervated muscle bundles and noninnervated muscle bundles with neurotrophic factors maintained more consistent rise and fall times. Innervated muscle bundles also expressed the highest levels of the genes for slow myosin light chain 3 (MYL3) and myoglobin (MB), which are associated with slow twitch fibers. These data suggest that motor neuron innervation enhances the structural and functional development of engineered skeletal muscle constructs and maintains them in a more oxidative phenotype.
Collapse
Affiliation(s)
- Jeffrey
W. Santoso
- Alfred
E. Mann Department of Biomedical Engineering, USC Viterbi School of
Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Stephanie K. Do
- Alfred
E. Mann Department of Biomedical Engineering, USC Viterbi School of
Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Riya Verma
- Department
of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine
of USC, University of Southern California, Los Angeles, California 90033, United States
| | - Alexander V. Do
- Alfred
E. Mann Department of Biomedical Engineering, USC Viterbi School of
Engineering, University of Southern California, Los Angeles, California 90089, United States
- Thomas
Jefferson High School for Science and Technology, Alexandria, Virginia 22312, United States
| | - Eric Hendricks
- Department
of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine
of USC, University of Southern California, Los Angeles, California 90033, United States
| | - Justin K. Ichida
- Department
of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine
of USC, University of Southern California, Los Angeles, California 90033, United States
| | - Megan L. McCain
- Alfred
E. Mann Department of Biomedical Engineering, USC Viterbi School of
Engineering, University of Southern California, Los Angeles, California 90089, United States
- Department
of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine
of USC, University of Southern California, Los Angeles, California 90033, United States
| |
Collapse
|
10
|
Duong VT, Dang TT, Le VP, Le TH, Nguyen CT, Phan HL, Seo J, Lin CC, Back SH, Koo KI. Direct extrusion of multifascicle prevascularized human skeletal muscle for volumetric muscle loss surgery. Biomaterials 2025; 314:122840. [PMID: 39321685 DOI: 10.1016/j.biomaterials.2024.122840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
Skeletal muscle is composed of multiple fascicles, which are parallel bundles of muscle fibers surrounded by connective tissues that contain blood vessels and nerves. Here, we fabricated multifascicle human skeletal muscle scaffolds that mimic the natural structure of human skeletal muscle bundles using a seven-barrel nozzle. For the core material to form the fascicle structure, human skeletal myoblasts were encapsulated in Matrigel with calcium chloride. Meanwhile, the shell that plays a role as the connective tissue, human fibroblasts and human umbilical vein endothelial cells within a mixture of porcine muscle decellularized extracellular matrix and sodium alginate at a 95:5 ratio was used. We assessed four types of extruded scaffolds monolithic-monoculture (Mo-M), monolithic-coculture (Mo-C), multifascicle-monoculture (Mu-M), and multifascicle-coculture (Mu-C) to determine the structural effect of muscle mimicking scaffold. The Mu-C scaffold outperformed other scaffolds in cell proliferation, differentiation, vascularization, mechanical properties, and functionality. In an in vivo mouse model of volumetric muscle loss, the Mu-C scaffold effectively regenerated the tibialis anterior muscle defect, demonstrating its potential for volumetric muscle transplantation. Our nozzle will be further used to produce other volumetric functional tissues, such as tendons and peripheral nerves.
Collapse
Affiliation(s)
- Van Thuy Duong
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan, 44610, Republic of Korea; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Thao Thi Dang
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Van Phu Le
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan, 44610, Republic of Korea.
| | - Thi Huong Le
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan, 44610, Republic of Korea.
| | - Chanh Trung Nguyen
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan, 44610, Republic of Korea.
| | - Huu Lam Phan
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan, 44610, Republic of Korea.
| | - Jongmo Seo
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea; Seoul National University Hospital Biomedical Research Institute, Seoul, 03080, Republic of Korea.
| | - Chien-Chi Lin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Sung Hoon Back
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea; Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan, Republic of Korea.
| | - Kyo-In Koo
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan, 44610, Republic of Korea; Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan, Republic of Korea.
| |
Collapse
|
11
|
Bu A, Afghah F, Castro N, Bawa M, Kohli S, Shah K, Rios B, Butty V, Raman R. Actuating Extracellular Matrices Decouple the Mechanical and Biochemical Effects of Muscle Contraction on Motor Neurons. Adv Healthc Mater 2025; 14:e2403712. [PMID: 39523700 PMCID: PMC11874633 DOI: 10.1002/adhm.202403712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Emerging in vivo evidence suggests that repeated muscle contraction, or exercise, impacts peripheral nerves. However, the difficulty of isolating the muscle-specific impact on motor neurons in vivo, as well as the inability to decouple the biochemical and mechanical impacts of muscle contraction in this setting, motivates investigating this phenomenon in vitro. This study demonstrates that tuning the mechanical properties of fibrin enables longitudinal culture of highly contractile skeletal muscle monolayers, enabling functional characterization of and long-term secretome harvesting from exercised tissues. Motor neurons stimulated with exercised muscle-secreted factors significantly upregulate neurite outgrowth and migration, with an effect size dependent on muscle contraction intensity. Actuating magnetic microparticles embedded within fibrin hydrogels enable dynamically stretching motor neurons and non-invasively mimicking the mechanical effects of muscle contraction. Interestingly, axonogenesis is similarly upregulated in both mechanically and biochemically stimulated motor neurons, but RNA sequencing reveals different transcriptomic signatures between groups, with biochemical stimulation having a greater impact on cell signaling related to axonogenesis and synapse maturation. This study leverages actuating extracellular matrices to robustly validate a previously hypothesized role for muscle contraction in regulating motor neuron growth and maturation from the bottom-up through both mechanical and biochemical signaling.
Collapse
Affiliation(s)
- Angel Bu
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Ferdows Afghah
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Nicolas Castro
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Maheera Bawa
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Sonika Kohli
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Karina Shah
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Brandon Rios
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Vincent Butty
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Ritu Raman
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
12
|
Ren X, Morimoto Y, Takeuchi S. Biohybrid hand actuated by multiple human muscle tissues. Sci Robot 2025; 10:eadr5512. [PMID: 39937887 DOI: 10.1126/scirobotics.adr5512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/16/2025] [Indexed: 02/14/2025]
Abstract
Cultured muscle tissue serves as a power source in biohybrid robots that demonstrate diverse motions. However, current designs typically only drive simple substrates on a small scale, limiting flexibility and controllability. To address this, we proposed a biohybrid hand with multijointed fingers powered by multiple muscle tissue actuators (MuMuTAs), bundles of thin muscle tissues. The MuMuTA can provide linear actuation with high contractile force (~8 millinewtons) and high contractile length (~4 millimeters), which can be converted into the flexion of multijointed fingers by a cable-driven mechanism. We successfully powered the biohybrid hand achieving individual control of fingers and a variety of motions using different signaling controls. This study showcases the potential of MuMuTAs as a driving source for advanced biohybrid robotics.
Collapse
Affiliation(s)
- Xinzhu Ren
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, University of Tokyo, Tokyo, Japan
| | - Yuya Morimoto
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, University of Tokyo, Tokyo, Japan
- Department of Electronic and Physical Systems, School of Fundamental Science and Engineering, Waseda University, Tokyo, Japan
| | - Shoji Takeuchi
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Guragain B, Zhang H, Wu Y, Wang Y, Wei Y, Wood GA, Ye L, Walcott GP, Zhang J, Rogers JM. Optogenetic stimulation and simultaneous optical mapping of membrane potential and calcium transients in human engineered cardiac spheroids. J Mol Cell Cardiol 2025; 199:51-59. [PMID: 39674364 PMCID: PMC11788028 DOI: 10.1016/j.yjmcc.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/16/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
Optogenetic stimulation combined with optical mapping of membrane potential (Vm) and calcium transients (CaT) is a powerful electrophysiological tool. We developed a novel experimental platform in which tissue is stimulated optogenetically while Vm and CaT are imaged simultaneously. The Vm indicator is an organic dye, while the CaT indicator is genetically encoded. We used cardiac spheroids containing cardiomyocytes and fibroblasts differentiated from human induced pluripotent stem cells as model tissue. The spheroids were genetically encoded with an optogenetic actuator, CheRiff, and the calcium indicator jRCaMP1b. The Vm indicator was the organic dye RH237. CheRiff was excited using blue light (450 nm), and both RH237 and jRCaMP1b were excited using a single band of green light (either 525-575 nm or 558-575 nm). Fluorescence emission was split and imaged by two cameras (CaT: 595-665 nm; Vm: >700 nm). The spheroids were successfully stimulated optogenetically and Vm and CaT were recorded simultaneously without cross-talk using both excitation light bands. The 525-575 nm band produced higher signal-to-noise ratios than the 558-575 nm band, but caused a slight increase in tissue excitability because of CheRiff activation. The optogenetic actuator and CaT indicator are genetically encoded and can be expressed in engineered tissue constructs. In contrast, the Vm indicator is an organic dye that can stain any tissue. This system is well-suited for studying coupling between engineered tissue grafts and host tissue because the two tissue types can be stimulated independently, and tissue activation can be unambiguously attributed to either graft or host.
Collapse
Affiliation(s)
- Bijay Guragain
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Hanyu Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Yalin Wu
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Yongyu Wang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Yuhua Wei
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Garrett A Wood
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Lei Ye
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Gregory P Walcott
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America; Department of Medicine/Cardiovascular Diseases, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America; Department of Medicine/Cardiovascular Diseases, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Jack M Rogers
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America.
| |
Collapse
|
14
|
Wei Y, Walcott G, Nguyen T, Geng X, Guragain B, Zhang H, Green A, Rosa-Garrido M, Rogers JM, Garry DJ, Ye L, Zhang J. Follistatin From hiPSC-Cardiomyocytes Promotes Myocyte Proliferation in Pigs With Postinfarction LV Remodeling. Circ Res 2025; 136:161-176. [PMID: 39692006 PMCID: PMC11747791 DOI: 10.1161/circresaha.124.325562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND When human induced pluripotent stem cells (hiPSCs) that CCND2-OE (overexpressed cyclin-D2) were differentiated into cardiomyocytes (CCND2-OEhiPSC-CMs) and administered to the infarcted hearts of immunodeficient mice, the cells proliferated after administration and repopulated >50% of the scar. Here, we knocked out human leukocyte antigen class I and class II expression in CCND2-OEhiPSC-CMs (KO/OEhiPSC-CMs) to reduce the cells' immunogenicity and then assessed the therapeutic efficacy of KO/OEhiPSC-CMs for the treatment of myocardial infarction. METHODS KO/OEhiPSC-CM and wild-type hiPSC-CM (WThiPSC-CM) spheroids were differentiated in shaking flasks, purified, characterized, and intramyocardially injected into pigs after ischemia/reperfusion injury; control animals were injected with basal medium. Cardiac function was evaluated via cardiac magnetic resonance imaging, and cardiomyocyte proliferation was assessed via immunostaining and single-nucleus RNA sequencing. RESULTS Measurements of cardiac function and scar size were significantly better in pigs treated with KO/OEhiPSC-CM spheroids than in animals treated with medium or WThiPSC-CM spheroids. KO/OEhiPSC-CMs were detected for just 1 week after administration, but assessments of cell cycle activity and proliferation were significantly higher in the endogenous pig cardiomyocytes of the hearts from the KO/OEhiPSC-CM spheroid group than in those from the other 2 groups. Single-nucleus RNA-sequencing analysis identified a cluster of proliferating cardiomyocytes that was significantly more prevalent in the KO/OEhiPSC-CM spheroid-treated hearts (3.65%) than in the hearts from the medium (0.89%) or WThiPSC-CM spheroid (1.33%) groups at week 1. YAP (Yes-associated protein) protein levels and nuclear localization were also significantly upregulated in pig cardiomyocytes after treatment with KO/OEhiPSC-CM spheroids. Follistatin, which interacts with the HIPPO/YAP pathway, was significantly more abundant in the medium from KO/OEhiPSC-CM spheroids than WThiPSC-CM spheroids (30.29±2.39 versus 16.62±0.83 ng/mL, P=0.0056). Treatment with follistatin increased WThiPSC-CM cell counts by 28.3% over 16 days in culture and promoted cardiomyocyte proliferation in the infarcted hearts of adult mice. CONCLUSIONS KO/OEhiPSC-CM spheroids significantly improved cardiac function and reduced infarct size in pig hearts after ischemia/reperfusion injury by secreting follistatin, which upregulated HIPPO/YAP signaling and proliferation in endogenous pig cardiomyocytes.
Collapse
Affiliation(s)
- Yuhua Wei
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Gregory Walcott
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
- Department of Medicine, Division of Cardiovascular Disease, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Thanh Nguyen
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Xiaoxiao Geng
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Bijay Guragain
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Hanyu Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Akazha Green
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Manuel Rosa-Garrido
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Jack M Rogers
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Daniel J Garry
- Department of Medicine, School of Medicine, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Lei Ye
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
- Department of Medicine, Division of Cardiovascular Disease, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| |
Collapse
|
15
|
Lee HS, Samolyk BL, Pins GD. Extrusion-Based Printing of Myoblast-Loaded Fibrin Microthreads to Induce Myogenesis. J Funct Biomater 2025; 16:21. [PMID: 39852577 PMCID: PMC11765554 DOI: 10.3390/jfb16010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/19/2024] [Accepted: 01/04/2025] [Indexed: 01/26/2025] Open
Abstract
Large skeletal muscle injuries such as volumetric muscle loss (VML) disrupt native tissue structures, including biophysical and biochemical signaling cues that promote the regeneration of functional skeletal muscle. Various biofabrication strategies have been developed to create engineered skeletal muscle constructs that mimic native matrix and cellular microenvironments to enhance muscle regeneration; however, there remains a need to create scalable engineered tissues that provide mechanical stability as well as structural and spatiotemporal signaling cues to promote cell-mediated regeneration of contractile skeletal muscle. We describe a novel strategy for bioprinting multifunctional myoblast-loaded fibrin microthreads (myothreads) that recapitulate the cellular microniches to drive myogenesis and aligned myotube formation. We characterized myoblast alignment, myotube formation, and tensile properties of myothreads as a function of cell-loading density and culture time. We showed that increasing myoblast loading densities enhances myotube formation. Additionally, alignment analyses indicate that the bioprinting process confers myoblast alignment in the constructs. Finally, tensile characterizations suggest that myothreads possess the structural stability to serve as a potential platform for developing scalable muscle scaffolds. We anticipate that our myothread biofabrication approach will enable us to strategically investigate biophysical and biochemical signaling cues and cellular mechanisms that enhance functional skeletal muscle regeneration for the treatment of VML.
Collapse
Affiliation(s)
| | | | - George D. Pins
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA; (H.S.L.); (B.L.S.)
| |
Collapse
|
16
|
Covert LT, Osman A, Truskey GA. Interferon-β-Induced Injury During Pediatric Muscle Differentiation: Insight Into Juvenile Dermatomyositis Pathogenesis. ACR Open Rheumatol 2025; 7:e11760. [PMID: 39439064 DOI: 10.1002/acr2.11760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
OBJECTIVE Juvenile dermatomyositis (JDM) involves up-regulated type I interferons (IFNs), including IFNβ, yet pathologic mechanisms remain poorly understood. We aimed to characterize the functional and structural effects of IFNβ on in vitro human pediatric myoblast growth and differentiation in a three-dimensional skeletal muscle model (myobundles). METHODS Myobundles fabricated from myoblasts of a healthy pediatric donor were exposed to IFNβ at 0 to 5,600 IU/mL during growth (days 1-4), differentiation (days 4-11), and/or mature (days 11-18) periods. To assess myobundle structure and function, contractile force, kinetics, and fatigue were measured at day 18 with subsequent immunohistochemistry. RESULTS Myobundles were not functionally affected by IFNβ exposure during growth period alone. However, when IFNβ exposure continued through differentiation, myobundles became dysfunctional (P < 0.0001). IFNβ during differentiation or mature periods alone resulted in dose-dependent decreases in contractility, with greater decrease in the differentiation alone group (P < 0.0001). Twitch kinetics and fatigue remained largely unchanged when myobundles were exposed to IFNβ only during growth, yet twitch time slowed (P < 0.005) and fatigue decreased (P < 0.002) when myobundles were exposed during differentiation or mature stages alone. Nuclei density and myofiber size and organization also decreased when IFNβ was added during differentiation period alone. CONCLUSION IFNβ decreases pediatric myobundle contractile function most significantly during differentiation of myoblasts to myotubes. Function is not affected when IFNβ exposure is limited to myoblast proliferation alone. These findings implicate a pathologic role for IFNβ in JDM by impairing myoblast differentiation, leading to subsequent loss of function and ongoing need for muscle regeneration and repair.
Collapse
|
17
|
DeLuca S, Strash N, Chen Y, Patsy M, Myers A, Tejeda L, Broders S, Miranda A, Jiang X, Bursac N. Engineered Cardiac Tissues as a Platform for CRISPR-Based Mitogen Discovery. Adv Healthc Mater 2025; 14:e2402201. [PMID: 39508305 PMCID: PMC11695184 DOI: 10.1002/adhm.202402201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/23/2024] [Indexed: 11/15/2024]
Abstract
Improved understanding of cardiomyocyte (CM) cell cycle regulation may allow researchers to stimulate pro-regenerative effects in injured hearts or promote maturation of human stem cell-derived CMs. Gene therapies, in particular, hold promise to induce controlled proliferation of endogenous or transplanted CMs via transient activation of mitogenic processes. Methods to identify and characterize candidate cardiac mitogens in vitro can accelerate translational efforts and contribute to the understanding of the complex regulatory landscape of CM proliferation and postnatal maturation. In this study, A CRISPR knockout-based screening strategy using in vitro neonatal rat ventricular myocyte (NRVM) monolayers is established, followed by candidate mitogen validation in mature 3-D engineered cardiac tissues (ECTs). This screen identified knockout of the purine metabolism enzyme adenosine deaminase (ADA-KO) as an effective pro-mitogenic stimulus. RNA-sequencing of ECTs further reveals increased pentose phosphate pathway (PPP) activity as the primary driver of ADA-KO-induced CM cycling. Inhibition of the pathway's rate limiting enzyme, glucose-6-phosphate dehydrogenase (G6PD), prevented ADA-KO induced CM cycling, while increasing PPP activity via G6PD overexpression increased CM cycling. Together, this study demonstrates the development and application of a genetic/tissue engineering platform for in vitro discovery and validation of new candidate mitogens affecting regenerative or maturation states of cardiomyocytes.
Collapse
Affiliation(s)
- Sophia DeLuca
- Department of Biomedical Engineering
- Department of Cell Biology, Duke University, Durham, NC, 27708, USA
| | - Nicholas Strash
- Department of Biomedical Engineering
- Department of Cell Biology, Duke University, Durham, NC, 27708, USA
| | | | | | | | | | | | | | | | - Nenad Bursac
- Department of Biomedical Engineering
- Department of Cell Biology, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
18
|
Santoso JW, Do SK, Verma R, Do AV, Hendricks E, Ichida JK, McCain ML. Human iPSC-derived motor neuron innervation enhances the differentiation of muscle bundles engineered with benchtop fabrication techniques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626391. [PMID: 39677637 PMCID: PMC11642770 DOI: 10.1101/2024.12.02.626391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Engineered skeletal muscle tissues are critical tools for disease modeling, drug screening, and regenerative medicine, but are limited by insufficient maturation. Because innervation is a critical regulator of skeletal muscle development and regeneration in vivo, motor neurons are hypothesized to improve the maturity of engineered skeletal muscle tissues. Although motor neurons have been added to pre-engineered muscle constructs, the impact of motor neurons added prior to the onset of muscle differentiation has not been evaluated. In this study, benchtop fabrication equipment was used to facilely fabricate chambers for engineering 3-dimensional (3-D) skeletal muscles bundles and measuring their contractile performance. Primary chick myoblasts were embedded in an extracellular matrix hydrogel solution and differentiated into engineered muscle bundles, with or without the addition of human induced pluripotent stem cell (hiPSC)-derived motor neurons. Muscle bundles differentiated with motor neurons had neurites distributed throughout their volume and a higher myogenic index compared to muscle bundles without motor neurons. Innervated muscle bundles also generated significantly higher twitch and tetanus forces in response to electrical field stimulation after one and two weeks of differentiation compared to non-innervated muscle bundles cultured with or without neurotrophic factors. Non-innervated muscle bundles also experienced a decline in rise and fall times as the culture progressed, whereas innervated muscle bundles and non-innervated muscle bundles with neurotrophic factors maintained more consistent rise and fall times. Innervated muscle bundles also expressed the highest levels of the genes for slow myosin light chain 3 (MYL3) and myoglobin (MB), which are associated with slow twitch fibers. These data suggest that motor neuron innervation enhances the structural and functional development of engineered skeletal muscle constructs and maintains them in a more oxidative phenotype.
Collapse
Affiliation(s)
- Jeffrey W. Santoso
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Stephanie K. Do
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Riya Verma
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| | - Alexander V. Do
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Thomas Jefferson Highschool for Science and Technology, Alexandria, VA 22312, USA
| | - Eric Hendricks
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| | - Justin K. Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| | - Megan L. McCain
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
19
|
Lee MC, Jodat YA, Endo Y, Rodríguez-delaRosa A, Zhang T, Karvar M, Tanoury ZA, Quint J, Kamperman T, Kiaee K, Ochoa SL, Shi K, Huang Y, Rosales MP, Lee H, Kim J, Ceron EL, Reyes IG, Panayi AC, Wang X, Kim KT, Moon JI, Park SG, Lee K, Calabrese MA, Lee J, Tamayol A, Lee L, Pourquié O, Kim WJ, Sinha I, Shin SR. Engineering large-scale hiPSC-derived vessel-integrated muscle-like lattices for enhanced volumetric muscle regeneration. Trends Biotechnol 2024; 42:1715-1744. [PMID: 39306493 PMCID: PMC11625013 DOI: 10.1016/j.tibtech.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 12/08/2024]
Abstract
Engineering biomimetic tissue implants with human induced pluripotent stem cells (hiPSCs) holds promise for repairing volumetric tissue loss. However, these implants face challenges in regenerative capability, survival, and geometric scalability at large-scale injury sites. Here, we present scalable vessel-integrated muscle-like lattices (VMLs), containing dense and aligned hiPSC-derived myofibers alongside passively perfusable vessel-like microchannels inside an endomysium-like supporting matrix using an embedded multimaterial bioprinting technology. The contractile and millimeter-long myofibers are created in mechanically tailored and nanofibrous extracellular matrix-based hydrogels. Incorporating vessel-like lattice enhances myofiber maturation in vitro and guides host vessel invasion in vivo, improving implant integration. Consequently, we demonstrate successful de novo muscle formation and muscle function restoration through a combinatorial effect between improved graft-host integration and its increased release of paracrine factors within volumetric muscle loss injury models. The proposed modular bioprinting technology enables scaling up to centimeter-sized prevascularized hiPSC-derived muscle tissues with custom geometries for next-generation muscle regenerative therapies.
Collapse
Affiliation(s)
- Myung Chul Lee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Medicinal Materials Research Center, Korea Institute of Science and Technology, Seoul, 02792 Republic of Korea
| | - Yasamin A. Jodat
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Yori Endo
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alejandra Rodríguez-delaRosa
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02138
| | - Ting Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Mehran Karvar
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ziad Al Tanoury
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02138
| | - Jacob Quint
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Lincoln, NE, 68588, USA
| | - Tom Kamperman
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Kiavash Kiaee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Sofia Lara Ochoa
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Kun Shi
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Yike Huang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Montserrat Pineda Rosales
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Hyeseon Lee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Jiseong Kim
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Eder Luna Ceron
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Isaac Garcia Reyes
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Adriana C. Panayi
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xichi Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Ki-Tae Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Dental Multi-omics Center, Seoul National University, Seoul, 08826, Republic of Korea
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae-I Moon
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Dental Multi-omics Center, Seoul National University, Seoul, 08826, Republic of Korea
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung Gwa Park
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Dental Multi-omics Center, Seoul National University, Seoul, 08826, Republic of Korea
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kangju Lee
- Department of Healthcare and Medical Engineering, Chonnam National University, Yeosu 59626, South Korea
| | - Michelle A. Calabrese
- Chemical Engineering and Materials Science Department, University of Minnesota, Minneapolis, MN 55455, USA
| | - Junmin Lee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Lincoln, NE, 68588, USA
| | - Luke Lee
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Korea
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Korea
| | - Olivier Pourquié
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02138
| | - Woo-Jin Kim
- Correspondence: (I.S.), (W.J.K.), (S.R.S.), Twitter: Yasamin A. Jodat: @YasaminJodat
| | - Indranil Sinha
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Lead contact
| |
Collapse
|
20
|
Bogomolova AP, Katrukha IA. Troponins and Skeletal Muscle Pathologies. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:2083-2106. [PMID: 39865025 DOI: 10.1134/s0006297924120010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/19/2024] [Accepted: 12/01/2024] [Indexed: 01/28/2025]
Abstract
Skeletal muscles account for ~30-40% of the total weight of human body and are responsible for its most important functions, including movement, respiration, thermogenesis, and glucose and protein metabolism. Skeletal muscle damage negatively impacts the whole-body functioning, leading to deterioration of the quality of life and, in severe cases, death. Therefore, timely diagnosis and therapy for skeletal muscle dysfunction are important goals of modern medicine. In this review, we focused on the skeletal troponins that are proteins in the thin filaments of muscle fibers. Skeletal troponins play a key role in regulation of muscle contraction. Biochemical properties of these proteins and their use as biomarkers of skeletal muscle damage are described in this review. One of the most convenient and sensitive methods of protein biomarker measurement in biological liquids is immunochemical analysis; hence, we examined the factors that influence immunochemical detection of skeletal troponins and should be taken into account when developing diagnostic test systems. Also, we reviewed the available data on the skeletal troponin mutations that are considered to be associated with pathologies leading to the development of diseases and discussed utilization of troponins as drug targets for treatment of the skeletal muscle disorders.
Collapse
Affiliation(s)
- Agnessa P Bogomolova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Hytest Ltd., Turku, Finland
| | - Ivan A Katrukha
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Hytest Ltd., Turku, Finland
| |
Collapse
|
21
|
Maxey AP, Wheeler SJ, Travis JM, McCain ML. Contractile responses of engineered human μmyometrium to prostaglandins and inflammatory cytokines. APL Bioeng 2024; 8:046115. [PMID: 39734362 PMCID: PMC11672207 DOI: 10.1063/5.0233737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/05/2024] [Indexed: 12/31/2024] Open
Abstract
Preterm labor is a prevalent public health problem and occurs when the myometrium, the smooth muscle layer of the uterus, begins contracting before the fetus reaches full term. Abnormal contractions of the myometrium also underlie painful menstrual cramps, known as dysmenorrhea. Both disorders have been associated with increased production of prostaglandins and cytokines, yet the functional impacts of inflammatory mediators on the contractility of human myometrium have not been fully established, in part due to a lack of effective model systems. To address this, we engineered human myometrial microtissues (μmyometrium) on compliant hydrogels designed for traction force microscopy. We then measured μmyometrium contractility in response to a panel of compounds with known contractile effects and inflammatory mediators. We observed that prostaglandin F2α, interleukin 6, and interleukin 8 induced contraction, while prostaglandin E1 and prostaglandin E2 induced relaxation. Our data suggest that inflammation may be a key factor modulating uterine contractility in conditions including, but not limited to, preterm labor or dysmenorrhea. More broadly, our μmyometrium model can be used to systematically identify the functional impact of many small molecules on human myometrium.
Collapse
Affiliation(s)
- Antonina P. Maxey
- Laboratory for Living Systems Engineering, Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California, 90089, USA
| | - Sage J. Wheeler
- Laboratory for Living Systems Engineering, Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California, 90089, USA
| | - Jaya M. Travis
- Laboratory for Living Systems Engineering, Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California, 90089, USA
| | | |
Collapse
|
22
|
Jo B, Motoi K, Morimoto Y, Takeuchi S. Dynamic and Static Workout of In Vitro Skeletal Muscle Tissue through a Weight Training Device. Adv Healthc Mater 2024; 13:e2401844. [PMID: 39212188 PMCID: PMC11670278 DOI: 10.1002/adhm.202401844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/28/2024] [Indexed: 09/04/2024]
Abstract
Enhancing muscle strength through workouts is a key factor in improving physical activity and maintaining metabolic profiles. The controversial results concerning the impacts of weight training often arise from clinical experiments that require controlled experimental conditions. In this study, a weight training system for a muscle development model is presented, which is capable of performing weight training motions with adjustable weight loads. Through the implementation of cultured skeletal muscle tissue with floating structures and a flexible ribbon, both isotonic (dynamic change in muscle length) and isometric (static in muscle length) exercises can be performed without the deflection of the tissue. Quantitative analysis of contraction force, changes in metabolic processes, and muscle morphology under different weight training conditions demonstrates the effectiveness of the proposed system. Our proposed system holds potential for establishing effective muscle development and for further applications in rehabilitation training methods.
Collapse
Affiliation(s)
- Byeongwook Jo
- Mechano‐InformaticsGraduate School of Information Science and TechnologyThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| | - Kentaro Motoi
- Mechano‐InformaticsGraduate School of Information Science and TechnologyThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| | - Yuya Morimoto
- Electronic and Physical SystemsSchool of Fundamental Science and EngineeringWaseda University3‐4‐1 Okubo, Shinjuku‐kuTokyo169‐8555Japan
| | - Shoji Takeuchi
- Mechano‐InformaticsGraduate School of Information Science and TechnologyThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
- International Research for Center for Neurointelligence (WPI‐IRCN)The University of Tokyo Institutes for Advanced StudyThe University of Tokyo7‐3‐1 Hongo Bunkyo‐kuTokyo113‐0033Japan
- Institute of Industrial ScienceThe University of Tokyo4‐6‐1 Komaba, Meguro‐kuTokyo153‐8505Japan
| |
Collapse
|
23
|
Li H, Shadrin I, Helfer A, Heman K, Rao L, Curtis C, Palmer GM, Bursac N. In vitro vascularization improves in vivo functionality of human engineered cardiac tissues. Acta Biomater 2024:S1742-7061(24)00667-6. [PMID: 39528062 DOI: 10.1016/j.actbio.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/28/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Engineered human cardiac tissues hold great promise for disease modeling, drug development, and regenerative therapy. For regenerative applications, successful engineered tissue engraftment in vivo requires rapid vascularization and blood perfusion post-implantation. In the present study, we engineered highly functional, vascularized cardiac tissues ("cardiopatches") by co-culturing human induced pluripotent stem cell-derived cardiomyocytes (hiPSCCMs) and endothelial cells (hiPSC-ECs) in optimized serum-free media. The vascularized cardiopatches displayed stable capillary networks over 4 weeks of culture, the longest reported in the field, while maintaining high contractile stress (>15 mN/mm2) and fast conduction velocity (>20 cm/s). Robustness of the method was confirmed using two distinct hiPSC-EC sources. Upon implantation into dorsal-skinfold chambers in immunocompromised mice, in vitro vascularized cardiopatches exhibited improved angiogenesis compared to avascular implants. Significant lumenization of the engineered human vasculature and anastomosis with host mouse vessels yielded the formation of hybrid human-mouse capillaries and robust cardiopatch perfusion by blood. Moreover, compared to avascular tissues, the implanted vascularized cardiopatches exhibited significantly higher conduction velocity and Ca2+ transient amplitude, longitudinally monitored in live mice for the first time. Overall, we demonstrate successful 4-week vascularization of engineered human cardiac tissues without loss of function in vitro, which promotes tissue functionality upon implantation in vivo. STATEMENT OF SIGNIFICANCE: Complex interactions between cardiac muscle fibers and surrounding capillaries are critical for everyday function of the heart. Tissue engineering is a powerful method to recreate functional cardiac muscle and its vascular network, which are both lost during a heart attack. Our study demonstrates in vitro engineering of dense capillary networks within highly functional engineered heart tissues that successfully maintain the structure, electrical, and mechanical function long-term. In mice, human capillaries from these engineered tissues integrate with host mouse capillaries to allow blood perfusion and support improved implant function. In the future, the developed vascularized engineered heart tissues will be used for in vitro studies of cardiac development and disease and as a potential regenerative therapy for heart attack.
Collapse
Affiliation(s)
- Hanjun Li
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Ilya Shadrin
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Abbigail Helfer
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Karen Heman
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Lingjun Rao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Caroline Curtis
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Gregory M Palmer
- Department of Radiation Oncology, Cancer Biology Division at Duke University Medical Center, Duke University, NC 27708, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
24
|
Chen X, Sun T, Shimoda S, Wang H, Huang Q, Fukuda T, Shi Q. A Micromanipulation-Actuated Large-Scale Screening to Identify Optimized Microphysiological Model Parameters in Skeletal Muscle Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403622. [PMID: 39264263 PMCID: PMC11600204 DOI: 10.1002/advs.202403622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/09/2024] [Indexed: 09/13/2024]
Abstract
Hydrogel-based 3D cell cultures are extensively utilized to create biomimetic cellular microstructures. However, there is still lack of effective method for both evaluation of the complex interaction of cells with hydrogel and the functionality of the resulting micro-structures. This limitation impedes the further application of these microstructures as microphysiological models (microPMs) for the screening of potential culture condition combinations to enhance the skeletal muscle regeneration. This paper introduces a two-probe micromanipulation method for the large-scale assessment of viscoelasticity and contractile force (CF) of skeletal muscle microPMs, which are produced in high-throughput via microfluidic spinning and 96-well culture. The collected data demonstrate that viscoelasticity parameters (E* and tanδ) and CF both measured in a solution environment are indicative of the formation of cellular structures without hydrogel residue and the subsequent generation of myotubes, respectively. This study have developed screening criterias that integrate E*, tanδ, and CF to examine the effects of multifactorial interactions on muscle fiber repair under hypoxic conditions and within bioprinted bipennate muscle structures. This approach has improved the quality of hypoxic threshold evaluation and aligned cell growth in 3D. The proposed method is useful in exploring the role of different factors in muscle tissue regeneration with limited resources.
Collapse
Affiliation(s)
- Xie Chen
- Intelligent Robotics InstituteSchool of Mechatronical EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| | - Tao Sun
- Intelligent Robotics InstituteSchool of Mechatronical EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| | - Shingo Shimoda
- Graduate School of MedicineNagoya UniversityNagoya466‐8550Japan
| | - Huaping Wang
- Intelligent Robotics InstituteSchool of Mechatronical EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| | - Qiang Huang
- Intelligent Robotics InstituteSchool of Mechatronical EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| | - Toshio Fukuda
- Institute of Innovation for Future SocietyNagoya UniversityNagoya466‐8550Japan
| | - Qing Shi
- Intelligent Robotics InstituteSchool of Mechatronical EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| |
Collapse
|
25
|
Mayakrishnan V, Kannappan P, Balakarthikeyan J, Kim CY. Rodent model intervention for prevention and optimal management of sarcopenia: A systematic review on the beneficial effects of nutrients & non-nutrients and exercise to improve skeletal muscle health. Ageing Res Rev 2024; 102:102543. [PMID: 39427886 DOI: 10.1016/j.arr.2024.102543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
Sarcopenia is a common musculoskeletal disorder characterized by degenerative processes and is strongly linked to an increased susceptibility to falls, fractures, physical limitations, and mortality. Several models have been used to explore therapeutic and preventative measures as well as to gain insight into the molecular mechanisms behind sarcopenia. With novel experimental methodologies emerging to design foods or novel versions of conventional foods, understanding the impact of nutrition on the prevention and management of sarcopenia has become important. This review provides a thorough assessment of the use of rodent models of sarcopenia for understanding the aging process, focusing the effects of nutrients, plant extracts, exercise, and combined interventions on skeletal muscle health. According to empirical research, nutraceuticals and functional foods have demonstrated potential benefits in enhancing physical performance. In preclinical investigations, the administration of herbal extracts and naturally occurring bioactive compounds yielded advantageous outcomes such as augmented muscle mass and strength generation. Furthermore, herbal treatments exhibited inhibitory effects on muscle atrophy and sarcopenia. A substantial body of information establishes a connection between diet and the muscle mass, strength, and functionality of older individuals. This suggests that nutrition has a major impact in both the prevention and treatment of sarcopenia.
Collapse
Affiliation(s)
- Vijayakumar Mayakrishnan
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Priya Kannappan
- PSG College of Arts & Science, Civil Aerodrome, Coimbatore, Tamil Nadu 641014, India
| | | | - Choon Young Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Department of Food and Nutrition, Yeungnam University Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
26
|
Broer T, Tsintolas N, Purkey K, Hammond S, DeLuca S, Wu T, Gupta I, Khodabukus A, Bursac N. Engineered myovascular tissues for studies of endothelial/satellite cell interactions. Acta Biomater 2024; 188:65-78. [PMID: 39299621 PMCID: PMC11486565 DOI: 10.1016/j.actbio.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
In native skeletal muscle, capillaries reside in close proximity to muscle stem cells (satellite cells, SCs) and regulate SC numbers and quiescence through partially understood mechanisms that are difficult to study in vivo. This challenge could be addressed by the development of a 3-dimensional (3D) in vitro model of vascularized skeletal muscle harboring both a pool of quiescent SCs and a robust network of capillaries. Still, studying interactions between SCs and endothelial cells (ECs) within a tissue-engineered muscle environment has been hampered by the incompatibility of commercially available EC media with skeletal muscle differentiation. In this study, we first optimized co-culture media and cellular ratios to generate highly functional vascularized human skeletal muscle tissues ("myovascular bundles") with contractile properties (∼10 mN/mm2) equaling those of avascular, muscle-only tissues ("myobundles"). Within one week of muscle differentiation, ECs in these tissues formed a dense network of capillaries that co-aligned with muscle fibers and underwent initial lumenization. Incorporating vasculature within myobundles increased the total SC number by 82%, with SC density and quiescent signature being increased proximal (≤20μm) to EC networks. In vivo, at two weeks post-implantation into dorsal window chambers in nude mice, vascularized myobundles exhibited improved calcium handling compared to avascular implants. In summary, we engineered highly functional myovascular tissues that enable studies of the roles of EC-SC crosstalk in human muscle development, physiology, and disease. STATEMENT OF SIGNIFICANCE: In native skeletal muscle, intricate relationships between vascular cells and muscle stem cells ("satellite cells") play critical roles in muscle growth and regeneration. Current methods for in vitro engineering of contractile skeletal muscle do not recreate capillary networks present in vivo. Our study for the first time generates in vitro robustly vascularized, highly functional engineered human skeletal muscle tissues. Within these tissues, satellite cells are more abundant and, similar to in vivo, they are more dense and less proliferative proximal to endothelial cells. Upon implantation in mice, vascularized engineered muscles show improved calcium handling compared to muscle-only implants. We expect that this versatile in vitro system will enable studies of muscle-vasculature crosstalk in human development and disease.
Collapse
Affiliation(s)
- Torie Broer
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Nick Tsintolas
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Karly Purkey
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Stewart Hammond
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Sophia DeLuca
- Department of Cell Biology, Duke University, Durham, NC 27708, USA
| | - Tianyu Wu
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Ishika Gupta
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Alastair Khodabukus
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA.
| |
Collapse
|
27
|
Zheng X, Wang T, Gong J, Yang P, Zhang Y, Zhang Y, Cao N, Zhou K, Li Y, Hua Y, Zhang D, Gu Z, Li Y. Biogenic derived nanoparticles modulate mitochondrial function in cardiomyocytes. MATERIALS HORIZONS 2024; 11:4998-5016. [PMID: 39082084 DOI: 10.1039/d4mh00552j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Preservation of mitochondrial functionality is essential for heart hemostasis and cardiovascular diseases treatment. However, the current nanomedicines including liposomes, polymers and inorganic nanomaterials are severely hindered by poor stability, high manufacturing costs and potential biotoxicity. In this research, we present novel polyphenolic nanoparticles (NPs) derived from naturally occurring pomegranate peel (PP, labelled as PPP NPs), which exhibit potent antioxidative and anti-inflammatory properties, serving as a modulator of mitochondrial function. PPP NPs have been identified to improve survival rates in models of mitochondrial depletion through enhancement of cardiomyocyte proliferation and the reduction of DNA damage. Moreover, PPP NPs can effectively inhibit the production of reactive oxygen species and inflammatory mediators in lipopolysaccharide (LPS)-induced mitochondrial damage. Utilizing human engineered heart tissue and mice models, PPP NPs were found to significantly improve contractile function and alleviate inflammation activities after LPS treatment. Mechanically, PPP NPs regulated inflammatory responses via a m6A dependent manner, as determined using RNA-seq and MeRIP-seq analyses. Collectively, these insights underscore the potential of PPP NPs as a novel therapeutic approach for mitochondrial dysfunction.
Collapse
Affiliation(s)
- Xiaolan Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital Sichuan University Chengdu, Sichuan 610041, China.
| | - Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering Sichuan University, Chengdu 610065, China.
| | - Jixing Gong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science Hubei University, Wuhan 430062, China.
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China
| | - Peng Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering Sichuan University, Chengdu 610065, China.
| | - Yulin Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital Sichuan University Chengdu, Sichuan 610041, China.
| | - Yue Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital Sichuan University Chengdu, Sichuan 610041, China.
| | - Nan Cao
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital Sichuan University Chengdu, Sichuan 610041, China.
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering Sichuan University, Chengdu 610065, China.
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital Sichuan University Chengdu, Sichuan 610041, China.
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science Hubei University, Wuhan 430062, China.
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering Sichuan University, Chengdu 610065, China.
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital Sichuan University Chengdu, Sichuan 610041, China.
| |
Collapse
|
28
|
Francescato R, Moretti M, Bersini S. Endothelial-mesenchymal transition in skeletal muscle: Opportunities and challenges from 3D microphysiological systems. Bioeng Transl Med 2024; 9:e10644. [PMID: 39553431 PMCID: PMC11561840 DOI: 10.1002/btm2.10644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/21/2023] [Accepted: 12/18/2023] [Indexed: 11/19/2024] Open
Abstract
Fibrosis is a pathological condition that in the muscular context is linked to primary diseases such as dystrophies, laminopathies, neuromuscular disorders, and volumetric muscle loss following traumas, accidents, and surgeries. Although some basic mechanisms regarding the role of myofibroblasts in the progression of muscle fibrosis have been discovered, our knowledge of the complex cell-cell, and cell-matrix interactions occurring in the fibrotic microenvironment is still rudimentary. Recently, vascular dysfunction has been emerging as a key hallmark of fibrosis through a process called endothelial-mesenchymal transition (EndoMT). Nevertheless, no effective therapeutic options are currently available for the treatment of muscle fibrosis. This lack is partially due to the absence of advanced in vitro models that can recapitulate the 3D architecture and functionality of a vascularized muscle microenvironment in a human context. These models could be employed for the identification of novel targets and for the screening of potential drugs blocking the progression of the disease. In this review, we explore the potential of 3D human muscle models in studying the role of endothelial cells and EndoMT in muscle fibrotic tissues and identify limitations and opportunities for optimizing the next generation of these microphysiological systems. Starting from the biology of muscle fibrosis and EndoMT, we highlight the synergistic links between different cell populations of the fibrotic microenvironment and how to recapitulate them through microphysiological systems.
Collapse
Affiliation(s)
- Riccardo Francescato
- Regenerative Medicine Technologies Laboratory, Laboratories for Translational Research (LRT)Ente Ospedaliero Cantonale (EOC)BellinzonaSwitzerland
- Service of Orthopaedics and Traumatology, Department of SurgeryEOCLuganoSwitzerland
- Department of ElectronicsInformation and Bioengineering, Politecnico di MilanoMilanoItaly
| | - Matteo Moretti
- Regenerative Medicine Technologies Laboratory, Laboratories for Translational Research (LRT)Ente Ospedaliero Cantonale (EOC)BellinzonaSwitzerland
- Service of Orthopaedics and Traumatology, Department of SurgeryEOCLuganoSwitzerland
- Cell and Tissue Engineering LaboratoryIRCCS Ospedale Galeazzi ‐ Sant'AmbrogioMilanoItaly
- Euler Institute, Faculty of Biomedical SciencesUniversità della Svizzera italiana (USI)LuganoSwitzerland
| | - Simone Bersini
- Regenerative Medicine Technologies Laboratory, Laboratories for Translational Research (LRT)Ente Ospedaliero Cantonale (EOC)BellinzonaSwitzerland
- Service of Orthopaedics and Traumatology, Department of SurgeryEOCLuganoSwitzerland
- Euler Institute, Faculty of Biomedical SciencesUniversità della Svizzera italiana (USI)LuganoSwitzerland
| |
Collapse
|
29
|
Covert LT, Prinz JA, Swain-Lenz D, Dvergsten J, Truskey GA. Genetic changes from type I interferons and JAK inhibitors: clues to drivers of juvenile dermatomyositis. Rheumatology (Oxford) 2024; 63:SI240-SI248. [PMID: 38317053 PMCID: PMC11381683 DOI: 10.1093/rheumatology/keae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
OBJECTIVE To better understand the pathogenesis of juvenile dermatomyositis (JDM), we examined the effect of the cytokines type I interferons (IFN I) and JAK inhibitor drugs (JAKi) on gene expression in bioengineered pediatric skeletal muscle. METHODS Myoblasts from three healthy pediatric donors were used to create three-dimensional skeletal muscle units termed myobundles. Myobundles were treated with IFN I, either IFNα or IFNβ. A subset of IFNβ-exposed myobundles was treated with JAKi tofacitinib or baricitinib. RNA sequencing analysis was performed on all myobundles. RESULTS Seventy-six myobundles were analysed. Principal component analysis showed donor-specific clusters of gene expression across IFNα and IFNβ-exposed myobundles in a dose-dependent manner. Both cytokines upregulated interferon response and proinflammatory genes; however, IFNβ led to more significant upregulation. Key downregulated pathways involved oxidative phosphorylation, fatty acid metabolism and myogenesis genes. Addition of tofacitinib or baricitinib moderated the gene expression induced by IFNβ, with partial reversal of upregulated inflammatory and downregulated myogenesis pathways. Baricitinib altered genetic profiles more than tofacitinib. CONCLUSION IFNβ leads to more pro-inflammatory gene upregulation than IFNα, correlating to greater decrease in contractile protein gene expression and reduced contractile force. JAK inhibitors, baricitinib more so than tofacitinib, partially reverse IFN I-induced genetic changes. Increased IFN I exposure in healthy bioengineered skeletal muscle leads to IFN-inducible gene expression, inflammatory pathway enrichment, and myogenesis gene downregulation, consistent with what is observed in JDM.
Collapse
Affiliation(s)
- Lauren T Covert
- Department of Pediatrics, Duke University Health System, Durham, NC, USA
| | - Joseph A Prinz
- Sequencing and Genomics Technologies Core Facility, School of Medicine, Duke University, Durham, NC, USA
| | - Devjanee Swain-Lenz
- Sequencing and Genomics Technologies Core Facility, School of Medicine, Duke University, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| | - Jeffrey Dvergsten
- Department of Pediatrics, Duke University Health System, Durham, NC, USA
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
30
|
Nagano S, Fumino S, Kishida T, Wakao J, Hirohata Y, Takayama S, Kim K, Akiyoshi K, Mazda O, Tajiri T, Ono S. Development of a skeletal muscle sheet with direct reprogramming-induced myoblasts on a nanogel-cross-linked porous freeze-dried gel scaffold in a mouse gastroschisis model. Pediatr Surg Int 2024; 40:241. [PMID: 39183231 DOI: 10.1007/s00383-024-05811-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
PURPOSE In this study, we attempted to create skeletal muscle sheets made of directly converted myoblasts (dMBs) with a nanogel scaffold on a biosheet using a mouse gastroschisis model. METHODS dMBs were prepared by the co-transfection of MYOD1 and MYCL into human fibroblasts. Silicon tubes were implanted under the skin of NOG/SCID mice, and biosheets were formed. The nanogel was a nanoscale hydrogel based on cholesterol-modified pullulan, and a NanoClip-FD gel was prepared by freeze-drying the nanogel. 7 mm in length was created in the abdominal wall of NOG/SCID mice as a mouse gastroschisis model. Matrigel or NanoCliP-FD gel seeded with dMBs was placed on the biosheet and implanted on the model mice. RESULTS Fourteen days after surgery, dMBs with Matrigel showed a small amount of coarse aggregations of muscle-like cells. In contrast, dMBs with NanoCliP-FD gel showed multinucleated muscle-like cells, which were expressed as desmin and myogenin by fluorescent immunostaining. CONCLUSION Nanogels have a porous structure and are useful as scaffolds for tissue regeneration by supplying oxygen and nutrients supply to the cells. Combining dMBs and nanogels on the biosheets resulted in the differentiation and engraftment of skeletal muscle, suggesting the possibility of developing skeletal muscle sheets derived from autologous cells and tissues.
Collapse
Affiliation(s)
- Shinta Nagano
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan.
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Shigehisa Fumino
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - Tsunao Kishida
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Junko Wakao
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshiaki Hirohata
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shohei Takayama
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - Kiyokazu Kim
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - Kazunari Akiyoshi
- Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Osam Mazda
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tatsuro Tajiri
- Department of Pediatric Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shigeru Ono
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan
| |
Collapse
|
31
|
Qiu H, Sun Y, Wang X, Gong T, Su J, Shen J, Zhou J, Xia J, Wang H, Meng X, Fu G, Zhang D, Jiang C, Liang P. Lamin A/C deficiency-mediated ROS elevation contributes to pathogenic phenotypes of dilated cardiomyopathy in iPSC model. Nat Commun 2024; 15:7000. [PMID: 39143095 PMCID: PMC11324749 DOI: 10.1038/s41467-024-51318-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
Mutations in the nuclear envelope (NE) protein lamin A/C (encoded by LMNA), cause a severe form of dilated cardiomyopathy (DCM) with early-onset life-threatening arrhythmias. However, molecular mechanisms underlying increased arrhythmogenesis in LMNA-related DCM (LMNA-DCM) remain largely unknown. Here we show that a frameshift mutation in LMNA causes abnormal Ca2+ handling, arrhythmias and disformed NE in LMNA-DCM patient-specific iPSC-derived cardiomyocytes (iPSC-CMs). Mechanistically, lamin A interacts with sirtuin 1 (SIRT1) where mutant lamin A/C accelerates degradation of SIRT1, leading to mitochondrial dysfunction and oxidative stress. Elevated reactive oxygen species (ROS) then activates the Ca2+/calmodulin-dependent protein kinase II (CaMKII)-ryanodine receptor 2 (RYR2) pathway and aggravates the accumulation of SUN1 in mutant iPSC-CMs, contributing to arrhythmias and NE deformation, respectively. Taken together, the lamin A/C deficiency-mediated ROS disorder is revealed as central to LMNA-DCM development. Manipulation of impaired SIRT1 activity and excessive oxidative stress is a potential future therapeutic strategy for LMNA-DCM.
Collapse
Affiliation(s)
- Hangyuan Qiu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yaxun Sun
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Xiaochen Wang
- Key Laboratory of combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Tingyu Gong
- Key Laboratory of combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Jun Su
- Key Laboratory of combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Jiaxi Shen
- Key Laboratory of combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Jingjun Zhou
- Key Laboratory of combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Jiafeng Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Wang
- Prenatal Diagnosis Center, Hangzhou Women's Hospital, Hangzhou, China
| | - Xiangfu Meng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Chenyang Jiang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China.
| | - Ping Liang
- Key Laboratory of combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
32
|
Khodabukus A, Prabhu NK, Roberts T, Buldo M, Detwiler A, Fralish ZD, Kondash ME, Truskey GA, Koves TR, Bursac N. Bioengineered Model of Human LGMD2B Skeletal Muscle Reveals Roles of Intracellular Calcium Overload in Contractile and Metabolic Dysfunction in Dysferlinopathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400188. [PMID: 38887849 PMCID: PMC11336985 DOI: 10.1002/advs.202400188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/19/2024] [Indexed: 06/20/2024]
Abstract
Dysferlin is a multi-functional protein that regulates membrane resealing, calcium homeostasis, and lipid metabolism in skeletal muscle. Genetic loss of dysferlin results in limb girdle muscular dystrophy 2B/2R (LGMD2B/2R) and other dysferlinopathies - rare untreatable muscle diseases that lead to permanent loss of ambulation in humans. The mild disease severity in dysferlin-deficient mice and diverse genotype-phenotype relationships in LGMD2B patients have prompted the development of new in vitro models for personalized studies of dysferlinopathy. Here the first 3-D tissue-engineered hiPSC-derived skeletal muscle ("myobundle") model of LGMD2B is described that exhibits compromised contractile function, calcium-handling, and membrane repair, and transcriptomic changes indicative of impaired oxidative metabolism and mitochondrial dysfunction. In response to the fatty acid (FA) challenge, LGMD2B myobundles display mitochondrial deficits and intracellular lipid droplet (LD) accumulation. Treatment with the ryanodine receptor (RyR) inhibitor dantrolene or the dissociative glucocorticoid vamorolone restores LGMD2B contractility, improves membrane repair, and reduces LD accumulation. Lastly, it is demonstrated that chemically induced chronic RyR leak in healthy myobundles phenocopies LGMD2B contractile and metabolic deficit, but not the loss of membrane repair capacity. Together, these results implicate intramyocellular Ca2+ leak as a critical driver of dysferlinopathic phenotype and validate the myobundle system as a platform to study LGMD2B pathogenesis.
Collapse
Affiliation(s)
| | - Neel K. Prabhu
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Taylor Roberts
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Meghan Buldo
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Amber Detwiler
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | | | - Megan E. Kondash
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | | | - Timothy R. Koves
- Duke Molecular Physiology InstituteDuke UniversityDurhamNC27708USA
| | - Nenad Bursac
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| |
Collapse
|
33
|
Wen Y, Tian J, Li J, Na X, Yu Z, Zhou W. Developing engineered muscle tissues utilizing standard cell culture plates and mesenchymal stem cell-conditioned medium. Regen Ther 2024; 26:683-692. [PMID: 39286640 PMCID: PMC11403061 DOI: 10.1016/j.reth.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/08/2024] [Accepted: 08/18/2024] [Indexed: 09/19/2024] Open
Abstract
The construction of engineered muscle tissues that resemble the function and microstructure of human muscles holds significant promise for various applications, including disease modeling, regenerative medicine, and biological machines. However, current muscle tissue engineering approaches often rely on complex equipment which may limit their accessibility and practicality. Herein, we present a convenient approach using a standard 24-well cell culture plate to construct a platform to facilitate engineered muscle tissues formation and culture. Using this platform, engineered muscle tissue with differentiation characteristics can be manufactured in large quantities. Additionally, the mesenchymal stem cell conditioned medium was utilized to promote the formation and functionality of the engineered muscle tissues. The resulting tissues comprised a higher cell density and a better differentiation effect in the tissues. Taken together, this study provides a simple, convenient, and effective platform for studying muscle tissue engineering.
Collapse
Affiliation(s)
- Yihao Wen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Institute of Process Engineering, Beijing 100190, China
| | - Jia Tian
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Institute of Process Engineering, Beijing 100190, China
- College of Chemical Engineering, University of the Chinese Academy of Sciences, Beijing 101408, China
| | - Juan Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Institute of Process Engineering, Beijing 100190, China
| | - Xiangming Na
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Institute of Process Engineering, Beijing 100190, China
| | - Ziyi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Weiqing Zhou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Institute of Process Engineering, Beijing 100190, China
- College of Chemical Engineering, University of the Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
34
|
Li T, Nie M, Morimoto Y, Takeuchi S. Pillar electrodes embedded in the skeletal muscle tissue for selective stimulation of biohybrid actuators with increased contractile distance. Biofabrication 2024; 16:035022. [PMID: 38744312 DOI: 10.1088/1758-5090/ad4ba1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Electrodes are crucial for controlling the movements of biohybrid robots, but their external placement outside muscle tissue often leads to inefficient and non-selective stimulation of nearby biohybrid actuators. To address this, we propose embedding pillar electrodes within the skeletal muscle tissue, resulting in enhanced contraction of the target muscle without affecting the neighbor tissue with a 4 mm distance. We use finite element method simulations to establish a selectivity model, correlating the VIE(volume integration of electric field intensity within muscle tissue) with actual contractile distances under different amplitudes of electrical pulses. The simulated selective index closely aligns with experimental results, showing the potential of pillar electrodes for effective and selective biohybrid actuator stimulation. In experiments, we validated that the contractile distance and selectivity achieved with these pillar electrodes exceed conventional Au rod electrodes. This innovation has promising implications for building biohybrid robots with densely arranged muscle tissue, ultimately achieving more human-like movements. Additionally, our selectivity model offers valuable predictive tools for assessing electrical stimulation effects with different electrode designs.
Collapse
Affiliation(s)
- Tingyu Li
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Minghao Nie
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yuya Morimoto
- Department of Electronic and Physical Systems,School of Fundamental Science and Engineering, Waseda University, Tokyo, Japan
| | - Shoji Takeuchi
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
35
|
Osonoi S, Takebe T. Organoid-guided precision hepatology for metabolic liver disease. J Hepatol 2024; 80:805-821. [PMID: 38237864 PMCID: PMC11828489 DOI: 10.1016/j.jhep.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 03/09/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease affects millions of people worldwide. Progress towards a definitive cure has been incremental and treatment is currently limited to lifestyle modification. Hepatocyte-specific lipid accumulation is the main trigger of lipotoxic events, driving inflammation and fibrosis. The underlying pathology is extraordinarily heterogenous, and the manifestations of steatohepatitis are markedly influenced by metabolic communications across non-hepatic organs. Synthetic human tissue models have emerged as powerful platforms to better capture the mechanistic diversity in disease progression, while preserving person-specific genetic traits. In this review, we will outline current research efforts focused on integrating multiple synthetic tissue models of key metabolic organs, with an emphasis on organoid-based systems. By combining functional genomics and population-scale en masse profiling methodologies, human tissues derived from patients can provide insights into personalised genetic, transcriptional, biochemical, and metabolic states. These collective efforts will advance our understanding of steatohepatitis and guide the development of rational solutions for mechanism-directed diagnostic and therapeutic investigation.
Collapse
Affiliation(s)
- Sho Osonoi
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Japan
| | - Takanori Takebe
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; WPI Premium Institute for Human Metaverse Medicine (WPI-PRIMe) and Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan; Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Communication Design Center, Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan.
| |
Collapse
|
36
|
Bersini S, Arrigoni C, Talò G, Candrian C, Moretti M. Complex or not too complex? One size does not fit all in next generation microphysiological systems. iScience 2024; 27:109199. [PMID: 38433912 PMCID: PMC10904982 DOI: 10.1016/j.isci.2024.109199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
In the attempt to overcome the increasingly recognized shortcomings of existing in vitro and in vivo models, researchers have started to implement alternative models, including microphysiological systems. First examples were represented by 2.5D systems, such as microfluidic channels covered by cell monolayers as blood vessel replicates. In recent years, increasingly complex microphysiological systems have been developed, up to multi-organ on chip systems, connecting different 3D tissues in the same device. However, such an increase in model complexity raises several questions about their exploitation and implementation into industrial and clinical applications, ranging from how to improve their reproducibility, robustness, and reliability to how to meaningfully and efficiently analyze the huge amount of heterogeneous datasets emerging from these devices. Considering the multitude of envisaged applications for microphysiological systems, it appears now necessary to tailor their complexity on the intended purpose, being academic or industrial, and possibly combine results deriving from differently complex stages to increase their predictive power.
Collapse
Affiliation(s)
- Simone Bersini
- Regenerative Medicine Technologies Lab, Laboratories for Translational Research, Ente Ospedaliero Cantonale, via Chiesa 5, 6500 Bellinzona, Switzerland
- Service of Orthopaedics and Traumatology, Department of Surgery, Ente Ospedaliero Cantonale, via Tesserete 46, 6900 Lugano, Switzerland
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), via Buffi 13, 6900 Lugano, Switzerland
| | - Chiara Arrigoni
- Regenerative Medicine Technologies Lab, Laboratories for Translational Research, Ente Ospedaliero Cantonale, via Chiesa 5, 6500 Bellinzona, Switzerland
- Service of Orthopaedics and Traumatology, Department of Surgery, Ente Ospedaliero Cantonale, via Tesserete 46, 6900 Lugano, Switzerland
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), via Buffi 13, 6900 Lugano, Switzerland
| | - Giuseppe Talò
- Cell and Tissue Engineering Laboratory, IRCCS Ospedale Galeazzi – Sant’Ambrogio, via Cristina Belgioioso 173, 20157 Milano, Italy
| | - Christian Candrian
- Service of Orthopaedics and Traumatology, Department of Surgery, Ente Ospedaliero Cantonale, via Tesserete 46, 6900 Lugano, Switzerland
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), via Buffi 13, 6900 Lugano, Switzerland
| | - Matteo Moretti
- Regenerative Medicine Technologies Lab, Laboratories for Translational Research, Ente Ospedaliero Cantonale, via Chiesa 5, 6500 Bellinzona, Switzerland
- Service of Orthopaedics and Traumatology, Department of Surgery, Ente Ospedaliero Cantonale, via Tesserete 46, 6900 Lugano, Switzerland
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), via Buffi 13, 6900 Lugano, Switzerland
- Cell and Tissue Engineering Laboratory, IRCCS Ospedale Galeazzi – Sant’Ambrogio, via Cristina Belgioioso 173, 20157 Milano, Italy
| |
Collapse
|
37
|
Ren Z, Ahn EH, Do M, Mair DB, Monemianesfahani A, Lee PHU, Kim DH. Simulated microgravity attenuates myogenesis and contractile function of 3D engineered skeletal muscle tissues. NPJ Microgravity 2024; 10:18. [PMID: 38365862 PMCID: PMC10873406 DOI: 10.1038/s41526-024-00353-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/11/2024] [Indexed: 02/18/2024] Open
Abstract
While the effects of microgravity on inducing skeletal muscle atrophy have been extensively studied, the impacts of microgravity on myogenesis and its mechanisms remain unclear. In this study, we developed a microphysiological system of engineered muscle tissue (EMT) fabricated using a collagen / Matrigel composite hydrogel and murine skeletal myoblasts. This 3D EMT model allows non-invasive quantitative assessment of contractile function. After applying a 7-day differentiation protocol to induce myotube formation, the EMTs clearly exhibited sarcomerogenesis, myofilament formation, and synchronous twitch and tetanic contractions with electrical stimuli. Using this 3D EMT system, we investigated the effects of simulated microgravity at 10-3 G on myogenesis and contractile function utilizing a random positioning machine. EMTs cultured for 5 days in simulated microgravity exhibited significantly reduced contractile forces, myofiber size, and differential expression of muscle contractile, myogenesis regulatory, and mitochondrial biogenesis-related proteins. These results indicate simulated microgravity attenuates myogenesis, resulting in impaired muscle function.
Collapse
Affiliation(s)
- Zhanping Ren
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Eun Hyun Ahn
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Minjae Do
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Devin B Mair
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Amir Monemianesfahani
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Peter H U Lee
- Department of Cardiothoracic Surgery, Southcoast Health, Fall River, MA, 02720, USA.
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA.
| | - Deok-Ho Kim
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Center for Microphysiological Systems, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
38
|
Strash N, DeLuca S, Janer Carattini GL, Chen Y, Wu T, Helfer A, Scherba J, Wang I, Jain M, Naseri R, Bursac N. Time-dependent effects of BRAF-V600E on cell cycling, metabolism, and function in engineered myocardium. SCIENCE ADVANCES 2024; 10:eadh2598. [PMID: 38266090 PMCID: PMC10807800 DOI: 10.1126/sciadv.adh2598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Candidate cardiomyocyte (CM) mitogens such as those affecting the extracellular signal-regulated kinase (ERK) signaling pathway represent potential targets for functional heart regeneration. We explored whether activating ERK via a constitutively active mutant of B-raf proto-oncogene (BRAF), BRAF-V600E (caBRAF), can induce proproliferative effects in neonatal rat engineered cardiac tissues (ECTs). Sustained CM-specific caBRAF expression induced chronic ERK activation, substantial tissue growth, deficit in sarcomeres and contractile function, and tissue stiffening, all of which persisted for at least 4 weeks of culture. caBRAF-expressing CMs in ECTs exhibited broad transcriptomic changes, shift to glycolytic metabolism, loss of connexin-43, and a promigratory phenotype. Transient, doxycycline-controlled caBRAF expression revealed that the induction of CM cycling is rapid and precedes functional decline, and the effects are reversible only with short-lived ERK activation. Together, direct activation of the BRAF kinase is sufficient to modulate CM cycling and functional phenotype, offering mechanistic insights into roles of ERK signaling in the context of cardiac development and regeneration.
Collapse
Affiliation(s)
| | - Sophia DeLuca
- Department of Cell Biology, Duke University, Durham NC, USA
| | | | - Yifan Chen
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Tianyu Wu
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Abbigail Helfer
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Jacob Scherba
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Isabella Wang
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Mehul Jain
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Ramona Naseri
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Nenad Bursac
- Department of Cell Biology, Duke University, Durham NC, USA
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| |
Collapse
|
39
|
Arntz OJ, Thurlings RM, Blaney Davidson EN, Jansen PWTC, Vermeulen M, Koenders MI, van der Kraan PM, van de Loo FAJ. Profiling of plasma extracellular vesicles identifies proteins that strongly associate with patient's global assessment of disease activity in rheumatoid arthritis. Front Med (Lausanne) 2024; 10:1247778. [PMID: 38274452 PMCID: PMC10808582 DOI: 10.3389/fmed.2023.1247778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/30/2023] [Indexed: 01/27/2024] Open
Abstract
Background Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic synovial inflammation and cartilage/bone damage. Intercellular messengers such as IL-1 and TNF play a crucial role in the pathophysiology of RA but have limited diagnostic and prognostic values. Therefore, we assessed whether the protein content of the recently discovered extracellular vesicles (EVs), which have gained attention in the pathogenesis of RA, correlates with disease activity parameters in RA patients. Methods We identified and quantified proteins in plasma-derived EVs (pEVs), isolated by size exclusion chromatography from 17 RA patients by mass spectrophotometry (MS). Quantified protein levels were correlated with laboratory and clinical parameters and the patient's own global assessment of their disease activity (PGA-VAS). In a second MS run, the pEV proteins of nine other RA patients were quantified and compared to those from nine healthy controls (HC). Results No differences were observed in the concentration, size, and protein content of pEVs from RA patients. Proteomics revealed >95% overlapping proteins in RA-pEVs, compared to HC-pEVs (data are available via ProteomeXchange with identifier PXD046058). Remarkably, in both runs, the level of far more RA-pEV proteins correlated positively to PGA-VAS than to either clinical or laboratory parameters. Interestingly, all observed PGA-VAS positively correlated RA-pEV proteins were associated with the actin-cytoskeleton linker proteins, ezrin, and moesin. Conclusion Our observation suggests that PGA-VAS (loss of vitality) may have a different underlying pathological mechanism in RA, possibly related to enhanced muscle actin-cytoskeleton activity. Furthermore, our study contributes to the growing awareness and evidence that pEVs contain valuable biomarkers for diseases, with added value for RA patients.
Collapse
Affiliation(s)
- Onno J. Arntz
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rogier M. Thurlings
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Pascal W. T. C. Jansen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Marije I. Koenders
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Fons A. J. van de Loo
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
40
|
Maus D, Curtis B, Warschkau D, Betancourt ED, Seeber F, Blume M. Generation of Mature Toxoplasma gondii Bradyzoites in Human Immortalized Myogenic KD3 Cells. Bio Protoc 2024; 14:e4916. [PMID: 38213326 PMCID: PMC10777055 DOI: 10.21769/bioprotoc.4916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 01/13/2024] Open
Abstract
Toxoplasma gondii is a zoonotic protozoan parasite and one of the most successful foodborne pathogens. Upon infection and dissemination, the parasites convert into the persisting, chronic form called bradyzoites, which reside within cysts in muscle and brain tissue. Despite their importance, bradyzoites remain difficult to investigate directly, owing to limited in vitro models. In addition, the need for new drugs targeting the chronic stage, which is underlined by the lack of eradicating treatment options, remains difficult to address since in vitro access to drug-tolerant bradyzoites remains limited. We recently published the use of a human myotube-based bradyzoite cell culture system and demonstrated its applicability to investigate the biology of T. gondii bradyzoites. Encysted parasites can be functionally matured during long-term cultivation in these immortalized cells and possess many in vivo-like features, including pepsin resistance, oral infectivity, and antifolate resistance. In addition, the system is scalable, enabling experimental approaches that rely on large numbers, such as metabolomics. In short, we detail the cultivation of terminally differentiated human myotubes and their subsequent infection with tachyzoites, which then mature to encysted bradyzoites within four weeks at ambient CO2 levels. We also discuss critical aspects of the procedure and suggest improvements. Key features • This protocol describes a scalable human myotube-based in vitro system capable of generating encysted bradyzoites featuring in vivo hallmarks. • Bradyzoite differentiation is facilitated through CO2 depletion but without additional artificial stress factors like alkaline pH. • Functional maturation occurs over four weeks.
Collapse
Affiliation(s)
- Deborah Maus
- Metabolism of Microbial Pathogens (P6), Robert Koch Institute, Berlin, Germany
| | - Blake Curtis
- Metabolism of Microbial Pathogens (P6), Robert Koch Institute, Berlin, Germany
- Research School of Chemistry, The Australian National University, Canberra, Australia
| | - David Warschkau
- Mycotic and Parasitic Agents and Mycobacteria (FG16), Robert Koch Institute, Berlin, Germany
| | - Estefanía Delgado Betancourt
- Mycotic and Parasitic Agents and Mycobacteria (FG16), Robert Koch Institute, Berlin, Germany
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Frank Seeber
- Mycotic and Parasitic Agents and Mycobacteria (FG16), Robert Koch Institute, Berlin, Germany
| | - Martin Blume
- Metabolism of Microbial Pathogens (P6), Robert Koch Institute, Berlin, Germany
| |
Collapse
|
41
|
Covert LT, Patel H, Osman A, Duncan L, Dvergsten J, Truskey GA. Effect of type I interferon on engineered pediatric skeletal muscle: a promising model for juvenile dermatomyositis. Rheumatology (Oxford) 2024; 63:209-217. [PMID: 37094222 PMCID: PMC10765138 DOI: 10.1093/rheumatology/kead186] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/24/2023] [Accepted: 04/14/2023] [Indexed: 04/26/2023] Open
Abstract
OBJECTIVE To investigate pathogenic mechanisms underlying JDM, we defined the effect of type I IFN, IFN-α and IFN-β, on pediatric skeletal muscle function and expression of myositis-related proteins using an in vitro engineered human skeletal muscle model (myobundle). METHODS Primary myoblasts were isolated from three healthy pediatric donors and used to create myobundles that mimic functioning skeletal muscle in structural architecture and physiologic function. Myobundles were exposed to 0, 5, 10 or 20 ng/ml IFN-α or IFN-β for 7 days and then functionally tested under electrical stimulation and analyzed immunohistochemically for structural and myositis-related proteins. Additionally, IFN-β-exposed myobundles were treated with Janus kinase inhibitors (JAKis) tofacitinib and baricitinib. These myobundles were also analyzed for contractile force and immunohistochemistry. RESULTS IFN-β, but not IFN-α, was associated with decreased contractile tetanus force and slowed twitch kinetics. These effects were reversed by tofacitinib and baricitinib. Type I IFN paradoxically reduced myobundle fatigue, which did not reverse after JAKi. Additionally, type I IFN correlated with MHC I upregulation, which normalized after JAKi treatment, but expression of myositis-specific autoantigens Mi-2, melanocyte differentiation-associated protein 5 and the endoplasmic reticulum stress marker GRP78 were variable and donor specific after type I IFN exposure. CONCLUSION IFN-α and IFN-β have distinct effects on pediatric skeletal muscle and these effects can partially be reversed by JAKi treatment. This is the first study illustrating effective use of a three-dimensional human skeletal muscle model to investigate JDM pathogenesis and test novel therapeutics.
Collapse
Affiliation(s)
- Lauren T Covert
- Department of Pediatrics, Duke University Health System, Durham, NC, USA
| | - Hailee Patel
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Alaa Osman
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Lavonia Duncan
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Jeffrey Dvergsten
- Department of Pediatrics, Duke University Health System, Durham, NC, USA
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
42
|
Cao Y, Ai Y, Zhang X, Zhang J, Long X, Zhu Y, Wang L, Gu Q, Han H. Genome-wide epigenetic dynamics during postnatal skeletal muscle growth in Hu sheep. Commun Biol 2023; 6:1077. [PMID: 37872364 PMCID: PMC10593826 DOI: 10.1038/s42003-023-05439-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/10/2023] [Indexed: 10/25/2023] Open
Abstract
Hypertrophy and fiber transformation are two prominent features of postnatal skeletal muscle development. However, the role of epigenetic modifications is less understood. ATAC-seq, whole genome bisulfite sequencing, and RNA-seq were applied to investigate the epigenetic dynamics of muscle in Hu sheep at 3 days, 3 months, 6 months, and 12 months after birth. All 6865 differentially expressed genes were assigned into three distinct tendencies, highlighting the balanced protein synthesis, accumulated immune activities, and restrained cell division in postnatal development. We identified 3742 differentially accessible regions and 11799 differentially methylated regions that were associated with muscle-development-related pathways in certain stages, like D3-M6. Transcription factor network analysis, based on genomic loci with high chromatin accessibility and low methylation, showed that ARID5B, MYOG, and ENO1 were associated with muscle hypertrophy, while NR1D1, FADS1, ZFP36L2, and SLC25A1 were associated with muscle fiber transformation. Taken together, these results suggest that DNA methylation and chromatin accessibility contributed toward regulating the growth and fiber transformation of postnatal skeletal muscle in Hu sheep.
Collapse
Affiliation(s)
- Yutao Cao
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yue Ai
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaosheng Zhang
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin, China
| | - Jinlong Zhang
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin, China
| | - Xianlei Long
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Yaning Zhu
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Linli Wang
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qingyi Gu
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Hongbing Han
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China.
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China.
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China.
| |
Collapse
|
43
|
van der Wal E, Iuliano A, In 't Groen SLM, Bholasing AP, Priesmann D, Sharma P, den Hamer B, Saggiomo V, Krüger M, Pijnappel WWMP, de Greef JC. Highly contractile 3D tissue engineered skeletal muscles from human iPSCs reveal similarities with primary myoblast-derived tissues. Stem Cell Reports 2023; 18:1954-1971. [PMID: 37774701 PMCID: PMC10656354 DOI: 10.1016/j.stemcr.2023.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 10/01/2023] Open
Abstract
Skeletal muscle research is transitioning toward 3D tissue engineered in vitro models reproducing muscle's native architecture and supporting measurement of functionality. Human induced pluripotent stem cells (hiPSCs) offer high yields of cells for differentiation. It has been difficult to differentiate high-quality, pure 3D muscle tissues from hiPSCs that show contractile properties comparable to primary myoblast-derived tissues. Here, we present a transgene-free method for the generation of purified, expandable myogenic progenitors (MPs) from hiPSCs grown under feeder-free conditions. We defined a protocol with optimal hydrogel and medium conditions that allowed production of highly contractile 3D tissue engineered skeletal muscles with forces similar to primary myoblast-derived tissues. Gene expression and proteomic analysis between hiPSC-derived and primary myoblast-derived 3D tissues revealed a similar expression profile of proteins involved in myogenic differentiation and sarcomere function. The protocol should be generally applicable for the study of personalized human skeletal muscle tissue in health and disease.
Collapse
Affiliation(s)
- Erik van der Wal
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Alessandro Iuliano
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands; Department of Pediatrics, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Stijn L M In 't Groen
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands; Department of Pediatrics, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Anjali P Bholasing
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands; Department of Pediatrics, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Dominik Priesmann
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Preeti Sharma
- Physical Chemistry and Soft Matter, Wageningen University and Research, 6708 WE Wageningen, the Netherlands
| | - Bianca den Hamer
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Vittorio Saggiomo
- Department of BioNanoTechnology, Wageningen University and Research, 6708 WG Wageningen, the Netherlands
| | - Marcus Krüger
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - W W M Pim Pijnappel
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands; Department of Pediatrics, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands.
| | - Jessica C de Greef
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
44
|
Tejedera-Villafranca A, Montolio M, Ramón-Azcón J, Fernández-Costa JM. Mimicking sarcolemmal damage in vitro: a contractile 3D model of skeletal muscle for drug testing in Duchenne muscular dystrophy. Biofabrication 2023; 15:045024. [PMID: 37725998 DOI: 10.1088/1758-5090/acfb3d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
Duchenne muscular dystrophy (DMD) is the most prevalent neuromuscular disease diagnosed in childhood. It is a progressive and wasting disease, characterized by a degeneration of skeletal and cardiac muscles caused by the lack of dystrophin protein. The absence of this crucial structural protein leads to sarcolemmal fragility, resulting in muscle fiber damage during contraction. Despite ongoing efforts, there is no cure available for DMD patients. One of the primary challenges is the limited efficacy of current preclinical tools, which fail in modeling the biological complexity of the disease. Human-based three-dimensional (3D) cell culture methods appear as a novel approach to accelerate preclinical research by enhancing the reproduction of pathophysiological processes in skeletal muscle. In this work, we developed a patient-derived functional 3D skeletal muscle model of DMD that reproduces the sarcolemmal damage found in the native DMD muscle. These bioengineered skeletal muscle tissues exhibit contractile functionality, as they responded to electrical pulse stimulation. Sustained contractile regimes induced the loss of myotube integrity, mirroring the pathological myotube breakdown inherent in DMD due to sarcolemmal instability. Moreover, damaged DMD tissues showed disease functional phenotypes, such as tetanic fatigue. We also evaluated the therapeutic effect of utrophin upregulator drug candidates on the functionality of the skeletal muscle tissues, thus providing deeper insight into the real impact of these treatments. Overall, our findings underscore the potential of bioengineered 3D skeletal muscle technology to advance DMD research and facilitate the development of novel therapies for DMD and related neuromuscular disorders.
Collapse
Affiliation(s)
- Ainoa Tejedera-Villafranca
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), C/Baldiri Reixac 10-12, E08028 Barcelona, Spain
| | - Marisol Montolio
- Duchenne Parent Project España, E28032 Madrid, Spain
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, E08027 Barcelona, Spain
| | - Javier Ramón-Azcón
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), C/Baldiri Reixac 10-12, E08028 Barcelona, Spain
- Institució Catalana de Reserca i Estudis Avançats (ICREA), Passeig de Lluís Companys, 23, E08010 Barcelona, Spain
| | - Juan M Fernández-Costa
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), C/Baldiri Reixac 10-12, E08028 Barcelona, Spain
| |
Collapse
|
45
|
Yuen JS, Barrick BM, DiCindio H, Pietropinto JA, Kaplan DL. Optimization of Culture Media and Cell Ratios for 3D In Vitro Skeletal Muscle Tissues with Endothelial Cells. ACS Biomater Sci Eng 2023; 9:4558-4566. [PMID: 37326372 DOI: 10.1021/acsbiomaterials.3c00358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A major challenge of engineering larger macroscale tissues in vitro is the limited diffusion of nutrients and oxygen to the interior. For skeletal muscle, this limitation results in millimeter scale outcomes to avoid necrosis. One method to address this constraint may be to vascularize in vitro-grown muscle tissue, to support nutrient (culture media) flow into the interior of the structure. In this exploratory study, we examine culture conditions that enable myogenic development and endothelial cell survival within tissue engineered 3D muscles. Myoblasts (C2C12s), endothelial cells (HUVECs), and endothelial support cells (C3H 10T1/2s) were seeded into Matrigel-fibrin hydrogels and cast into 3D printed frames to form 3D in vitro skeletal muscle tissues. Our preliminary results suggest that the simultaneous optimization of culture media formulation and cell concentrations is necessary for 3D cultured muscles to exhibit robust myosin heavy chain expression and GFP expression from GFP-transfected endothelial cells. The ability to form differentiated 3D muscles containing endothelial cells is a key step toward achieving vascularized 3D muscle tissues, which have potential use as tissue for implantation in a medical setting, as well as for future foods such as cultivated meats.
Collapse
Affiliation(s)
- John Sk Yuen
- David Kaplan Laboratory, Biomedical Engineering Department, Tufts University, 4 Colby Street, Medford, Massachusetts 02215, United States
| | - Brigid M Barrick
- David Kaplan Laboratory, Biomedical Engineering Department, Tufts University, 4 Colby Street, Medford, Massachusetts 02215, United States
| | - Hailey DiCindio
- David Kaplan Laboratory, Biomedical Engineering Department, Tufts University, 4 Colby Street, Medford, Massachusetts 02215, United States
| | - Jaymie A Pietropinto
- David Kaplan Laboratory, Biomedical Engineering Department, Tufts University, 4 Colby Street, Medford, Massachusetts 02215, United States
| | - David L Kaplan
- David Kaplan Laboratory, Biomedical Engineering Department, Tufts University, 4 Colby Street, Medford, Massachusetts 02215, United States
| |
Collapse
|
46
|
Tarum J, Degens H, Turner MD, Stewart C, Sale C, Santos L. Modelling Skeletal Muscle Ageing and Repair In Vitro. J Tissue Eng Regen Med 2023; 2023:9802235. [PMID: 40226404 PMCID: PMC11919149 DOI: 10.1155/2023/9802235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 04/15/2025]
Abstract
Healthy skeletal muscle can regenerate after ischaemic, mechanical, or toxin-induced injury, but ageing impairs that regeneration potential. This has been largely attributed to dysfunctional satellite cells and reduced myogenic capacity. Understanding which signalling pathways are associated with reduced myogenesis and impaired muscle regeneration can provide valuable information about the mechanisms driving muscle ageing and prompt the development of new therapies. To investigate this, we developed a high-throughput in vitro model to assess muscle regeneration in chemically injured C2C12 and human myotube-derived young and aged myoblast cultures. We observed a reduced regeneration capacity of aged cells, as indicated by an attenuated recovery towards preinjury myotube size and myogenic fusion index at the end of the regeneration period, in comparison with younger muscle cells that were fully recovered. RNA-sequencing data showed significant enrichment of KEGG signalling pathways, PI3K-Akt, and downregulation of GO processes associated with muscle development, differentiation, and contraction in aged but not in young muscle cells. Data presented here suggest that repair in response to in vitro injury is impaired in aged vs. young muscle cells. Our study establishes a framework that enables further understanding of the factors underlying impaired muscle regeneration in older age.
Collapse
Affiliation(s)
- Janelle Tarum
- Department of Sport Science, Sport Health and Performance Enhancement Research Centre (SHAPE), School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Hans Degens
- Musculoskeletal Science and Sports Medicine Research Centre, Department of Life Sciences, Manchester Metropolitan University Institute of Sport, Manchester Metropolitan University, Manchester, UK
- Lithuanian Sports University, Kaunas, Lithuania
| | - Mark D. Turner
- Centre for Diabetes, Chronic Diseases and Ageing, School of Science and Technology, Nottingham Trent University, Clifton, UK
| | - Claire Stewart
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| | - Craig Sale
- Institute of Sport, Manchester Metropolitan University, Manchester, UK
| | - Lívia Santos
- Department of Sport Science, Sport Health and Performance Enhancement Research Centre (SHAPE), School of Science and Technology, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
47
|
Dietz J, Jacobsen F, Zhuge H, Daya N, Bigot A, Zhang W, Ehrhardt A, Vorgerd M, Ehrke-Schulz E. Muscle Specific Promotors for Gene Therapy - A Comparative Study in Proliferating and Differentiated Cells. J Neuromuscul Dis 2023:JND221574. [PMID: 37270809 DOI: 10.3233/jnd-221574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
BACKGROUND Depending on the therapy approach and disease background, the heterogeneity of muscular tissues complicates the development of targeted gene therapy, where either expression in all muscle types or restriction to only one muscle type is warranted. Muscle specificity can be achieved using promotors mediating tissue specific and sustained physiological expression in the desired muscle types but limited activity in non-targeted tissue. Several muscle specific promotors have been described, but direct comparisons between them are lacking. OBJECTIVE Here we present a direct comparison of muscle specific Desmin-, MHCK7, microRNA206- and Calpain3 promotor. METHODS To directly compare these muscle specific promotors we utilized transfection of reporter plasmids using an in vitro model based on electrical pulse stimulation (EPS) to provoke sarcomere formation in 2D cell culture for quantification of promotor activities in far differentiated mouse and human myotubes. RESULTS We found that Desmin- and MHCK7 promotors showed stronger reporter gene expression levels in proliferating and differentiated myogenic cell lines than miR206 and CAPN3 promotor. However, Desmin and MHCK7 promotor promoted gene expression also cardiac cells whereas miR206 and CAPN3 promotor expression was restricted to skeletal muscle. CONCLUSIONS Our results provides direct comparison of muscle specific promotors with regard to expression strengths and specificity as this is important feature to avoid undesired transgene expression in non-target muscle cells for a desired therapy approach.
Collapse
Affiliation(s)
- Julienne Dietz
- Department of Human Medicine, Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Faculty of Health, Witten/Herdecke University, Witten, Germany
- Department of Neurology, University Hospital Bergmannsheil, Heimer Institute for Muscle Research, Bochum, Germany
| | - Frank Jacobsen
- Department of Neurology, University Hospital Bergmannsheil, Heimer Institute for Muscle Research, Bochum, Germany
| | - Heidi Zhuge
- Department of Neurology, University Hospital Bergmannsheil, Heimer Institute for Muscle Research, Bochum, Germany
| | - Nassam Daya
- Department of Neurology, University Hospital Bergmannsheil, Heimer Institute for Muscle Research, Bochum, Germany
| | - Anne Bigot
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Wenli Zhang
- Department of Human Medicine, Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Anja Ehrhardt
- Department of Human Medicine, Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Matthias Vorgerd
- Department of Neurology, University Hospital Bergmannsheil, Heimer Institute for Muscle Research, Bochum, Germany
| | - Eric Ehrke-Schulz
- Department of Human Medicine, Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Faculty of Health, Witten/Herdecke University, Witten, Germany
| |
Collapse
|
48
|
Pinton L, Khedr M, Lionello VM, Sarcar S, Maffioletti SM, Dastidar S, Negroni E, Choi S, Khokhar N, Bigot A, Counsell JR, Bernardo AS, Zammit PS, Tedesco FS. 3D human induced pluripotent stem cell-derived bioengineered skeletal muscles for tissue, disease and therapy modeling. Nat Protoc 2023; 18:1337-1376. [PMID: 36792780 DOI: 10.1038/s41596-022-00790-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/02/2022] [Indexed: 02/17/2023]
Abstract
Skeletal muscle is a complex tissue composed of multinucleated myofibers responsible for force generation that are supported by multiple cell types. Many severe and lethal disorders affect skeletal muscle; therefore, engineering models to reproduce such cellular complexity and function are instrumental for investigating muscle pathophysiology and developing therapies. Here, we detail the modular 3D bioengineering of multilineage skeletal muscles from human induced pluripotent stem cells, which are first differentiated into myogenic, neural and vascular progenitor cells and then combined within 3D hydrogels under tension to generate an aligned myofiber scaffold containing vascular networks and motor neurons. 3D bioengineered muscles recapitulate morphological and functional features of human skeletal muscle, including establishment of a pool of cells expressing muscle stem cell markers. Importantly, bioengineered muscles provide a high-fidelity platform to study muscle pathology, such as emergence of dysmorphic nuclei in muscular dystrophies caused by mutant lamins. The protocol is easy to follow for operators with cell culture experience and takes between 9 and 30 d, depending on the number of cell lineages in the construct. We also provide examples of applications of this advanced platform for testing gene and cell therapies in vitro, as well as for in vivo studies, providing proof of principle of its potential as a tool to develop next-generation neuromuscular or musculoskeletal therapies.
Collapse
Affiliation(s)
- Luca Pinton
- Department of Cell and Developmental Biology, University College London, London, UK
- The Francis Crick Institute, London, UK
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Moustafa Khedr
- Department of Cell and Developmental Biology, University College London, London, UK
- The Francis Crick Institute, London, UK
| | - Valentina M Lionello
- Department of Cell and Developmental Biology, University College London, London, UK
- The Francis Crick Institute, London, UK
| | - Shilpita Sarcar
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Sara M Maffioletti
- Department of Cell and Developmental Biology, University College London, London, UK
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan, Italy
| | - Sumitava Dastidar
- Department of Cell and Developmental Biology, University College London, London, UK
- The Francis Crick Institute, London, UK
| | - Elisa Negroni
- Department of Cell and Developmental Biology, University College London, London, UK
- Center for Research in Myology UMRS974, Sorbonne Université, INSERM, Myology Institute AIM, Paris, France
| | - SungWoo Choi
- Department of Cell and Developmental Biology, University College London, London, UK
- The Francis Crick Institute, London, UK
| | - Noreen Khokhar
- Department of Cell and Developmental Biology, University College London, London, UK
- The Francis Crick Institute, London, UK
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Anne Bigot
- Center for Research in Myology UMRS974, Sorbonne Université, INSERM, Myology Institute AIM, Paris, France
| | - John R Counsell
- UCL Division of Surgery and Interventional Science, Royal Free Hospital, London, UK
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, UK
| | - Andreia Sofia Bernardo
- The Francis Crick Institute, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Francesco Saverio Tedesco
- Department of Cell and Developmental Biology, University College London, London, UK.
- The Francis Crick Institute, London, UK.
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, UK.
| |
Collapse
|
49
|
Wang K, Smith SH, Iijima H, Hettinger ZR, Mallepally A, Shroff SG, Ambrosio F. Bioengineered 3D Skeletal Muscle Model Reveals Complement 4b as a Cell-Autonomous Mechanism of Impaired Regeneration with Aging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207443. [PMID: 36650030 DOI: 10.1002/adma.202207443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/11/2022] [Indexed: 05/17/2023]
Abstract
A mechanistic understanding of cell-autonomous skeletal muscle changes after injury can lead to novel interventions to improve functional recovery in an aged population. However, major knowledge gaps persist owing to limitations of traditional biological aging models. 2D cell culture represents an artificial environment, while aging mammalian models are contaminated by influences from non-muscle cells and other organs. Here, a 3D muscle aging system is created to overcome the limitations of these traditional platforms. It is shown that old muscle constructs (OMC) manifest a sarcopenic phenotype, as evidenced by hypotrophic myotubes, reduced contractile function, and decreased regenerative capacity compared to young muscle constructs. OMC also phenocopy the regenerative responses of aged muscle to two interventions, pharmacological and biological. Interrogation of muscle cell-specific mechanisms that contribute to impaired regeneration over time further reveals that an aging-induced increase of complement component 4b (C4b) delays muscle progenitor cell amplification and impairs functional recovery. However, administration of complement factor I, a C4b inactivator, improves muscle regeneration in vitro and in vivo, indicating that C4b inhibition may be a novel approach to enhance aged muscle repair. Collectively, the model herein exhibits capabilities to study cell-autonomous changes in skeletal muscle during aging, regeneration, and intervention.
Collapse
Affiliation(s)
- Kai Wang
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Charlestown, MA, 02129, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, 02115, USA
| | - Stephen H Smith
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Hirotaka Iijima
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Zachary R Hettinger
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Charlestown, MA, 02129, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, 02115, USA
- Department of Medicine, Division of Geriatric Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Adarsh Mallepally
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Sanjeev G Shroff
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Fabrisia Ambrosio
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Charlestown, MA, 02129, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, 02115, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
50
|
Massih B, Veh A, Schenke M, Mungwa S, Seeger B, Selvaraj BT, Chandran S, Reinhardt P, Sterneckert J, Hermann A, Sendtner M, Lüningschrör P. A 3D cell culture system for bioengineering human neuromuscular junctions to model ALS. Front Cell Dev Biol 2023; 11:996952. [PMID: 36866276 PMCID: PMC9973451 DOI: 10.3389/fcell.2023.996952] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/16/2023] [Indexed: 02/16/2023] Open
Abstract
The signals that coordinate and control movement in vertebrates are transmitted from motoneurons (MNs) to their target muscle cells at neuromuscular junctions (NMJs). Human NMJs display unique structural and physiological features, which make them vulnerable to pathological processes. NMJs are an early target in the pathology of motoneuron diseases (MND). Synaptic dysfunction and synapse elimination precede MN loss suggesting that the NMJ is the starting point of the pathophysiological cascade leading to MN death. Therefore, the study of human MNs in health and disease requires cell culture systems that enable the connection to their target muscle cells for NMJ formation. Here, we present a human neuromuscular co-culture system consisting of induced pluripotent stem cell (iPSC)-derived MNs and 3D skeletal muscle tissue derived from myoblasts. We used self-microfabricated silicone dishes combined with Velcro hooks to support the formation of 3D muscle tissue in a defined extracellular matrix, which enhances NMJ function and maturity. Using a combination of immunohistochemistry, calcium imaging, and pharmacological stimulations, we characterized and confirmed the function of the 3D muscle tissue and the 3D neuromuscular co-cultures. Finally, we applied this system as an in vitro model to study the pathophysiology of Amyotrophic Lateral Sclerosis (ALS) and found a decrease in neuromuscular coupling and muscle contraction in co-cultures with MNs harboring ALS-linked SOD1 mutation. In summary, the human 3D neuromuscular cell culture system presented here recapitulates aspects of human physiology in a controlled in vitro setting and is suitable for modeling of MND.
Collapse
Affiliation(s)
- Bita Massih
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Alexander Veh
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Maren Schenke
- Institute for Food Quality and Safety, Research Group Food Toxicology and Alternative/Complementary Methods to Animal Experiments, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Simon Mungwa
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Bettina Seeger
- Institute for Food Quality and Safety, Research Group Food Toxicology and Alternative/Complementary Methods to Animal Experiments, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Bhuvaneish T. Selvaraj
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh, United Kingdom
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, United Kingdom
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh, United Kingdom
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter Reinhardt
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Jared Sterneckert
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- Medical Faculty Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, University Medical Center Rostock, Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, Rostock, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Patrick Lüningschrör
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|