1
|
Khaliq SA, Park SY, Maham S, Cho Y, Lee M, Nam S, Seong JK, Chen J, Choi CS, Yoon MS. ARHGEF3 coordinates adipocyte hypertrophy and differentiation through dual YAP-RhoA and PPARγ activation. J Adv Res 2025:S2090-1232(25)00229-2. [PMID: 40216078 DOI: 10.1016/j.jare.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/19/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025] Open
Abstract
INTRODUCTION Obesity presents a significant global health burden, necessitating insights into the molecular drivers of adipogenesis and adipose tissue regulation. OBJECTIVES This study investigates the role of Rho guanine nucleotide exchange factor 3 (ARHGEF3) in adipocyte differentiation and hypertrophy, focusing on its influence on adipogenesis and body weight regulation under high-fat diet conditions. METHODS ARHGEF3-/- mice and littermate controls were subjected to a high-fat diet (HFD) and underwent comprehensive metabolic phenotyping. In vitro studies in C3H10T1/2 cells were conducted to assess ARHGEF3's role in adipogenesis, utilizing quantitative PCR, western blotting, chromatin immunoprecipitation (ChIP), immunoprecipitation (IP), immunostaining, and luciferase reporter assays. RESULTS ARHGEF3 expression increased in white adipose tissue (WAT) of HFD-fed mice and during adipogenic differentiation in C3H10T1/2 cells. ARHGEF3-deficient mice exhibited reduced weight gain and adipocyte size, correlating with decreased RhoA expression and altered cytoskeletal dynamics. Additionally, ARHGEF3 facilitated yes-associated protein (YAP) nuclear translocation and its direct binding to the RhoA promoter, an effect reliant on ARHGEF3. ARHGEF3 also enhanced the transcriptional activity of peroxisome proliferator-activated receptor gamma (PPARγ), establishing a reciprocal activation loop to drive adipocyte differentiation and hypertrophy. CONCLUSION ARHGEF3 emerges as a pivotal regulator of adipocyte dynamics by coordinating YAP-RhoA signaling and enhancing PPARγ activity. These findings offer novel therapeutic insights for addressing obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Sana Abdul Khaliq
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea; Department of Molecular Medicine, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| | - Shi-Young Park
- Gachon Biomedical Convergence Institute, Gachon University Gil Medical Center, Incheon 21565, Republic of Korea; Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Syeda Maham
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| | - Yoonil Cho
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea; Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Miseon Lee
- Department of Genome Medicine and Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Republic of Korea
| | - Seungyoon Nam
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea; Department of Genome Medicine and Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Model Animal Priority Center (KMPC), Seoul National University, Seoul 08826, Republic of Korea
| | - Jie Chen
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Cheol Soo Choi
- Department of Molecular Medicine, Gachon University College of Medicine, Incheon 21999, Republic of Korea; Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea; Department of Internal Medicine, Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea.
| | - Mee-Sup Yoon
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea; Department of Molecular Medicine, Gachon University College of Medicine, Incheon 21999, Republic of Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea.
| |
Collapse
|
2
|
Saucedo R, Ferreira-Hermosillo A, Robledo-Clemente M, Díaz-Velázquez MF, Valencia-Ortega J. Association of DNA Methylation with Infant Birth Weight in Women with Gestational Diabetes. Metabolites 2024; 14:361. [PMID: 39057684 PMCID: PMC11278577 DOI: 10.3390/metabo14070361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Offspring exposed to gestational diabetes mellitus (GDM) exhibit greater adiposity at birth. This early-life phenotype may increase offspring risk of developing obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease later in life. Infants born to women with GDM have a dysregulation of several hormones, cytokines, and growth factors related to fetal fat mass growth. One of the molecular mechanisms of GDM influencing these factors is epigenetic alterations, such as DNA methylation (DNAm). This review will examine the role of DNAm as a potential biomarker for monitoring fetal growth during pregnancy in women with GDM. This information is relevant since it may provide useful new biomarkers for the diagnosis, prognosis, and treatment of fetal growth and its later-life health consequences.
Collapse
Affiliation(s)
- Renata Saucedo
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (R.S.); (A.F.-H.)
| | - Aldo Ferreira-Hermosillo
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (R.S.); (A.F.-H.)
| | - Magalhi Robledo-Clemente
- Hospital de Gineco Obstetricia 3, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City 02990, Mexico; (M.R.-C.); (M.F.D.-V.)
| | - Mary Flor Díaz-Velázquez
- Hospital de Gineco Obstetricia 3, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City 02990, Mexico; (M.R.-C.); (M.F.D.-V.)
| | - Jorge Valencia-Ortega
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 11000, Mexico
| |
Collapse
|
3
|
Haspel N, Jang H, Nussinov R. Allosteric Activation of RhoA Complexed with p115-RhoGEF Deciphered by Conformational Dynamics. J Chem Inf Model 2024; 64:862-873. [PMID: 38215280 DOI: 10.1021/acs.jcim.3c01412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
The Ras homologue family member A (RhoA) is a member of the Rho family, a subgroup of the Ras superfamily. RhoA interacts with the 115 kDa guanine nucleotide exchange factor (p115-RhoGEF), which assists in activation and binding with downstream effectors. Here, we use molecular dynamics (MD) simulations and essential dynamics analysis of the inactive RhoA-GDP and active RhoA-GTP, when bound to p115-RhoGEF to decipher the mechanism of RhoA activation at the structural level. We observe that inactive RhoA-GDP maintains its position near the catalytic site on the Dbl homology (DH) domain of p115-RhoGEF through the interaction of its Switch I region with the DH domain. We further show that the active RhoA-GTP is engaged in more interactions with the p115-RhoGEF membrane-bound Pleckstrin homology (PH) domain as compared to RhoA-GDP. We hypothesize that the role of the interactions between the active RhoA-GTP and the PH domain is to help release it from the DH domain upon activation. Our results support this premise, and our simulations uncover the beginning of this process and provide structural details. They also point to allosteric communication pathways that take part in RhoA activation to promote and strengthen the interaction between the active RhoA-GTP and the PH domain. Allosteric regulation also occurs among other members of the Rho superfamily. Collectively, we suggest that in the activation process, the role of the RhoA-GTP interaction with the PH domain is to release RhoA-GTP from the DH domain after activation, making it available to downstream effectors.
Collapse
Affiliation(s)
- Nurit Haspel
- Department of Computer Science, University of Massachusetts Boston, Boston, Massachusetts 02125, United States
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
4
|
Huang J, Qu Q, Dai Y, Ren D, Qian J, Ge J. Detrimental Role of PDZ-RhoGEF in Pathological Cardiac Hypertrophy. Hypertension 2023; 80:403-415. [PMID: 36448462 DOI: 10.1161/hypertensionaha.122.19142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND Postsynaptic density 95/disk-large/ZO-1 Rho guanine nucleotide exchange factor (PDZ-RhoGEF, PRG) functions as a RhoGEF for activated Gα13 and transmits activation signals to downstream signaling pathways in various pathological processes. Although the prohypertrophic effect of activated Gα13 (guanine nucleotide binding protein alpha 13; a heterotrimeric G protein) is well-established, the role of PDZ-RhoGEF in pathological cardiac hypertrophy is still obscure. METHODS Genetically engineered mice and neonatal rat ventricular myocytes were generated to investigate the function of PRG in pathological myocardial hypertrophy. The prohypertrophic stimuli-induced alternations in the morphology and intracellular signaling were measured in myocardium and neonatal rat ventricular myocytes. Furthermore, multiple molecular methodologies were used to identify the precise molecular mechanisms underlying PDZ-RhoGEF function. RESULTS Increased PDZ-RhoGEF expression was documented in both hypertrophied hearts and neonatal rat ventricular myocytes. Upon prohypertrophic stimuli, the PDZ-RhoGEF-deficient hearts displayed alleviated cardiomyocyte enlargement and attenuated collagen deposition with improved cardiac function, whereas the adverse hypertrophic responses in hearts and neonatal rat ventricular myocytes were markedly exaggerated by PDZ-RhoGEF overexpression. Mechanistically, RhoA (ras homolog family member A)-dependent signaling pathways may function as the downstream effectors of PDZ-RhoGEF in hypertrophic remodeling, as confirmed by rescue experiments using a RhoA inhibitor and dominant-negative RhoA. Furthermore, PDZ-RhoGEF is associated with activated Gα13 and contributes to Gα13-mediated activation of RhoA-dependent signaling. CONCLUSIONS Our data provide the first evidence that PDZ-RhoGEF promotes pathological cardiac hypertrophy by linking activated Gα13 to RhoA-dependent signaling pathways. Therefore, PDZ-RhoGEF has the potential to be a diagnostic marker or therapeutic target for pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Jia Huang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China and National Clinical Research Center for Interventional Medicine (J.H., Y.D., D.R., J.Q., J.G.)
| | - Qingrong Qu
- Department of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China and Shanghai Clinical Research Center for Tuberculosis, Shanghai, China (Q.Q.)
| | - Yuxiang Dai
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China and National Clinical Research Center for Interventional Medicine (J.H., Y.D., D.R., J.Q., J.G.)
| | - Daoyuan Ren
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China and National Clinical Research Center for Interventional Medicine (J.H., Y.D., D.R., J.Q., J.G.)
| | - Juying Qian
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China and National Clinical Research Center for Interventional Medicine (J.H., Y.D., D.R., J.Q., J.G.)
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China and National Clinical Research Center for Interventional Medicine (J.H., Y.D., D.R., J.Q., J.G.)
| |
Collapse
|
5
|
Wu Y, Xiao Y, Xiao Z, Ma Y, Zhao H, Li J. Identification of Male-Specific Molecular Markers by Recombination of RhoGEF10 Gene in Spotted Knifejaw ( Oplegnathus punctatus). Genes (Basel) 2022; 13:1262. [PMID: 35886045 PMCID: PMC9317648 DOI: 10.3390/genes13071262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
The spotted knifejaw (Oplegnathus punctatus) is a marine economic fish with high ecological value, food value, and fishing value, and its growth has obvious sex dimorphism. The rapid identification of its sex is beneficial to the development of sex determination and breeding. In this study, the method of comparative genomics and PCR amplification was used to further establish a rapid detection method for the recombinant RhoGEF10 gene in O. punctatus, which can quickly, accurately, and efficiently identify the sex of the O. punctatus to be tested. The homologous comparison results of male and female individuals showed that the DNA fragment length of the RhoGEF10 gene on the X1 chromosome was 326 bp, and the DNA fragment length on the Y chromosome was 879 bp. Therefore, it can be concluded that there is an insert fragment of 553 bp on the Y chromosome. PCR amplification results showed that the two DNA fragments of 879 bp and 326 bp were amplified in the Y chromosome and X1 chromosome of the male O. punctatus (X1X2Y), respectively, and the 879 bp fragment was a unique marker fragment of the recombinant RhoGEF10 gene; The female O. punctatus (X1X1X2X2) only a single DNA fragment of 326 bp was amplified. At the same time, the inserted fragment of the male individual resulted in partial inactivation of the RhoGEF10 protein, which in turn resulted in a slowing of peripheral nerve conduction velocity and thinning of the myelin sheath in male O. punctatus. The method shortens the time for accurate identification of the O. punctatus RhoGEF10 gene recombination and improves the detection efficiency. It is of great significance and application value in the research of nerve conduction and myelin development, male and female sex identification, the preparation of high male seedlings, and family selection based on the RhoGEF10 gene in the O. punctatus.
Collapse
Affiliation(s)
- Yanduo Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (Y.X.); (Z.X.); (Y.M.); (H.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- School of Oceanography, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongshuang Xiao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (Y.X.); (Z.X.); (Y.M.); (H.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Zhizhong Xiao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (Y.X.); (Z.X.); (Y.M.); (H.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Yuting Ma
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (Y.X.); (Z.X.); (Y.M.); (H.Z.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Haixia Zhao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (Y.X.); (Z.X.); (Y.M.); (H.Z.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- School of Oceanography, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (Y.X.); (Z.X.); (Y.M.); (H.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
6
|
Machin PA, Tsonou E, Hornigold DC, Welch HCE. Rho Family GTPases and Rho GEFs in Glucose Homeostasis. Cells 2021; 10:cells10040915. [PMID: 33923452 PMCID: PMC8074089 DOI: 10.3390/cells10040915] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 12/17/2022] Open
Abstract
Dysregulation of glucose homeostasis leading to metabolic syndrome and type 2 diabetes is the cause of an increasing world health crisis. New intriguing roles have emerged for Rho family GTPases and their Rho guanine nucleotide exchange factor (GEF) activators in the regulation of glucose homeostasis. This review summates the current knowledge, focusing in particular on the roles of Rho GEFs in the processes of glucose-stimulated insulin secretion by pancreatic β cells and insulin-stimulated glucose uptake into skeletal muscle and adipose tissues. We discuss the ten Rho GEFs that are known so far to regulate glucose homeostasis, nine of which are in mammals, and one is in yeast. Among the mammalian Rho GEFs, P-Rex1, Vav2, Vav3, Tiam1, Kalirin and Plekhg4 were shown to mediate the insulin-stimulated translocation of the glucose transporter GLUT4 to the plasma membrane and/or insulin-stimulated glucose uptake in skeletal muscle or adipose tissue. The Rho GEFs P-Rex1, Vav2, Tiam1 and β-PIX were found to control the glucose-stimulated release of insulin by pancreatic β cells. In vivo studies demonstrated the involvement of the Rho GEFs P-Rex2, Vav2, Vav3 and PDZ-RhoGEF in glucose tolerance and/or insulin sensitivity, with deletion of these GEFs either contributing to the development of metabolic syndrome or protecting from it. This research is in its infancy. Considering that over 80 Rho GEFs exist, it is likely that future research will identify more roles for Rho GEFs in glucose homeostasis.
Collapse
Affiliation(s)
- Polly A. Machin
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; (P.A.M.); (E.T.)
| | - Elpida Tsonou
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; (P.A.M.); (E.T.)
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge CB22 3AT, UK;
| | - David C. Hornigold
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge CB22 3AT, UK;
| | - Heidi C. E. Welch
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; (P.A.M.); (E.T.)
- Correspondence: ; Tel.: +44-(0)1223-496-596
| |
Collapse
|
7
|
Wang L, Wang S, Shi Y, Li R, Günther S, Ong YT, Potente M, Yuan Z, Liu E, Offermanns S. YAP and TAZ protect against white adipocyte cell death during obesity. Nat Commun 2020; 11:5455. [PMID: 33116140 PMCID: PMC7595161 DOI: 10.1038/s41467-020-19229-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
The expansion of the white adipose tissue (WAT) in obesity goes along with increased mechanical, metabolic and inflammatory stress. How adipocytes resist this stress is still poorly understood. Both in human and mouse adipocytes, the transcriptional co-activators YAP/TAZ and YAP/TAZ target genes become activated during obesity. When fed a high-fat diet (HFD), mice lacking YAP/TAZ in white adipocytes develop severe lipodystrophy with adipocyte cell death. The pro-apoptotic factor BIM, which is downregulated in adipocytes of obese mice and humans, is strongly upregulated in YAP/TAZ-deficient adipocytes under HFD, and suppression of BIM expression reduces adipocyte apoptosis. In differentiated adipocytes, TNFα and IL-1β promote YAP/TAZ nuclear translocation via activation of RhoA-mediated actomyosin contractility and increase YAP/TAZ-mediated transcriptional regulation by activation of c-Jun N-terminal kinase (JNK) and AP-1. Our data indicate that the YAP/TAZ signaling pathway may be a target to control adipocyte cell death and compensatory adipogenesis during obesity.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/deficiency
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adipocytes, White/metabolism
- Adipocytes, White/pathology
- Adipogenesis
- Animals
- Bcl-2-Like Protein 11/metabolism
- Cell Cycle Proteins/deficiency
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Death
- Cells, Cultured
- Diet, High-Fat
- Disease Models, Animal
- Gene Expression Regulation
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Obesity/genetics
- Obesity/metabolism
- Obesity/pathology
- Trans-Activators/deficiency
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors/metabolism
- Transcriptional Coactivator with PDZ-Binding Motif Proteins
- YAP-Signaling Proteins
Collapse
Affiliation(s)
- Lei Wang
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany.
| | - ShengPeng Wang
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany.
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Yanta District, Xi'an, China.
| | - Yue Shi
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Yanta District, Xi'an, China
| | - Rui Li
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Stefan Günther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Yu Ting Ong
- Angiogenesis and Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Michael Potente
- Angiogenesis and Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Zuyi Yuan
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Enqi Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center Xi'an Jiaotong University, Xi'an, China
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany.
- Center for Molecular Medicine, Medical Faculty, Goethe University, Frankfurt am Main, 60590, Germany.
| |
Collapse
|
8
|
Lee S, Cieply B, Yang Y, Peart N, Glaser C, Chan P, Carstens RP. Esrp1-Regulated Splicing of Arhgef11 Isoforms Is Required for Epithelial Tight Junction Integrity. Cell Rep 2019; 25:2417-2430.e5. [PMID: 30485810 PMCID: PMC6371790 DOI: 10.1016/j.celrep.2018.10.097] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 09/10/2018] [Accepted: 10/25/2018] [Indexed: 12/19/2022] Open
Abstract
The epithelial-specific splicing regulators Esrp1 and Esrp2 are required for mammalian development, including establishment of epidermal barrier functions. However, the mechanisms by which Esrp ablation causes defects in epithelial barriers remain undefined. We determined that the ablation of Esrp1 and Esrp2 impairs epithelial tight junction (TJ) integrity through loss of the epithelial isoform of Rho GTP exchange factor Arhgef11. Arhgef11 is required for the maintenance of TJs via RhoA activation and myosin light chain (MLC) phosphorylation. Ablation or depletion of Esrp1/2 or Arhgef11 inhibits MLC phosphorylation and only the epithelial Arhgef11 isoform rescues MLC phosphorylation in Arhgef11 KO epithelial cells. Mesenchymal Arhgef11 transcripts contain a C-terminal exon that binds to PAK4 and inhibits RhoA activation byArhgef11. Deletion of the mesenchymal-specific Arhgef11 exon in Esrp1/2 KO epithelial cells using CRISPR/Cas9 restored TJ function, illustrating how splicing alterations can be mechanistically linked to disease phenotypes that result from impaired functions of splicing regulators.
Collapse
Affiliation(s)
- SungKyoung Lee
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin Cieply
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yueqin Yang
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Natoya Peart
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carl Glaser
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patricia Chan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Russ P Carstens
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Wei L, Surma M, Yang Y, Tersey S, Shi J. ROCK2 inhibition enhances the thermogenic program in white and brown fat tissue in mice. FASEB J 2019; 34:474-493. [PMID: 31914704 DOI: 10.1096/fj.201901174rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/09/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022]
Abstract
The RhoA/ROCK-mediated actin cytoskeleton dynamics have been implicated in adipogenesis. The two ROCK isoforms, ROCK1 and ROCK2, are highly homologous. The contribution of ROCK2 to adipogenesis in vivo has not been elucidated. The present study aimed at the in vivo and in vitro roles of ROCK2 in the regulation of adipogenesis and the development of obesity. We performed molecular, histological, and metabolic analyses in ROCK2+/- and ROCK2+/KD mouse models, the latter harboring an allele with a kinase-dead (KD) mutation. Both ROCK2+/- and ROCK2+/KD mouse models showed a lean body mass phenotype during aging, associated with increased amounts of beige cells in subcutaneous white adipose tissue (sWAT) and increased thermogenic gene expression in all fat depots. ROCK2+/- mice on a high-fat diet showed increased energy expenditure accompanying by reduced obesity, and improved insulin sensitivity. In vitro differentiated ROCK2+/- stromal-vascular (SV) cells revealed increased beige adipogenesis associated with increased thermogenic gene expressions. Treatment with a selective ROCK2 inhibitor, KD025, to inhibit ROCK2 activity in differentiated SV cells reproduced the pro-beige phenotype of ROCK2+/- SV cells. In conclusion, ROCK2 activity-mediated actin cytoskeleton dynamics contribute to the inhibition of beige adipogenesis in WAT, and also promotes age-related and diet-induced fat mass gain and insulin resistance.
Collapse
Affiliation(s)
- Lei Wei
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.,Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michelle Surma
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yang Yang
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sarah Tersey
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.,Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jianjian Shi
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
10
|
Aktories K, Gierschik P, Heringdorf DMZ, Schmidt M, Schultz G, Wieland T. cAMP guided his way: a life for G protein-mediated signal transduction and molecular pharmacology-tribute to Karl H. Jakobs. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:887-911. [PMID: 31101932 DOI: 10.1007/s00210-019-01650-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/02/2019] [Indexed: 12/14/2022]
Abstract
Karl H. Jakobs, former editor-in-chief of Naunyn-Schmiedeberg's Archives of Pharmacology and renowned molecular pharmacologist, passed away in April 2018. In this article, his scientific achievements regarding G protein-mediated signal transduction and regulation of canonical pathways are summarized. Particularly, the discovery of inhibitory G proteins for adenylyl cyclase, methods for the analysis of receptor-G protein interactions, GTP supply by nucleoside diphosphate kinases, mechanisms in phospholipase C and phospholipase D activity regulation, as well as the development of the concept of sphingosine-1-phosphate as extra- and intracellular messenger will presented. His seminal scientific and methodological contributions are put in a general and timely perspective to display and honor his outstanding input to the current knowledge in molecular pharmacology.
Collapse
Affiliation(s)
- Klaus Aktories
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert Ludwigs University, 79104, Freiburg, Germany
| | - Peter Gierschik
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89070, Ulm, Germany
| | - Dagmar Meyer Zu Heringdorf
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt am Main, Goethe University, 60590, Frankfurt am Main, Germany
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, 9713AV, Groningen, The Netherlands
| | - Günter Schultz
- Department of Pharmacology, Charité University Medical Center Berlin, Campus Benjamin Franklin, 14195, Berlin, Germany
| | - Thomas Wieland
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13 - 17, 68167, Mannheim, Germany.
| |
Collapse
|
11
|
Keshavarzi F, Golsheh S. IRS1- rs10498210 G/A and CCR5-59029 A/G polymorphisms in patients with type 2 diabetes in Kurdistan. Mol Genet Genomic Med 2019; 7:e631. [PMID: 30884193 PMCID: PMC6503169 DOI: 10.1002/mgg3.631] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/23/2018] [Accepted: 02/01/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The insulin receptor substrate 1 (IRS1) is a critical factor in the signaling pathway for insulin, and mutations in this gene have been reported, which contribute to the ability to develop type 2 diabetes. The polymorphisms in the promoter region of C-C motif chemokine receptor5 (CCR5) are also being studied as candidates for susceptibility to develop type 2 diabetes. The aim of the current study was to determine the relationship between IRS1 and CCR5 polymorphisms with type 2 diabetes in the Kurdistan population. METHODS Genomic DNA was isolated from the blood by salt extraction method and the polymorphisms were examined using Restriction Fragment Length Polymorphism (RFLP) method. RESULTS The results of current study indicated that the frequency of AA genotype in type 2 diabetic patients in both CCR5 (OR = 2.9, p = 0.04) and IRS1 (OR = 3.3, p = 0.036) were significantly more than controls. CONCLUSION According to the results of this study, the presence of AA genotype in both CCR5 and IRS1 is associated with type 2 diabetes. There was no significant association between AG or GG genotypes with type 2 diabetes.
Collapse
Affiliation(s)
| | - Shadi Golsheh
- Department of BiologyKurdistan Science and Research BranchIslamic Azad UniversitySanandajIran
| |
Collapse
|
12
|
Yan J, Su R, Zhang W, Wei Y, Wang C, Lin L, Feng H, Yang H. Epigenetic alteration of Rho guanine nucleotide exchange Factor 11 (ARHGEF11) in cord blood samples in macrosomia exposed to intrauterine hyperglycemia. J Matern Fetal Neonatal Med 2019; 34:422-431. [PMID: 30999786 DOI: 10.1080/14767058.2019.1609929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background: Macrosomia at birth is associated with maternal hyperglycemia and leads to subsequent susceptibility to obesity, abnormal glucose metabolism, hypertension, and dyslipidemia in offspring. Epigenetic reprogramming has been reported to be involved in the development of human diseases caused by suboptimal environmental or nutritional factors. The study was aiming to explore epigenetic mechanism influences on macrosomic infants exposed to intrauterine hyperglycemia. We performed a genome-wide analysis of DNA methylation in cord blood from macrosomic infants born to women with gestational diabetes in order to identify genes related to fetal growth or early adipose tissue development.Methods: To analyze the epigenetic patterns in umbilical cord blood in gestational diabetes mellitus (GDM), we collected umbilical cord blood from women with GDM (mean pregestational BMI of 24.4 kg/m2 and mean neonatal birth weight of 4366 g) and normal glucose-tolerant women (mean pregestational BMI of 19.8 kg/m2 and mean neonatal birth weight of 3166 g). Differentially methylated genes in the GDM group were identified using the Infinium HumanMethylation450 BeadChip array.Results: A total of 1251 genes were differentially methylated compared to the controls (p < .01). The methylation microarray data showed that two specific CpG sites (cg12604331 and cg08480098) in the gene body of ARHGEF11 were significantly hypomethylated in the cord blood in macrosomic infants. Altered DNA methylation levels of ARHGEF11 were negatively correlated with glucose levels and neonatal birth weight.Conclusions: Exposure to adverse intrauterine environments can alter fetal development, such as by affecting the nutritional status of the fetus. Such exposure can also result in significant epigenetic modifications, including DNA methylation, which could serve as a potential marker for nutrition and metabolic conditions at the neonatal stage or even in the adult.
Collapse
Affiliation(s)
- Jie Yan
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Rina Su
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Wanyi Zhang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Yumei Wei
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Chen Wang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Li Lin
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Hui Feng
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Huixia Yang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| |
Collapse
|
13
|
Zhang W, Su R, Feng H, Lin L, Wang C, Yang H. Transgenerational Obesity and Alteration of ARHGEF11 in the Rat Liver Induced by Intrauterine Hyperglycemia. J Diabetes Res 2019; 2019:6320839. [PMID: 31612150 PMCID: PMC6757444 DOI: 10.1155/2019/6320839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 05/23/2019] [Accepted: 08/05/2019] [Indexed: 11/18/2022] Open
Abstract
It is understood that intrauterine hyperglycemia increases the risk of obesity and diabetes in offspring of consecutive generations but its mechanisms remain obscure. This study is aimed at establishing an intrauterine hyperglycemia rat model to investigate the growth and glycolipid metabolic characteristics in transgenerational offspring and discuss the effects of Rho guanine nucleotide exchange factor 11 (ARHGEF11) and the PI3K/AKT signaling pathway in offspring development. The severe intrauterine hyperglycemia rat model was caused by STZ injection before mating, while offspring development and glycolipid metabolism were observed for the following two generations. The expression of ARHGEF11, ROCK1, PI3K, and AKT was tested in the liver and muscle tissue of F2 offspring. The results showed severe growth restriction in F1 offspring and obesity, fatty liver, and insulin resistance in female F2 offspring, especially the offspring of female intrauterine hyperglycemia-exposed parents (F2G♀C♂) and both (F2G♀G♂). The expression of ARHGEF11 and ROCK1 was significantly elevated; PI3K and phosphorylation of AKT were significantly decreased in liver tissues of F2G♀C♂ and F2G♀G♂. Our study revealed that intrauterine hyperglycemia could cause obesity and abnormal glycolipid metabolism in female transgenerational offspring; the programming effect of the intrauterine environment could cause a more obvious phenotype in the maternal line. Further exploration suggested that increased expression of ARHGEF11 and ROCK1 and the decreased expression of PI3K and phosphorylation of AKT in the liver could be responsible for the abnormal development in F2 offspring.
Collapse
Affiliation(s)
- Wanyi Zhang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Rina Su
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Hui Feng
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Li Lin
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Chen Wang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Huixia Yang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| |
Collapse
|
14
|
Golsheh S, Keshavarzi F. Genetic variants linked to T2DM risk in Kurdish populations. Diabetes Metab Syndr Obes 2019; 12:431-437. [PMID: 31114273 PMCID: PMC6497875 DOI: 10.2147/dmso.s189170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 03/05/2019] [Indexed: 02/06/2023] Open
Abstract
Background: The polymorphisms of the C-C chemokine receptor type 5 (CCR5) and the insulin receptor substrate 1 (IRS1) have been studied as candidates for the susceptibility to develop type 2 diabetes mellitus (T2DM). CCR5 is a chemokine receptor, and the polymorphisms in the promoter region of this receptor are being studied as candidates for the susceptibility to develop T2DM. Also, IRS1 is a critical factor in the signaling pathway for insulin, and mutations in this gene have been reported, which contribute to the ability to develop T2DM. The aim of the current study was to determine the relationship between CCR5 (59029A/G) and IRS1 (rs10498210) polymorphisms with T2DM in Sanandajian patients. Methods: Genomic DNA was isolated from 200 healthy individuals and 220 Kurdish T2DM patients by salt extraction method and the polymorphisms were examined by restriction fragment length polymorphism (RFLP) method and then the results were analyzed using Chi-square test. Results: The frequency of AA genotype in 220 Kurdish patients for both genes CCR5 (OR=1.9, P=0.02) and IRS1 (OR [95% CI]=2.62, P=0.02) were significantly more than controls. There was no significant association between AG or GG genotypes in with T2DM. Conclusion: The presence of AA homozygote alleles in both loci of IRS1 (rs10498210) and CCR5 (59029A/G) genes increased the risk of T2DM.
Collapse
Affiliation(s)
- Shadi Golsheh
- Department of Biology, Kurdistan Science and Research Branch, Islamic Azad University, Sanandaj, Iran
| | - Fatemeh Keshavarzi
- Department of Biology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
- Correspondence: Fatemeh KeshavarziSanandaj Branch, Islamic Azad University, Pasdaran Avenue, Sanandaj, IranTel +98 918 370 4918Fax +98 873 328 8677Email
| |
Collapse
|
15
|
Sánchez-Aguilera P, Diaz-Vegas A, Campos C, Quinteros-Waltemath O, Cerda-Kohler H, Barrientos G, Contreras-Ferrat A, Llanos P. Role of ABCA1 on membrane cholesterol content, insulin-dependent Akt phosphorylation and glucose uptake in adult skeletal muscle fibers from mice. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1469-1477. [PMID: 30254016 DOI: 10.1016/j.bbalip.2018.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 08/23/2018] [Accepted: 09/17/2018] [Indexed: 02/07/2023]
Abstract
The ATP-binding cassette transporter A1 (ABCA1) promotes cellular cholesterol efflux, leading to cholesterol binding to the extracellular lipid-free apolipoprotein A-I. ABCA1 regulates lipid content, glucose tolerance and insulin sensitivity in adipose tissue. In skeletal muscle, most GLUT4-mediated glucose transport occurs in the transverse tubule, a system composed by specialized cholesterol-enriched invaginations of the plasma membrane. We have reported that insulin resistant mice have higher cholesterol levels in transverse tubule from adult skeletal muscle. These high levels correlate with decreased GLUT4 trafficking and glucose uptake; however, the role of ABCA1 on skeletal muscle insulin-dependent glucose metabolism remains largely unexplored. Here, we evaluated the functional role of the ABCA1 on insulin-dependent signaling pathways, glucose uptake and cellular cholesterol content in adult skeletal muscle. Male mice were fed for 8 weeks with normal chow diet (NCD) or high fat diet (HFD). Compared to NCD-fed mice, ABCA1 mRNA levels and protein content were lower in muscle homogenates from HFD-fed mice. In Flexor digitorum brevis muscle from NCD-fed mice, shABCA1-RFP in vivo electroporation resulted in 65% reduction of ABCA1 protein content, 1.6-fold increased fiber cholesterol levels, 74% reduction in insulin-dependent Akt (Ser473) phosphorylation, total suppression of insulin-dependent GLUT4 translocation and decreased 2-NBDG uptake compared to fibers electroporated with the scrambled plasmid. Pre-incubation with methyl-β cyclodextrin reestablished both GLUT4 translocation and 2-NBDG transport. Based on the present results, we suggest that decreased ABCA1 contributes to the anomalous cholesterol accumulation and decreased glucose transport displayed by skeletal muscle membranes in the insulin resistant condition.
Collapse
Affiliation(s)
- Pablo Sánchez-Aguilera
- Institute for Research in Dental Sciences, Facultad de Odontología, Universidad de Chile, Chile
| | - Alexis Diaz-Vegas
- Departamento Ciencias Biológicas, Facultad Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | | | | | - Hugo Cerda-Kohler
- Institute for Research in Dental Sciences, Facultad de Odontología, Universidad de Chile, Chile
| | | | - Ariel Contreras-Ferrat
- ACCDiS, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Chile
| | - Paola Llanos
- Institute for Research in Dental Sciences, Facultad de Odontología, Universidad de Chile, Chile; CEMC, Facultad de Medicina, Universidad de Chile, Chile.
| |
Collapse
|
16
|
Yuan J, Chen S, Shi F, Wu G, Liu A, Yang N, Sun C. Genome-wide association study reveals putative role of gga-miR-15a in controlling feed conversion ratio in layer chickens. BMC Genomics 2017; 18:699. [PMID: 28877683 PMCID: PMC5586008 DOI: 10.1186/s12864-017-4092-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/28/2017] [Indexed: 11/24/2022] Open
Abstract
Background Efficient use of feed resources for farm animals is a critical concern in animal husbandry. Numerous genetic and nutritional studies have been conducted to investigate feed efficiency during the regular laying cycle of chickens. However, by prolonging the laying period of layers, the performance of feed utilization in the late-laying period becomes increasingly important. In the present study, we measured daily feed intake (FI), residual feed intake (RFI) and feed conversion ratio (FCR) of 808 hens during 81–82 weeks of age to evaluate genetic properties and then used a genome-wide association study (GWAS) to reveal the genetic determinants. Results The heritability estimates for the investigated traits were medium and between 0.15 and 0.28 in both pedigree- and genomic-based estimates, whereas the genetic correlations among these traits were high and ranged from 0.49 to 0.90. Three genome-wide significant SNPs located on chromosome 1 (GGA1) were detected for FCR. Linkage disequilibrium (LD) and conditional GWA analysis indicated that these 3 SNPs were highly correlated with one another, located at 13.55–45.16 Kb upstream of gga-miR-15a. Results of quantitative real-time polymerase chain reaction (qRT-PCR) analysis in liver tissue showed that the expression of gga-miR-15a was significantly higher in the high FCR birds than that in the medium or low FCR birds. Bioinformatics analysis further revealed that gga-mir-15a could act on many target genes, such as forkhead box O1 (FOXO1) that is involved in the insulin-signaling pathway, which influences nutrient metabolism in many organisms. Additionally, some suggestively significant variants, located on GGA3 and GGA9, were identified to associate with FI and RFI. Conclusions This GWA analysis was conducted on feed intake and efficiency traits for chickens and was innovative for application in the late laying period. Our findings can be used as a reference in the genomic breeding programs for increasing the efficiency performance of old hens and to improve our understanding of the molecular determinants for feed efficiency. Electronic supplementary material The online version of this article (10.1186/s12864-017-4092-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jingwei Yuan
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Sirui Chen
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Fengying Shi
- Beijing Engineering Research Center of Layer, Beijing, China
| | - Guiqin Wu
- Beijing Engineering Research Center of Layer, Beijing, China
| | - Aiqiao Liu
- Beijing Engineering Research Center of Layer, Beijing, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
17
|
Yan J, Su R, Ao D, Wang Y, Wang H, Yang H. Genetic variants and clinical relevance associated with gestational diabetes mellitus in Chinese women: a case-control study. J Matern Fetal Neonatal Med 2017; 31:2115-2121. [PMID: 28554271 DOI: 10.1080/14767058.2017.1336225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE Gestational diabetes mellitus (GDM) may share similar mechanisms with type 2 diabetes and obesity. In the current study, we aimed to verify twenty genes reported to be associated with type 2 diabetes and obesity in the Chinese GDM population. METHODS Pregnant women aged 20-49 years at 24-28 gestational weeks were recruited and 556 cases and 445 controls were enrolled in the study. The genotyping of single nucleotide polymorphisms (SNPs) was performed on peripheral blood samples. RESULTS We discovered that GDM was associated with rs945508 (OR = 1.368, 95% CI = 1.080-1.732, p = .009), rs10804591 (OR = 1.446, 95% CI = 1.192-1.754, p < .001), rs10245353 (OR = 1.204, 95% CI = 1.006-1.441, p = .043) and rs1552224 (OR = 1.451, 95% CI = 1.071-1.964, p = .016). CONCLUSIONS We found that four SNPs associated with type 2 diabetes and obesity may also increase the risk of developing GDM in the Chinese population. Among these SNPs, we report for the first time that rs945508 in ARHGEF11, rs10804591 in PLXND1 and rs10245353 in NFE2L3 were associated with GDM.
Collapse
Affiliation(s)
- Jie Yan
- a Department of Obstetrics and Gynecology , Peking University First Hospital , Beijing , China
| | - Rina Su
- a Department of Obstetrics and Gynecology , Peking University First Hospital , Beijing , China
| | - Deng Ao
- b Department of Child, Adolescent and Women's Health, School of Public Health , Peking University , Beijing , China
| | - Yan Wang
- b Department of Child, Adolescent and Women's Health, School of Public Health , Peking University , Beijing , China
| | - Haijun Wang
- b Department of Child, Adolescent and Women's Health, School of Public Health , Peking University , Beijing , China
| | - Huixia Yang
- a Department of Obstetrics and Gynecology , Peking University First Hospital , Beijing , China
| |
Collapse
|
18
|
FAK signalling controls insulin sensitivity through regulation of adipocyte survival. Nat Commun 2017; 8:14360. [PMID: 28165007 PMCID: PMC5303880 DOI: 10.1038/ncomms14360] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 12/21/2016] [Indexed: 12/30/2022] Open
Abstract
Focal adhesion kinase (FAK) plays a central role in integrin signalling, which regulates growth and survival of tumours. Here we show that FAK protein levels are increased in adipose tissue of insulin-resistant obese mice and humans. Disruption of adipocyte FAK in mice or in 3T3 L1 cells decreases adipocyte survival. Adipocyte-specific FAK knockout mice display impaired adipose tissue expansion and insulin resistance on prolonged metabolic stress from a high-fat diet or when crossed on an obese db/db or ob/ob genetic background. Treatment of these mice with a PPARγ agonist does not restore adiposity or improve insulin sensitivity. In contrast, inhibition of apoptosis, either genetically or pharmacologically, attenuates adipocyte death, restores normal adiposity and improves insulin sensitivity. Together, these results demonstrate that FAK is required for adipocyte survival and maintenance of insulin sensitivity, particularly in the context of adipose tissue expansion as a result of caloric excess. The kinase FAK is important for integrin signalling and promotes cell survival. Here, the authors demonstrate FAK regulates adipocyte survival, and is particularly important for maintaining insulin sensitivity during adipose tissue expansion in the context of a calorie-rich diet.
Collapse
|
19
|
Šeda O, Křenová D, Šedová L, Kazdová L, Krupková M, Chylíková B, Liška F, Křen V. Spontaneously Hypertensive Rat Chromosome 2 with Mutant Connexin 50 Triggers Divergent Effects on Metabolic Syndrome Components. Folia Biol (Praha) 2017; 63:67-77. [PMID: 28557708 DOI: 10.14712/fb2017063020067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Metabolic syndrome is a frequent condition with multifactorial aetiology. Previous studies indicated the presence of genetic determinants of metabolic syndrome components on rat chromosome 2 (RNO2) and syntenic regions of the human genome. Our aim was to further explore these findings using novel rat models. We derived the BN-Dca and BN-Lx.Dca congenic strains by introgression of a limited RNO2 region from a spontaneously hypertensive rat strain carrying a mutation in the Gja8 gene (SHR-Dca, dominant cataract) into the genomic background of Brown Norway strain and congenic strain BN-Lx, respectively. We compared morphometric, metabolic and cytokine profiles of adult male BN-Lx, BN-Dca and BN-Lx.Dca rats. We performed in silico comparison of the DNA sequences throughout RNO2 differential segments captured in the new congenic strains. Both BN-Dca and BN-Lx.Dca showed lower total triacylglycerols and cholesterol concentrations compared to BN-Lx. Fasting insulin in BN-Dca was higher than in BN-Lx.Dca and BN-Lx. Concentrations of several proinflammatory cytokines were elevated in the BN-Dca strain, including IL-1α, IL-1β, IFN-γ and MCP-1. In silico analyses revealed over 740 DNA variants between BN-Lx and SHR genomes within the differential segment of the congenic strains. We derived new congenic models that prove that a limited genomic region of SHR-Dca RNO2 significantly affects lipid levels and insulin sensitivity in a divergent fashion.
Collapse
Affiliation(s)
- O Šeda
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - D Křenová
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - L Šedová
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - L Kazdová
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - M Krupková
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - B Chylíková
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - F Liška
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - V Křen
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
20
|
Abstract
Neural tube closure is an important morphogenetic event that involves dramatic reshaping of both neural and non-neural tissues. Rho GTPases are key cytoskeletal regulators involved in cell motility and in several developmental processes, and are thus expected to play pivotal roles in neurulation. Here, we discuss 2 recent studies that shed light on the roles of distinct Rho GTPases in different tissues during neurulation. RhoA plays an essential role in regulating actomyosin dynamics in the neural epithelium of the elevating neural folds, while Rac1 is required for the formation of cell protrusions in the non-neural surface ectoderm during neural fold fusion.
Collapse
Affiliation(s)
- Ana Rolo
- a Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health , London , UK
| | - Sarah Escuin
- a Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health , London , UK
| | - Nicholas D E Greene
- a Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health , London , UK
| | - Andrew J Copp
- a Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health , London , UK
| |
Collapse
|