1
|
Hahn HJ, Pashkova N, Cianfrocco MA, Weisman LS. Cargo adaptors use a handhold mechanism to engage with myosin V for organelle transport. J Cell Biol 2025; 224:e202408006. [PMID: 40377475 DOI: 10.1083/jcb.202408006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 02/28/2025] [Accepted: 04/30/2025] [Indexed: 05/18/2025] Open
Abstract
Myo2, a class V myosin motor, is essential for organelle transport in budding yeast. Its association with cargo is regulated by adaptor proteins that mediate both attachment and release. Vac17, a vacuole-specific adaptor, links Myo2 to the vacuole membrane protein Vac8 and plays a key role in assembling and disassembling the Myo2-Vac17-Vac8 complex during vacuole inheritance. Using genetics, cryo-EM, and structure prediction, we find that Vac17 interacts with Myo2 at two distinct sites rather than a single interface. Similarly, the peroxisome adaptor Inp2 engages two separate regions of Myo2, one of which overlaps with a Vac17-binding site. These findings support a "handhold" model, in which cargo adaptors occupy multiple surfaces on the Myo2 tail, which likely enhances motor-cargo associations as well as provide additional regulatory control over motor recruitment.
Collapse
Affiliation(s)
- Hye Jee Hahn
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan , Ann Arbor, MI, USA
| | - Natalya Pashkova
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Michael A Cianfrocco
- Life Sciences Institute, University of Michigan , Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Lois S Weisman
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan , Ann Arbor, MI, USA
| |
Collapse
|
2
|
Wu L, Weng Z, Yang X, Huang Y, Lin Y, Li S, Fu L, Yun J. ARL8B regulates lysosomal function and predicts poor prognosis in hepatocellular carcinoma. Sci Rep 2025; 15:12278. [PMID: 40210693 PMCID: PMC11985964 DOI: 10.1038/s41598-025-97616-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 04/07/2025] [Indexed: 04/12/2025] Open
Abstract
Adenosine 5'-diphosphate ribosylation factor-like 8B (ARL8B), a small GTPase, is involved in lysosome motility. Our study investigates the role of ARL8B in hepatocellular carcinoma (HCC) using in vitro and in vivo experiments, bioinformatics, and clinical data. We found that ARL8B expression is abnormally elevated in HCC and correlates with poor prognosis. ARL8B knockdown triggered lysosomal dysfunction-manifesting as abnormal morphology, decreased pH, reduced hydrolase activity, and impaired autophagic degradation-which subsequently led to cell cycle arrest and reduced cell viability. Additionally, tumors with high ARL8B expression (ARL8Bhigh) exhibited notable differences in tumor microenvironment composition compared to those with low ARL8B expression (ARL8Blow). ARL8Bhigh HCCs had significantly increased infiltration of NFKBIZ+/HIF1A+ and VEGFA+/SPP1+ neutrophils. EcoTyper analysis indicated that ARL8Bhigh HCCs had a lower proportion of carcinoma ecotype 6, a cellular ecosystem common in normal tissues but rare in tumors. Bioinformatics and real-world analysis showed a positive correlation between ARL8B and PD-L1 expression. Patients with high ARL8B expression exhibited increased sensitivity to sorafenib and immune checkpoint blockade therapy. In conclusion, our findings identify ARL8B as a key lysosomal regulator associated with tumor microenvironment composition in HCC, suggesting its potential as both a therapeutic target and a biomarker for predicting treatment response.
Collapse
Affiliation(s)
- Liyan Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
- Department of Pathology, Sun Yat-sen University Cancer Center, Dongfeng East Road, Guangzhou, 510060, Guangdong, PR China
| | - Zelin Weng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
- Department of Pathology, Sun Yat-sen University Cancer Center, Dongfeng East Road, Guangzhou, 510060, Guangdong, PR China
| | - Xia Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
- Department of Pathology, Sun Yat-sen University Cancer Center, Dongfeng East Road, Guangzhou, 510060, Guangdong, PR China
| | - Yuhua Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
- Department of Pathology, Sun Yat-sen University Cancer Center, Dongfeng East Road, Guangzhou, 510060, Guangdong, PR China
| | - Yansong Lin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
- Department of Pathology, Sun Yat-sen University Cancer Center, Dongfeng East Road, Guangzhou, 510060, Guangdong, PR China
| | - Shuo Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
- Department of Pathology, Sun Yat-sen University Cancer Center, Dongfeng East Road, Guangzhou, 510060, Guangdong, PR China
| | - Lingyi Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
- Department of Pathology, Sun Yat-sen University Cancer Center, Dongfeng East Road, Guangzhou, 510060, Guangdong, PR China
| | - Jingping Yun
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China.
- Department of Pathology, Sun Yat-sen University Cancer Center, Dongfeng East Road, Guangzhou, 510060, Guangdong, PR China.
| |
Collapse
|
3
|
Hahn HJ, Pashkova N, Cianfrocco MA, Weisman LS. Cargo adaptors use a handhold mechanism to engage with myosin V for organelle transport. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.645041. [PMID: 40196620 PMCID: PMC11974856 DOI: 10.1101/2025.03.24.645041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Myo2, a myosin V motor, is essential for organelle transport in budding yeast. Its attachment to and detachment from cargo are mediated by adaptor molecules. Vac17, a vacuole-specific adaptor, links Myo2 to Vac8 on the vacuole membrane, and plays a key role in the formation and dissociation of the Myo2-Vac17-Vac8 complex. Using genetics, cryo-electron microscopy and structure prediction, we find that Vac17 interacts with Myo2 through two distinct sites rather than a single interface. Similarly, the peroxisome adapter Inp2 engages two separate regions of Myo2, one of which overlaps with Vac17. These findings support a "handhold" model, in which cargo adaptors occupy multiple sites on the Myo2 tail, enhancing motor-cargo interactions and likely providing additional regulatory control over motor recruitment. Summary This study provides insights into how cargo adaptors bind myosin V. Genetics, cell-based assays, cryo-EM, and AlphaFold, reveal that the vacuole-specific adaptor uses a handhold mechanism to attach to two areas on the myosin V tail. Moreover, evidence is presented that other adaptors use a similar strategy.
Collapse
|
4
|
van der Horst SC, Kollenstart L, Batté A, Keizer S, Vreeken K, Pandey P, Chabes A, van Attikum H. Replication-IDentifier links epigenetic and metabolic pathways to the replication stress response. Nat Commun 2025; 16:1416. [PMID: 39915438 PMCID: PMC11802883 DOI: 10.1038/s41467-025-56561-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025] Open
Abstract
Perturbation of DNA replication, for instance by hydroxyurea-dependent dNTP exhaustion, often leads to stalling or collapse of replication forks. This triggers a replication stress response that stabilizes these forks, activates cell cycle checkpoints, and induces expression of DNA damage response genes. While several factors are known to act in this response, the full repertoire of proteins involved remains largely elusive. Here, we develop Replication-IDentifier (Repli-ID), which allows for genome-wide identification of regulators of DNA replication in Saccharomyces cerevisiae. During Repli-ID, the replicative polymerase epsilon (Pol ε) is tracked at a barcoded origin of replication by chromatin immunoprecipitation (ChIP) coupled to next-generation sequencing of the barcode in thousands of hydroxyurea-treated yeast mutants. Using this approach, 423 genes that promote Pol ε binding at replication forks were uncovered, including LGE1 and ROX1. Mechanistically, we show that Lge1 affects replication initiation and/or fork stability by promoting Bre1-dependent H2B mono-ubiquitylation. Rox1 affects replication fork progression by regulating S-phase entry and checkpoint activation, hinging on cellular ceramide levels via transcriptional repression of SUR2. Thus, Repli-ID provides a unique resource for the identification and further characterization of factors and pathways involved in the cellular response to DNA replication perturbation.
Collapse
Affiliation(s)
| | - Leonie Kollenstart
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
| | - Amandine Batté
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Sander Keizer
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Kees Vreeken
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Praveen Pandey
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
5
|
Fujii R, Katsukawa R, Takeda E, Itakura E, Matsuura A. Regulatory dynamics of Sch9 in response to cytosolic acidification: From spatial reconfiguration to cellular adaptation to stresses. iScience 2025; 28:111573. [PMID: 39811664 PMCID: PMC11731984 DOI: 10.1016/j.isci.2024.111573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/19/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
The regulation of cellular metabolism is crucial for cell survival, with Sch9 in Saccharomyces cerevisiae serving a key role as a substrate of TORC1. Sch9 localizes to the vacuolar membrane through binding to PI(3,5)P2, which is necessary for TORC1-dependent phosphorylation. This study demonstrates that cytosolic pH regulates Sch9 localization. Under stress conditions that induce cytosolic acidification, Sch9 detached from the vacuolar membrane. In vitro experiments confirmed that Sch9's affinity for PI(3,5)P2 is pH-dependent. This pH-dependent localization switch is essential for regulating the TORC1-Sch9 pathway. Impairment of the dissociation of Sch9 from the vacuolar membrane in response to cytosolic acidification resulted in the deficient induction of stress response gene expression and delayed the adaptive response to acetic acid stress. These findings indicate the importance of proper Sch9 localization for metabolic reprogramming and stress response in yeast cells.
Collapse
Affiliation(s)
- Rui Fujii
- Department of Biology, Graduate School of Science and Engineering, Chiba University, Chiba 263-8522, Japan
| | - Rai Katsukawa
- Department of Biology, Faculty of Science, Chiba University, Chiba 263-8522, Japan
| | - Eigo Takeda
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido 060-0815, Japan
| | - Eisuke Itakura
- Department of Biology, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Akira Matsuura
- Department of Biology, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| |
Collapse
|
6
|
Kane PM. Newborn daughters get a fresh start through PI(3,5)P2-mediated vacuolar acidification. J Cell Biol 2025; 224:e202412054. [PMID: 39705073 PMCID: PMC11661316 DOI: 10.1083/jcb.202412054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024] Open
Abstract
Huda et al. (https://doi.org/10.1083/jcb.202406170) reveal a transient, cell cycle-dependent increase in PI(3,5)P2 levels at the lysosome-like vacuole of yeast daughter cells. The resulting lipid asymmetry alters vacuolar pH in both daughter and mother cells and will impact multiple downstream functions.
Collapse
Affiliation(s)
- Patricia M. Kane
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
7
|
Huda M, Koyuncu M, Dilege C, Caydasi AK. PI(3,5)P2 asymmetry during mitosis is essential for asymmetric vacuolar inheritance. J Cell Biol 2025; 224:e202406170. [PMID: 39514241 PMCID: PMC11554754 DOI: 10.1083/jcb.202406170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/13/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) is a low-abundance signaling lipid that plays crucial roles in various cellular processes, including endolysosomal system structure/function, stress response, and cell cycle regulation. PI(3,5)P2 synthesis increases in response to environmental stimuli, yet its behavior in cycling cells under basal conditions remains elusive. Here, we analyzed spatiotemporal changes in PI(3,5)P2 levels during the cell cycle of S. cerevisiae. We found that PI(3,5)P2 accumulates on the vacuole in the daughter cell while it disappears from the vacuole in the mother cell during mitosis. Concomitant with the changes in PI(3,5)P2 distribution, the daughter vacuole became more acidic, whereas the acidity of the mother vacuole decreased during mitosis. Our data further showed that both PI(3,5)P2 and the PI(3,5)P2 effector protein Atg18 are determinants of vacuolar-pH asymmetry and acidity. Our work, thus, identifies PI(3,5)P2 as a key factor for the establishment of vacuolar-pH asymmetry, providing insights into how the mother cell ages while the daughter cell is rejuvenated.
Collapse
Affiliation(s)
- Mariam Huda
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Mukadder Koyuncu
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Cansu Dilege
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Ayse Koca Caydasi
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| |
Collapse
|
8
|
Calderin JD, Zhang C, Tan TJC, Wu NC, Fratti R. Use of Bio-Layer Interferometry (BLI) to Measure Binding Affinities of SNAREs and Phosphoinositides. Methods Mol Biol 2025; 2887:103-117. [PMID: 39806149 DOI: 10.1007/978-1-0716-4314-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Bio-Layer Interferometry (BLI) is a technique that uses optical biosensing to analyze interactions between molecules. The analysis of molecular interactions is measured in real-time and does not require fluorescent tags. BLI uses disposable biosensors that come in a variety of formats to bind different ligands including biotin, hexahistidine, GST, and the Fc portion of antibodies. Unlike surface plasmon resonance (SPR), BLI is an open system that does not require microfluidics, which eliminates issues that result from clogging and changes in viscosity. Importantly, BLI readings can be completed in minutes and can be formatted for high throughput screening. Here we use biotinylated short chain phosphoinositides and phosphatidic acid bound to streptavidin BLI biosensors to measure the binding of the soluble Qc SNARE Vam7 from Saccharomyces cerevisiae. Unlike most SNAREs, Vam7 lacks a transmembrane domain or lipid anchor to associate with membranes. Instead Vam7 associates to yeast vacuolar membranes using its N-terminal PX domain that binds to phosphatidylinositol 3-phosphate (PI3P) and phosphatidic acid (PA). Using full length Vam7, Vam7Y42A, and PX domain alone, we determined and compared the dissociation constants (KD) of each to biotinylated PI3P and PA biosensors.
Collapse
Affiliation(s)
- Jorge D Calderin
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Chi Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Timothy J C Tan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Nicholas C Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rutilio Fratti
- Dept of Biochemistry & Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
9
|
Shahina Z, Dahms TES. A Comparative Review of Eugenol and Citral Anticandidal Mechanisms: Partners in Crimes Against Fungi. Molecules 2024; 29:5536. [PMID: 39683696 DOI: 10.3390/molecules29235536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Candida albicans is an emerging multidrug-resistant opportunistic pathogen that causes candidiasis, superficial infections on the mucosa, nails or skin, and life-threatening candidemia in deep tissue when disseminated through the bloodstream. Recently, there has been a sharp rise in resistant strains, posing a considerable clinical challenge for the treatment of candidiasis. There has been a resurged interest in the pharmacological properties of essential oils and their active components, for example, monoterpenes with alcohol (-OH) and aldehyde (-CHO) groups. Eugenol and citral have shown promising in vitro and in vivo activity against Candida species. Although there is substantial research on the efficacy of these essential oil components against C. albicans, a detailed knowledge of their mycological mechanisms is lacking. To explore the broad-spectrum effects of EOs, it is more meaningful and rational to study the whole essential oil, along with some of its major components. This review provides a comprehensive overview of eugenol and citral anticandidal and antivirulence activity, alone and together, along with the associated mechanisms and limitations of our current knowledge.
Collapse
Affiliation(s)
- Zinnat Shahina
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Tanya E S Dahms
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| |
Collapse
|
10
|
Ekal L, Alqahtani AMS, Ayscough KR, Hettema EH. Spatiotemporal regulation of organelle transport by spindle position checkpoint kinase Kin4. J Cell Sci 2024; 137:jcs261948. [PMID: 39318281 PMCID: PMC11586526 DOI: 10.1242/jcs.261948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024] Open
Abstract
Asymmetric cell division in Saccharomyces cerevisiae involves class V myosin-dependent transport of organelles along the polarised actin cytoskeleton to the emerging bud. Vac17 is the vacuole/lysosome-specific myosin receptor. Its timely breakdown terminates transport and results in the proper positioning of vacuoles in the bud. Vac17 breakdown is controlled by the bud-concentrated p21-activated kinase Cla4, and the E3-ubiquitin ligase Dma1. We found that the spindle position checkpoint kinase Kin4 and, to a lesser extent, its paralog Frk1 contribute to successful vacuole transport by preventing the premature breakdown of Vac17 by Cla4 and Dma1. Furthermore, Kin4 and Cla4 contribute to the regulation of peroxisome transport. We conclude that Kin4 antagonises the Cla4/Dma1 pathway to coordinate spatiotemporal regulation of organelle transport.
Collapse
Affiliation(s)
- Lakhan Ekal
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Abdulaziz M. S. Alqahtani
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- Department of Biology, Faculty of Science, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia
| | | | - Ewald H. Hettema
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
11
|
Jin N, Jin Y, Oikawa Y, Nakano A, Ohsumi Y, Weisman LS. A non-canonical CDK, Pho85 regulates the restart of the cell-cycle following stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609989. [PMID: 39253458 PMCID: PMC11383280 DOI: 10.1101/2024.08.27.609989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Environmental stress induces an arrest of the cell cycle. Thus, release from this arrest is essential for cell survival. The cell-cycle-arrest occurs via the down regulation of the cyclins that drive the main cyclin dependent kinase, CDK1/Cdc28. However, it was not clear how cells escape this potentially fatal arrest. Here we show that prior to the restoration of CDK1/Cdc28 cyclins, a non-canonical CDK, Pho85, initiates a cascade to restart the cell cycle. We demonstrate that following stress, Pho85 phosphorylates the Sch9 kinase, which in turn directly phosphorylates the transcriptional inhibitor Whi5, the yeast analog of RB1/retinoblastoma, and a CDK1 target. This promotes Whi5 translocation from the nucleus, and the release of the stress-induced arrest at G 1 phase. In addition, we find that in parallel with Pho85, CDK1/Cdc28 also plays a role in the control of Whi5. Together, these findings provide insights into how cells re-enter the cell cycle during recovery from stress and reveal that a non-canonical CDK and cyclin takes on essential roles and acts via a pathway that functions in parallel with CDK1/Cdc28.
Collapse
|
12
|
Gopan S, Pucadyil TJ. The race to uncover fission factors for lysosomal organelles heats up. Nature 2024:10.1038/d41586-024-00851-w. [PMID: 38538889 DOI: 10.1038/d41586-024-00851-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
|
13
|
Pham AT, Mani M, Wang X, Vafabakhsh R. Multiscale biophysical analysis of nucleolus disassembly during mitosis. Proc Natl Acad Sci U S A 2024; 121:e2312250121. [PMID: 38285946 PMCID: PMC10861868 DOI: 10.1073/pnas.2312250121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/01/2024] [Indexed: 01/31/2024] Open
Abstract
During cell division, precise and regulated distribution of cellular material between daughter cells is a critical step and is governed by complex biochemical and biophysical mechanisms. To achieve this, membraneless organelles and condensates often require complete disassembly during mitosis. The biophysical principles governing the disassembly of condensates remain poorly understood. Here, we used a physical biology approach to study how physical and material properties of the nucleolus, a prominent nuclear membraneless organelle in eukaryotic cells, change during mitosis and across different scales. We found that nucleolus disassembly proceeds continuously through two distinct phases with a slow and reversible preparatory phase followed by a rapid irreversible phase that was concurrent with the nuclear envelope breakdown. We measured microscopic properties of nucleolar material including effective diffusion rates and binding affinities as well as key macroscopic properties of surface tension and bending rigidity. By incorporating these measurements into the framework of critical phenomena, we found evidence that near mitosis surface tension displays a power-law behavior as a function of biochemically modulated interaction strength. This two-step disassembly mechanism maintains structural and functional stability of nucleolus while enabling its rapid and efficient disassembly in response to cell cycle cues.
Collapse
Affiliation(s)
- An T. Pham
- Department of Molecular Biosciences, Northwestern University, Evanston, IL60208
| | - Madhav Mani
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL60208
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL60208
| | - Xiaozhong Wang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL60208
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL60208
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern University, Evanston, IL60208
| |
Collapse
|
14
|
Pham AT, Mani M, Wang XA, Vafabakhsh R. The Physical Biology of Nucleolus Disassembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559731. [PMID: 37808669 PMCID: PMC10557732 DOI: 10.1101/2023.09.27.559731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
During cell division, precise and regulated distribution of cellular material between daughter cells is a critical step and is governed by complex biochemical and biophysical mechanisms. To achieve this, membraneless organelles and condensates often require complete disassembly during mitosis. The biophysical principles governing the disassembly of condensates remain poorly understood. Here, we used a physical biology approach to study how physical and material properties of the nucleolus, a prominent nuclear membraneless organelle in eukaryotic cells, change during mitosis and across different scales. We found that nucleolus disassembly proceeds continuously through two distinct phases with a slow and reversible preparatory phase followed by a rapid irreversible phase that was concurrent with the nuclear envelope breakdown. We measured microscopic properties of nucleolar material including effective diffusion rates and binding affinities as well as key macroscopic properties of surface tension and bending rigidity. By incorporating these measurements into the framework of critical phenomena, we found evidence that near mitosis surface tension displays a power-law behavior as a function of biochemically modulated interaction strength. This two-step disassembly mechanism, which maintains structural and functional stability of nucleolus while allowing for its rapid and efficient disassembly in response to cell cycle cues, may be a universal design principle for the disassembly of other biomolecular condensates.
Collapse
Affiliation(s)
- An T. Pham
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Madhav Mani
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA
| | - Xiaozhong A. Wang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
15
|
Caligaris M, Sampaio-Marques B, Hatakeyama R, Pillet B, Ludovico P, De Virgilio C, Winderickx J, Nicastro R. The Yeast Protein Kinase Sch9 Functions as a Central Nutrient-Responsive Hub That Calibrates Metabolic and Stress-Related Responses. J Fungi (Basel) 2023; 9:787. [PMID: 37623558 PMCID: PMC10455444 DOI: 10.3390/jof9080787] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Yeast cells are equipped with different nutrient signaling pathways that enable them to sense the availability of various nutrients and adjust metabolism and growth accordingly. These pathways are part of an intricate network since most of them are cross-regulated and subject to feedback regulation at different levels. In yeast, a central role is played by Sch9, a protein kinase that functions as a proximal effector of the conserved growth-regulatory TORC1 complex to mediate information on the availability of free amino acids. However, recent studies established that Sch9 is more than a TORC1-effector as its activity is tuned by several other kinases. This allows Sch9 to function as an integrator that aligns different input signals to achieve accuracy in metabolic responses and stress-related molecular adaptations. In this review, we highlight the latest findings on the structure and regulation of Sch9, as well as its role as a nutrient-responsive hub that impacts on growth and longevity of yeast cells. Given that most key players impinging on Sch9 are well-conserved, we also discuss how studies on Sch9 can be instrumental to further elucidate mechanisms underpinning healthy aging in mammalians.
Collapse
Affiliation(s)
- Marco Caligaris
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; (M.C.); (B.P.); (C.D.V.)
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (B.S.-M.); (P.L.)
- ICVS/3B’s-PT Government Associate Laboratory, 4806-909 Guimarães, Portugal
| | - Riko Hatakeyama
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK;
| | - Benjamin Pillet
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; (M.C.); (B.P.); (C.D.V.)
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (B.S.-M.); (P.L.)
- ICVS/3B’s-PT Government Associate Laboratory, 4806-909 Guimarães, Portugal
| | - Claudio De Virgilio
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; (M.C.); (B.P.); (C.D.V.)
| | - Joris Winderickx
- Department of Biology, Functional Biology, KU Leuven, B-3001 Heverlee, Belgium;
| | - Raffaele Nicastro
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; (M.C.); (B.P.); (C.D.V.)
| |
Collapse
|
16
|
Santana-Sosa S, Matos-Perdomo E, Ayra-Plasencia J, Machín F. A Yeast Mitotic Tale for the Nucleus and the Vacuoles to Embrace. Int J Mol Sci 2023; 24:9829. [PMID: 37372977 DOI: 10.3390/ijms24129829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
The morphology of the nucleus is roughly spherical in most eukaryotic cells. However, this organelle shape needs to change as the cell travels through narrow intercellular spaces during cell migration and during cell division in organisms that undergo closed mitosis, i.e., without dismantling the nuclear envelope, such as yeast. In addition, the nuclear morphology is often modified under stress and in pathological conditions, being a hallmark of cancer and senescent cells. Thus, understanding nuclear morphological dynamics is of uttermost importance, as pathways and proteins involved in nuclear shaping can be targeted in anticancer, antiaging, and antifungal therapies. Here, we review how and why the nuclear shape changes during mitotic blocks in yeast, introducing novel data that associate these changes with both the nucleolus and the vacuole. Altogether, these findings suggest a close relationship between the nucleolar domain of the nucleus and the autophagic organelle, which we also discuss here. Encouragingly, recent evidence in tumor cell lines has linked aberrant nuclear morphology to defects in lysosomal function.
Collapse
Affiliation(s)
- Silvia Santana-Sosa
- Research Unit, University Hospital Ntra Sra de Candelaria, Ctra del Rosario 145, 38010 Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Emiliano Matos-Perdomo
- Research Unit, University Hospital Ntra Sra de Candelaria, Ctra del Rosario 145, 38010 Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Jessel Ayra-Plasencia
- Research Unit, University Hospital Ntra Sra de Candelaria, Ctra del Rosario 145, 38010 Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Félix Machín
- Research Unit, University Hospital Ntra Sra de Candelaria, Ctra del Rosario 145, 38010 Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
- Faculty of Health Sciences, Fernando Pessoa Canarias University, 35450 Santa María de Guía, Spain
| |
Collapse
|
17
|
Candida albicans Reactive Oxygen Species (ROS)-Dependent Lethality and ROS-Independent Hyphal and Biofilm Inhibition by Eugenol and Citral. Microbiol Spectr 2022; 10:e0318322. [PMID: 36394350 PMCID: PMC9769929 DOI: 10.1128/spectrum.03183-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Candida albicans is part of the normal human flora but is most frequently isolated as the causative opportunistic pathogen of candidiasis. Plant-based essential oils and their components have been extensively studied as antimicrobials, but their antimicrobial impacts are poorly understood. Phenylpropenoids and monoterpenes, for example, eugenol from clove and citral from lemon grass, are potent antifungals against a wide range of pathogens. We report the cellular response of C. albicans to eugenol and citral, alone and combined, using biochemical and microscopic assays. The MICs of eugenol and citral were 1,000 and 256 μg/mL, respectively, with the two exhibiting additive effects based on a fractional inhibitory concentration index of 0.83 ± 0.14. High concentrations of eugenol caused membrane damage, oxidative stress, vacuole segregation, microtubule dysfunction and cell cycle arrest at the G1/S phase, and while citral had similar impacts, they were reactive oxygen species (ROS) independent. At sublethal concentrations (1/2 to 1/4 MIC), both oils disrupted microtubules and hyphal and biofilm formation in an ROS-independent manner. While both compounds disrupt the cell membrane, eugenol had a greater impact on membrane dysfunction. This study shows that eugenol and citral can induce vacuole and microtubule dysfunction, along with the inhibition of hyphal and biofilm formation. IMPORTANCE Candida albicans is a normal resident on and in the human body that can cause relatively benign infections. However, when our immune system is severely compromised (e.g., cancer chemotherapy patients) or underdeveloped (e.g., newborns), this fungus can become a deadly pathogen, infecting the bloodstream and organs. Since there are only a few effective antifungal agents that can be used to combat fungal infections, these fungi have been exposed to them over and over again, allowing the fungi to develop resistance. Instead of developing antifungal agents that kill the fungi, some of which have undesirable side effects on the human host, researchers have proposed to target the fungal traits that make the fungus more virulent. Here, we show how two components of plant-based essential oils, eugenol and citral, are effective inhibitors of C. albicans virulence traits.
Collapse
|
18
|
Combining single-cell tracking and omics improves blood stem cell fate regulator identification. Blood 2022; 140:1482-1495. [PMID: 35820055 PMCID: PMC9523371 DOI: 10.1182/blood.2022016880] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
Molecular programs initiating cell fate divergence (CFD) are difficult to identify. Current approaches usually compare cells long after CFD initiation, therefore missing molecular changes at its start. Ideally, single cells that differ in their CFD molecular program but are otherwise identical are compared early in CFD. This is possible in diverging sister cells, which were identical until their mother's division and thus differ mainly in CFD properties. In asymmetrically dividing cells, divergent daughter fates are prospectively committed during division, and diverging sisters can thus be identified at the start of CFD. Using asymmetrically dividing blood stem cells, we developed a pipeline (ie, trackSeq) for imaging, tracking, isolating, and transcriptome sequencing of single cells. Their identities, kinship, and histories are maintained throughout, massively improving molecular noise filtering and candidate identification. In addition to many identified blood stem CFD regulators, we offer here this pipeline for use in CFDs other than asymmetric division.
Collapse
|
19
|
Jin Y, Jin N, Oikawa Y, Benyair R, Koizumi M, Wilson TE, Ohsumi Y, Weisman LS. Bur1 functions with TORC1 for vacuole-mediated cell cycle progression. EMBO Rep 2022; 23:e53477. [PMID: 35166010 PMCID: PMC8982600 DOI: 10.15252/embr.202153477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/09/2022] Open
Abstract
The vacuole/lysosome plays essential roles in the growth and proliferation of many eukaryotic cells via the activation of target of rapamycin complex 1 (TORC1). Moreover, the yeast vacuole/lysosome is necessary for progression of the cell division cycle, in part via signaling through the TORC1 pathway. Here, we show that an essential cyclin-dependent kinase, Bur1, plays a critical role in cell cycle progression in cooperation with TORC1. A mutation in BUR1 combined with a defect in vacuole inheritance shows a synthetic growth defect. Importantly, the double mutant, as well as a bur1-267 mutant on its own, has a severe defect in cell cycle progression from G1 phase. In further support that BUR1 functions with TORC1, mutation of bur1 alone results in high sensitivity to rapamycin, a TORC1 inhibitor. Mechanistic insight for Bur1 function comes from the findings that Bur1 directly phosphorylates Sch9, a target of TORC1, and that both Bur1 and TORC1 are required for the activation of Sch9. Together, these discoveries suggest that multiple signals converge on Sch9 to promote cell cycle progression.
Collapse
Affiliation(s)
- Yui Jin
- Tokyo Tech World Research Hub Initiative (WRHI)TokyoJapan
- Cell Biology Center, Institute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
- Life Sciences InstituteUniversity of MichiganAnn ArborMIUSA
| | - Natsuko Jin
- Life Sciences InstituteUniversity of MichiganAnn ArborMIUSA
- Present address:
Live Cell Super‐Resolution Imaging Research TeamRIKEN Center for Advanced PhotonicsWakoJapan
| | - Yu Oikawa
- Cell Biology Center, Institute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
| | - Ron Benyair
- Life Sciences InstituteUniversity of MichiganAnn ArborMIUSA
| | - Michiko Koizumi
- Cell Biology Center, Institute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
| | | | - Yoshinori Ohsumi
- Tokyo Tech World Research Hub Initiative (WRHI)TokyoJapan
- Cell Biology Center, Institute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
| | - Lois S Weisman
- Life Sciences InstituteUniversity of MichiganAnn ArborMIUSA
- Department of Cell and Developmental BiologyUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
20
|
Hormazabal J, Saavedra F, Espinoza-Arratia C, Martinez NW, Cruces T, Alfaro IE, Loyola A. Chaperone mediated autophagy contributes to the newly synthesized histones H3 and H4 quality control. Nucleic Acids Res 2022; 50:1875-1887. [PMID: 35037039 PMCID: PMC8887419 DOI: 10.1093/nar/gkab1296] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 11/24/2021] [Accepted: 01/04/2022] [Indexed: 12/16/2022] Open
Abstract
Although there are several pathways to ensure that proteins are folded properly in the cell, little is known about the molecular mechanisms regulating histone folding and proteostasis. In this work, we identified that chaperone-mediated autophagy (CMA) is the main pathway involved in the degradation of newly synthesized histones H3 and H4. This degradation is finely regulated by the interplay between HSC70 and tNASP, two histone interacting proteins. tNASP stabilizes histone H3 levels by blocking the direct transport of histone H3 into lysosomes. We further demonstrate that CMA degrades unfolded histone H3. Thus, we reveal that CMA is the main degradation pathway involved in the quality control of histone biogenesis, evidencing an additional mechanism in the intricate network of histone cellular proteostasis.
Collapse
Affiliation(s)
- Juan Hormazabal
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Francisco Saavedra
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | | | | | - Tatiana Cruces
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Iván E Alfaro
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile.,Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Alejandra Loyola
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
21
|
Novarina D, Guerra P, Milias-Argeitis A. Vacuolar Localization via the N-terminal Domain of Sch9 is Required for TORC1-dependent Phosphorylation and Downstream Signal Transduction. J Mol Biol 2021; 433:167326. [PMID: 34695378 DOI: 10.1016/j.jmb.2021.167326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
The budding yeast Sch9 kinase (functional orthologue of the mammalian S6 kinase) is a major effector of the Target of Rapamycin Complex 1 (TORC1) complex in the regulation of cell growth in response to nutrient availability and stress. Sch9 is partially localized at the vacuolar surface, where it is phosphorylated by TORC1. The recruitment of Sch9 on the vacuole is mediated by direct interaction between phospholipids of the vacuolar membrane and the region of Sch9 encompassing amino acid residues 1-390, which contains a C2 domain. Since many C2 domains mediate phospholipid binding, it had been suggested that the C2 domain of Sch9 mediates its vacuolar recruitment. However, the in vivo requirement of the C2 domain for Sch9 localization had not been demonstrated, and the phenotypic consequences of Sch9 delocalization remained unknown. Here, by examining cellular localization, phosphorylation state and growth phenotypes of Sch9 truncation mutants, we show that deletion of the N-terminal domain of Sch9 (aa 1-182), but not the C2 domain (aa 183-399), impairs vacuolar localization and TORC1-dependent phosphorylation of Sch9, while causing growth defects similar to those observed in Sch9Δ cells. These defects can be reversed either via artificial tethering of the protein to the vacuole, or by introducing phosphomimetic mutations at the TORC1 target sites, suggesting that Sch9 localization on the vacuole is needed for the TORC1-dependent activation of the kinase. Our study uncovers a key role for the N-terminal domain of Sch9 and provides new mechanistic insight into the regulation of a major TORC1 signaling branch.
Collapse
Affiliation(s)
- Daniele Novarina
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Paolo Guerra
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Andreas Milias-Argeitis
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
22
|
Abstract
We often think about regeneration in terms of replacing missing structures, such as organs or tissues, with new structures generated via cell proliferation and differentiation. But at a smaller scale, single cells, themselves, are capable of regenerating when part of the cell has been removed. A classic model organism that facilitates the study of cellular regeneration in the giant ciliate Stentor coeruleus. These cells, which can grow to more than a millimeter in size, have the ability to survive after extensive wounding of their surface, and are able to regenerate missing structures. Even a small piece of a cell can regenerate a whole cell with normal geometry, in a matter of hours. Such regeneration requires cells to be able to trigger organelle biogenesis in response to loss of structures. But subcellular regeneration also relies on intracellular mechanisms to create and maintain global patterning within the cell. These mechanisms are not understood, but at a conceptual level they involve processes that resemble those seen in animal development and regeneration. Here we discuss single-celled regeneration in Stentor from the viewpoint of standard regeneration paradigms in animals. For example, there is evidence that regeneration of the oral apparatus in Stentor follows a sender-receiver model similar to crustacean eyestalk regeneration. By drawing these analogies, we find that many of the concepts already known from the study of animal-scale regeneration and development can be applied to the study of regeneration at the cellular level, such as the concepts of determination, induction, mosaic vs. regulative development, and epimorphosis vs. morphallaxis. We propose that the similarities may go beyond analogy, and that some aspects of animal development and regeneration may have evolved by exploiting pre-existing subcellular developmental strategies from unicellular ancestors.
Collapse
Affiliation(s)
- Wallace F. Marshall
- Department Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| |
Collapse
|
23
|
Hämälistö S, Stahl-Meyer J, Jäättelä M. They Might Cut It-Lysosomes and Autophagy in Mitotic Progression. Front Cell Dev Biol 2021; 9:727538. [PMID: 34485308 PMCID: PMC8414588 DOI: 10.3389/fcell.2021.727538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022] Open
Abstract
The division of one cell into two looks so easy, as if it happens without any control at all. Mitosis, the hallmark of mammalian life is, however, tightly regulated from the early onset to the very last phase. Despite the tight control, errors in mitotic division occur frequently and they may result in various chromosomal instabilities and malignancies. The flow of events during mitotic progression where the chromosomes condensate and rearrange with the help of the cytoskeletal network has been described in great detail. Plasma membrane dynamics and endocytic vesicle movement upon deadhesion and reattachment of dividing cells are also demonstrated to be functionally important for the mitotic integrity. Other cytoplasmic organelles, such as autophagosomes and lysosomes, have until recently been considered merely as passive bystanders in this process. Accordingly, at the onset of nuclear envelope breakdown in prometaphase, the number of autophagic structures and lysosomes is reduced and the bulk autophagic machinery is suppressed for the duration of mitosis. This is believed to ensure that the exposed nuclear components are not unintentionally delivered to autophagic degradation. With the evolving technologies that allow the detection of subtle alterations in cytoplasmic organelles, our understanding of the small-scale regulation of intracellular organelles has deepened rapidly and we discuss here recent discoveries revealing unexpected roles for autophagy and lysosomes in the preservation of genomic integrity during mitosis.
Collapse
Affiliation(s)
- Saara Hämälistö
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jonathan Stahl-Meyer
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Marja Jäättelä
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| |
Collapse
|
24
|
Asymmetric organelle inheritance predicts human blood stem cell fate. Blood 2021; 139:2011-2023. [PMID: 34314497 DOI: 10.1182/blood.2020009778] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 05/26/2021] [Indexed: 11/20/2022] Open
Abstract
Understanding human hematopoietic stem cell fate control is important for their improved therapeutic manipulation. Asymmetric cell division, the asymmetric inheritance of factors during division instructing future daughter cell fates, was recently described in mouse blood stem cells. In human blood stem cells, the possible existence of asymmetric cell division remained unclear due to technical challenges in its direct observation. Here, we use long-term quantitative single-cell imaging to show that lysosomes and active mitochondria are asymmetrically inherited in human blood stem cells and that their inheritance is a coordinated, non-random process. Furthermore, multiple additional organelles, including autophagosomes, mitophagosomes, autolysosomes and recycling endosomes show preferential asymmetric co-segregation with lysosomes. Importantly, asymmetric lysosomal inheritance predicts future asymmetric daughter cell cycle length, differentiation and stem cell marker expression, while asymmetric inheritance of active mitochondria correlates with daughter metabolic activity. Hence, human hematopoietic stem cell fates are regulated by asymmetric cell division, with both mechanistic evolutionary conservation and differences to the mouse system.
Collapse
|
25
|
Ordway B, Gillies RJ, Damaghi M. Extracellular Acidification Induces Lysosomal Dysregulation. Cells 2021; 10:1188. [PMID: 34067971 PMCID: PMC8152284 DOI: 10.3390/cells10051188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/09/2021] [Indexed: 02/05/2023] Open
Abstract
Many invasive cancers emerge through a years-long process of somatic evolution, characterized by an accumulation of heritable genetic and epigenetic changes and the emergence of increasingly aggressive clonal populations. In solid tumors, such as breast ductal carcinoma, the extracellular environment for cells within the nascent tumor is harsh and imposes different types of stress on cells, such as hypoxia, nutrient deprivation, and cytokine inflammation. Acidosis is a constant stressor of most cancer cells due to its production through fermentation of glucose to lactic acid in hypoxic or normoxic regions (Warburg effect). Over a short period of time, acid stress can have a profound effect on the function of lysosomes within the cells exposed to this environment, and after long term exposure, lysosomal function of the cancer cells can become completely dysregulated. Whether this dysregulation is due to an epigenetic change or evolutionary selection has yet to be determined, but understanding the mechanisms behind this dysregulation could identify therapeutic opportunities.
Collapse
Affiliation(s)
- Bryce Ordway
- Department of Cancer Physiology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (B.O.); (R.J.G.)
| | - Robert J. Gillies
- Department of Cancer Physiology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (B.O.); (R.J.G.)
| | - Mehdi Damaghi
- Department of Cancer Physiology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (B.O.); (R.J.G.)
- Department of Oncological Sciences, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
26
|
Yang C, Wang X. Lysosome biogenesis: Regulation and functions. J Cell Biol 2021; 220:212053. [PMID: 33950241 PMCID: PMC8105738 DOI: 10.1083/jcb.202102001] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Lysosomes are degradation centers and signaling hubs in cells and play important roles in cellular homeostasis, development, and aging. Changes in lysosome function are essential to support cellular adaptation to multiple signals and stimuli. Therefore, lysosome biogenesis and activity are regulated by a wide variety of intra- and extracellular cues. Here, we summarize current knowledge of the regulatory mechanisms of lysosome biogenesis, including synthesis of lysosomal proteins and their delivery via the endosome-lysosome pathway, reformation of lysosomes from degradative vesicles, and transcriptional regulation of lysosomal genes. We survey the regulation of lysosome biogenesis in response to nutrient and nonnutrient signals, the cell cycle, stem cell quiescence, and cell fate determination. Finally, we discuss lysosome biogenesis and functions in the context of organismal development and aging.
Collapse
Affiliation(s)
- Chonglin Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| | - Xiaochen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Ozbek O, O Ulgen K, Ileri Ercan N. The Toxicity of Polystyrene-Based Nanoparticles in Saccharomyces cerevisiae Is Associated with Nanoparticle Charge and Uptake Mechanism. Chem Res Toxicol 2021; 34:1055-1068. [PMID: 33710856 DOI: 10.1021/acs.chemrestox.0c00468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polystyrene latex (PSL) nanoparticles (NPs), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) liposomes, and hybrid NPs that have different concentrations, sizes, surface charges, and functional groups were used to determine their toxicity to Saccharomyces cerevisiae cells. The size, charge, and morphology of the nanoparticles were characterized by dynamic light scattering, electrophoretic light scattering, scanning transmission electron microscopy, and transmission electron microscopy analysis. The cell viabilities were determined by colony forming unit analysis and confocal laser scanning microscopy imaging. Uptake inhibition studies were performed to determine the internalization mechanism of PSL NPs. At 50 mg/L, both positively and negatively charged NPs were slightly toxic. With increasing concentration, however, full toxicities were observed with positively charged PSL NPs, while a marginal increase in toxicity was obtained with negatively charged PSL NPs. For negatively charged and carboxyl-functionalized NPs, an increase in size induced toxicity, whereas for positively charged and amine-functionalized NPs, smaller-sized NPs were more toxic to yeast cells. Negatively charged NPs were internalized by the yeast cells, but they showed toxicity when they entered the cell vacuole. Positively charged NPs, however, accumulated on the cell surface and caused toxicity. When coated with DOPC liposomes, positively charged NPs became significantly less toxic. We attribute this reduction to the larger-diameter and/or more-agglomerated NPs in the extracellular environment, which resulted in lower interactions with the cell. In addition to endocytosis, it is possible that the negatively charged NPs (30-C-n) were internalized by the cells, partly via direct permeation, which is preferred for high drug delivery efficiency. Negatively charged PSL NP exposure to the yeast cells at low-to-moderate concentrations resulted in low toxicities in the long term. Our results indicate that negatively charged PSL NPs provide safer alternatives as cargo carriers in drug delivery applications. Moreover, the variations in NP size, concentration, and exposure time, along with the use of hybrid systems, have significant roles in nanoparticle-based drug delivery applications in terms of their effects on living organisms.
Collapse
Affiliation(s)
- Ozlem Ozbek
- Chemical Engineering Department, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Kutlu O Ulgen
- Chemical Engineering Department, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Nazar Ileri Ercan
- Chemical Engineering Department, Bogazici University, Bebek, Istanbul 34342, Turkey
| |
Collapse
|
28
|
Hossain S, Lash E, Veri AO, Cowen LE. Functional connections between cell cycle and proteostasis in the regulation of Candida albicans morphogenesis. Cell Rep 2021; 34:108781. [PMID: 33626353 PMCID: PMC7971348 DOI: 10.1016/j.celrep.2021.108781] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/18/2020] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Morphological plasticity is a key virulence trait for many fungal pathogens. For the opportunistic fungal pathogen Candida albicans, transitions among yeast, pseudohyphal, and hyphal forms are critical for virulence, because the morphotypes play distinct roles in the infection process. C. albicans morphogenesis is induced in response to many host-relevant conditions and is regulated by complex signaling pathways and cellular processes. Perturbation of either cell-cycle progression or protein homeostasis induces C. albicans filamentation, demonstrating that these processes play a key role in morphogenetic control. Regulators such as cyclin-dependent kinases, checkpoint proteins, the proteasome, the heat shock protein Hsp90, and the heat shock transcription factor Hsf1 all influence morphogenesis, often through interconnected effects on the cell cycle and proteostasis. This review highlights the major cell-cycle and proteostasis regulators that modulate morphogenesis and discusses how these two processes intersect to regulate this key virulence trait.
Collapse
Affiliation(s)
- Saif Hossain
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Emma Lash
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Amanda O Veri
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
29
|
Wong S, Weisman LS. Roles and regulation of myosin V interaction with cargo. Adv Biol Regul 2021; 79:100787. [PMID: 33541831 PMCID: PMC7920922 DOI: 10.1016/j.jbior.2021.100787] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 05/08/2023]
Abstract
A major question in cell biology is, how are organelles and large macromolecular complexes transported within a cell? Myosin V molecular motors play critical roles in the distribution of organelles, vesicles, and mRNA. Mis-localization of organelles that depend on myosin V motors underlie diseases in the skin, gut, and brain. Thus, the delivery of organelles to their proper destination is important for animal physiology and cellular function. Cargoes attach to myosin V motors via cargo specific adaptor proteins, which transiently bridge motors to their cargoes. Regulation of these adaptor proteins play key roles in the regulation of cargo transport. Emerging studies reveal that cargo adaptors play additional essential roles in the activation of myosin V, and the regulation of actin filaments. Here, we review how motor-adaptor interactions are controlled to regulate the proper loading and unloading of cargoes, as well as roles of adaptor proteins in the regulation of myosin V activity and the dynamics of actin filaments.
Collapse
Affiliation(s)
- Sara Wong
- Cell and Molecular Biology, University of Michigan, Ann Arbor, United States; Life Sciences Institute, University of Michigan, Ann Arbor, United States
| | - Lois S Weisman
- Cell and Developmental Biology, University of Michigan, Ann Arbor, United States; Life Sciences Institute, University of Michigan, Ann Arbor, United States.
| |
Collapse
|
30
|
Nutrient Signaling, Stress Response, and Inter-organelle Communication Are Non-canonical Determinants of Cell Fate. Cell Rep 2020; 33:108446. [PMID: 33264609 PMCID: PMC9744185 DOI: 10.1016/j.celrep.2020.108446] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/06/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022] Open
Abstract
Isogenic cells manifest distinct cellular fates for a single stress; however, the nongenetic mechanisms driving such fates remain poorly understood. Here, we implement a robust multi-channel live-cell imaging approach to uncover noncanonical factors governing cell fate. We show that in response to acute glucose removal (AGR), budding yeast undergoes distinct fates, becoming either quiescent or senescent. Senescent cells fail to resume mitotic cycles following glucose replenishment but remain responsive to nutrient stimuli. Whereas quiescent cells manifest starvation-induced adaptation, senescent cells display perturbed endomembrane trafficking and defective nucleus-vacuole junction (NVJ) expansion. Surprisingly, senescence occurs even in the absence of lipid droplets. Importantly, we identify the nutrient-sensing kinase Rim15 as a key biomarker predicting cell fates before AGR stress. We propose that isogenic yeast challenged with acute nutrient shortage contains determinants influencing post-stress fate and demonstrate that specific nutrient signaling, stress response, trafficking, and inter-organelle biomarkers are early indicators for long-term fate outcomes.
Collapse
|
31
|
Chadwick WL, Biswas SK, Bianco S, Chan YHM. Non-random distribution of vacuoles in Schizosaccharomyces pombe. Phys Biol 2020; 17:065004. [PMID: 33035200 DOI: 10.1088/1478-3975/aba510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A central question in eukaryotic cell biology asks, during cell division, how is the growth and distribution of organelles regulated to ensure each daughter cell receives an appropriate amount. For vacuoles in budding yeast, there are well described organelle-to-cell size scaling trends as well as inheritance mechanisms involving highly coordinated movements. It is unclear whether such mechanisms are necessary in the symmetrically dividing fission yeast, Schizosaccharomyces pombe, in which random partitioning may be utilized to distribute vacuoles to daughter cells. To address the increasing need for high-throughput analysis, we are augmenting existing semi-automated image processing by developing fully automated machine learning methods for locating vacuoles and segmenting fission yeast cells from brightfield and fluorescence micrographs. All strains studied show qualitative correlations in vacuole-to-cell size scaling trends, i.e. vacuole volume, surface area, and number all increase with cell size. Furthermore, increasing vacuole number was found to be a consistent mechanism for the increase in total vacuole size in the cell. Vacuoles are not distributed evenly throughout the cell with respect to available cytoplasm. Rather, vacuoles show distinct peaks in distribution close to the nucleus, and this preferential localization was confirmed in mutants in which nucleus position is perturbed. Disruption of microtubules leads to quantitative changes in both vacuole size scaling trends and distribution patterns, indicating the microtubule cytoskeleton is a key mechanism for maintaining vacuole structure.
Collapse
Affiliation(s)
- William L Chadwick
- Department of Biology, San Francisco State University, San Francisco, CA, United States of America. Center for Cellular Construction, San Francisco Bay Area, CA, United States of America
| | | | | | | |
Collapse
|
32
|
Manandhar SP, Siddiqah IM, Cocca SM, Gharakhanian E. A kinase cascade on the yeast lysosomal vacuole regulates its membrane dynamics: conserved kinase Env7 is phosphorylated by casein kinase Yck3. J Biol Chem 2020; 295:12262-12278. [PMID: 32647006 PMCID: PMC7443493 DOI: 10.1074/jbc.ra119.012346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/02/2020] [Indexed: 01/15/2023] Open
Abstract
Membrane fusion/fission is a highly dynamic and conserved process that responds to intra- and extracellular signals. Whereas the molecular machineries involved in membrane fusion/fission have been dissected, regulation of membrane dynamics remains poorly understood. The lysosomal vacuole of budding yeast (Saccharomyces cerevisiae) has served as a seminal model in studies of membrane dynamics. We have previously established that yeast ENV7 encodes an ortholog of STK16-related kinases that localizes to the vacuolar membrane and downregulates vacuolar membrane fusion. Additionally, we have previously reported that Env7 phosphorylation in vivo depends on YCK3, a gene that encodes a vacuolar membrane casein kinase I (CKI) homolog that nonredundantly functions in fusion regulation. Here, we report that Env7 physically interacts with and is directly phosphorylated by Yck3. We also establish that Env7 vacuole fusion/fission regulation and vacuolar localization are mediated through its Yck3-dependent phosphorylation. Through extensive site-directed mutagenesis, we map phosphorylation to the Env7 C terminus and confirm that Ser-331 is a primary and preferred phosphorylation site. Phospho-deficient Env7 mutants were defective in negative regulation of membrane fusion, increasing the number of prominent vacuoles, whereas a phosphomimetic substitution at Ser-331 increased the number of fragmented vacuoles. Bioinformatics approaches confirmed that Env7 Ser-331 is within a motif that is highly conserved in STK16-related kinases and that it also anchors an SXXS CKI phosphorylation motif (328SRFS331). This study represents the first report on the regulatory mechanism of an STK16-related kinase. It also points to regulation of vacuolar membrane dynamics via a novel Yck3-Env7 kinase cascade.
Collapse
Affiliation(s)
- Surya P Manandhar
- Department of Biological Sciences, California State University at Long Beach, Long Beach, California, USA
| | - Ikha M Siddiqah
- Department of Biological Sciences, California State University at Long Beach, Long Beach, California, USA
| | - Stephanie M Cocca
- Department of Biological Sciences, California State University at Long Beach, Long Beach, California, USA
| | - Editte Gharakhanian
- Department of Biological Sciences, California State University at Long Beach, Long Beach, California, USA.
| |
Collapse
|
33
|
Joseph C, Mangani AS, Gupta V, Chitranshi N, Shen T, Dheer Y, Kb D, Mirzaei M, You Y, Graham SL, Gupta V. Cell Cycle Deficits in Neurodegenerative Disorders: Uncovering Molecular Mechanisms to Drive Innovative Therapeutic Development. Aging Dis 2020; 11:946-966. [PMID: 32765956 PMCID: PMC7390532 DOI: 10.14336/ad.2019.0923] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022] Open
Abstract
Cell cycle dysregulation has been implicated in the pathogenesis of neurodegenerative disorders. Specialised function obligates neuronal cells to subsist in a quiescent state of cell cycle once differentiated and therefore the circumstances and mechanisms underlying aberrant cell cycle activation in post-mitotic neurons in physiological and disease conditions remains an intriguing area of research. There is a strict requirement of concurrence to cell cycle regulation for neurons to ensure intracellular biochemical conformity as well as interrelationship with other cells within neural tissues. This review deliberates on various mechanisms underlying cell cycle regulation in neuronal cells and underscores potential implications of their non-compliance in neural pathology. Recent research suggests that successful duplication of genetic material without subsequent induction of mitosis induces inherent molecular flaws that eventually assert as apoptotic changes. The consequences of anomalous cell cycle activation and subsequent apoptosis are demonstrated by the increased presence of molecular stress response and apoptotic markers. This review delineates cell cycle events under normal physiological conditions and deficits amalgamated by alterations in protein levels and signalling pathways associated with cell-division are analysed. Cell cycle regulators essentially, cyclins, CDKs, cip/kip family of inhibitors, caspases, bax and p53 have been identified to be involved in impaired cell cycle regulation and associated with neural pathology. The pharmacological modulators of cell cycle that are shown to impart protection in various animal models of neurological deficits are summarised. Greater understanding of the molecular mechanisms that are indispensable to cell cycle regulation in neurons in health and disease conditions will facilitate targeted drug development for neuroprotection.
Collapse
Affiliation(s)
- Chitra Joseph
- 1Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | | | - Veer Gupta
- 2School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Nitin Chitranshi
- 1Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ting Shen
- 1Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Yogita Dheer
- 1Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Devaraj Kb
- 1Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Mehdi Mirzaei
- 3Department of Molecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Yuyi You
- 1Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia.,4Save Sight Institute, Sydney University, Sydney, NSW 2109, Australia
| | - Stuart L Graham
- 1Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia.,4Save Sight Institute, Sydney University, Sydney, NSW 2109, Australia
| | - Vivek Gupta
- 1Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
34
|
Mołoń M, Molestak E, Kula-Maximenko M, Grela P, Tchórzewski M. Ribosomal Protein uL11 as a Regulator of Metabolic Circuits Related to Aging and Cell Cycle. Cells 2020; 9:cells9071745. [PMID: 32708309 PMCID: PMC7409069 DOI: 10.3390/cells9071745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/06/2020] [Accepted: 07/16/2020] [Indexed: 11/16/2022] Open
Abstract
Aging is a biological phenomenon common to all living organisms. It is thought that the rate of aging is influenced by diverse factors, in many cases related to the control of energy metabolism, i.e., the so-called pro-longevity effects of starvation. Translation, regarded as the main energy consumption process, lies at the center of interest, as it has a significant impact on the longevity phenomenon. It has been shown that perturbations in the translational apparatus may lead to a lower rate of aging. Therefore, the main aim of this study was to investigate aging in relation to the protein biosynthesis circuit, taking into account the uL11 ribosomal protein as a vital ribosomal element. To this end, we used set of yeast mutants with deleted single uL11A or uL11B genes and a double disruptant uL11AB mutant. We applied an integrated approach analyzing a broad range of biological parameters of yeast mutant cells, especially the longevity phenomenon, supplemented with biochemical and high throughput transcriptomic and metobolomic approaches. The analysis showed that the longevity phenomenon is not fully related to the commonly considered energy restriction effect, thus the slow-down of translation does not represent the sole source of aging. Additionally, we showed that uL11 can be classified as a moonlighting protein with extra-ribosomal function having cell-cycle regulatory potential.
Collapse
Affiliation(s)
- Mateusz Mołoń
- Department of Biochemistry and Cell Biology, University of Rzeszów, 35-601 Rzeszów, Poland
- Correspondence: (M.M.); (M.T.); Tel.: +48-17-7855407 (M.M.); +48-81-5375956 (M.T.)
| | - Eliza Molestak
- Department of Molecular Biology, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (E.M.); (P.G.)
| | - Monika Kula-Maximenko
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, 30-239 Krakow, Poland;
| | - Przemysław Grela
- Department of Molecular Biology, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (E.M.); (P.G.)
| | - Marek Tchórzewski
- Department of Molecular Biology, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (E.M.); (P.G.)
- Correspondence: (M.M.); (M.T.); Tel.: +48-17-7855407 (M.M.); +48-81-5375956 (M.T.)
| |
Collapse
|
35
|
Moreno DF, Aldea M. Proteostatic stress as a nodal hallmark of replicative aging. Exp Cell Res 2020; 394:112163. [PMID: 32640194 DOI: 10.1016/j.yexcr.2020.112163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 11/30/2022]
Abstract
Aging is characterized by the progressive decline of physiology at the cell, tissue and organism level, leading to an increased risk of mortality. Proteotoxic stress, mitochondrial dysfunction and genomic instability are considered major universal drivers of cell aging, and accumulating evidence establishes clear biunivocal relationships among these key hallmarks. In this regard, the finite lifespan of the budding yeast, together with the extensive armamentarium of available analytical tools, has made this single cell eukaryote a key model to study aging at molecular and cellular levels. Here we review the current data that link proteostasis to cell cycle progression in the budding yeast, focusing on senescence as an inherent phenotype displayed by aged cells. Recent advances in high-throughput systems to study yeast mother cells while they replicate are providing crucial information on aging-related processes and their temporal interdependencies at a systems level. In our view, the available data point to the existence of multiple feedback mechanisms among the major causal factors of aging, which would converge into the loss of proteostasis as a nodal driver of cell senescence and death.
Collapse
Affiliation(s)
- David F Moreno
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028, Barcelona, Catalonia, Spain
| | - Martí Aldea
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028, Barcelona, Catalonia, Spain.
| |
Collapse
|
36
|
Cell organelles and yeast longevity: an intertwined regulation. Curr Genet 2019; 66:15-41. [PMID: 31535186 DOI: 10.1007/s00294-019-01035-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 12/16/2022]
Abstract
Organelles are dynamic structures of a eukaryotic cell that compartmentalize various essential functions and regulate optimum functioning. On the other hand, ageing is an inevitable phenomenon that leads to irreversible cellular damage and affects optimum functioning of cells. Recent research shows compelling evidence that connects organelle dysfunction to ageing-related diseases/disorders. Studies in several model systems including yeast have led to seminal contributions to the field of ageing in uncovering novel pathways, proteins and their functions, identification of pro- and anti-ageing factors and so on. In this review, we present a comprehensive overview of findings that highlight the role of organelles in ageing and ageing-associated functions/pathways in yeast.
Collapse
|
37
|
Martínez-Carreres L, Puyal J, Leal-Esteban LC, Orpinell M, Castillo-Armengol J, Giralt A, Dergai O, Moret C, Barquissau V, Nasrallah A, Pabois A, Zhang L, Romero P, Lopez-Mejia IC, Fajas L. CDK4 Regulates Lysosomal Function and mTORC1 Activation to Promote Cancer Cell Survival. Cancer Res 2019; 79:5245-5259. [PMID: 31395606 DOI: 10.1158/0008-5472.can-19-0708] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/28/2019] [Accepted: 08/01/2019] [Indexed: 02/06/2023]
Abstract
Cyclin-dependent kinase 4 (CDK4) is well-known for its role in regulating the cell cycle, however, its role in cancer metabolism, especially mTOR signaling, is undefined. In this study, we established a connection between CDK4 and lysosomes, an emerging metabolic organelle crucial for mTORC1 activation. On the one hand, CDK4 phosphorylated the tumor suppressor folliculin (FLCN), regulating mTORC1 recruitment to the lysosomal surface in response to amino acids. On the other hand, CDK4 directly regulated lysosomal function and was essential for lysosomal degradation, ultimately regulating mTORC1 activity. Pharmacologic inhibition or genetic inactivation of CDK4, other than retaining FLCN at the lysosomal surface, led to the accumulation of undigested material inside lysosomes, which impaired the autophagic flux and induced cancer cell senescence in vitro and in xenograft models. Importantly, the use of CDK4 inhibitors in therapy is known to cause senescence but not cell death. To overcome this phenomenon and based on our findings, we increased the autophagic flux in cancer cells by using an AMPK activator in combination with a CDK4 inhibitor. The cotreatment induced autophagy (AMPK activation) and impaired lysosomal function (CDK4 inhibition), resulting in cell death and tumor regression. Altogether, we uncovered a previously unknown role for CDK4 in lysosomal biology and propose a novel therapeutic strategy to target cancer cells. SIGNIFICANCE: These findings uncover a novel function of CDK4 in lysosomal biology, which promotes cancer progression by activating mTORC1; targeting this function offers a new therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
| | - Julien Puyal
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | | | | | | | - Albert Giralt
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Oleksandr Dergai
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Catherine Moret
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Valentin Barquissau
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Anita Nasrallah
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Angélique Pabois
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Lianjun Zhang
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
| | - Pedro Romero
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
| | | | - Lluis Fajas
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
38
|
Argüello-Miranda O, Liu Y, Wood NE, Kositangool P, Doncic A. Integration of Multiple Metabolic Signals Determines Cell Fate Prior to Commitment. Mol Cell 2018; 71:733-744.e11. [PMID: 30174289 DOI: 10.1016/j.molcel.2018.07.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/13/2018] [Accepted: 07/27/2018] [Indexed: 11/18/2022]
Abstract
Cell-fate decisions are central to the survival and development of both uni- and multicellular organisms. It remains unclear when and to what degree cells can decide on future fates prior to commitment. This uncertainty stems from experimental and theoretical limitations in measuring and integrating multiple signals at the single-cell level during a decision process. Here, we combine six-color live-cell imaging with the Bayesian method of statistical evidence to study the meiosis/quiescence decision in budding yeast. Integration of multiple upstream metabolic signals predicts individual cell fates with high probability well before commitment. Cells "decide" their fates before birth, well before the activation of pathways characteristic of downstream cell fates. This decision, which remains stable through several cell cycles, occurs when multiple metabolic parameters simultaneously cross cell-fate-specific thresholds. Taken together, our results show that cells can decide their future fates long before commitment mechanisms are activated.
Collapse
Affiliation(s)
- Orlando Argüello-Miranda
- Department of Cell Biology, UT Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA.
| | - Yanjie Liu
- Department of Cell Biology, UT Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - N Ezgi Wood
- Department of Cell Biology, UT Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA.
| | - Piya Kositangool
- Department of Cell Biology, UT Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Andreas Doncic
- Department of Cell Biology, UT Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA; Green Center for Systems Biology, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| |
Collapse
|
39
|
Sukegawa Y, Negishi T, Kikuchi Y, Ishii K, Imanari M, Ghanegolmohammadi F, Nogami S, Ohya Y. Genetic dissection of the signaling pathway required for the cell wall integrity checkpoint. J Cell Sci 2018; 131:jcs.219063. [PMID: 29853633 DOI: 10.1242/jcs.219063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 05/29/2018] [Indexed: 11/20/2022] Open
Abstract
The cell wall integrity checkpoint monitors synthesis of cell wall materials during the Saccharomyces cerevisiae cell cycle. Upon perturbation of cell wall synthesis, the cell wall integrity checkpoint is activated, downregulating Clb2 transcription. Here, we identified genes involved in this checkpoint by genetic screening of deletion mutants. In addition to the previously identified dynactin complex, the Las17 complex, in particular the Bzz1 and Vrp1 components, plays a role in this checkpoint. We also revealed that the high osmolarity glycerol (HOG) and cell wall integrity mitogen-activated protein kinase (MAPK) signaling pathways are essential for checkpoint function. The defective checkpoint caused by the deficient dynactin and Las17 complexes was rescued by hyperactivation of the cell wall integrity MAPK pathway, but not by the activated form of Hog1, suggesting an order to these signaling pathways. Mutation of Fkh2, a transcription factor important for Clb2 expression, suppressed the checkpoint-defective phenotype of Las17, HOG MAPK and cell wall integrity MAPK mutations. These results provide genetic evidence that signaling from the cell surface regulates the downstream transcriptional machinery to activate the cell wall integrity checkpoint.
Collapse
Affiliation(s)
- Yuko Sukegawa
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture 277-8562, Japan.,AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Bldg. Kashiwa Research Complex 2, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture 277-8565, Japan
| | - Takahiro Negishi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture 277-8562, Japan
| | - Yo Kikuchi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture 277-8562, Japan
| | - Keiko Ishii
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture 277-8562, Japan
| | - Miyuki Imanari
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture 277-8562, Japan
| | - Farzan Ghanegolmohammadi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture 277-8562, Japan
| | - Satoru Nogami
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture 277-8562, Japan
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture 277-8562, Japan .,AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Bldg. Kashiwa Research Complex 2, 5-1-5 Kashiwanoha, Kashiwa, Chiba Prefecture 277-8565, Japan
| |
Collapse
|
40
|
Ouahoud S, Fiet MD, Martínez-Montañés F, Ejsing CS, Kuss O, Roden M, Markgraf DF. Lipid droplet consumption is functionally coupled to vacuole homeostasis independent of lipophagy. J Cell Sci 2018; 131:jcs.213876. [PMID: 29678904 DOI: 10.1242/jcs.213876] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/13/2018] [Indexed: 01/19/2023] Open
Abstract
Lipid droplets (LDs) store neutral lipids and are integrated into a cellular metabolic network that relies on functional coupling with various organelles. Factors mediating efficient coupling and mechanisms regulating them remain unknown. Here, we conducted a global screen in S. cerevisiae to identify genes required for the functional coupling of LDs and other organelles during LD consumption. We show that LD utilization during growth resumption is coupled to vacuole homeostasis. ESCRT-, V-ATPase- and vacuole protein sorting-mutants negatively affect LD consumption, independent of lipophagy. Loss of ESCRT function leads to the accumulation of LD-derived diacylglycerol (DAG), preventing its conversion into phosphatidic acid (PA) and membrane lipids. In addition, channeling of DAG from LD-proximal sites to the vacuole is blocked. We demonstrate that utilization of LDs requires intact vacuolar signaling via TORC1 and its downstream effector Sit4p. These data suggest that vacuolar status is coupled to LD catabolism via TORC1-mediated regulation of DAG-PA interconversion and explain how cells coordinate organelle dynamics throughout cell growth.
Collapse
Affiliation(s)
- Sarah Ouahoud
- Institute for Clinical Diabetology, German Diabetes Center, c/o Auf'm Hennekamp 65, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD e.V.), München, Neuherberg, Germany
| | - Mitchell D Fiet
- Institute for Clinical Diabetology, German Diabetes Center, c/o Auf'm Hennekamp 65, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD e.V.), München, Neuherberg, Germany
| | - Fernando Martínez-Montañés
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - Oliver Kuss
- German Center for Diabetes Research (DZD e.V.), München, Neuherberg, Germany.,Institute for Biometrics and Epidemiology, German Diabetes Center, Auf'm Hennekamp 65, D-40225 Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, c/o Auf'm Hennekamp 65, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD e.V.), München, Neuherberg, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, D-40225 Düsseldorf, Germany
| | - Daniel F Markgraf
- Institute for Clinical Diabetology, German Diabetes Center, c/o Auf'm Hennekamp 65, D-40225 Düsseldorf, Germany .,German Center for Diabetes Research (DZD e.V.), München, Neuherberg, Germany
| |
Collapse
|
41
|
Park EJ, Kim S, Chang J. Methylisothiazolinone may induce cell death and inflammatory response through DNA damage in human liver epithelium cells. ENVIRONMENTAL TOXICOLOGY 2018; 33:156-166. [PMID: 29110394 DOI: 10.1002/tox.22503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/10/2017] [Accepted: 10/15/2017] [Indexed: 06/07/2023]
Abstract
Methylisothiazolinone (MIT) is a powerful biocide and preservative, which is widely used alone or in a 1:3 ratio with methylchloroisothiazolinone (MCIT) under the trade name of Kathons in the manufacture of numerous personal and household products. Considering that Kathons injected intravenously is distributed in the blood and then in the liver, we explored the toxic mechanism of MIT on human liver epithelium cells. At 24 h after exposure, MIT bound to the plasma membrane and the inner wall of vacuoles in the cells, and rupture of the cell membrane and nuclear envelop, autophagosome-like vacuoles formation and mitochondrial damage were observed. Cell viability dose-dependently decreased accompanying an increase of apoptotic cells, and the level of LDH, NO, IFN-gamma, IL-10 and IL-8, but not IL-1β, significantly increased in the culture media of cells exposed to MIT. Additionally, expression of autophagy-, membrane damage- and apoptosis-related proteins was notably enhanced, and the produced ATP level dose-dependently decreased with the reduced mitochondrial activity. Furthermore, the increased DNA damage and the decreased transcription activity were observed in MIT-treated cells. Meanwhile, the intracellular ROS level did not show dose-dependent change at the same time-point. Then we explored the role of autophagy in MIT-induced cytotoxicity by inhibiting or inducing the autophagic signal. Intriguingly, no additional cell death induced by autophagic modulation occurred when MIT was treated. Taken together, we suggest that MIT may induce multiple pathways of cell death and inflammatory response through DNA damage caused by rupture of the nuclear envelope.
Collapse
Affiliation(s)
- Eun-Jung Park
- Department of Brain Science, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sanghwa Kim
- College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jaerak Chang
- Department of Brain Science, Ajou University School of Medicine, Suwon, Republic of Korea
- Graduate School of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
42
|
Ewald JC. How yeast coordinates metabolism, growth and division. Curr Opin Microbiol 2018; 45:1-7. [PMID: 29334655 DOI: 10.1016/j.mib.2017.12.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/12/2017] [Accepted: 12/27/2017] [Indexed: 11/18/2022]
Abstract
All cells, especially single cell organisms, need to adapt their metabolism, growth and division coordinately to the available nutrients. This coordination is mediated by extensive cross-talk between nutrient signaling, metabolism, growth, and the cell division cycle, which is only gradually being uncovered: Nutrient signaling not only controls entry into the cell cycle at the G1/S transition, but all phases of the cell cycle. Metabolites are even sensed directly by cell cycle regulators to prevent cell cycle progression in absence of sufficient metabolic fluxes. In turn, cell cycle regulators such as the cyclin-dependent kinase directly control metabolic fluxes during cell cycle progression. In this review, I highlight some recent advances in our understanding of how metabolism and the cell division cycle are coordinated in the model organism Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Jennifer C Ewald
- Eberhard Karls Universität Tübingen, Interfaculty Institute of Cell Biology, Auf der Morgenstelle 15, 72076 Tübingen, Germany.
| |
Collapse
|
43
|
Deprez MA, Eskes E, Wilms T, Ludovico P, Winderickx J. pH homeostasis links the nutrient sensing PKA/TORC1/Sch9 ménage-à-trois to stress tolerance and longevity. MICROBIAL CELL 2018; 5:119-136. [PMID: 29487859 PMCID: PMC5826700 DOI: 10.15698/mic2018.03.618] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The plasma membrane H+-ATPase Pma1 and the vacuolar V-ATPase act in close harmony to tightly control pH homeostasis, which is essential for a vast number of physiological processes. As these main two regulators of pH are responsive to the nutritional status of the cell, it seems evident that pH homeostasis acts in conjunction with nutrient-induced signalling pathways. Indeed, both PKA and the TORC1-Sch9 axis influence the proton pumping activity of the V-ATPase and possibly also of Pma1. In addition, it recently became clear that the proton acts as a second messenger to signal glucose availability via the V-ATPase to PKA and TORC1-Sch9. Given the prominent role of nutrient signalling in longevity, it is not surprising that pH homeostasis has been linked to ageing and longevity as well. A first indication is provided by acetic acid, whose uptake by the cell induces toxicity and affects longevity. Secondly, vacuolar acidity has been linked to autophagic processes, including mitophagy. In agreement with this, a decline in vacuolar acidity was shown to induce mitochondrial dysfunction and shorten lifespan. In addition, the asymmetric inheritance of Pma1 has been associated with replicative ageing and this again links to repercussions on vacuolar pH. Taken together, accumulating evidence indicates that pH homeostasis plays a prominent role in the determination of ageing and longevity, thereby providing new perspectives and avenues to explore the underlying molecular mechanisms.
Collapse
Affiliation(s)
| | - Elja Eskes
- Functional Biology, KU Leuven, Leuven, Belgium
| | | | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | |
Collapse
|
44
|
Takeda E, Jin N, Itakura E, Kira S, Kamada Y, Weisman LS, Noda T, Matsuura A. Vacuole-mediated selective regulation of TORC1-Sch9 signaling following oxidative stress. Mol Biol Cell 2017; 29:510-522. [PMID: 29237820 PMCID: PMC6014174 DOI: 10.1091/mbc.e17-09-0553] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 12/22/2022] Open
Abstract
TORC1 modulates proteosynthesis, nitrogen metabolism, stress responses, and autophagy. Here it is shown that the Sch9 branch of TORC1 signaling depends specifically on vacuolar membranes and that this specificity allows the cells to regulate selectively the outputs of divergent downstream pathways in response to oxidative stress. Target of rapamycin complex 1 (TORC1) is a central cellular signaling coordinator that allows eukaryotic cells to adapt to the environment. In the budding yeast, Saccharomyces cerevisiae, TORC1 senses nitrogen and various stressors and modulates proteosynthesis, nitrogen uptake and metabolism, stress responses, and autophagy. There is some indication that TORC1 may regulate these downstream pathways individually. However, the potential mechanisms for such differential regulation are unknown. Here we show that the serine/threonine protein kinase Sch9 branch of TORC1 signaling depends specifically on the integrity of the vacuolar membrane, and this dependency originates in changes in Sch9 localization reflected by phosphatidylinositol 3,5-bisphosphate. Moreover, oxidative stress induces the delocalization of Sch9 from vacuoles, contributing to the persistent inhibition of the Sch9 branch after stress. Thus, our results establish that regulation of the vacuolar localization of Sch9 serves as a selective switch for the Sch9 branch in divergent TORC1 signaling. We propose that the Sch9 branch integrates the intrinsic activity of TORC1 kinase and vacuolar status, which is monitored by the phospholipids of the vacuolar membrane, into the regulation of macromolecular synthesis.
Collapse
Affiliation(s)
- Eigo Takeda
- Department of Nanobiology, Graduate School of Advanced Integration Science
| | | | - Eisuke Itakura
- Department of Nanobiology, Graduate School of Advanced Integration Science.,Molecular Chirality Research Center, Chiba University, Inage-ku, Chiba, 263-8522, Japan
| | - Shintaro Kira
- Department of Biology, Graduate School of Science, Chiba University, Inage-ku, Chiba, 263-8522, Japan
| | - Yoshiaki Kamada
- Laboratory of Biological Diversity, National Institute for Basic Biology, Okazaki 444-8585, Japan.,Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Lois S Weisman
- Life Sciences Institute and.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Takeshi Noda
- Center for Frontier Oral Science, Graduate School of Dentistry, and.,Graduate School of Frontier BioSciences, Osaka University, Osaka 565-0871, Japan
| | - Akira Matsuura
- Department of Nanobiology, Graduate School of Advanced Integration Science .,Life Sciences Institute and.,Molecular Chirality Research Center, Chiba University, Inage-ku, Chiba, 263-8522, Japan
| |
Collapse
|
45
|
Eskes E, Deprez MA, Wilms T, Winderickx J. pH homeostasis in yeast; the phosphate perspective. Curr Genet 2017; 64:155-161. [PMID: 28856407 PMCID: PMC5778149 DOI: 10.1007/s00294-017-0743-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 12/22/2022]
Abstract
Recent research further clarified the molecular mechanisms that link nutrient signaling and pH homeostasis with the regulation of growth and survival of the budding yeast Saccharomyces cerevisiae. The central nutrient signaling kinases PKA, TORC1, and Sch9 are intimately associated to pH homeostasis, presumably allowing them to concert far-reaching phenotypical repercussions of nutritional cues. To exemplify such repercussions, we briefly describe consequences for phosphate uptake and signaling and outline interactions between phosphate homeostasis and the players involved in intra- and extracellular pH control. Inorganic phosphate uptake, its subcellular distribution, and its conversion into polyphosphates are dependent on the proton gradients created over different membranes. Conversely, polyphosphate metabolism appears to contribute in determining the intracellular pH. Additionally, inositol pyrophosphates are emerging as potent determinants of growth potential, in this way providing feedback from phosphate metabolism onto the central nutrient signaling kinases. All these data point towards the importance of phosphate metabolism in the reciprocal regulation of nutrient signaling and pH homeostasis.
Collapse
Affiliation(s)
- Elja Eskes
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31 box 2433, 3001, Heverlee, Belgium
| | - Marie-Anne Deprez
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31 box 2433, 3001, Heverlee, Belgium
| | - Tobias Wilms
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31 box 2433, 3001, Heverlee, Belgium
| | - Joris Winderickx
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31 box 2433, 3001, Heverlee, Belgium.
| |
Collapse
|
46
|
The yeast protein kinase Sch9 adjusts V-ATPase assembly/disassembly to control pH homeostasis and longevity in response to glucose availability. PLoS Genet 2017; 13:e1006835. [PMID: 28604780 PMCID: PMC5484544 DOI: 10.1371/journal.pgen.1006835] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 06/26/2017] [Accepted: 05/23/2017] [Indexed: 11/19/2022] Open
Abstract
The conserved protein kinase Sch9 is a central player in the nutrient-induced signaling network in yeast, although only few of its direct substrates are known. We now provide evidence that Sch9 controls the vacuolar proton pump (V-ATPase) to maintain cellular pH homeostasis and ageing. A synthetic sick phenotype arises when deletion of SCH9 is combined with a dysfunctional V-ATPase, and the lack of Sch9 has a significant impact on cytosolic pH (pHc) homeostasis. Sch9 physically interacts with, and influences glucose-dependent assembly/disassembly of the V-ATPase, thereby integrating input from TORC1. Moreover, we show that the role of Sch9 in regulating ageing is tightly connected with V-ATPase activity and vacuolar acidity. As both Sch9 and the V-ATPase are highly conserved in higher eukaryotes, it will be interesting to further clarify their cooperative action on the cellular processes that influence growth and ageing. The evolutionary conserved TOR complex 1 controls growth in response to the quality and quantity of nutrients such as carbon and amino acids. The protein kinase Sch9 is the main TORC1 effector in yeast. However, only few of its direct targets are known. In this study, we performed a genome-wide screening looking for mutants which require Sch9 function for their survival and growth. In this way, we identified multiple components of the highly conserved vacuolar proton pump (V-ATPase) which mediates the luminal acidification of multiple biosynthetic and endocytic organelles. Besides a genetic interaction, we found Sch9 also physically interacts with the V-ATPase to regulate its assembly state in response to glucose availability and TORC1 activity. Moreover, the interaction with the V-ATPase has consequences for ageing as it allowed Sch9 to control vacuolar pH and thereby trigger either lifespan extension or lifespan shortening. Hence, our results provide insights into the signaling mechanism coupling glucose availability, TORC1 signaling, pH homeostasis and longevity. As both Sch9 and the V-ATPase are highly conserved and implicated in various pathologies, these results offer fertile ground for further research in higher eukaryotes.
Collapse
|
47
|
Rains A, Bryant Y, Dorsett KA, Culver A, Egbaria J, Williams A, Barnes M, Lamere R, Rossi AR, Waldrep SC, Wilder C, Kliossis E, Styers ML. Ypt4 and lvs1 regulate vacuolar size and function in Schizosaccharomyces pombe. CELLULAR LOGISTICS 2017; 7:e1335270. [PMID: 28944093 PMCID: PMC5602425 DOI: 10.1080/21592799.2017.1335270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/18/2017] [Accepted: 05/22/2017] [Indexed: 10/25/2022]
Abstract
The yeast vacuole plays key roles in cellular stress responses. Here, we show that deletion of lvs1, the fission yeast homolog of the Chediak-Higashi Syndrome CHS1/LYST gene, increases vacuolar size, similar to deletion of the Rab4 homolog ypt4. Overexpression of lvs1-YFP rescued vacuolar size in ypt4Δ cells, but ypt4-YFP did not rescue lvs1Δ, suggesting that lvs1 may act downstream of ypt4. Vacuoles were capable of hypotonic shock-induced fusion and recovery in both ypt4Δ and lvs1Δ cells, although recovery may be slightly delayed in ypt4Δ. Endocytic and secretory trafficking were not affected, but ypt4Δ and lvs1Δ strains were sensitive to neutral pH and CaCl2, consistent with vacuolar dysfunction. In addition to changes in vacuolar size, deletion of ypt4 also dramatically increased cell size, similar to tor1 mutants. These results implicate ypt4 and lvs1 in maintenance of vacuolar size and suggest that ypt4 may link vacuolar homeostasis to cell cycle progression.
Collapse
Affiliation(s)
- Addison Rains
- Department of Biology, Birmingham-Southern College, Birmingham, AL, USA
| | - Yorisha Bryant
- Department of Biology, Birmingham-Southern College, Birmingham, AL, USA
| | - Kaitlyn A Dorsett
- Department of Biology, Birmingham-Southern College, Birmingham, AL, USA
| | - Austin Culver
- Department of Biology, Birmingham-Southern College, Birmingham, AL, USA
| | - Jamal Egbaria
- Department of Biology, Birmingham-Southern College, Birmingham, AL, USA
| | - Austin Williams
- Department of Biology, Birmingham-Southern College, Birmingham, AL, USA
| | - Matt Barnes
- Department of Biology, Birmingham-Southern College, Birmingham, AL, USA
| | - Raeann Lamere
- Department of Biology, Birmingham-Southern College, Birmingham, AL, USA
| | - Austin R Rossi
- Department of Biology, Birmingham-Southern College, Birmingham, AL, USA
| | | | - Caroline Wilder
- Department of Biology, Birmingham-Southern College, Birmingham, AL, USA
| | - Elliot Kliossis
- Department of Biology, Birmingham-Southern College, Birmingham, AL, USA
| | - Melanie L Styers
- Department of Biology, Birmingham-Southern College, Birmingham, AL, USA
| |
Collapse
|
48
|
Lysosomal activity maintains glycolysis and cyclin E1 expression by mediating Ad4BP/SF-1 stability for proper steroidogenic cell growth. Sci Rep 2017; 7:240. [PMID: 28325912 PMCID: PMC5428257 DOI: 10.1038/s41598-017-00393-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/21/2017] [Indexed: 12/21/2022] Open
Abstract
The development and differentiation of steroidogenic organs are controlled by Ad4BP/SF-1 (adrenal 4 binding protein/steroidogenic factor 1). Besides, lysosomal activity is required for steroidogenesis and also enables adrenocortical cell to survive during stress. However, the role of lysosomal activity on steroidogenic cell growth is as yet unknown. Here, we showed that lysosomal activity maintained Ad4BP/SF-1 protein stability for proper steroidogenic cell growth. Treatment of cells with lysosomal inhibitors reduced steroidogenic cell growth in vitro. Suppression of autophagy did not affect cell growth indicating that autophagy was dispensable for steroidogenic cell growth. When lysosomal activity was inhibited, the protein stability of Ad4BP/SF-1 was reduced leading to reduced S phase entry. Interestingly, treatment of cells with lysosomal inhibitors reduced glycolytic gene expression and supplying the cells with pyruvate alleviated the growth defect. ChIP-sequence/ChIP studies indicated that Ad4BP/SF-1 binds to the upstream region of Ccne1 (cyclin E1) gene during G1/S phase. In addition, treatment of zebrafish embryo with lysosomal inhibitor reduced the levels of the interrenal (adrenal) gland markers. Thus lysosomal activity maintains steroidogenic cell growth via stabilizing Ad4BP/SF-1 protein.
Collapse
|
49
|
How peroxisomes partition between cells. A story of yeast, mammals and filamentous fungi. Curr Opin Cell Biol 2016; 41:73-80. [PMID: 27128775 DOI: 10.1016/j.ceb.2016.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 11/21/2022]
Abstract
Eukaryotic cells are subcompartmentalized into discrete, membrane-enclosed organelles. These organelles must be preserved in cells over many generations to maintain the selective advantages afforded by compartmentalization. Cells use complex molecular mechanisms of organelle inheritance to achieve high accuracy in the sharing of organelles between daughter cells. Here we focus on how a multi-copy organelle, the peroxisome, is partitioned in yeast, mammalian cells, and filamentous fungi, which differ in their mode of cell division. Cells achieve equidistribution of their peroxisomes through organelle transport and retention processes that act coordinately, although the strategies employed vary considerably by organism. Nevertheless, we propose that mechanisms common across species apply to the partitioning of all membrane-enclosed organelles.
Collapse
|
50
|
Organelle Size Scaling of the Budding Yeast Vacuole by Relative Growth and Inheritance. Curr Biol 2016; 26:1221-8. [PMID: 27151661 DOI: 10.1016/j.cub.2016.03.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 01/11/2016] [Accepted: 03/07/2016] [Indexed: 11/21/2022]
Abstract
It has long been noted that larger animals have larger organs compared to smaller animals of the same species, a phenomenon termed scaling [1]. Julian Huxley proposed an appealingly simple model of "relative growth"-in which an organ and the whole body grow with their own intrinsic rates [2]-that was invoked to explain scaling in organs from fiddler crab claws to human brains. Because organ size is regulated by complex, unpredictable pathways [3], it remains unclear whether scaling requires feedback mechanisms to regulate organ growth in response to organ or body size. The molecular pathways governing organelle biogenesis are simpler than organogenesis, and therefore organelle size scaling in the cell provides a more tractable case for testing Huxley's model. We ask the question: is it possible for organelle size scaling to arise if organelle growth is independent of organelle or cell size? Using the yeast vacuole as a model, we tested whether mutants defective in vacuole inheritance, vac8Δ and vac17Δ, tune vacuole biogenesis in response to perturbations in vacuole size. In vac8Δ/vac17Δ, vacuole scaling increases with the replicative age of the cell. Furthermore, vac8Δ/vac17Δ cells continued generating vacuole at roughly constant rates even when they had significantly larger vacuoles compared to wild-type. With support from computational modeling, these results suggest there is no feedback between vacuole biogenesis rates and vacuole or cell size. Rather, size scaling is determined by the relative growth rates of the vacuole and the cell, thus representing a cellular version of Huxley's model.
Collapse
|