1
|
Yang W, Feng X, Chen H, Liman GLS, Santangelo TJ, Zhang C, Zeng Z. Cyclization of archaeal membrane lipids impacts membrane protein activity and archaellum formation. Proc Natl Acad Sci U S A 2025; 122:e2423648122. [PMID: 40354536 DOI: 10.1073/pnas.2423648122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/09/2025] [Indexed: 05/14/2025] Open
Abstract
Enhancement of the cyclization of membrane lipids GDGTs (glycerol dialkyl glycerol tetraethers) is a critical strategy for archaea to adapt to various environmental stresses. However, the physiological function of membrane lipid cyclization remains unclear. Here, we reported that the GDGT ring synthases mutant, deficient in GDGT cyclization, inhibited archaellum formation and reduced cell motility in thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. This inhibition was caused by decreased transcription of the archaellum operon, likely due to cleavage of the C-terminal domains in transmembrane proteins ArnRs, the transcription factors that regulate archaellum operon expression. The transcriptomic and proteomic analysis showed deficiency of GDGT cyclization broadly impacted the expression of membrane associate proteins, including respiratory chain proteins, and decreased cellular ATP concentration. Moreover, phylogenetic analysis demonstrated that the correlation between GDGT cyclization and archaellum formation is widespread among (hyper)thermophilic archaea, and this was further verified in the euryarchaeon Thermococcus kodakarensis. Our findings suggested that archaea modify their membrane lipids to profoundly alter cellular appendages and cell physiology to adapt to environmental fluctuations.
Collapse
Affiliation(s)
- Wei Yang
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xi Feng
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huahui Chen
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | | | - Thomas J Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Changyi Zhang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Zhirui Zeng
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Phung DK, Pilotto S, Matelska D, Blombach F, Pinotsis N, Hovan L, Gervasio FL, Werner F. Archaeal NusA2 is the ancestor of ribosomal protein eS7 in eukaryotes. Structure 2025; 33:149-159.e6. [PMID: 39504966 DOI: 10.1016/j.str.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/06/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024]
Abstract
N-utilization substance A (NusA) is a regulatory factor with pleiotropic functions in gene expression in bacteria. Archaea encode two conserved small proteins, NusA1 and NusA2, with domains orthologous to the two RNA binding K Homology (KH) domains of NusA. Here, we report the crystal structures of NusA2 from Sulfolobus acidocaldarius and Saccharolobus solfataricus obtained at 3.1 Å and 1.68 Å, respectively. NusA2 comprises an N-terminal zinc finger followed by two KH-like domains lacking the GXXG signature. Despite the loss of the GXXG motif, NusA2 binds single-stranded RNA. Mutations in the zinc finger domain compromise the structural integrity of NusA2 at high temperatures and molecular dynamics simulations indicate that zinc binding provides an energy barrier preventing the domain from reaching unfolded states. A structure-guided phylogenetic analysis of the KH-like domains supports the notion that the NusA2 clade is ancestral to the ribosomal protein eS7 in eukaryotes, implying a potential role of NusA2 in translation.
Collapse
Affiliation(s)
- Duy Khanh Phung
- RNAP Laboratory, Institute for Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Simona Pilotto
- RNAP Laboratory, Institute for Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Dorota Matelska
- RNAP Laboratory, Institute for Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Fabian Blombach
- RNAP Laboratory, Institute for Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Nikos Pinotsis
- Institute for Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK
| | - Ladislav Hovan
- Pharmaceutical Sciences, University of Geneva, 1206 Genève, Switzerland
| | - Francesco Luigi Gervasio
- Pharmaceutical Sciences, University of Geneva, 1206 Genève, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, 1206 Genève, Switzerland; Department of Chemistry, University College London, London WC1E 6BT, UK
| | - Finn Werner
- RNAP Laboratory, Institute for Structural and Molecular Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
3
|
Cano-Santiago A, Florencio-Martínez LE, Vélez-Ramírez DE, Romero-Chaveste AJ, Manning-Cela RG, Nepomuceno-Mejía T, Martínez-Calvillo S. Analyses of the essential C82 subunit uncovered some differences in RNA polymerase III transcription between Trypanosoma brucei and Leishmania major. Parasitology 2024; 151:1185-1200. [PMID: 39523652 PMCID: PMC11894013 DOI: 10.1017/s0031182024000921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 11/16/2024]
Abstract
The 17-subunit RNA polymerase III (RNAP III) synthesizes essential untranslated RNAs such as tRNAs and 5S rRNA. In yeast and vertebrates, subunit C82 forms a stable subcomplex with C34 and C31 that is necessary for promoter-specific transcription initiation. Little is known about RNAP III transcription in trypanosomatid parasites. To narrow this knowledge gap, we characterized the C82 subunit in Trypanosoma brucei and Leishmania major. Bioinformatic analyses showed that the 4 distinctive extended winged-helix (eWH) domains and the coiled-coil motif are present in C82 in these microorganisms. Nevertheless, C82 in trypanosomatids presents certain unique traits, including an exclusive loop within the eWH1 domain. We found that C82 localizes to the nucleus and binds to RNAP III-dependent genes in the insect stages of both parasites. Knock-down of C82 by RNA interference significantly reduced the levels of tRNAs and 5S rRNA and led to the death of procyclic forms of T. brucei. Tandem affinity purifications with both parasites allowed the identification of several C82-interacting partners, including C34 and some genus-specific putative regulators of transcription. However, the orthologue of C31 was not found in trypanosomatids. Interestingly, our data suggest a strong association of C82 with TFIIIC subunits in T. brucei, but not in L. major.
Collapse
Affiliation(s)
- Andrés Cano-Santiago
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México
| | - Luis E. Florencio-Martínez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México
| | - Daniel E. Vélez-Ramírez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México
| | - Adrián J. Romero-Chaveste
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México
| | - Rebeca G. Manning-Cela
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Tomás Nepomuceno-Mejía
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México
| | - Santiago Martínez-Calvillo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México
| |
Collapse
|
4
|
Tarău D, Grünberger F, Pilsl M, Reichelt R, Heiß F, König S, Urlaub H, Hausner W, Engel C, Grohmann D. Structural basis of archaeal RNA polymerase transcription elongation and Spt4/5 recruitment. Nucleic Acids Res 2024; 52:6017-6035. [PMID: 38709902 PMCID: PMC11162788 DOI: 10.1093/nar/gkae282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 05/08/2024] Open
Abstract
Archaeal transcription is carried out by a multi-subunit RNA polymerase (RNAP) that is highly homologous in structure and function to eukaryotic RNAP II. Among the set of basal transcription factors, only Spt5 is found in all domains of life, but Spt5 has been shaped during evolution, which is also reflected in the heterodimerization of Spt5 with Spt4 in Archaea and Eukaryotes. To unravel the mechanistic basis of Spt4/5 function in Archaea, we performed structure-function analyses using the archaeal transcriptional machinery of Pyrococcus furiosus (Pfu). We report single-particle cryo-electron microscopy reconstructions of apo RNAP and the archaeal elongation complex (EC) in the absence and presence of Spt4/5. Surprisingly, Pfu Spt4/5 also binds the RNAP in the absence of nucleic acids in a distinct super-contracted conformation. We show that the RNAP clamp/stalk module exhibits conformational flexibility in the apo state of RNAP and that the enzyme contracts upon EC formation or Spt4/5 engagement. We furthermore identified a contact of the Spt5-NGN domain with the DNA duplex that stabilizes the upstream boundary of the transcription bubble and impacts Spt4/5 activity in vitro. This study, therefore, provides the structural basis for Spt4/5 function in archaeal transcription and reveals a potential role beyond the well-described support of elongation.
Collapse
Affiliation(s)
- Daniela Tarău
- Institute of Microbiology & Archaea Centre, Single-Molecule Biochemistry Lab, University of Regensburg, 93053 Regensburg, Germany
| | - Felix Grünberger
- Institute of Microbiology & Archaea Centre, Single-Molecule Biochemistry Lab, University of Regensburg, 93053 Regensburg, Germany
| | - Michael Pilsl
- Regensburg Center for Biochemistry (RCB), Structural Biochemistry Group, University of Regensburg, Regensburg, Germany
| | - Robert Reichelt
- Institute of Microbiology & Archaea Centre, Single-Molecule Biochemistry Lab, University of Regensburg, 93053 Regensburg, Germany
| | - Florian Heiß
- Regensburg Center for Biochemistry (RCB), Structural Biochemistry Group, University of Regensburg, Regensburg, Germany
| | - Sabine König
- Bioanalytic Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytic Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Winfried Hausner
- Institute of Microbiology & Archaea Centre, Single-Molecule Biochemistry Lab, University of Regensburg, 93053 Regensburg, Germany
| | - Christoph Engel
- Regensburg Center for Biochemistry (RCB), Structural Biochemistry Group, University of Regensburg, Regensburg, Germany
| | - Dina Grohmann
- Institute of Microbiology & Archaea Centre, Single-Molecule Biochemistry Lab, University of Regensburg, 93053 Regensburg, Germany
- Regensburg Center for Biochemistry (RCB), University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
5
|
Blombach F, Sýkora M, Case J, Feng X, Baquero DP, Fouqueau T, Phung DK, Barker D, Krupovic M, She Q, Werner F. Cbp1 and Cren7 form chromatin-like structures that ensure efficient transcription of long CRISPR arrays. Nat Commun 2024; 15:1620. [PMID: 38388540 PMCID: PMC10883916 DOI: 10.1038/s41467-024-45728-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
CRISPR arrays form the physical memory of CRISPR adaptive immune systems by incorporating foreign DNA as spacers that are often AT-rich and derived from viruses. As promoter elements such as the TATA-box are AT-rich, CRISPR arrays are prone to harbouring cryptic promoters. Sulfolobales harbour extremely long CRISPR arrays spanning several kilobases, a feature that is accompanied by the CRISPR-specific transcription factor Cbp1. Aberrant Cbp1 expression modulates CRISPR array transcription, but the molecular mechanisms underlying this regulation are unknown. Here, we characterise the genome-wide Cbp1 binding at nucleotide resolution and characterise the binding motifs on distinct CRISPR arrays, as well as on unexpected non-canonical binding sites associated with transposons. Cbp1 recruits Cren7 forming together 'chimeric' chromatin-like structures at CRISPR arrays. We dissect Cbp1 function in vitro and in vivo and show that the third helix-turn-helix domain is responsible for Cren7 recruitment, and that Cbp1-Cren7 chromatinization plays a dual role in the transcription of CRISPR arrays. It suppresses spurious transcription from cryptic promoters within CRISPR arrays but enhances CRISPR RNA transcription directed from their cognate promoters in their leader region. Our results show that Cbp1-Cren7 chromatinization drives the productive expression of long CRISPR arrays.
Collapse
Affiliation(s)
- Fabian Blombach
- RNAP laboratory, Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom.
| | - Michal Sýkora
- RNAP laboratory, Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Jo Case
- RNAP laboratory, Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Xu Feng
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute, Shandong University, Qingdao, 266237, PR China
| | - Diana P Baquero
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, F-75015, Paris, France
| | - Thomas Fouqueau
- RNAP laboratory, Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Duy Khanh Phung
- RNAP laboratory, Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Declan Barker
- RNAP laboratory, Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, F-75015, Paris, France
| | - Qunxin She
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute, Shandong University, Qingdao, 266237, PR China
| | - Finn Werner
- RNAP laboratory, Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
6
|
Bhowmick A, Bhakta K, Roy M, Gupta S, Das J, Samanta S, Patranabis S, Ghosh A. Heat shock response in Sulfolobus acidocaldarius and first implications for cross-stress adaptation. Res Microbiol 2023; 174:104106. [PMID: 37516156 DOI: 10.1016/j.resmic.2023.104106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/15/2023] [Accepted: 07/21/2023] [Indexed: 07/31/2023]
Abstract
Sulfolobus acidocaldarius, a thermoacidophilic crenarchaeon, frequently encounters temperature fluctuations, oxidative stress, and nutrient limitations in its environment. Here, we employed a high-throughput transcriptomic analysis to examine how the gene expression of S. acidocaldarius changes when exposed to high temperatures (92 °C). The data obtained was subsequently validated using quantitative reverse transcription-PCR (qRT-PCR) analysis. Our particular focus was on genes that are involved in the heat shock response, type-II Toxin-Antitoxin systems, and putative transcription factors. To investigate how S. acidocaldarius adapts to multiple stressors, we assessed the expression of these selected genes under oxidative and nutrient stresses using qRT-PCR analysis. The results demonstrated that the gene thβ encoding the β subunit of the thermosome, as well as hsp14 and hsp20, play crucial roles in the majority of stress conditions. Furthermore, we observed overexpression of at least eight different TA pairs belonging to the type II TA systems under all stress conditions. Additionally, four common transcription factors: FadR, TFEβ, CRISPR loci binding protein, and HTH family protein were consistently overexpressed across all stress conditions, indicating their significant role in managing stress. Overall, this work provides the first insight into molecular players involved in the cross-stress adaptation of S. acidocaldarius.
Collapse
Affiliation(s)
- Arghya Bhowmick
- Department of Biological Sciences, Bose Institute, EN Block, Sector-V, Kolkata-700091, India
| | - Koustav Bhakta
- Department of Biological Sciences, Bose Institute, EN Block, Sector-V, Kolkata-700091, India
| | - Mousam Roy
- Department of Biological Sciences, Bose Institute, EN Block, Sector-V, Kolkata-700091, India
| | - Sayandeep Gupta
- Department of Biological Sciences, Bose Institute, EN Block, Sector-V, Kolkata-700091, India
| | - Jagriti Das
- Department of Biological Sciences, Bose Institute, EN Block, Sector-V, Kolkata-700091, India
| | - Shirsha Samanta
- Department of Biological Sciences, Bose Institute, EN Block, Sector-V, Kolkata-700091, India
| | | | - Abhrajyoti Ghosh
- Department of Biological Sciences, Bose Institute, EN Block, Sector-V, Kolkata-700091, India.
| |
Collapse
|
7
|
Baes R, Grünberger F, Pyr dit Ruys S, Couturier M, De Keulenaer S, Skevin S, Van Nieuwerburgh F, Vertommen D, Grohmann D, Ferreira-Cerca S, Peeters E. Transcriptional and translational dynamics underlying heat shock response in the thermophilic crenarchaeon Sulfolobus acidocaldarius. mBio 2023; 14:e0359322. [PMID: 37642423 PMCID: PMC10653856 DOI: 10.1128/mbio.03593-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 06/29/2023] [Indexed: 08/31/2023] Open
Abstract
IMPORTANCE Heat shock response is the ability to respond adequately to sudden temperature increases that could be harmful for cellular survival and fitness. It is crucial for microorganisms living in volcanic hot springs that are characterized by high temperatures and large temperature fluctuations. In this study, we investigated how S. acidocaldarius, which grows optimally at 75°C, responds to heat shock by altering its gene expression and protein production processes. We shed light on which cellular processes are affected by heat shock and propose a hypothesis on underlying regulatory mechanisms. This work is not only relevant for the organism's lifestyle, but also with regard to its evolutionary status. Indeed, S. acidocaldarius belongs to the archaea, an ancient group of microbes that is more closely related to eukaryotes than to bacteria. Our study thus also contributes to a better understanding of the early evolution of heat shock response.
Collapse
Affiliation(s)
- Rani Baes
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Felix Grünberger
- Institute of Microbiology and Archaea Centre, Universität Regensburg, Regensburg, Germany
| | | | - Mohea Couturier
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sarah De Keulenaer
- NXTGNT, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Sonja Skevin
- NXTGNT, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | | | - Didier Vertommen
- Institut de Duve, Université Catholique de Louvain, Brussels, Belgium
| | - Dina Grohmann
- Institute of Microbiology and Archaea Centre, Universität Regensburg, Regensburg, Germany
| | - Sébastien Ferreira-Cerca
- Cellular Biochemistry of Microorganisms, Biochemie III, Universität Regensburg, Regensburg, Germany
- Laboratoire de Biologie Structurale de la Cellule (BIOC), UMR 7654 -CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Eveline Peeters
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
8
|
How to Shut Down Transcription in Archaea during Virus Infection. Microorganisms 2022; 10:microorganisms10091824. [PMID: 36144426 PMCID: PMC9501531 DOI: 10.3390/microorganisms10091824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Multisubunit RNA polymerases (RNAPs) carry out transcription in all domains of life; during virus infection, RNAPs are targeted by transcription factors encoded by either the cell or the virus, resulting in the global repression of transcription with distinct outcomes for different host–virus combinations. These repressors serve as versatile molecular probes to study RNAP mechanisms, as well as aid the exploration of druggable sites for the development of new antibiotics. Here, we review the mechanisms and structural basis of RNAP inhibition by the viral repressor RIP and the crenarchaeal negative regulator TFS4, which follow distinct strategies. RIP operates by occluding the DNA-binding channel and mimicking the initiation factor TFB/TFIIB. RIP binds tightly to the clamp and locks it into one fixed position, thereby preventing conformational oscillations that are critical for RNAP function as it progresses through the transcription cycle. TFS4 engages with RNAP in a similar manner to transcript cleavage factors such as TFS/TFIIS through the NTP-entry channel; TFS4 interferes with the trigger loop and bridge helix within the active site by occlusion and allosteric mechanisms, respectively. The conformational changes in RNAP described above are universally conserved and are also seen in inactive dimers of eukaryotic RNAPI and several inhibited RNAP complexes of both bacterial and eukaryotic RNA polymerases, including inactive states that precede transcription termination. A comparison of target sites and inhibitory mechanisms reveals that proteinaceous repressors and RNAP-specific antibiotics use surprisingly common ways to inhibit RNAP function.
Collapse
|
9
|
Abstract
RNA polymerase III (Pol III) is a large multisubunit complex conserved in all eukaryotes that plays an essential role in producing a variety of short non-coding RNAs, such as tRNA, 5S rRNA and U6 snRNA transcripts. Pol III comprises of 17 subunits in both yeast and human with a 10-subunit core and seven peripheral subunits. Because of its size and complexity, Pol III has posed a formidable challenge to structural biologists. The first atomic cryogenic electron microscopy structure of yeast Pol III leading to the canonical view was reported in 2015. Within the last few years, the optimization of endogenous extract and purification procedure and the technical and methodological advances in cryogenic electron microscopy, together allow us to have a first look at the unprecedented details of human Pol III organization. Here, we look back on the structural studies of human Pol III and discuss them in the light of our current understanding of its role in eukaryotic transcription.
Collapse
Affiliation(s)
- Qianmin Wang
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Ming Lei
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Wu
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| |
Collapse
|
10
|
Pilotto S, Fouqueau T, Lukoyanova N, Sheppard C, Lucas-Staat S, Díaz-Santín LM, Matelska D, Prangishvili D, Cheung ACM, Werner F. Structural basis of RNA polymerase inhibition by viral and host factors. Nat Commun 2021; 12:5523. [PMID: 34535646 PMCID: PMC8448823 DOI: 10.1038/s41467-021-25666-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/19/2021] [Indexed: 12/26/2022] Open
Abstract
RNA polymerase inhibition plays an important role in the regulation of transcription in response to environmental changes and in the virus-host relationship. Here we present the high-resolution structures of two such RNAP-inhibitor complexes that provide the structural bases underlying RNAP inhibition in archaea. The Acidianus two-tailed virus encodes the RIP factor that binds inside the DNA-binding channel of RNAP, inhibiting transcription by occlusion of binding sites for nucleic acid and the transcription initiation factor TFB. Infection with the Sulfolobus Turreted Icosahedral Virus induces the expression of the host factor TFS4, which binds in the RNAP funnel similarly to eukaryotic transcript cleavage factors. However, TFS4 allosterically induces a widening of the DNA-binding channel which disrupts trigger loop and bridge helix motifs. Importantly, the conformational changes induced by TFS4 are closely related to inactivated states of RNAP in other domains of life indicating a deep evolutionary conservation of allosteric RNAP inhibition.
Collapse
Affiliation(s)
- Simona Pilotto
- RNAP Laboratory, Institute for Structural and Molecular Biology, University College London, London, UK
| | - Thomas Fouqueau
- RNAP Laboratory, Institute for Structural and Molecular Biology, University College London, London, UK
| | - Natalya Lukoyanova
- Institute for Structural and Molecular Biology, Birkbeck College, London, UK
| | - Carol Sheppard
- Section of Virology, Department of Infectious disease, Imperial College London, London, UK
| | | | | | - Dorota Matelska
- RNAP Laboratory, Institute for Structural and Molecular Biology, University College London, London, UK
| | | | | | - Finn Werner
- RNAP Laboratory, Institute for Structural and Molecular Biology, University College London, London, UK.
| |
Collapse
|
11
|
Blombach F, Fouqueau T, Matelska D, Smollett K, Werner F. Promoter-proximal elongation regulates transcription in archaea. Nat Commun 2021; 12:5524. [PMID: 34535658 PMCID: PMC8448881 DOI: 10.1038/s41467-021-25669-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 08/25/2021] [Indexed: 01/17/2023] Open
Abstract
Recruitment of RNA polymerase and initiation factors to the promoter is the only known target for transcription activation and repression in archaea. Whether any of the subsequent steps towards productive transcription elongation are involved in regulation is not known. We characterised how the basal transcription machinery is distributed along genes in the archaeon Saccharolobus solfataricus. We discovered a distinct early elongation phase where RNA polymerases sequentially recruit the elongation factors Spt4/5 and Elf1 to form the transcription elongation complex (TEC) before the TEC escapes into productive transcription. TEC escape is rate-limiting for transcription output during exponential growth. Oxidative stress causes changes in TEC escape that correlate with changes in the transcriptome. Our results thus establish that TEC escape contributes to the basal promoter strength and facilitates transcription regulation. Impaired TEC escape coincides with the accumulation of initiation factors at the promoter and recruitment of termination factor aCPSF1 to the early TEC. This suggests two possible mechanisms for how TEC escape limits transcription, physically blocking upstream RNA polymerases during transcription initiation and premature termination of early TECs.
Collapse
Affiliation(s)
- Fabian Blombach
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK.
| | - Thomas Fouqueau
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK
| | - Dorota Matelska
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK
| | - Katherine Smollett
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK
| | - Finn Werner
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK.
| |
Collapse
|
12
|
Lewis AM, Recalde A, Bräsen C, Counts JA, Nussbaum P, Bost J, Schocke L, Shen L, Willard DJ, Quax TEF, Peeters E, Siebers B, Albers SV, Kelly RM. The biology of thermoacidophilic archaea from the order Sulfolobales. FEMS Microbiol Rev 2021; 45:fuaa063. [PMID: 33476388 PMCID: PMC8557808 DOI: 10.1093/femsre/fuaa063] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Thermoacidophilic archaea belonging to the order Sulfolobales thrive in extreme biotopes, such as sulfuric hot springs and ore deposits. These microorganisms have been model systems for understanding life in extreme environments, as well as for probing the evolution of both molecular genetic processes and central metabolic pathways. Thermoacidophiles, such as the Sulfolobales, use typical microbial responses to persist in hot acid (e.g. motility, stress response, biofilm formation), albeit with some unusual twists. They also exhibit unique physiological features, including iron and sulfur chemolithoautotrophy, that differentiate them from much of the microbial world. Although first discovered >50 years ago, it was not until recently that genome sequence data and facile genetic tools have been developed for species in the Sulfolobales. These advances have not only opened up ways to further probe novel features of these microbes but also paved the way for their potential biotechnological applications. Discussed here are the nuances of the thermoacidophilic lifestyle of the Sulfolobales, including their evolutionary placement, cell biology, survival strategies, genetic tools, metabolic processes and physiological attributes together with how these characteristics make thermoacidophiles ideal platforms for specialized industrial processes.
Collapse
Affiliation(s)
- April M Lewis
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Alejandra Recalde
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Christopher Bräsen
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - James A Counts
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Phillip Nussbaum
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Jan Bost
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Larissa Schocke
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Lu Shen
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Daniel J Willard
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Tessa E F Quax
- Archaeal Virus–Host Interactions, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Eveline Peeters
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Bettina Siebers
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Sonja-Verena Albers
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| |
Collapse
|
13
|
Lata E, Choquet K, Sagliocco F, Brais B, Bernard G, Teichmann M. RNA Polymerase III Subunit Mutations in Genetic Diseases. Front Mol Biosci 2021; 8:696438. [PMID: 34395528 PMCID: PMC8362101 DOI: 10.3389/fmolb.2021.696438] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022] Open
Abstract
RNA polymerase (Pol) III transcribes small untranslated RNAs such as 5S ribosomal RNA, transfer RNAs, and U6 small nuclear RNA. Because of the functions of these RNAs, Pol III transcription is best known for its essential contribution to RNA maturation and translation. Surprisingly, it was discovered in the last decade that various inherited mutations in genes encoding nine distinct subunits of Pol III cause tissue-specific diseases rather than a general failure of all vital functions. Mutations in the POLR3A, POLR3C, POLR3E and POLR3F subunits are associated with susceptibility to varicella zoster virus-induced encephalitis and pneumonitis. In addition, an ever-increasing number of distinct mutations in the POLR3A, POLR3B, POLR1C and POLR3K subunits cause a spectrum of neurodegenerative diseases, which includes most notably hypomyelinating leukodystrophy. Furthermore, other rare diseases are also associated with mutations in genes encoding subunits of Pol III (POLR3H, POLR3GL) and the BRF1 component of the TFIIIB transcription initiation factor. Although the causal relationship between these mutations and disease development is widely accepted, the exact molecular mechanisms underlying disease pathogenesis remain enigmatic. Here, we review the current knowledge on the functional impact of specific mutations, possible Pol III-related disease-causing mechanisms, and animal models that may help to better understand the links between Pol III mutations and disease.
Collapse
Affiliation(s)
- Elisabeth Lata
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| | - Karine Choquet
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Francis Sagliocco
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| | - Bernard Brais
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Geneviève Bernard
- Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, QC, Canada
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Martin Teichmann
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| |
Collapse
|
14
|
Structure of human RNA polymerase III elongation complex. Cell Res 2021; 31:791-800. [PMID: 33674783 PMCID: PMC8249397 DOI: 10.1038/s41422-021-00472-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/06/2021] [Indexed: 01/31/2023] Open
Abstract
RNA polymerase III (Pol III) transcribes essential structured small RNAs, such as tRNAs, 5S rRNA and U6 snRNA. The transcriptional activity of Pol III is tightly controlled and its dysregulation is associated with human diseases, such as cancer. Human Pol III has two isoforms with difference only in one of its subunits RPC7 (α and β). Despite structural studies of yeast Pol III, structure of human Pol III remains unsolved. Here, we determined the structures of 17-subunit human Pol IIIα complex in the backtracked and post-translocation states, respectively. Human Pol III contains a generally conserved catalytic core, similar to that of yeast counterpart, and structurally unique RPC3-RPC6-RPC7 heterotrimer and RPC10. The N-ribbon of TFIIS-like RPC10 docks on the RPC4-RPC5 heterodimer and the C-ribbon inserts into the funnel of Pol III in the backtracked state but is more flexible in the post-translocation state. RPC7 threads through the heterotrimer and bridges the stalk and Pol III core module. The winged helix 1 domain of RPC6 and the N-terminal region of RPC7α stabilize each other and may prevent Maf1-mediated repression of Pol III activity. The C-terminal FeS cluster of RPC6 coordinates a network of interactions that mediate core-heterotrimer contacts and stabilize Pol III. Our structural analysis sheds new light on the molecular mechanism of human Pol IIIα-specific transcriptional regulation and provides explanations for upregulated Pol III activity in RPC7α-dominant cancer cells.
Collapse
|
15
|
Lei L, Burton ZF. Early Evolution of Transcription Systems and Divergence of Archaea and Bacteria. Front Mol Biosci 2021; 8:651134. [PMID: 34026831 PMCID: PMC8131849 DOI: 10.3389/fmolb.2021.651134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
DNA template-dependent multi-subunit RNA polymerases (RNAPs) found in all three domains of life and some viruses are of the two-double-Ψ-β-barrel (DPBB) type. The 2-DPBB protein format is also found in some RNA template-dependent RNAPs and a major replicative DNA template-dependent DNA polymerase (DNAP) from Archaea (PolD). The 2-DPBB family of RNAPs and DNAPs probably evolved prior to the last universal common cellular ancestor (LUCA). Archaeal Transcription Factor B (TFB) and bacterial σ factors include homologous strings of helix-turn-helix units. The consequences of TFB-σ homology are discussed in terms of the evolution of archaeal and bacterial core promoters. Domain-specific DPBB loop inserts functionally connect general transcription factors to the RNAP active site. Archaea appear to be more similar to LUCA than Bacteria. Evolution of bacterial σ factors from TFB appears to have driven divergence of Bacteria from Archaea, splitting the prokaryotic domains.
Collapse
Affiliation(s)
- Lei Lei
- Department of Biology, University of New England, Biddeford, ME, United States
| | - Zachary F Burton
- Department of Biochemistry and Molecular Biology, Michigan State University, E. Lansing, MI, United States
| |
Collapse
|
16
|
|
17
|
Wang Q, Li S, Wan F, Xu Y, Wu Z, Cao M, Lan P, Lei M, Wu J. Structural insights into transcriptional regulation of human RNA polymerase III. Nat Struct Mol Biol 2021; 28:220-227. [PMID: 33558766 DOI: 10.1038/s41594-021-00557-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 12/29/2020] [Indexed: 01/30/2023]
Abstract
RNA polymerase III (Pol III) synthesizes structured, essential small RNAs, such as transfer RNA, 5S ribosomal RNA and U6 small nuclear RNA. Pol III, the largest nuclear RNA polymerase, is composed of a conserved core region and eight constitutive regulatory subunits, but how these factors jointly regulate Pol III transcription remains unclear. Here, we present cryo-EM structures of human Pol III in both apo and elongating states, which unveil both an orchestrated movement during the apo-to-elongating transition and an unexpected apo state in which the RPC7 subunit tail occupies the DNA-RNA-binding cleft of Pol III, suggesting that RPC7 plays important roles in both autoinhibition and transcription initiation. The structures also reveal a proofreading mechanism for the TFIIS-like subunit RPC10, which stably retains its catalytic position in the secondary channel, explaining the high fidelity of Pol III transcription. Our work provides an integrated picture of the mechanism of Pol III transcription regulation.
Collapse
Affiliation(s)
- Qianmin Wang
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Shaobai Li
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Futang Wan
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Youwei Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Zhenfang Wu
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Mi Cao
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Pengfei Lan
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai Institute of Precision Medicine, Shanghai, China.
| | - Ming Lei
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai Institute of Precision Medicine, Shanghai, China. .,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jian Wu
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai Institute of Precision Medicine, Shanghai, China.
| |
Collapse
|
18
|
Cryo-EM structures of human RNA polymerase III in its unbound and transcribing states. Nat Struct Mol Biol 2021; 28:210-219. [PMID: 33558764 PMCID: PMC7610652 DOI: 10.1038/s41594-020-00555-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 12/21/2020] [Indexed: 01/30/2023]
Abstract
RNA polymerase III (Pol III) synthesizes transfer RNAs and other short, essential RNAs. Human Pol III misregulation is linked to tumor transformation, neurodegenerative and developmental disorders, and increased sensitivity to viral infections. Here, we present cryo-electron microscopy structures at 2.8 to 3.3 Å resolution of transcribing and unbound human Pol III. We observe insertion of the TFIIS-like subunit RPC10 into the polymerase funnel, providing insights into how RPC10 triggers transcription termination. Our structures resolve elements absent from Saccharomyces cerevisiae Pol III such as the winged-helix domains of RPC5 and an iron-sulfur cluster, which tethers the heterotrimer subcomplex to the core. The cancer-associated RPC7α isoform binds the polymerase clamp, potentially interfering with Pol III inhibition by tumor suppressor MAF1, which may explain why overexpressed RPC7α enhances tumor transformation. Finally, the human Pol III structure allows mapping of disease-related mutations and may contribute to the development of inhibitors that selectively target Pol III for therapeutic interventions.
Collapse
|
19
|
Ramsay EP, Abascal-Palacios G, Daiß JL, King H, Gouge J, Pilsl M, Beuron F, Morris E, Gunkel P, Engel C, Vannini A. Structure of human RNA polymerase III. Nat Commun 2020; 11:6409. [PMID: 33335104 PMCID: PMC7747717 DOI: 10.1038/s41467-020-20262-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
In eukaryotes, RNA Polymerase (Pol) III is specialized for the transcription of tRNAs and other short, untranslated RNAs. Pol III is a determinant of cellular growth and lifespan across eukaryotes. Upregulation of Pol III transcription is observed in cancer and causative Pol III mutations have been described in neurodevelopmental disorders and hypersensitivity to viral infection. Here, we report a cryo-EM reconstruction at 4.0 Å of human Pol III, allowing mapping and rationalization of reported genetic mutations. Mutations causing neurodevelopmental defects cluster in hotspots affecting Pol III stability and/or biogenesis, whereas mutations affecting viral sensing are located in proximity to DNA binding regions, suggesting an impairment of Pol III cytosolic viral DNA-sensing. Integrating x-ray crystallography and SAXS, we also describe the structure of the higher eukaryote specific RPC5 C-terminal extension. Surprisingly, experiments in living cells highlight a role for this module in the assembly and stability of human Pol III.
Collapse
Affiliation(s)
- Ewan Phillip Ramsay
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK
| | | | - Julia L Daiß
- Regensburg Center for Biochemistry, University of Regensburg, 93053, Regensburg, Germany
| | - Helen King
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Jerome Gouge
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Michael Pilsl
- Regensburg Center for Biochemistry, University of Regensburg, 93053, Regensburg, Germany
| | - Fabienne Beuron
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Edward Morris
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Philip Gunkel
- Max Planck Institute for Biophysical Chemistry, Research Group Nuclear Architecture, 37077, Göttingen, Germany
| | - Christoph Engel
- Regensburg Center for Biochemistry, University of Regensburg, 93053, Regensburg, Germany.
| | - Alessandro Vannini
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK.
- Fondazione Human Technopole, Structural Biology Research Centre, 20157, Milan, Italy.
| |
Collapse
|
20
|
Wenck BR, Santangelo TJ. Archaeal transcription. Transcription 2020; 11:199-210. [PMID: 33112729 PMCID: PMC7714419 DOI: 10.1080/21541264.2020.1838865] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Abstract
Increasingly sophisticated biochemical and genetic techniques are unraveling the regulatory factors and mechanisms that control gene expression in the Archaea. While some similarities in regulatory strategies are universal, archaeal-specific regulatory strategies are emerging to complement a complex patchwork of shared archaeal-bacterial and archaeal-eukaryotic regulatory mechanisms employed in the archaeal domain. The prokaryotic archaea encode core transcription components with homology to the eukaryotic transcription apparatus and also share a simplified eukaryotic-like initiation mechanism, but also deploy tactics common to bacterial systems to regulate promoter usage and influence elongation-termination decisions. We review the recently established complete archaeal transcription cycle, highlight recent findings of the archaeal transcription community and detail the expanding post-initiation regulation imposed on archaeal transcription.
Collapse
Affiliation(s)
- Breanna R. Wenck
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Thomas J. Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
21
|
Li J, Zhang B, Zhou L, Qi L, Yue L, Zhang W, Cheng H, Whitman WB, Dong X. The archaeal RNA chaperone TRAM0076 shapes the transcriptome and optimizes the growth of Methanococcus maripaludis. PLoS Genet 2019; 15:e1008328. [PMID: 31404065 PMCID: PMC6705878 DOI: 10.1371/journal.pgen.1008328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/22/2019] [Accepted: 07/22/2019] [Indexed: 11/27/2022] Open
Abstract
TRAM is a conserved domain among RNA modification proteins that are widely distributed in various organisms. In Archaea, TRAM occurs frequently as a standalone protein with in vitro RNA chaperone activity; however, its biological significance and functional mechanism remain unknown. This work demonstrated that TRAM0076 is an abundant standalone TRAM protein in the genetically tractable methanoarcheaon Methanococcus maripaludis. Deletion of MMP0076, the gene encoding TRAM0076, markedly reduced the growth and altered transcription of 55% of the genome. Substitution mutations of Phe39, Phe42, Phe63, Phe65 and Arg35 in the recombinant TRAM0076 decreased the in vitro duplex RNA unfolding activity. These mutations also prevented complementation of the growth defect of the MMP0076 deletion mutant, indicating that the duplex RNA unfolding activity was essential for its physiological function. A genome-wide mapping of transcription start sites identified many 5' untranslated regions (5'UTRs) of 20-60 nt which could be potential targets of a RNA chaperone. TRAM0076 unfolded three representative 5'UTR structures in vitro and facilitated the in vivo expression of a mCherry reporter system fused to the 5'UTRs, thus behaving like a transcription anti-terminator. Flag-tagged-TRAM0076 co-immunoprecipitated a large number of cellular RNAs, suggesting that TRAM0076 plays multiple roles in addition to unfolding incorrect RNA structures. This work demonstrates that the conserved archaeal RNA chaperone TRAM globally affects gene expression and may represent a transcriptional element in ancient life of the RNA world.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | - Bo Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing, China
| | - Liguang Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing, China
| | - Lei Qi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | - Lei Yue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing, China
| | - Wenting Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing, China
| | - Huicai Cheng
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, China
| | - William B. Whitman
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing, China
| |
Collapse
|
22
|
Khoo SK, Wu CC, Lin YC, Chen HT. The TFIIE-related Rpc82 subunit of RNA polymerase III interacts with the TFIIB-related transcription factor Brf1 and the polymerase cleft for transcription initiation. Nucleic Acids Res 2019; 46:1157-1166. [PMID: 29177422 PMCID: PMC5814912 DOI: 10.1093/nar/gkx1179] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 11/16/2017] [Indexed: 11/13/2022] Open
Abstract
Rpc82 is a TFIIE-related subunit of the eukaryotic RNA polymerase III (pol III) complex. Rpc82 contains four winged-helix (WH) domains and a C-terminal coiled-coil domain. Structural resolution of the pol III complex indicated that Rpc82 anchors on the clamp domain of the pol III cleft to interact with the duplex DNA downstream of the transcription bubble. However, whether Rpc82 interacts with a transcription factor is still not known. Here, we report that a structurally disordered insertion in the third WH domain of Rpc82 is important for cell growth and in vitro transcription activity. Site-specific photo-crosslinking analysis indicated that the WH3 insertion interacts with the TFIIB-related transcription factor Brf1 within the pre-initiation complex (PIC). Moreover, crosslinking and hydroxyl radical probing analyses revealed Rpc82 interactions with the upstream DNA and the protrusion and wall domains of the pol III cleft. Our genetic and biochemical analyses thus provide new molecular insights into the function of Rpc82 in pol III transcription.
Collapse
Affiliation(s)
- Seok-Kooi Khoo
- Institute of Molecular Biology, Academia Sinica, 128 Sec. 2 Academia Rd., Taipei 115, Taiwan, R.O.C
| | - Chih-Chien Wu
- Institute of Molecular Biology, Academia Sinica, 128 Sec. 2 Academia Rd., Taipei 115, Taiwan, R.O.C
| | - Yu-Chun Lin
- Institute of Molecular Biology, Academia Sinica, 128 Sec. 2 Academia Rd., Taipei 115, Taiwan, R.O.C
| | - Hung-Ta Chen
- Institute of Molecular Biology, Academia Sinica, 128 Sec. 2 Academia Rd., Taipei 115, Taiwan, R.O.C
| |
Collapse
|
23
|
Blombach F, Matelska D, Fouqueau T, Cackett G, Werner F. Key Concepts and Challenges in Archaeal Transcription. J Mol Biol 2019; 431:4184-4201. [PMID: 31260691 DOI: 10.1016/j.jmb.2019.06.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 12/17/2022]
Abstract
Transcription is enabled by RNA polymerase and general factors that allow its progress through the transcription cycle by facilitating initiation, elongation and termination. The transitions between specific stages of the transcription cycle provide opportunities for the global and gene-specific regulation of gene expression. The exact mechanisms and the extent to which the different steps of transcription are exploited for regulation vary between the domains of life, individual species and transcription units. However, a surprising degree of conservation is apparent. Similar key steps in the transcription cycle can be targeted by homologous or unrelated factors providing insights into the mechanisms of RNAP and the evolution of the transcription machinery. Archaea are bona fide prokaryotes but employ a eukaryote-like transcription system to express the information of bacteria-like genomes. Thus, archaea provide the means not only to study transcription mechanisms of interesting model systems but also to test key concepts of regulation in this arena. In this review, we discuss key principles of archaeal transcription, new questions that still await experimental investigation, and how novel integrative approaches hold great promise to fill this gap in our knowledge.
Collapse
Affiliation(s)
- Fabian Blombach
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom.
| | - Dorota Matelska
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Thomas Fouqueau
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Gwenny Cackett
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Finn Werner
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
24
|
Abstract
In all living organisms, the flow of genetic information is a two-step process: first DNA is transcribed into RNA, which is subsequently used as template for protein synthesis during translation. In bacteria, archaea and eukaryotes, transcription is carried out by multi-subunit RNA polymerases (RNAPs) sharing a conserved architecture of the RNAP core. RNAPs catalyse the highly accurate polymerisation of RNA from NTP building blocks, utilising DNA as template, being assisted by transcription factors during the initiation, elongation and termination phase of transcription. The complexity of this highly dynamic process is reflected in the intricate network of protein-protein and protein-nucleic acid interactions in transcription complexes and the substantial conformational changes of the RNAP as it progresses through the transcription cycle.In this chapter, we will first briefly describe the early work that led to the discovery of multisubunit RNAPs. We will then discuss the three-dimensional organisation of RNAPs from the bacterial, archaeal and eukaryotic domains of life, highlighting the conserved nature, but also the domain-specific features of the transcriptional apparatus. Another section will focus on transcription factors and their role in regulating the RNA polymerase throughout the different phases of the transcription cycle. This includes a discussion of the molecular mechanisms and dynamic events that govern transcription initiation, elongation and termination.
Collapse
|
25
|
Kramm K, Endesfelder U, Grohmann D. A Single-Molecule View of Archaeal Transcription. J Mol Biol 2019; 431:4116-4131. [PMID: 31207238 DOI: 10.1016/j.jmb.2019.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/27/2019] [Accepted: 06/06/2019] [Indexed: 01/03/2023]
Abstract
The discovery of the archaeal domain of life is tightly connected to an in-depth analysis of the prokaryotic RNA world. In addition to Carl Woese's approach to use the sequence of the 16S rRNA gene as phylogenetic marker, the finding of Karl Stetter and Wolfram Zillig that archaeal RNA polymerases (RNAPs) were nothing like the bacterial RNAP but are more complex enzymes that resemble the eukaryotic RNAPII was one of the key findings supporting the idea that archaea constitute the third major branch on the tree of life. This breakthrough in transcriptional research 40years ago paved the way for in-depth studies of the transcription machinery in archaea. However, although the archaeal RNAP and the basal transcription factors that fine-tune the activity of the RNAP during the transcription cycle are long known, we still lack information concerning the architecture and dynamics of archaeal transcription complexes. In this context, single-molecule measurements were instrumental as they provided crucial insights into the process of transcription initiation, the architecture of the initiation complex and the dynamics of mobile elements of the RNAP. In this review, we discuss single-molecule approaches suitable to examine molecular mechanisms of transcription and highlight findings that shaped our understanding of the archaeal transcription apparatus. We furthermore explore the possibilities and challenges of next-generation single-molecule techniques, for example, super-resolution microscopy and single-molecule tracking, and ask whether these approaches will ultimately allow us to investigate archaeal transcription in vivo.
Collapse
Affiliation(s)
- Kevin Kramm
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Ulrike Endesfelder
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Str. 16, 35043 Marburg, Germany
| | - Dina Grohmann
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| |
Collapse
|
26
|
Transcription initiation factor TBP: old friend new questions. Biochem Soc Trans 2019; 47:411-423. [DOI: 10.1042/bst20180623] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 12/14/2022]
Abstract
Abstract
In all domains of life, the regulation of transcription by DNA-dependent RNA polymerases (RNAPs) is achieved at the level of initiation to a large extent. Whereas bacterial promoters are recognized by a σ-factor bound to the RNAP, a complex set of transcription factors that recognize specific promoter elements is employed by archaeal and eukaryotic RNAPs. These initiation factors are of particular interest since the regulation of transcription critically relies on initiation rates and thus formation of pre-initiation complexes. The most conserved initiation factor is the TATA-binding protein (TBP), which is of crucial importance for all archaeal-eukaryotic transcription initiation complexes and the only factor required to achieve full rates of initiation in all three eukaryotic and the archaeal transcription systems. Recent structural, biochemical and genome-wide mapping data that focused on the archaeal and specialized RNAP I and III transcription system showed that the involvement and functional importance of TBP is divergent from the canonical role TBP plays in RNAP II transcription. Here, we review the role of TBP in the different transcription systems including a TBP-centric discussion of archaeal and eukaryotic initiation complexes. We furthermore highlight questions concerning the function of TBP that arise from these findings.
Collapse
|
27
|
Bischof LF, Haurat MF, Hoffmann L, Albersmeier A, Wolf J, Neu A, Pham TK, Albaum SP, Jakobi T, Schouten S, Neumann-Schaal M, Wright PC, Kalinowski J, Siebers B, Albers SV. Early Response of Sulfolobus acidocaldarius to Nutrient Limitation. Front Microbiol 2019; 9:3201. [PMID: 30687244 PMCID: PMC6335949 DOI: 10.3389/fmicb.2018.03201] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/10/2018] [Indexed: 01/13/2023] Open
Abstract
In natural environments microorganisms encounter extreme changes in temperature, pH, osmolarities and nutrient availability. The stress response of many bacterial species has been described in detail, however, knowledge in Archaea is limited. Here, we describe the cellular response triggered by nutrient limitation in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. We measured changes in gene transcription and protein abundance upon nutrient depletion up to 4 h after initiation of nutrient depletion. Transcript levels of 1118 of 2223 protein coding genes and abundance of approximately 500 proteins with functions in almost all cellular processes were affected by nutrient depletion. Our study reveals a significant rerouting of the metabolism with respect to degradation of internal as well as extracellular-bound organic carbon and degradation of proteins. Moreover, changes in membrane lipid composition were observed in order to access alternative sources of energy and to maintain pH homeostasis. At transcript level, the cellular response to nutrient depletion in S. acidocaldarius seems to be controlled by the general transcription factors TFB2 and TFEβ. In addition, ribosome biogenesis is reduced, while an increased protein degradation is accompanied with a loss of protein quality control. This study provides first insights into the early cellular response of Sulfolobus to organic carbon and organic nitrogen depletion.
Collapse
Affiliation(s)
- Lisa F Bischof
- Molecular Biology of Archaea, Institute of Biology II, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - M Florencia Haurat
- Molecular Biology of Archaea, Institute of Biology II, University of Freiburg, Freiburg, Germany
| | - Lena Hoffmann
- Molecular Biology of Archaea, Institute of Biology II, University of Freiburg, Freiburg, Germany
| | - Andreas Albersmeier
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Jacqueline Wolf
- Department of Bioinformatics and Biochemistry, Braunschweig University of Technology, Braunschweig, Germany
| | - Astrid Neu
- Molecular Enzyme Technology and Biochemistry (MEB), Biofilm Centre, Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, Essen, Germany
| | - Trong Khoa Pham
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, United Kingdom
| | - Stefan P Albaum
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Tobias Jakobi
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Stefan Schouten
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute of Sea Research, Den Burg, Netherlands.,Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
| | - Meina Neumann-Schaal
- Department of Bioinformatics and Biochemistry, Braunschweig University of Technology, Braunschweig, Germany
| | - Phillip C Wright
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, United Kingdom
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry (MEB), Biofilm Centre, Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, Essen, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, University of Freiburg, Freiburg, Germany
| |
Collapse
|
28
|
Fouqueau T, Blombach F, Cackett G, Carty AE, Matelska DM, Ofer S, Pilotto S, Phung DK, Werner F. The cutting edge of archaeal transcription. Emerg Top Life Sci 2018; 2:517-533. [PMID: 33525828 PMCID: PMC7289017 DOI: 10.1042/etls20180014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 12/26/2022]
Abstract
The archaeal RNA polymerase (RNAP) is a double-psi β-barrel enzyme closely related to eukaryotic RNAPII in terms of subunit composition and architecture, promoter elements and basal transcription factors required for the initiation and elongation phase of transcription. Understanding archaeal transcription is, therefore, key to delineate the universally conserved fundamental mechanisms of transcription as well as the evolution of the archaeo-eukaryotic transcription machineries. The dynamic interplay between RNAP subunits, transcription factors and nucleic acids dictates the activity of RNAP and ultimately gene expression. This review focusses on recent progress in our understanding of (i) the structure, function and molecular mechanisms of known and less characterized factors including Elf1 (Elongation factor 1), NusA (N-utilization substance A), TFS4, RIP and Eta, and (ii) their evolution and phylogenetic distribution across the expanding tree of Archaea.
Collapse
Affiliation(s)
- Thomas Fouqueau
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Fabian Blombach
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Gwenny Cackett
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Alice E Carty
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Dorota M Matelska
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Sapir Ofer
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Simona Pilotto
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Duy Khanh Phung
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Finn Werner
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
29
|
Dexl S, Reichelt R, Kraatz K, Schulz S, Grohmann D, Bartlett M, Thomm M. Displacement of the transcription factor B reader domain during transcription initiation. Nucleic Acids Res 2018; 46:10066-10081. [PMID: 30102372 PMCID: PMC6212726 DOI: 10.1093/nar/gky699] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/19/2018] [Accepted: 07/24/2018] [Indexed: 01/15/2023] Open
Abstract
Transcription initiation by archaeal RNA polymerase (RNAP) and eukaryotic RNAP II requires the general transcription factor (TF) B/ IIB. Structural analyses of eukaryotic transcription initiation complexes locate the B-reader domain of TFIIB in close proximity to the active site of RNAP II. Here, we present the first crosslinking mapping data that describe the dynamic transitions of an archaeal TFB to provide evidence for structural rearrangements within the transcription complex during transition from initiation to early elongation phase of transcription. Using a highly specific UV-inducible crosslinking system based on the unnatural amino acid para-benzoyl-phenylalanine allowed us to analyze contacts of the Pyrococcus furiosus TFB B-reader domain with site-specific radiolabeled DNA templates in preinitiation and initially transcribing complexes. Crosslink reactions at different initiation steps demonstrate interactions of TFB with DNA at registers +6 to +14, and reduced contacts at +15, with structural transitions of the B-reader domain detected at register +10. Our data suggest that the B-reader domain of TFB interacts with nascent RNA at register +6 and +8 and it is displaced from the transcribed-strand during the transition from +9 to +10, followed by the collapse of the transcription bubble and release of TFB from register +15 onwards.
Collapse
Affiliation(s)
- Stefan Dexl
- Department of Microbiology and Archaea Center, University of Regensburg, 93053 Regensburg, Germany
| | - Robert Reichelt
- Department of Microbiology and Archaea Center, University of Regensburg, 93053 Regensburg, Germany
| | - Katharina Kraatz
- Department of Microbiology and Archaea Center, University of Regensburg, 93053 Regensburg, Germany
| | - Sarah Schulz
- Department of Microbiology and Archaea Center, University of Regensburg, 93053 Regensburg, Germany
| | - Dina Grohmann
- Department of Microbiology and Archaea Center, University of Regensburg, 93053 Regensburg, Germany
| | - Michael Bartlett
- Department of Biology, Portland State University, Portland, OR 972707-0751, USA
| | - Michael Thomm
- Department of Microbiology and Archaea Center, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
30
|
Reichelt R, Ruperti KMA, Kreuzer M, Dexl S, Thomm M, Hausner W. The Transcriptional Regulator TFB-RF1 Activates Transcription of a Putative ABC Transporter in Pyrococcus furiosus. Front Microbiol 2018; 9:838. [PMID: 29760686 PMCID: PMC5937170 DOI: 10.3389/fmicb.2018.00838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/12/2018] [Indexed: 11/13/2022] Open
Abstract
Transcription factor B recruiting factor 1 (TFB-RF1; PF1088) is a transcription regulator which activates transcription on archaeal promoters containing weak TFB recognition elements (BRE) by recruiting TFB to the promoter. The mechanism of activation is described in detail, but nothing is known about the biological function of this protein in Pyrococcus furiosus. The protein is located in an operon structure together with the hypothetical gene pf1089 and western blot as well as end-point RT-PCR experiments revealed an extremely low expression rate of both proteins. Furthermore, conditions to induce the expression of the operon are not known. By introducing an additional copy of tfb-RF1 using a Pyrococcus shuttle vector we could circumvent the lacking expression of both proteins under standard growth conditions as indicated by western blot as well as end-point RT-PCR experiments. A ChIP-seq experiment revealed an additional binding site of TFB-RF1 in the upstream region of the pf1011/1012 operon, beside the expected target of the pf1089/tfb-RF1 region. This operon codes for a putative ABC transporter which is most-related to a multidrug export system and in vitro analysis using gel shift assays, DNase I footprinting and in vitro transcription confirmed the activator function of TFB-RF1 on the corresponding promoter. These findings are also in agreement with in vivo data, as RT-qPCR experiments also indicate transcriptional activation of both operons. Taken together, the overexpression strategy of tfb-RF1 enabled the identification of an additional operon of the TFB-RF1 regulon which indicates a transport-related function and provides a promising starting position to decipher the physiological function of the TFB-RF1 gene regulatory network in P. furiosus.
Collapse
Affiliation(s)
- Robert Reichelt
- Institute of Microbiology and Archaea Center, University of Regensburg, Regensburg, Germany
| | - Katharina M A Ruperti
- Institute of Microbiology and Archaea Center, University of Regensburg, Regensburg, Germany
| | - Martina Kreuzer
- Institute of Microbiology and Archaea Center, University of Regensburg, Regensburg, Germany
| | - Stefan Dexl
- Institute of Microbiology and Archaea Center, University of Regensburg, Regensburg, Germany
| | - Michael Thomm
- Institute of Microbiology and Archaea Center, University of Regensburg, Regensburg, Germany
| | - Winfried Hausner
- Institute of Microbiology and Archaea Center, University of Regensburg, Regensburg, Germany
| |
Collapse
|
31
|
Blombach F, Ausiannikava D, Figueiredo A, Soloviev Z, Prentice T, Zhang M, Zhou N, Thalassinos K, Allers T, Werner F. Structural and functional adaptation of Haloferax volcanii TFEα/β. Nucleic Acids Res 2018; 46:2308-2320. [PMID: 29309690 PMCID: PMC5861453 DOI: 10.1093/nar/gkx1302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 12/08/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022] Open
Abstract
The basal transcription factor TFE enhances transcription initiation by catalysing DNA strand-separation, a process that varies with temperature and ionic strength. Canonical TFE forms a heterodimeric complex whose integrity and function critically relies on a cubane iron-sulphur cluster residing in the TFEβ subunit. Halophilic archaea such as Haloferax volcanii have highly divergent putative TFEβ homologues with unknown properties. Here, we demonstrate that Haloferax TFEβ lacks the prototypical iron-sulphur cluster yet still forms a stable complex with TFEα. A second metal cluster contained in the zinc ribbon domain in TFEα is highly degenerate but retains low binding affinity for zinc, which contributes to protein folding and stability. The deletion of the tfeB gene in H. volcanii results in the aberrant expression of approximately one third of all genes, consistent with its function as a basal transcription initiation factor. Interestingly, tfeB deletion particularly affects foreign genes including a prophage region. Our results reveal the loss of metal centres in Hvo transcription factors, and confirm the dual function of TFE as basal factor and regulator of transcription.
Collapse
Affiliation(s)
- Fabian Blombach
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Darya Ausiannikava
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Angelo Miguel Figueiredo
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Zoja Soloviev
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Tanya Prentice
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Mark Zhang
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Nanruoyi Zhou
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Konstantinos Thalassinos
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Finn Werner
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| |
Collapse
|
32
|
Fouqueau T, Blombach F, Hartman R, Cheung ACM, Young MJ, Werner F. The transcript cleavage factor paralogue TFS4 is a potent RNA polymerase inhibitor. Nat Commun 2017; 8:1914. [PMID: 29203770 PMCID: PMC5715097 DOI: 10.1038/s41467-017-02081-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 11/05/2017] [Indexed: 12/03/2022] Open
Abstract
TFIIS-like transcript cleavage factors enhance the processivity and fidelity of archaeal and eukaryotic RNA polymerases. Sulfolobus solfataricus TFS1 functions as a bona fide cleavage factor, while the paralogous TFS4 evolved into a potent RNA polymerase inhibitor. TFS4 destabilises the TBP–TFB–RNAP pre-initiation complex and inhibits transcription initiation and elongation. All inhibitory activities are dependent on three lysine residues at the tip of the C-terminal zinc ribbon of TFS4; the inhibition likely involves an allosteric component and is mitigated by the basal transcription factor TFEα/β. A chimeric variant of yeast TFIIS and TFS4 inhibits RNAPII transcription, suggesting that the molecular basis of inhibition is conserved between archaea and eukaryotes. TFS4 expression in S. solfataricus is induced in response to infection with the Sulfolobus turreted icosahedral virus. Our results reveal a compelling functional diversification of cleavage factors in archaea, and provide novel insights into transcription inhibition in the context of the host–virus relationship. Transcript cleavage factors such as eukaryotic TFIIS assist the resumption of transcription following RNA pol II backtracking. Here the authors find that one of the Sulfolobus solfataricus TFIIS homolog—TFS4—has evolved into a potent RNA polymerase inhibitor potentially involved in antiviral defense.
Collapse
Affiliation(s)
- Thomas Fouqueau
- Institute of Structural & Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Fabian Blombach
- Institute of Structural & Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Ross Hartman
- Department of Microbiology, Montana State University, 173520, Bozeman, MT, MT 59717, USA
| | - Alan C M Cheung
- Institute of Structural & Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Mark J Young
- Department of Microbiology, Montana State University, 173520, Bozeman, MT, MT 59717, USA.,Department of Plant Sciences, Montana State University, 173150, Bozeman, MT, MT 59717, USA
| | - Finn Werner
- Institute of Structural & Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
33
|
Abstract
RNA polymerase activity is regulated by nascent RNA sequences, DNA template sequences, and conserved transcription factors. Transcription factors promoting initiation and elongation have been characterized in each domain, but transcription termination factors have been identified only in bacteria and eukarya. Here we describe euryarchaeal termination activity (Eta), the first archaeal termination factor capable of disrupting the transcription elongation complex (TEC), detail the rate of and requirements for Eta-mediated transcription termination, and describe a role for Eta in transcription termination in vivo. Eta-mediated transcription termination is energy-dependent, requires upstream DNA sequences, and disrupts TECs to release the nascent RNA to solution. Deletion of TK0566 (encoding Eta) is possible, but results in slow growth and renders cells sensitive to DNA damaging agents. Our results suggest that the mechanisms used by termination factors in archaea, eukarya, and bacteria to disrupt the TEC may be conserved, and that Eta stimulates release of stalled or arrested TECs.
Collapse
|
34
|
Sheppard C, Werner F. Structure and mechanisms of viral transcription factors in archaea. Extremophiles 2017; 21:829-838. [PMID: 28681113 PMCID: PMC5569661 DOI: 10.1007/s00792-017-0951-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/23/2017] [Indexed: 01/31/2023]
Abstract
Virus-encoded transcription factors have been pivotal in exploring the molecular mechanisms and regulation of gene expression in bacteria and eukaryotes since the birth of molecular biology, while our understanding of viral transcription in archaea is still in its infancy. Archaeal viruses do not encode their own RNA polymerases (RNAPs) and are consequently entirely dependent on their hosts for gene expression; this is fundamentally different from many bacteriophages and requires alternative regulatory strategies. Archaeal viruses wield a repertoire of proteins to expropriate the host transcription machinery to their own benefit. In this short review we summarise our current understanding of gene-specific and global mechanisms that viruses employ to chiefly downregulate host transcription and enable the efficient and temporal expression of the viral transcriptome. Most of the experimentally characterised archaeo-viral transcription regulators possess either ribbon-helix-helix or Zn-finger motifs that allow them to engage with the DNA in a sequence-specific manner, altering the expression of a specific subset of genes. Recently a novel type of regulator was reported that directly binds to the RNAP and shuts down transcription of both host and viral genes in a global fashion.
Collapse
Affiliation(s)
- Carol Sheppard
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Finn Werner
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
35
|
Fouqueau T, Blombach F, Werner F. Evolutionary Origins of Two-Barrel RNA Polymerases and Site-Specific Transcription Initiation. Annu Rev Microbiol 2017; 71:331-348. [PMID: 28657884 DOI: 10.1146/annurev-micro-091014-104145] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Evolution-related multisubunit RNA polymerases (RNAPs) carry out RNA synthesis in all domains life. Although their catalytic cores and fundamental mechanisms of transcription elongation are conserved, the initiation stage of the transcription cycle differs substantially in bacteria, archaea, and eukaryotes in terms of the requirements for accessory factors and details of the molecular mechanisms. This review focuses on recent insights into the evolution of the transcription apparatus with regard to (a) the surprisingly pervasive double-Ψ β-barrel active-site configuration among different nucleic acid polymerase families, (b) the origin and phylogenetic distribution of TBP, TFB, and TFE transcription factors, and
Collapse
Affiliation(s)
- Thomas Fouqueau
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom; ,
| | - Fabian Blombach
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom; ,
| | - Finn Werner
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom; ,
| |
Collapse
|
36
|
Smollett K, Blombach F, Reichelt R, Thomm M, Werner F. A global analysis of transcription reveals two modes of Spt4/5 recruitment to archaeal RNA polymerase. Nat Microbiol 2017; 2:17021. [PMID: 28248297 PMCID: PMC7616672 DOI: 10.1038/nmicrobiol.2017.21] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/24/2017] [Indexed: 01/21/2023]
Abstract
The archaeal transcription apparatus is closely related to the eukaryotic RNA polymerase (RNAP) II system, while archaeal genomes are more similar to bacteria with densely packed genes organized in operons. This makes understanding transcription in archaea vital, both in terms of molecular mechanisms and evolution. Very little is known about how archaeal cells orchestrate transcription on a systems level. We have characterized the genome-wide occupancy of the Methanocaldococcus jannaschii transcription machinery and its transcriptome. Our data reveal how the TATA and BRE promoter elements facilitate recruitment of the essential initiation factors TATA-binding protein and transcription factor B, respectively, which in turn are responsible for the loading of RNAP into the transcription units. The occupancies of RNAP and Spt4/5 strongly correlate with each other and with RNA levels. Our results show that Spt4/5 is a general elongation factor in archaea as its presence on all genes matches RNAP. Spt4/5 is recruited proximal to the transcription start site on the majority of transcription units, while on a subset of genes, including rRNA and CRISPR loci, Spt4/5 is recruited to the transcription elongation complex during early elongation within 500 base pairs of the transcription start site and akin to its bacterial homologue NusG.
Collapse
Affiliation(s)
- Katherine Smollett
- University College London, Institute for Structural and Molecular Biology, Gower Street, London, WC1E 6BT, UK
| | - Fabian Blombach
- University College London, Institute for Structural and Molecular Biology, Gower Street, London, WC1E 6BT, UK
| | - Robert Reichelt
- Institut of Microbiology and Archaea Center, Universität Regensburg, 93053Regensburg, Germany
| | - Michael Thomm
- Institut of Microbiology and Archaea Center, Universität Regensburg, 93053Regensburg, Germany
| | - Finn Werner
- University College London, Institute for Structural and Molecular Biology, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
37
|
Repression of RNA polymerase by the archaeo-viral regulator ORF145/RIP. Nat Commun 2016; 7:13595. [PMID: 27882920 PMCID: PMC5123050 DOI: 10.1038/ncomms13595] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 10/18/2016] [Indexed: 12/15/2022] Open
Abstract
Little is known about how archaeal viruses perturb the transcription machinery of their hosts. Here we provide the first example of an archaeo-viral transcription factor that directly targets the host RNA polymerase (RNAP) and efficiently represses its activity. ORF145 from the temperate Acidianus two-tailed virus (ATV) forms a high-affinity complex with RNAP by binding inside the DNA-binding channel where it locks the flexible RNAP clamp in one position. This counteracts the formation of transcription pre-initiation complexes in vitro and represses abortive and productive transcription initiation, as well as elongation. Both host and viral promoters are subjected to ORF145 repression. Thus, ORF145 has the properties of a global transcription repressor and its overexpression is toxic for Sulfolobus. On the basis of its properties, we have re-named ORF145 RNAP Inhibitory Protein (RIP).
Collapse
|
38
|
Abstract
Repeating sequences generated from RNA gene fusions/ligations dominate ancient life, indicating central importance of building structural complexity in evolving biological systems. A simple and coherent story of life on earth is told from tracking repeating motifs that generate α/β proteins, 2-double-Ψ-β-barrel (DPBB) type RNA polymerases (RNAPs), general transcription factors (GTFs), and promoters. A general rule that emerges is that biological complexity that arises through generation of repeats is often bounded by solubility and closure (i.e., to form a pseudo-dimer or a barrel). Because the first DNA genomes were replicated by DNA template-dependent RNA synthesis followed by RNA template-dependent DNA synthesis via reverse transcriptase, the first DNA replication origins were initially 2-DPBB type RNAP promoters. A simplifying model for evolution of promoters/replication origins via repetition of core promoter elements is proposed. The model can explain why Pribnow boxes in bacterial transcription (i.e., (-12)TATAATG(-6)) so closely resemble TATA boxes (i.e., (-31)TATAAAAG(-24)) in archaeal/eukaryotic transcription. The evolution of anchor DNA sequences in bacterial (i.e., (-35)TTGACA(-30)) and archaeal (BRE(up); BRE for TFB recognition element) promoters is potentially explained. The evolution of BRE(down) elements of archaeal promoters is potentially explained.
Collapse
Affiliation(s)
- Zachary F Burton
- a Department of Biochemistry and Molecular Biology , Michigan State University , E. Lansing , MI , USA
| | - Kristopher Opron
- b Department of Mathematics , Michigan State University , E. Lansing , MI , USA
| | - Guowei Wei
- b Department of Mathematics , Michigan State University , E. Lansing , MI , USA
| | - James H Geiger
- c Department of Chemistry , Michigan State University , E. Lansing , MI , USA
| |
Collapse
|
39
|
Miwa K, Kojima R, Obita T, Ohkuma Y, Tamura Y, Mizuguchi M. Crystal Structure of Human General Transcription Factor TFIIE at Atomic Resolution. J Mol Biol 2016; 428:4258-4266. [DOI: 10.1016/j.jmb.2016.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/09/2016] [Accepted: 09/09/2016] [Indexed: 11/17/2022]
|
40
|
Abstract
The known diversity of metabolic strategies and physiological adaptations of archaeal species to extreme environments is extraordinary. Accurate and responsive mechanisms to ensure that gene expression patterns match the needs of the cell necessitate regulatory strategies that control the activities and output of the archaeal transcription apparatus. Archaea are reliant on a single RNA polymerase for all transcription, and many of the known regulatory mechanisms employed for archaeal transcription mimic strategies also employed for eukaryotic and bacterial species. Novel mechanisms of transcription regulation have become apparent by increasingly sophisticated in vivo and in vitro investigations of archaeal species. This review emphasizes recent progress in understanding archaeal transcription regulatory mechanisms and highlights insights gained from studies of the influence of archaeal chromatin on transcription.
Collapse
|
41
|
Blombach F, Smollett KL, Grohmann D, Werner F. Molecular Mechanisms of Transcription Initiation-Structure, Function, and Evolution of TFE/TFIIE-Like Factors and Open Complex Formation. J Mol Biol 2016; 428:2592-2606. [PMID: 27107643 PMCID: PMC7616663 DOI: 10.1016/j.jmb.2016.04.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/06/2016] [Accepted: 04/12/2016] [Indexed: 11/24/2022]
Abstract
Transcription initiation requires that the promoter DNA is melted and the template strand is loaded into the active site of the RNA polymerase (RNAP), forming the open complex (OC). The archaeal initiation factor TFE and its eukaryotic counterpart TFIIE facilitate this process. Recent structural and biophysical studies have revealed the position of TFE/TFIIE within the pre-initiation complex (PIC) and illuminated its role in OC formation. TFE operates via allosteric and direct mechanisms. Firstly, it interacts with the RNAP and induces the opening of the flexible RNAP clamp domain, concomitant with DNA melting and template loading. Secondly, TFE binds physically to single-stranded DNA in the transcription bubble of the OC and increases its stability. The identification of the β-subunit of archaeal TFE enabled us to reconstruct the evolutionary history of TFE/TFIIE-like factors, which is characterised by winged helix (WH) domain expansion in eukaryotes and loss of metal centres including iron-sulfur clusters and Zinc ribbons. OC formation is an important target for the regulation of transcription in all domains of life. We propose that TFE and the bacterial general transcription factor CarD, although structurally and evolutionary unrelated, show interesting parallels in their mechanism to enhance OC formation. We argue that OC formation is used as a way to regulate transcription in all domains of life, and these regulatory mechanisms coevolved with the basal transcription machinery.
Collapse
Affiliation(s)
- Fabian Blombach
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Katherine L Smollett
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Dina Grohmann
- Institute of Microbiology, University of Regensburg, Regensburg 93053, Germany
| | - Finn Werner
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK.
| |
Collapse
|
42
|
Plaschka C, Hantsche M, Dienemann C, Burzinski C, Plitzko J, Cramer P. Transcription initiation complex structures elucidate DNA opening. Nature 2016; 533:353-8. [DOI: 10.1038/nature17990] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 04/08/2016] [Indexed: 12/19/2022]
|
43
|
Schulz S, Gietl A, Smollett K, Tinnefeld P, Werner F, Grohmann D. TFE and Spt4/5 open and close the RNA polymerase clamp during the transcription cycle. Proc Natl Acad Sci U S A 2016; 113:E1816-25. [PMID: 26979960 PMCID: PMC4822635 DOI: 10.1073/pnas.1515817113] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription is an intrinsically dynamic process and requires the coordinated interplay of RNA polymerases (RNAPs) with nucleic acids and transcription factors. Classical structural biology techniques have revealed detailed snapshots of a subset of conformational states of the RNAP as they exist in crystals. A detailed view of the conformational space sampled by the RNAP and the molecular mechanisms of the basal transcription factors E (TFE) and Spt4/5 through conformational constraints has remained elusive. We monitored the conformational changes of the flexible clamp of the RNAP by combining a fluorescently labeled recombinant 12-subunit RNAP system with single-molecule FRET measurements. We measured and compared the distances across the DNA binding channel of the archaeal RNAP. Our results show that the transition of the closed to the open initiation complex, which occurs concomitant with DNA melting, is coordinated with an opening of the RNAP clamp that is stimulated by TFE. We show that the clamp in elongation complexes is modulated by the nontemplate strand and by the processivity factor Spt4/5, both of which stimulate transcription processivity. Taken together, our results reveal an intricate network of interactions within transcription complexes between RNAP, transcription factors, and nucleic acids that allosterically modulate the RNAP during the transcription cycle.
Collapse
Affiliation(s)
- Sarah Schulz
- Physikalische und Theoretische Chemie-NanoBioSciences, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Andreas Gietl
- Physikalische und Theoretische Chemie-NanoBioSciences, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Katherine Smollett
- RNA Polymerase Laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Philip Tinnefeld
- Physikalische und Theoretische Chemie-NanoBioSciences, Technische Universität Braunschweig, 38106 Braunschweig, Germany; Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, 38106 Braunschweig, Germany; Laboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Finn Werner
- RNA Polymerase Laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom;
| | - Dina Grohmann
- Physikalische und Theoretische Chemie-NanoBioSciences, Technische Universität Braunschweig, 38106 Braunschweig, Germany;
| |
Collapse
|