1
|
Fang XL, Li QJ, Lin JY, Huang CL, Huang SY, Tan XR, He SW, Zhu XH, Li JY, Gong S, Qiao H, Li YQ, Liu N, Ma J, Zhao Y, Tang LL. Transcription factor ATMIN facilitates chemoresistance in nasopharyngeal carcinoma. Cell Death Dis 2024; 15:112. [PMID: 38321024 PMCID: PMC10847093 DOI: 10.1038/s41419-024-06496-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
Despite that the docectaxel-cisplatin-5-fluorouracil (TPF) induction chemotherapy has greatly improved patients' survival and became the first-line treatment for advanced nasopharyngeal carcinoma (NPC), not all patients could benefit from this therapy. The mechanism underlying the TPF chemoresistance remains unclear. Here, by analyzing gene-expression microarray data and survival of patients who received TPF chemotherapy, we identify transcription factor ATMIN as a chemoresistance gene in response to TPF chemotherapy in NPC. Mass spectrometry and Co-IP assays reveal that USP10 deubiquitinates and stabilizes ATMIN protein, resulting the high-ATMIN expression in NPC. Knockdown of ATMIN suppresses the cell proliferation and facilitates the docetaxel-sensitivity of NPC cells both in vitro and in vivo, while overexpression of ATMIN exerts the opposite effect. Mechanistically, ChIP-seq combined with RNA-seq analysis suggests that ATMIN is associated with the cell death signaling and identifies ten candidate target genes of ATMIN. We further confirm that ATMIN transcriptionally activates the downstream target gene LCK and stabilizes it to facilitate cell proliferation and docetaxel resistance. Taken together, our findings broaden the insight into the molecular mechanism of chemoresistance in NPC, and the USP10-ATMIN-LCK axis provides potential therapeutic targets for the management of NPC.
Collapse
Affiliation(s)
- Xue-Liang Fang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Qing-Jie Li
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Jia-Yi Lin
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Cheng-Long Huang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Sheng-Yan Huang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Xi-Rong Tan
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Shi-Wei He
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Xun-Hua Zhu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Jun-Yan Li
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Sha Gong
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Han Qiao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Ying-Qin Li
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Na Liu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Jun Ma
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Yin Zhao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China.
| | - Ling-Long Tang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China.
| |
Collapse
|
2
|
Shan DD, Zheng QX, Chen Z. Go-Ichi-Ni-San 2: A potential biomarker and therapeutic target in human cancers. World J Gastrointest Oncol 2022; 14:1892-1902. [PMID: 36310704 PMCID: PMC9611433 DOI: 10.4251/wjgo.v14.i10.1892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/15/2022] [Accepted: 09/06/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer incidence and mortality are increasing globally, leading to its rising status as a leading cause of death. The Go-Ichi-Ni-San (GINS) complex plays a crucial role in DNA replication and the cell cycle. The GINS complex consists of four subunits encoded by the GINS1, GINS2, GINS3, and GINS4 genes. Recent findings have shown that GINS2 expression is upregulated in many diseases, particularly tumors. For example, increased GINS2 expression has been found in cervical cancer, gastric adenocarcinoma, glioma, non-small cell lung cancer, and pancreatic cancer. It correlates with the clinicopathological characteristics of the tumors. In addition, high GINS2 expression plays a pro-carcinogenic role in tumor development by promoting tumor cell proliferation and migration, inhibiting tumor cell apoptosis, and blocking the cell cycle. This review describes the upregulation of GINS2 expression in most human tumors and the pathway of GINS2 in tumor development. GINS2 may serve as a new marker for tumor diagnosis and a new biological target for therapy.
Collapse
Affiliation(s)
- Dan-Dan Shan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Qiu-Xian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
3
|
Vlatkovic T, Veldwijk MR, Giordano FA, Herskind C. Targeting Cell Cycle Checkpoint Kinases to Overcome Intrinsic Radioresistance in Brain Tumor Cells. Cancers (Basel) 2022; 14:cancers14030701. [PMID: 35158967 PMCID: PMC8833533 DOI: 10.3390/cancers14030701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary As cell cycle checkpoint mechanisms maintain genomic integrity, the inhibition of enzymes involved in these control mechanisms may increase the sensitivity of the cells to DNA damaging treatments. In this review, we summarize the knowledge in the field of brain tumor treatment with radiation therapy and cell cycle checkpoint inhibition via targeting ATM, ATR, CHK1, CHK2, and WEE1 kinases. Abstract Radiation therapy is an important part of the standard of care treatment of brain tumors. However, the efficacy of radiation therapy is limited by the radioresistance of tumor cells, a phenomenon held responsible for the dismal prognosis of the most aggressive brain tumor types. A promising approach to radiosensitization of tumors is the inhibition of cell cycle checkpoint control responsible for cell cycle progression and the maintenance of genomic integrity. Inhibition of the kinases involved in these control mechanisms can abolish cell cycle checkpoints and DNA damage repair and thus increase the sensitivity of tumor cells to radiation and chemotherapy. Here, we discuss preclinical progress in molecular targeting of ATM, ATR, CHK1, CHK2, and WEE1, checkpoint kinases in the treatment of brain tumors, and review current clinical phase I-II trials.
Collapse
Affiliation(s)
- Tijana Vlatkovic
- Cellular and Molecular Radiation Oncology Lab, Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (T.V.); (M.R.V.)
| | - Marlon R. Veldwijk
- Cellular and Molecular Radiation Oncology Lab, Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (T.V.); (M.R.V.)
| | - Frank A. Giordano
- Department of Radiation Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, University of Bonn, 53127 Bonn, Germany;
| | - Carsten Herskind
- Cellular and Molecular Radiation Oncology Lab, Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (T.V.); (M.R.V.)
- Correspondence: ; Tel.: +49-621-383-3773
| |
Collapse
|
4
|
Jia J, Ouyang Z, Wang M, Ma W, Liu M, Zhang M, Yu M. MicroRNA-361-5p slows down gliomas development through regulating UBR5 to elevate ATMIN protein expression. Cell Death Dis 2021; 12:746. [PMID: 34321465 PMCID: PMC8319180 DOI: 10.1038/s41419-021-04010-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/21/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
MicroRNA (miR)-361-5p has been studied to suppress gliomas development. Based on that, an insight into the regulatory mechanism of miR-361-5p in gliomas was supplemented from ubiquitin protein ligase E3 component N-recognin 5 (UBR5)-mediated ubiquitination of ataxia-telangiectasia mutated interactor (ATMIN). miR-361-5p, ATMIN, and UBR5 levels were clinically analyzed in gliomas tissues, which were further validated in gliomas cell lines. Loss/gain-of-function method was applied to determine the roles of miR-361-5p and UBR5 in gliomas, as to cell viability, migration, invasion, colony formation ability, and apoptosis in vitro and tumorigenesis in vivo. The relationship between miR-361-5p and UBR5 was verified and the interaction between UBR5 and ATMIN was explored. It was detected that reduced miR-361-5p and ATMIN and enhanced UBR5 levels showed in gliomas. Elevating miR-361-5p was repressive in gliomas progression. UBR5 was directly targeted by miR-361-5p. UBR5 can ubiquitinate ATMIN. miR-361-5p suppressed gliomas by regulating UBR5-mediated ubiquitination of ATMIN. Downregulating UBR5 impeded gliomas tumor growth in vivo. Upregulating miR-361-5p targets UBR5 to promote ATMIN protein expression, thus to recline the malignant phenotype of gliomas cells.
Collapse
Affiliation(s)
- Jiaoying Jia
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zhu Ouyang
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Ming Wang
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wenjia Ma
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Min Liu
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Mingming Zhang
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| | - Mengqiang Yu
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
5
|
Majd NK, Yap TA, Koul D, Balasubramaniyan V, Li X, Khan S, Gandy KS, Yung WKA, de Groot JF. The promise of DNA damage response inhibitors for the treatment of glioblastoma. Neurooncol Adv 2021; 3:vdab015. [PMID: 33738447 PMCID: PMC7954093 DOI: 10.1093/noajnl/vdab015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma (GBM), the most aggressive primary brain tumor, has a dismal prognosis. Despite our growing knowledge of genomic and epigenomic alterations in GBM, standard therapies and outcomes have not changed significantly in the past two decades. There is therefore an urgent unmet need to develop novel therapies for GBM. The inter- and intratumoral heterogeneity of GBM, inadequate drug concentrations in the tumor owing to the blood-brain barrier, redundant signaling pathways contributing to resistance to conventional therapies, and an immunosuppressive tumor microenvironment, have all hindered the development of novel therapies for GBM. Given the high frequency of DNA damage pathway alterations in GBM, researchers have focused their efforts on pharmacologically targeting key enzymes, including poly(ADP-ribose) polymerase (PARP), DNA-dependent protein kinase, ataxia telangiectasia-mutated, and ataxia telangiectasia and Rad3-related. The mainstays of GBM treatment, ionizing radiation and alkylating chemotherapy, generate DNA damage that is repaired through the upregulation and activation of DNA damage response (DDR) enzymes. Therefore, the use of PARP and other DDR inhibitors to render GBM cells more vulnerable to conventional treatments is an area of intense investigation. In this review, we highlight the growing body of data behind DDR inhibitors in GBM, with a focus on putative predictive biomarkers of response. We also discuss the challenges involved in the successful development of DDR inhibitors for GBM, including the intracranial location and predicted overlapping toxicities of DDR agents with current standards of care, and propose promising strategies to overcome these hurdles.
Collapse
Affiliation(s)
- Nazanin K Majd
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dimpy Koul
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Xiaolong Li
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sabbir Khan
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Katilin S Gandy
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - W K Alfred Yung
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John F de Groot
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
6
|
Cho SB. Set-Wise Differential Interaction Between Copy Number Alterations and Gene Expressions of Lower-Grade Glioma Reveals Prognosis-Associated Pathways. ENTROPY 2020; 22:e22121434. [PMID: 33353229 PMCID: PMC7765960 DOI: 10.3390/e22121434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/30/2020] [Accepted: 12/16/2020] [Indexed: 12/22/2022]
Abstract
The integrative analysis of copy number alteration (CNA) and gene expression (GE) is an essential part of cancer research considering the impact of CNAs on cancer progression and prognosis. In this research, an integrative analysis was performed with generalized differentially coexpressed gene sets (gdCoxS), which is a modification of dCoxS. In gdCoxS, set-wise interaction is measured using the correlation of sample-wise distances with Renyi’s relative entropy, which requires an estimation of sample density based on omics profiles. To capture correlations between the variables, multivariate density estimation with covariance was applied. In the simulation study, the power of gdCoxS outperformed dCoxS that did not use the correlations in the density estimation explicitly. In the analysis of the lower-grade glioma of the cancer genome atlas program (TCGA-LGG) data, the gdCoxS identified 577 pathway CNAs and GEs pairs that showed significant changes of interaction between the survival and non-survival group, while other benchmark methods detected lower numbers of such pathways. The biological implications of the significant pathways were well consistent with previous reports of the TCGA-LGG. Taken together, the gdCoxS is a useful method for an integrative analysis of CNAs and GEs.
Collapse
Affiliation(s)
- Seong Beom Cho
- Department of Biomedical Informatics, College of Medicine, Gachon University, Seongnam-Daero 1342, Korea
| |
Collapse
|
7
|
Poetsch AR. The genomics of oxidative DNA damage, repair, and resulting mutagenesis. Comput Struct Biotechnol J 2020; 18:207-219. [PMID: 31993111 PMCID: PMC6974700 DOI: 10.1016/j.csbj.2019.12.013] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/13/2019] [Accepted: 12/21/2019] [Indexed: 12/22/2022] Open
Abstract
Reactive oxygen species are a constant threat to DNA as they modify bases with the risk of disrupting genome function, inducing genome instability and mutation. Such risks are due to primary oxidative DNA damage and also mediated by the repair process. This leads to a delicate decision process for the cell as to whether to repair a damaged base at a specific genomic location or better leave it unrepaired. Persistent DNA damage can disrupt genome function, but on the other hand it can also contribute to gene regulation by serving as an epigenetic mark. When such processes are out of balance, pathophysiological conditions could get accelerated, because oxidative DNA damage and resulting mutagenic processes are tightly linked to ageing, inflammation, and the development of multiple age-related diseases, such as cancer and neurodegenerative disorders. Recent technological advancements and novel data analysis strategies have revealed that oxidative DNA damage, its repair, and related mutations distribute heterogeneously over the genome at multiple levels of resolution. The involved mechanisms act in the context of genome sequence, in interaction with genome function and chromatin. This review addresses what we currently know about the genome distribution of oxidative DNA damage, repair intermediates, and mutations. It will specifically focus on the various methodologies to measure oxidative DNA damage distribution and discuss the mechanistic conclusions derived from the different approaches. It will also address the consequences of oxidative DNA damage, specifically how it gives rise to mutations, genome instability, and how it can act as an epigenetic mark.
Collapse
|
8
|
Foster H, Ruiz EJ, Moore C, Stamp GWH, Nye EL, Li N, Pan Y, He Y, Downward J, Behrens A. ATMIN Is a Tumor Suppressor Gene in Lung Adenocarcinoma. Cancer Res 2019; 79:5159-5166. [PMID: 31481498 PMCID: PMC6797498 DOI: 10.1158/0008-5472.can-19-0647] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/09/2019] [Accepted: 08/26/2019] [Indexed: 12/22/2022]
Abstract
Tumor cells proliferate rapidly and thus are frequently subjected to replication stress and the risk of incomplete duplication of the genome. Fragile sites are replicated late, making them more vulnerable to damage when DNA replication fails to complete. Therefore, genomic alterations at fragile sites are commonly observed in tumors. FRA16D is one of the most common fragile sites in lung cancer, however, the nature of the tumor suppressor genes affected by FRA16D alterations has been controversial. Here, we show that the ATMIN gene, which encodes a cofactor required for activation of ATM kinase by replication stress, is located close to FRA16D and is commonly lost in lung adenocarcinoma. Low ATMIN expression was frequently observed in human lung adenocarcinoma tumors and was associated with reduced patient survival, suggesting that ATMIN functions as a tumor suppressor in lung adenocarcinoma. Heterozygous Atmin deletion significantly increased tumor cell proliferation, tumor burden, and tumor grade in the LSL-KRasG12D; Trp53 F/F (KP) mouse model of lung adenocarcinoma, identifying ATMIN as a haploinsufficient tumor suppressor. ATMIN-deficient KP lung tumor cells showed increased survival in response to replication stress and consequently accumulated DNA damage. Thus, our data identify ATMIN as a key gene affected by genomic deletions at FRA16D in lung adenocarcinoma. SIGNIFICANCE: These findings identify ATMIN as a tumor suppressor in LUAD; fragility at chr16q23 correlates with loss of ATMIN in human LUAD and deletion of Atmin increases tumor burden in a LUAD mouse model.
Collapse
Affiliation(s)
- Hanna Foster
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - E Josue Ruiz
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Christopher Moore
- Oncogene Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Gordon W H Stamp
- Experimental Histopathology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Emma L Nye
- Experimental Histopathology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Ningning Li
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yihang Pan
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yulong He
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Axel Behrens
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom.
- School of Medicine, King's College London, Guy's Campus, London, United Kingdom
| |
Collapse
|
9
|
Taher MM, Hassan AA, Saeed M, Jastania RA, Nageeti TH, Alkhalidi H, Dairi G, Abduljaleel Z, Athar M, Bouazzaoui A, El-Bjeirami WM, Al-Allaf FA. Next generation DNA sequencing of atypical choroid plexus papilloma of brain: Identification of novel mutations in a female patient by Ion Proton. Oncol Lett 2019; 18:5063-5076. [PMID: 31612017 PMCID: PMC6781611 DOI: 10.3892/ol.2019.10882] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 06/13/2019] [Indexed: 12/16/2022] Open
Abstract
Choroid plexus papilloma (CPP) is a rare benign tumor of the central nervous system that is usually confined to the cerebral ventricles. According to the World Health Organization, CPP corresponds to a grade I atypical CPP (a-CPP); however, it can become more aggressive and reach grade II, which can rarely undergo malignant transformation into a choroid plexus carcinoma (grade III). To the best of our knowledge, identification of these tumors mutations by next generation DNA sequencing (NGS) has not been yet reported. In the present study, NGS analysis of an a-CPP case was performed. Data were analyzed using Advaita Bioinformatics i-VariantGuide and Ion Reporter 5.6 programs. The results from NGS identified 12 novel missense mutations in the following genes: NOTCH1, ATM, STK36, MAGI1, DST, RECQL4, NUMA1, THBS1, MYH11, MALT1, SMARCA4 and CDH20. The PolyPhen score of six variants viz., DST, RECQL4, NUMA1, THBS1, MYHI1 and SMARCA4 were high, which suggested these variants represents pathogenic variants. Two novel insertions that caused frameshift were also found. Furthermore, two novel nonsense mutations and 14 novel intronic variants were identified in this tumor. The novel missense mutation detected in ATM gene was situated in c.5808A>T; p. (Leu1936Phe) in exon 39, and a known ATM mutation was in c.5948A>G; p. (Asn1983Ser). These novel mutations had not been reported in previous database. Subsequently, the quality statistics of these variants, including allele coverage, allele ratio, P-value, Phred quality score, sequencing coverage, PolyPhen score and alleles frequency was performed. For all variants, P-value was highly significant and the Phred quality score was high. In addition, the results from sequencing coverage demonstrated that 97.02% reads were on target and that 97.88% amplicons had at least 500 reads. These findings may serve at determining new strategies to distinguish the types of choroid plexus tumor, and at developing novel targeted therapies. Development of NGS technologies in the Kingdom of Saudi Arabia may be used in molecular pathology laboratories.
Collapse
Affiliation(s)
- Mohiuddin M Taher
- Department of Medical Genetics, Faculty of Medicine, Umm-Al-Qura University, Makkah 21955, Saudi Arabia.,Science and Technology Unit, Umm-Al-Qura University, Makkah 21955, Saudi Arabia
| | - Amal Ali Hassan
- Histopathology Division, Al-Noor Specialty Hospital, Makkah 24242, Saudi Arabia.,Faculty of Medicine, Department of Pathology, Al Azhar University, Cairo 11651, Egypt
| | - Muhammad Saeed
- Department of Radiology, Faculty of Medicine, Umm-Al-Qura University, Makkah 21955, Saudi Arabia
| | - Raid A Jastania
- Department of Pathology, Faculty of Medicine, Umm-Al-Qura University, Makkah 21955, Saudi Arabia
| | - Tahani H Nageeti
- Department of Radiation Oncology, King Abdullah Medical City, Makkah 24246, Saudi Arabia
| | - Hisham Alkhalidi
- Department of Pathology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Ghida Dairi
- Medicine and Medical Sciences Research Center, Deanship of Scientific Research, Umm-Al-Qura University, Makkah 21955, Saudi Arabia
| | - Zainularifeen Abduljaleel
- Department of Medical Genetics, Faculty of Medicine, Umm-Al-Qura University, Makkah 21955, Saudi Arabia.,Science and Technology Unit, Umm-Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mohammad Athar
- Department of Medical Genetics, Faculty of Medicine, Umm-Al-Qura University, Makkah 21955, Saudi Arabia.,Science and Technology Unit, Umm-Al-Qura University, Makkah 21955, Saudi Arabia
| | - Abdellatif Bouazzaoui
- Department of Medical Genetics, Faculty of Medicine, Umm-Al-Qura University, Makkah 21955, Saudi Arabia.,Science and Technology Unit, Umm-Al-Qura University, Makkah 21955, Saudi Arabia
| | - Wafa M El-Bjeirami
- Laboratory Medicine and Molecular Diagnostics Unit, King Abdullah Medical City, Makkah 24246, Saudi Arabia
| | - Faisal A Al-Allaf
- Department of Medical Genetics, Faculty of Medicine, Umm-Al-Qura University, Makkah 21955, Saudi Arabia.,Science and Technology Unit, Umm-Al-Qura University, Makkah 21955, Saudi Arabia
| |
Collapse
|
10
|
Mistletoe-Based Drugs Work in Synergy with Radio-Chemotherapy in the Treatment of Glioma In Vitro and In Vivo in Glioblastoma Bearing Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1376140. [PMID: 31354846 PMCID: PMC6636536 DOI: 10.1155/2019/1376140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/18/2019] [Indexed: 12/16/2022]
Abstract
Background Extracts from Viscum album L. (VE) are used in the complementary cancer therapy in Europe for decades. VE contain several compounds like the mistletoe lectins (MLs) 1-3 and viscotoxins and also several minor ingredients. Since mistletoe lectin 1 (ML-1) has been described as the main component of VE harboring antitumor activity, purified native or recombinant ML-1 has been recently used in clinical trials. MLs stimulate the immune system, induce cytotoxicity, are able to modify the expression of cancer-associated genes, and influence the proliferation and motility of tumor cells. Objective In this study our goal was to determine anticancer effects of the VE ISCADOR Qu, of recombinant ML-1 (Aviscumine), and of native ML-1 in the treatment of glioblastoma (GBM), the most common and highly malignant brain tumor in adults. Additionally we were interested whether these drugs, used in combination with a temozolomide-(TMZ)-based radio-chemotherapy, provide synergistic effects. Methods Cell culture assays, ex vivo murine hippocampal brain slice cultures, human GBM cryosections, and a xenograft orthotopic glioblastoma mouse model were used. Results In cells, the expression of the ML receptor CD75s, which is also expressed in GBM specimen, but not in normal brain, correlates with the drug-induced cytotoxicity. In GBM cells, the drugs induce cell death in a concentration-dependent manner and reduce cell growth by inducing cell cycle arrest in the G2/M phase. The cell cycle arrest was paralleled by modifications in the expression of cell cycle regulating genes. ML containing drugs, if combined with glioma standard therapy, provide synergistic and additive anticancer effects. Despite not reaching statistical significance, a single intratumoral application of Aviscumine prolonged the median survival of GBM mice longer than tumor irradiation. Moreover, intratumorally applied Aviscumine prolonged the survival of GBM-bearing mice if used in combination with irradiation and TMZ for further 6.5 days compared to the radio-chemotherapy. Conclusion Our results suggest that an adjuvant treatment of glioma patients with ML-containing drugs might be beneficial.
Collapse
|
11
|
Mazor G, Levin L, Picard D, Ahmadov U, Carén H, Borkhardt A, Reifenberger G, Leprivier G, Remke M, Rotblat B. The lncRNA TP73-AS1 is linked to aggressiveness in glioblastoma and promotes temozolomide resistance in glioblastoma cancer stem cells. Cell Death Dis 2019; 10:246. [PMID: 30867410 PMCID: PMC6416247 DOI: 10.1038/s41419-019-1477-5] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 02/06/2019] [Accepted: 02/12/2019] [Indexed: 12/19/2022]
Abstract
Glioblastoma multiform (GBM) is the most common brain tumor characterized by a dismal prognosis. GBM cancer stem cells (gCSC) or tumor-initiating cells are the cell population within the tumor-driving therapy resistance and recurrence. While temozolomide (TMZ), an alkylating agent, constitutes the first-line chemotherapeutic significantly improving survival in GBM patients, resistance against this compound commonly leads to GBM recurrence and treatment failure. Although the roles of protein-coding transcripts, proteins and microRNA in gCSC, and therapy resistance have been comprehensively investigated, very little is known about the role of long noncoding RNAs (lncRNAs) in this context. Using nonoverlapping, independent RNA sequencing and gene expression profiling datasets, we reveal that TP73-AS1 constitutes a clinically relevant lncRNA in GBM. Specifically, we demonstrate significant overexpression of TP73-AS1 in primary GBM samples, which is particularly increased in the gCSC. More importantly, we demonstrate that TP73-AS1 comprises a prognostic biomarker in glioma and in GBM with high expression identifying patients with particularly poor prognosis. Using CRISPRi to downregulate our candidate lncRNA in gCSC, we demonstrate that TP73-AS1 promotes TMZ resistance in gCSC and is linked to regulation of the expression of metabolism- related genes and ALDH1A1, a protein known to be expressed in cancer stem cell markers and protects gCSC from TMZ treatment. Taken together, our results reveal that high TP73-AS1 predicts poor prognosis in primary GBM cohorts and that this lncRNA promotes tumor aggressiveness and TMZ resistance in gCSC.
Collapse
Affiliation(s)
- Gal Mazor
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Liron Levin
- Bioinformatics Core Facility, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Daniel Picard
- Department of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Institute of Neuropathology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Germany
| | - Ulvi Ahmadov
- Department of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Institute of Neuropathology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Germany
| | - Helena Carén
- Sahlgrenska Cancer Center, Department of Pathology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Guido Reifenberger
- Institute of Neuropathology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Gabriel Leprivier
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Marc Remke
- Department of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Institute of Neuropathology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Germany
| | - Barak Rotblat
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
12
|
Shen YL, Li HZ, Hu YW, Zheng L, Wang Q. Loss of GINS2 inhibits cell proliferation and tumorigenesis in human gliomas. CNS Neurosci Ther 2018; 25:273-287. [PMID: 30338650 DOI: 10.1111/cns.13064] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/26/2018] [Accepted: 08/27/2018] [Indexed: 12/12/2022] Open
Abstract
AIMS In this study, we examined the expression of GINS2 in glioma and determined its role in glioma development. METHODS The protein expression of GINS2 was assessed in 120 human glioma samples via immunohistochemistry. Then, we suppressed the expression of GINS2 in glioma cell strains U87 and U251 using a short hairpin RNA lentiviral vector. In addition, RNA sequencing and bioinformatics analysis were performed on glioma cells before and after GINS2 knockdown. Subsequent co-immunoprecipitation and western blot experiments indicated possible downstream regulatory molecules. RESULTS The present results showed that GINS2 can accelerate the growth of glioma cells, whereas the suppression of GINS2 expression decreased the proliferation and tumorigenicity of glioma cells. Mechanism research experiments proved that GINS2 can block the cell cycle by regulating certain downstream molecules, such as MCM2, ATM, and CHEK2. CONCLUSION GINS2 is closely related to the occurrence and development of glioma, and is likely to become a prognostic marker for glioma patients, as well as a potential therapeutic target in the treatment of glioma.
Collapse
Affiliation(s)
- Yun-Long Shen
- Department of Neurosurgery, The Fifth Affiliated Hospital, South Medical University, Guangzhou, China
| | - He-Zhen Li
- Department of Neurosurgery, The Fifth Affiliated Hospital, South Medical University, Guangzhou, China
| | - Yan-Wei Hu
- Clinical Laboratory Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zheng
- Clinical Laboratory Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Wang
- Clinical Laboratory Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Hodges TR, Ott M, Xiu J, Gatalica Z, Swensen J, Zhou S, Huse JT, de Groot J, Li S, Overwijk WW, Spetzler D, Heimberger AB. Mutational burden, immune checkpoint expression, and mismatch repair in glioma: implications for immune checkpoint immunotherapy. Neuro Oncol 2018; 19:1047-1057. [PMID: 28371827 DOI: 10.1093/neuonc/nox026] [Citation(s) in RCA: 314] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Despite a multiplicity of clinical trials testing immune checkpoint inhibitors, the frequency of expression of potential predictive biomarkers is unknown in glioma. Methods In this study, we profiled the frequency of shared biomarker phenotypes. To clarify the relationships among tumor mutational load (TML), mismatch repair (MMR), and immune checkpoint expression, we profiled patients with glioma (n = 327), including glioblastoma (GBM) (n = 198), whose samples had been submitted for analysis from 2009 to 2016. The calculation algorithm for TML included nonsynonymous mutation counts per tumor, with germline mutations filtered out. Immunohistochemical analysis and next-generation sequencing were used to determine tumor-infiltrating lymphocyte expression positive for programmed cell death protein 1 (PD-1), PD ligand 1 (PD-L1) expression on tumor cells, MMR (MLH1, MSH2, MSH6, and PMS2) protein expression and mutations, and DNA polymerase epsilon (POLE) mutations. Results High TML was only found in 3.5% of GBM patients (7 of 198) and was associated with the absence of protein expression of mutL homolog 1 (MLH1) (P = .0345), mutS homolog 2 (MSH2) (P = .0099), MSH6 (P = .0022), and postmeiotic segregation increased 2 (PMS2) (P = .0345) and the presence of DNA MMR mutations. High and moderate TML GBMs did not have an enriched influx of CD8+ T cells, PD-1+ T cells, or tumor-expressed PD-L1. IDH1 mutant gliomas were not enriched for high TML, PD-1+ T cells, or PD-L1 expression. Conclusions To clarify the relationships among TML, MMR, and immune checkpoint expression, we profiled the frequency of shared biomarker phenotypes. On the basis of a variety of potential biomarkers of response to immune checkpoints, only small subsets of glioma patients are likely to benefit from monotherapy immune checkpoint inhibition.
Collapse
Affiliation(s)
- Tiffany R Hodges
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas; Caris Life Sciences, Phoenix, Arizona; Departments of Biostatistics, Neuro-Pathology, Neuro-Oncology, Pediatrics, and Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Martina Ott
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas; Caris Life Sciences, Phoenix, Arizona; Departments of Biostatistics, Neuro-Pathology, Neuro-Oncology, Pediatrics, and Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joanne Xiu
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas; Caris Life Sciences, Phoenix, Arizona; Departments of Biostatistics, Neuro-Pathology, Neuro-Oncology, Pediatrics, and Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zoran Gatalica
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas; Caris Life Sciences, Phoenix, Arizona; Departments of Biostatistics, Neuro-Pathology, Neuro-Oncology, Pediatrics, and Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeff Swensen
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas; Caris Life Sciences, Phoenix, Arizona; Departments of Biostatistics, Neuro-Pathology, Neuro-Oncology, Pediatrics, and Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shouhao Zhou
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas; Caris Life Sciences, Phoenix, Arizona; Departments of Biostatistics, Neuro-Pathology, Neuro-Oncology, Pediatrics, and Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason T Huse
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas; Caris Life Sciences, Phoenix, Arizona; Departments of Biostatistics, Neuro-Pathology, Neuro-Oncology, Pediatrics, and Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John de Groot
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas; Caris Life Sciences, Phoenix, Arizona; Departments of Biostatistics, Neuro-Pathology, Neuro-Oncology, Pediatrics, and Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shulin Li
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas; Caris Life Sciences, Phoenix, Arizona; Departments of Biostatistics, Neuro-Pathology, Neuro-Oncology, Pediatrics, and Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Willem W Overwijk
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas; Caris Life Sciences, Phoenix, Arizona; Departments of Biostatistics, Neuro-Pathology, Neuro-Oncology, Pediatrics, and Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David Spetzler
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas; Caris Life Sciences, Phoenix, Arizona; Departments of Biostatistics, Neuro-Pathology, Neuro-Oncology, Pediatrics, and Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas; Caris Life Sciences, Phoenix, Arizona; Departments of Biostatistics, Neuro-Pathology, Neuro-Oncology, Pediatrics, and Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
14
|
Yang CH, Wang Y, Sims M, Cai C, He P, Häcker H, Yue J, Cheng J, Boop FA, Pfeffer LM. MicroRNA203a suppresses glioma tumorigenesis through an ATM-dependent interferon response pathway. Oncotarget 2017; 8:112980-112991. [PMID: 29348882 PMCID: PMC5762567 DOI: 10.18632/oncotarget.22945] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 11/26/2017] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma (GBM) is a deadly and incurable brain tumor. Although microRNAs (miRNAs) play critical roles in regulating the cancer cell phenotype, the underlying mechanisms of how they regulate tumorigenesis are incompletely understood. We previously showed that miR-203a is expressed at relatively low levels in GBM patients, and ectopic miR-203a expression in GBM cell lines inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by interferon (IFN) or temozolomide in vitro, and inhibited GBM tumorigenesis in vivo. Here we show that ectopic expression of miR-203a in GBM cell lines promotes the IFN response pathway as evidenced by increased IFN production and IFN-stimulated gene (ISG) expression, and high basal tyrosine phosphorylation of multiple STAT proteins. Importantly, we identified that miR-203a directly suppressed the protein levels of ataxia-telangiectasia mutated (ATM) kinase that negatively regulates IFN production. We found that high ATM expression in GBM correlates with poor patient survival and that ATM expression is inversely correlated with miR-203a expression. Knockout of ATM expression and inhibition of ATM function in GBM cell lines inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by therapeutic agents in vitro, and markedly suppressed GBM tumor growth and promoted animal survival. In contrast, restoring ATM levels in GBM cells ectopically expressing miR-203a increased tumorigenicity and decreased animal survival. Our study suggests that low miR-203a expression in GBM suppresses the interferon response through an ATM-dependent pathway.
Collapse
Affiliation(s)
- Chuan He Yang
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Yinan Wang
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Michelle Sims
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Chun Cai
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ping He
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hans Häcker
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jinjun Cheng
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Frederick A Boop
- Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
15
|
Novel biomarkers in kidney disease: roles for cilia, Wnt signalling and ATMIN in polycystic kidney disease. Biochem Soc Trans 2017; 44:1745-1751. [PMID: 27913685 DOI: 10.1042/bst20160124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/30/2016] [Accepted: 09/02/2016] [Indexed: 01/24/2023]
Abstract
Biomarkers, the measurable indicators of biological conditions, are fast becoming a popular approach in providing information to track disease processes that could lead to novel therapeutic interventions for chronic conditions. Inherited, chronic kidney disease affects millions of people worldwide and although pharmacological treatments exist for some conditions, there are still patients whose only option is kidney dialysis and kidney transplantation. In the past 10 years, certain chronic kidney diseases have been reclassified as ciliopathies. Cilia in the kidney are antenna-like, sensory organelles that are required for signal transduction. One of the signalling pathways that requires the primary cilium in the kidney is Wnt signalling and it has three components such as canonical Wnt, non-canonical Wnt/planar cell olarity (PCP) and non-canonical Wnt/Ca2+ signalling. Identification of the novel role of ATM INteractor (ATMIN) as an effector molecule in the non-canonical Wnt/PCP pathway has intrigued us to investigate its potential role in chronic kidney disease. ATMIN could thus be an important biomarker in disease prognosis and treatment that might lighten the burden of chronic kidney disease and also affect on its progression.
Collapse
|
16
|
Jovčevska I, Zupanec N, Urlep Ž, Vranič A, Matos B, Stokin CL, Muyldermans S, Myers MP, Buzdin AA, Petrov I, Komel R. Differentially expressed proteins in glioblastoma multiforme identified with a nanobody-based anti-proteome approach and confirmed by OncoFinder as possible tumor-class predictive biomarker candidates. Oncotarget 2017; 8:44141-44158. [PMID: 28498803 PMCID: PMC5546469 DOI: 10.18632/oncotarget.17390] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 04/10/2017] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma multiforme is the most frequent primary malignancy of the central nervous system. Despite remarkable progress towards an understanding of tumor biology, there is no efficient treatment and patient outcome remains poor. Here, we present a unique anti-proteomic approach for selection of nanobodies specific for overexpressed glioblastoma proteins. A phage-displayed nanobody library was enriched in protein extracts from NCH644 and NCH421K glioblastoma cell lines. Differential ELISA screenings revealed seven nanobodies that target the following antigens: the ACTB/NUCL complex, VIM, NAP1L1, TUFM, DPYSL2, CRMP1, and ALYREF. Western blots showed highest protein up-regulation for ALYREF, CRMP1, and VIM. Moreover, bioinformatic analysis with the OncoFinder software against the complete "Cancer Genome Atlas" brain tumor gene expression dataset suggests the involvement of different proteins in the WNT and ATM pathways, and in Aurora B, Sem3A, and E-cadherin signaling. We demonstrate the potential use of NAP1L1, NUCL, CRMP1, ACTB, and VIM for differentiation between glioblastoma and lower grade gliomas, with DPYSL2 as a promising "glioma versus reference" biomarker. A small scale validation study confirmed significant changes in mRNA expression levels of VIM, DPYSL2, ACTB and TRIM28. This work helps to fill the information gap in this field by defining novel differences in biochemical profiles between gliomas and reference samples. Thus, selected genes can be used to distinguish glioblastoma from lower grade gliomas, and from reference samples. These findings should be valuable for glioblastoma patients once they are validated on a larger sample size.
Collapse
Affiliation(s)
- Ivana Jovčevska
- Medical Center for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Neja Zupanec
- Medical Center for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Žiga Urlep
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Andrej Vranič
- Department of Neurosurgery, Foundation Rothschild, Paris, France
| | - Boštjan Matos
- Department of Neurosurgery, University Clinical Center, Ljubljana, Slovenia
| | | | - Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Michael P. Myers
- International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Anton A. Buzdin
- First Oncology Research and Advisory Center, Moscow, Russia
- National Research Center ‘Kurchatov Institute’, Center of Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, Moscow, Russia
| | - Ivan Petrov
- Center for Biogerontology and Regenerative Medicine, IC Skolkovo, Moscow, Russia
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - Radovan Komel
- Medical Center for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|