1
|
Ge XY, Han X, Zhao YL, Cui GS, Yang YG. An insight into planarian regeneration. Cell Prolif 2022; 55:e13276. [PMID: 35811385 PMCID: PMC9436907 DOI: 10.1111/cpr.13276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/22/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022] Open
Abstract
Background Planarian has attracted increasing attentions in the regeneration field for its usefulness as an important biological model organism attributing to its strong regeneration ability. Both the complexity of multiple regulatory networks and their coordinate functions contribute to the maintenance of normal cellular homeostasis and the process of regeneration in planarian. The polarity, size, location and number of regeneration tissues are regulated by diverse mechanisms. In this review we summarize the recent advances about the importance genetic and molecular mechanisms for regeneration control on various tissues in planarian. Methods A comprehensive literature search of original articles published in recent years was performed in regards to the molecular mechanism of each cell types during the planarian regeneration, including neoblast, nerve system, eye spot, excretory system and epidermal. Results Available molecular mechanisms gave us an overview of regeneration process in every tissue. The sense of injuries and initiation of regeneration is regulated by diverse genes like follistatin and ERK signaling. The Neoblasts differentiate into tissue progenitors under the regulation of genes such as egfr‐3. The regeneration polarity is controlled by Wnt pathway, BMP pathway and bioelectric signals. The neoblast within the blastema differentiate into desired cell types and regenerate the missing tissues. Those tissue specific genes regulate the tissue progenitor cells to differentiate into desired cell types to complete the regeneration process. Conclusion All tissue types in planarian participate in the regeneration process regulated by distinct molecular factors and cellular signaling pathways. The neoblasts play vital roles in tissue regeneration and morphology maintenance. These studies provide new insights into the molecular mechanisms for regulating planarian regeneration.
Collapse
Affiliation(s)
- Xin-Yang Ge
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China
| | - Xiao Han
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong-Liang Zhao
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China
| | - Guan-Shen Cui
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China
| | - Yun-Gui Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China
| |
Collapse
|
2
|
Ross KG, Molinaro AM, Romero C, Dockter B, Cable KL, Gonzalez K, Zhang S, Collins EMS, Pearson BJ, Zayas RM. SoxB1 Activity Regulates Sensory Neuron Regeneration, Maintenance, and Function in Planarians. Dev Cell 2019; 47:331-347.e5. [PMID: 30399335 DOI: 10.1016/j.devcel.2018.10.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/18/2018] [Accepted: 10/09/2018] [Indexed: 10/27/2022]
Abstract
SoxB1 genes play fundamental roles in neurodevelopmental processes and maintaining stem cell multipotency, but little is known about their function in regeneration. We addressed this question by analyzing the activity of the SoxB1 homolog soxB1-2 in the planarian Schmidtea mediterranea. Expression and functional analysis revealed that soxB1-2 marks ectodermal-lineage progenitors, and its activity is required for differentiation of subsets of ciliated epidermal and neuronal cells. Moreover, we show that inhibiting soxB1-2 or its candidate target genes leads to abnormal sensory neuron regeneration that causes planarians to display seizure-like movements or phenotypes associated with the loss of sensory modalities. Our analyses highlight soxB1-2-regulated genes that are expressed in sensory neurons and are homologous to factors implicated in epileptic disorders in humans and animal models of epilepsy, indicating that planarians can serve as a complementary model to investigate genetic causes of epilepsy.
Collapse
Affiliation(s)
- Kelly G Ross
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Alyssa M Molinaro
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Celeste Romero
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Brian Dockter
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Katrina L Cable
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Karla Gonzalez
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Siqi Zhang
- Department of Physics, University of California, San Diego, La Jolla, CA, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Eva-Maria S Collins
- Department of Physics, University of California, San Diego, La Jolla, CA, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Bret J Pearson
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Ricardo M Zayas
- Department of Biology, San Diego State University, San Diego, CA, USA.
| |
Collapse
|
3
|
de Oliveira MS, Lopes KAR, Leite PMSCM, Morais FV, de Campos Velho NMR. Physiological evaluation of the behavior and epidermis of freshwater planarians ( Girardia tigrina and Girardia sp.) exposed to stressors. Biol Open 2018; 7:bio029595. [PMID: 29871871 PMCID: PMC6031348 DOI: 10.1242/bio.029595] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 04/24/2018] [Indexed: 12/15/2022] Open
Abstract
Planarians are metazoan freshwater flatworms which are free-living organisms. Their body has pluripotent stem cell promoters of tissue regeneration capacity. The water temperature and the potential of hydrogen (pH) of lentic ecosystems are important factors involved in the distribution and abundance of these animals. Although the pH factor is directly related to the physiology and behavior of planarians, their adaptive and regenerating capacities still remain unknown. The Critical Thermal Maximum (CTM) is a very widespread method used in the evaluation of thermal tolerance. In this study, Girardia tigrina (Girard, 1850) and Girardia sp., a species found in Brazil, which is under study as a new species, had their epidermis assessed by scanning electron microscopy (SEM) to analyze their physiological structures before and after exposure to different stressors. SEM was used as a method to evaluate the planarians' epidermis as a result of the increasing temperature (CTM) and pH alterations, the latter with the use of a new methodology defined as Critical Hydrogen ion concentration Maximum (CHM). In increasing temperatures from 20°C to 37°C, both Girardia tigrina and Girardia sp. proved to be adaptable to thermal stress. Girardia sp. was shown to be more resistant to higher temperatures. However, Girardia tigrina was more resistant to extreme pH conditions (4.0 to 10.0). SEM analysis showed morphological differences among planarian species, such as the arrangement of the structures and cell types of the dorsal epidermis. Moreover, planarians demonstrated the ability to change the surrounding pH of their external environment in order to maintain the function of their physiological mechanisms, suggesting that these animals have a complex survival system, possibly related to protonephridia, flame cells and excretory pores.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Matheus Salgado de Oliveira
- Planarian Laboratory, Nature Research Center, Faculty of Education and Arts, University of Vale do Paraíba, São José dos Campos, São Paulo 12244-000, Brazil
| | - Karla Andressa Ruiz Lopes
- Planarian Laboratory, Nature Research Center, Faculty of Education and Arts, University of Vale do Paraíba, São José dos Campos, São Paulo 12244-000, Brazil
| | | | - Flavia Villaça Morais
- Laboratory of Cellular and Molecular Biology of Fungi, Research and Development Institute, University of Vale do Paraíba, São José dos Campos, São Paulo 12244-000, Brazil
| | - Nádia Maria Rodrigues de Campos Velho
- Planarian Laboratory, Nature Research Center, Faculty of Education and Arts, University of Vale do Paraíba, São José dos Campos, São Paulo 12244-000, Brazil
| |
Collapse
|