1
|
Nanfack-Minkeu F, Poelstra JW, Sirot LK. Gene regulation by mating depends on time, diet, and body region in female Aedes aegypti. JOURNAL OF INSECT PHYSIOLOGY 2024; 159:104715. [PMID: 39419439 DOI: 10.1016/j.jinsphys.2024.104715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024]
Abstract
Aedes aegypti is a major vector of several arboviruses that cause human mortality and morbidity. One method for controlling the spread of these viruses is to control mosquito reproduction. During mating, seminal fluid molecules and sperm are transferred and these stimuli influence female post-mating physiology and behavior. Yet, little is known about the mechanisms underlying these post-mating responses. To fill this gap, short-read RNA sequencing was used to identify differentially expressed genes between unmated (control) and mated females in the head/thorax (HT), abdomen (Ab) and the lower reproductive tract (LRT), of mosquitoes reared with 3% and 12% sucrose. The results revealed that at 3% sucrose, four, 408 and 415 significantly differential expressed genes (DEGs) were identified in the HT, Ab and LRT, respectively, at six hours post mating (hpm). The number of DEGs dropped dramatically at 24 hpm with no DEGs in the HT, three in the Ab, and 112 in the LRT. In contrast, the number of DEGs was lower at 6 hpm than 24 hpm in the LRT at 12% sucrose. Comparing our results to a similar study which used 10% sucrose revealed evidence in support of condition-dependent regulation of gene expression by mating in this species. This study shows that mating-induced transcriptional changes depend on time point after mating, body region, and diet. Our results provide foundational knowledge for future functional analyses to identify genes and pathways involved in the post-mating behavioral and physiological changes of female mosquitoes.
Collapse
Affiliation(s)
| | - Jelmer W Poelstra
- Molecular and Cellular Imaging Center, The Ohio State University, Wooster, OH, USA
| | - Laura K Sirot
- Department of Biology, The College of Wooster, Wooster, OH, USA.
| |
Collapse
|
2
|
Dan C, Hulse BK, Kappagantula R, Jayaraman V, Hermundstad AM. A neural circuit architecture for rapid learning in goal-directed navigation. Neuron 2024; 112:2581-2599.e23. [PMID: 38795708 DOI: 10.1016/j.neuron.2024.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/16/2024] [Accepted: 04/30/2024] [Indexed: 05/28/2024]
Abstract
Anchoring goals to spatial representations enables flexible navigation but is challenging in novel environments when both representations must be acquired simultaneously. We propose a framework for how Drosophila uses internal representations of head direction (HD) to build goal representations upon selective thermal reinforcement. We show that flies use stochastically generated fixations and directed saccades to express heading preferences in an operant visual learning paradigm and that HD neurons are required to modify these preferences based on reinforcement. We used a symmetric visual setting to expose how flies' HD and goal representations co-evolve and how the reliability of these interacting representations impacts behavior. Finally, we describe how rapid learning of new goal headings may rest on a behavioral policy whose parameters are flexible but whose form is genetically encoded in circuit architecture. Such evolutionarily structured architectures, which enable rapidly adaptive behavior driven by internal representations, may be relevant across species.
Collapse
Affiliation(s)
- Chuntao Dan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Brad K Hulse
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Ramya Kappagantula
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Vivek Jayaraman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Ann M Hermundstad
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| |
Collapse
|
3
|
Fulton KA, Zimmerman D, Samuel A, Vogt K, Datta SR. Common principles for odour coding across vertebrates and invertebrates. Nat Rev Neurosci 2024; 25:453-472. [PMID: 38806946 DOI: 10.1038/s41583-024-00822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
The olfactory system is an ideal and tractable system for exploring how the brain transforms sensory inputs into behaviour. The basic tasks of any olfactory system include odour detection, discrimination and categorization. The challenge for the olfactory system is to transform the high-dimensional space of olfactory stimuli into the much smaller space of perceived objects and valence that endows odours with meaning. Our current understanding of how neural circuits address this challenge has come primarily from observations of the mechanisms of the brain for processing other sensory modalities, such as vision and hearing, in which optimized deep hierarchical circuits are used to extract sensory features that vary along continuous physical dimensions. The olfactory system, by contrast, contends with an ill-defined, high-dimensional stimulus space and discrete stimuli using a circuit architecture that is shallow and parallelized. Here, we present recent observations in vertebrate and invertebrate systems that relate the statistical structure and state-dependent modulation of olfactory codes to mechanisms of perception and odour-guided behaviour.
Collapse
Affiliation(s)
- Kara A Fulton
- Department of Neuroscience, Harvard Medical School, Boston, MA, USA
| | - David Zimmerman
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Aravi Samuel
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Katrin Vogt
- Department of Physics, Harvard University, Cambridge, MA, USA.
- Department of Biology, University of Konstanz, Konstanz, Germany.
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.
| | | |
Collapse
|
4
|
Dwijesha AS, Eswaran A, Berry JA, Phan A. Diverse memory paradigms in Drosophila reveal diverse neural mechanisms. Learn Mem 2024; 31:a053810. [PMID: 38862165 PMCID: PMC11199951 DOI: 10.1101/lm.053810.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/12/2024] [Indexed: 06/13/2024]
Abstract
In this review, we aggregated the different types of learning and memory paradigms developed in adult Drosophila and attempted to assess the similarities and differences in the neural mechanisms supporting diverse types of memory. The simplest association memory assays are conditioning paradigms (olfactory, visual, and gustatory). A great deal of work has been done on these memories, revealing hundreds of genes and neural circuits supporting this memory. Variations of conditioning assays (reversal learning, trace conditioning, latent inhibition, and extinction) also reveal interesting memory mechanisms, whereas mechanisms supporting spatial memory (thermal maze, orientation memory, and heat box) and the conditioned suppression of innate behaviors (phototaxis, negative geotaxis, anemotaxis, and locomotion) remain largely unexplored. In recent years, there has been an increased interest in multisensory and multicomponent memories (context-dependent and cross-modal memory) and higher-order memory (sensory preconditioning and second-order conditioning). Some of this work has revealed how the intricate mushroom body (MB) neural circuitry can support more complex memories. Finally, the most complex memories are arguably those involving social memory: courtship conditioning and social learning (mate-copying and egg-laying behaviors). Currently, very little is known about the mechanisms supporting social memories. Overall, the MBs are important for association memories of multiple sensory modalities and multisensory integration, whereas the central complex is important for place, orientation, and navigation memories. Interestingly, several different types of memory appear to use similar or variants of the olfactory conditioning neural circuitry, which are repurposed in different ways.
Collapse
Affiliation(s)
- Amoolya Sai Dwijesha
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Akhila Eswaran
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Jacob A Berry
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Anna Phan
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
5
|
Wei T, Guo Q, Webb B. Learning with sparse reward in a gap junction network inspired by the insect mushroom body. PLoS Comput Biol 2024; 20:e1012086. [PMID: 38781280 DOI: 10.1371/journal.pcbi.1012086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/05/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Animals can learn in real-life scenarios where rewards are often only available when a goal is achieved. This 'distal' or 'sparse' reward problem remains a challenge for conventional reinforcement learning algorithms. Here we investigate an algorithm for learning in such scenarios, inspired by the possibility that axo-axonal gap junction connections, observed in neural circuits with parallel fibres such as the insect mushroom body, could form a resistive network. In such a network, an active node represents the task state, connections between nodes represent state transitions and their connection to actions, and current flow to a target state can guide decision making. Building on evidence that gap junction weights are adaptive, we propose that experience of a task can modulate the connections to form a graph encoding the task structure. We demonstrate that the approach can be used for efficient reinforcement learning under sparse rewards, and discuss whether it is plausible as an account of the insect mushroom body.
Collapse
Affiliation(s)
- Tianqi Wei
- Institute of Perception, Action, and Behaviour, School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
- School of Artificial Intelligence, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Qinghai Guo
- Huawei Technologies Co., Ltd., Shenzhen, Guangdong, China
| | - Barbara Webb
- Institute of Perception, Action, and Behaviour, School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
6
|
Chan ICW, Chen N, Hernandez J, Meltzer H, Park A, Stahl A. Future avenues in Drosophila mushroom body research. Learn Mem 2024; 31:a053863. [PMID: 38862172 PMCID: PMC11199946 DOI: 10.1101/lm.053863.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/27/2024] [Indexed: 06/13/2024]
Abstract
How does the brain translate sensory information into complex behaviors? With relatively small neuronal numbers, readable behavioral outputs, and an unparalleled genetic toolkit, the Drosophila mushroom body (MB) offers an excellent model to address this question in the context of associative learning and memory. Recent technological breakthroughs, such as the freshly completed full-brain connectome, multiomics approaches, CRISPR-mediated gene editing, and machine learning techniques, led to major advancements in our understanding of the MB circuit at the molecular, structural, physiological, and functional levels. Despite significant progress in individual MB areas, the field still faces the fundamental challenge of resolving how these different levels combine and interact to ultimately control the behavior of an individual fly. In this review, we discuss various aspects of MB research, with a focus on the current knowledge gaps, and an outlook on the future methodological developments required to reach an overall view of the neurobiological basis of learning and memory.
Collapse
Affiliation(s)
- Ivy Chi Wai Chan
- Dynamics of Neuronal Circuits Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Developmental Biology, RWTH Aachen University, Aachen, Germany
| | - Nannan Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - John Hernandez
- Neuroscience Department, Brown University, Providence, Rhode Island 02906, USA
| | - Hagar Meltzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Annie Park
- Department of Physiology, Anatomy and Genetics, Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, United Kingdom
| | - Aaron Stahl
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
7
|
Abubaker MB, Hsu FY, Feng KL, Chu LA, de Belle JS, Chiang AS. Asymmetric neurons are necessary for olfactory learning in the Drosophila brain. Curr Biol 2024; 34:946-957.e4. [PMID: 38320552 DOI: 10.1016/j.cub.2024.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/31/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024]
Abstract
Animals have complementary parallel memory systems that process signals from various sensory modalities. In the brain of the fruit fly Drosophila melanogaster, mushroom body (MB) circuitry is the primary associative neuropil, critical for all stages of olfactory memory. Here, our findings suggest that active signaling from specific asymmetric body (AB) neurons is also crucial for this process. These AB neurons respond to odors and electric shock separately and exhibit timing-sensitive neuronal activity in response to paired stimulation while leaving a decreased memory trace during retrieval. Our experiments also show that rutabaga-encoded adenylate cyclase, which mediates coincidence detection, is required for learning and short-term memory in both AB and MB. We observed additive effects when manipulating rutabaga co-expression in both structures. Together, these results implicate the AB in playing a critical role in associative olfactory learning and short-term memory.
Collapse
Affiliation(s)
| | - Fu-Yu Hsu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kuan-Lin Feng
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Li-An Chu
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - J Steven de Belle
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan; School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; Department of Psychological Sciences, University of San Diego, San Diego, CA 92110, USA; School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA; MnemOdyssey LLC, Escondido, CA 92027, USA
| | - Ann-Shyn Chiang
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan; Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan; Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 35053, Taiwan; Graduate Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
8
|
Davidson AM, Kaushik S, Hige T. Dopamine-Dependent Plasticity Is Heterogeneously Expressed by Presynaptic Calcium Activity across Individual Boutons of the Drosophila Mushroom Body. eNeuro 2023; 10:ENEURO.0275-23.2023. [PMID: 37848287 PMCID: PMC10616905 DOI: 10.1523/eneuro.0275-23.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/01/2023] [Accepted: 10/08/2023] [Indexed: 10/19/2023] Open
Abstract
The Drosophila mushroom body (MB) is an important model system for studying the synaptic mechanisms of associative learning. In this system, coincidence of odor-evoked calcium influx and dopaminergic input in the presynaptic terminals of Kenyon cells (KCs), the principal neurons of the MB, triggers long-term depression (LTD), which plays a critical role in olfactory learning. However, it is controversial whether such synaptic plasticity is accompanied by a corresponding decrease in odor-evoked calcium activity in the KC presynaptic terminals. Here, we address this question by inducing LTD by pairing odor presentation with optogenetic activation of dopaminergic neurons (DANs). This allows us to rigorously compare the changes at the presynaptic and postsynaptic sites in the same conditions. By imaging presynaptic acetylcholine release in the condition where LTD is reliably observed in the postsynaptic calcium signals, we show that neurotransmitter release from KCs is depressed selectively in the MB compartments innervated by activated DANs, demonstrating the presynaptic nature of LTD. However, total odor-evoked calcium activity of the KC axon bundles does not show concurrent depression. We further conduct calcium imaging in individual presynaptic boutons and uncover the highly heterogeneous nature of calcium plasticity. Namely, only a subset of boutons, which are strongly activated by associated odors, undergo calcium activity depression, while weakly responding boutons show potentiation. Thus, our results suggest an unexpected nonlinear relationship between presynaptic calcium influx and the results of plasticity, challenging the simple view of cooperative actions of presynaptic calcium and dopaminergic input.
Collapse
Affiliation(s)
- Andrew M Davidson
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Shivam Kaushik
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Toshihide Hige
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
9
|
Davis RL. Learning and memory using Drosophila melanogaster: a focus on advances made in the fifth decade of research. Genetics 2023; 224:iyad085. [PMID: 37212449 PMCID: PMC10411608 DOI: 10.1093/genetics/iyad085] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023] Open
Abstract
In the last decade, researchers using Drosophila melanogaster have made extraordinary progress in uncovering the mysteries underlying learning and memory. This progress has been propelled by the amazing toolkit available that affords combined behavioral, molecular, electrophysiological, and systems neuroscience approaches. The arduous reconstruction of electron microscopic images resulted in a first-generation connectome of the adult and larval brain, revealing complex structural interconnections between memory-related neurons. This serves as substrate for future investigations on these connections and for building complete circuits from sensory cue detection to changes in motor behavior. Mushroom body output neurons (MBOn) were discovered, which individually forward information from discrete and non-overlapping compartments of the axons of mushroom body neurons (MBn). These neurons mirror the previously discovered tiling of mushroom body axons by inputs from dopamine neurons and have led to a model that ascribes the valence of the learning event, either appetitive or aversive, to the activity of different populations of dopamine neurons and the balance of MBOn activity in promoting avoidance or approach behavior. Studies of the calyx, which houses the MBn dendrites, have revealed a beautiful microglomeruluar organization and structural changes of synapses that occur with long-term memory (LTM) formation. Larval learning has advanced, positioning it to possibly lead in producing new conceptual insights due to its markedly simpler structure over the adult brain. Advances were made in how cAMP response element-binding protein interacts with protein kinases and other transcription factors to promote the formation of LTM. New insights were made on Orb2, a prion-like protein that forms oligomers to enhance synaptic protein synthesis required for LTM formation. Finally, Drosophila research has pioneered our understanding of the mechanisms that mediate permanent and transient active forgetting, an important function of the brain along with acquisition, consolidation, and retrieval. This was catalyzed partly by the identification of memory suppressor genes-genes whose normal function is to limit memory formation.
Collapse
Affiliation(s)
- Ronald L Davis
- Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| |
Collapse
|
10
|
Currier TA, Pang MM, Clandinin TR. Visual processing in the fly, from photoreceptors to behavior. Genetics 2023; 224:iyad064. [PMID: 37128740 PMCID: PMC10213501 DOI: 10.1093/genetics/iyad064] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023] Open
Abstract
Originally a genetic model organism, the experimental use of Drosophila melanogaster has grown to include quantitative behavioral analyses, sophisticated perturbations of neuronal function, and detailed sensory physiology. A highlight of these developments can be seen in the context of vision, where pioneering studies have uncovered fundamental and generalizable principles of sensory processing. Here we begin with an overview of vision-guided behaviors and common methods for probing visual circuits. We then outline the anatomy and physiology of brain regions involved in visual processing, beginning at the sensory periphery and ending with descending motor control. Areas of focus include contrast and motion detection in the optic lobe, circuits for visual feature selectivity, computations in support of spatial navigation, and contextual associative learning. Finally, we look to the future of fly visual neuroscience and discuss promising topics for further study.
Collapse
Affiliation(s)
- Timothy A Currier
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle M Pang
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Turrel O, Ramesh N, Escher MJF, Pooryasin A, Sigrist SJ. Transient active zone remodeling in the Drosophila mushroom body supports memory. Curr Biol 2022; 32:4900-4913.e4. [PMID: 36327980 DOI: 10.1016/j.cub.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 08/15/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022]
Abstract
Elucidating how the distinct components of synaptic plasticity dynamically orchestrate the distinct stages of memory acquisition and maintenance within neuronal networks remains a major challenge. Specifically, plasticity processes tuning the functional and also structural state of presynaptic active zone (AZ) release sites are widely observed in vertebrates and invertebrates, but their behavioral relevance remains mostly unclear. We here provide evidence that a transient upregulation of presynaptic AZ release site proteins supports aversive olfactory mid-term memory in the Drosophila mushroom body (MB). Upon paired aversive olfactory conditioning, AZ protein levels (ELKS-family BRP/(m)unc13-family release factor Unc13A) increased for a few hours with MB-lobe-specific dynamics. Kenyon cell (KC, intrinsic MB neurons)-specific knockdown (KD) of BRP did not affect aversive olfactory short-term memory (STM) but strongly suppressed aversive mid-term memory (MTM). Different proteins crucial for the transport of AZ biosynthetic precursors (transport adaptor Aplip1/Jip-1; kinesin motor IMAC/Unc104; small GTPase Arl8) were also specifically required for the formation of aversive olfactory MTM. Consistent with the merely transitory increase of AZ proteins, BRP KD did not interfere with the formation of aversive olfactory long-term memory (LTM; i.e., 1 day). Our data suggest that the remodeling of presynaptic AZ refines the MB circuitry after paired aversive conditioning, over a time window of a few hours, to display aversive olfactory memories.
Collapse
Affiliation(s)
- Oriane Turrel
- Institute for Biology/Genetics, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Niraja Ramesh
- Institute for Biology/Genetics, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Marc J F Escher
- Institute for Biology/Genetics, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Atefeh Pooryasin
- Institute for Biology/Genetics, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Stephan J Sigrist
- Institute for Biology/Genetics, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany; NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
12
|
Zlomuzica A, Plank L, Dere E. A new path to mental disorders: Through gap junction channels and hemichannels. Neurosci Biobehav Rev 2022; 142:104877. [PMID: 36116574 DOI: 10.1016/j.neubiorev.2022.104877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/20/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022]
Abstract
Behavioral disturbances related to emotional regulation, reward processing, cognition, sleep-wake regulation and activity/movement represent core symptoms of most common mental disorders. Increasing empirical and theoretical evidence suggests that normal functioning of these behavioral domains relies on fine graded coordination of neural and glial networks which are maintained and modulated by intercellular gap junction channels and unapposed pannexin or connexin hemichannels. Dysfunctions in these networks might contribute to the development and maintenance of psychopathological and neurobiological features associated with mental disorders. Here we review and discuss the evidence indicating a prominent role of gap junction channel and hemichannel dysfunction in core symptoms of mental disorders. We further discuss how the increasing knowledge on intercellular gap junction channels and unapposed pannexin or connexin hemichannels in the brain might lead to deeper mechanistic insight in common mental disorders and to the development of novel treatment approaches. We further attempt to exemplify what type of future research on this topic could be integrated into multidimensional approaches to understand and cure mental disorders.
Collapse
Affiliation(s)
- Armin Zlomuzica
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787 Bochum, Germany.
| | - Laurin Plank
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787 Bochum, Germany
| | - Ekrem Dere
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787 Bochum, Germany; Sorbonne Université. Institut de Biologie Paris-Seine, (IBPS), Département UMR 8256: Adaptation Biologique et Vieillissement, UFR des Sciences de la Vie, Campus Pierre et Marie Curie, Bâtiment B, 9 quai Saint Bernard, F-75005 Paris, France.
| |
Collapse
|
13
|
Zheng Z, Li F, Fisher C, Ali IJ, Sharifi N, Calle-Schuler S, Hsu J, Masoodpanah N, Kmecova L, Kazimiers T, Perlman E, Nichols M, Li PH, Jain V, Bock DD. Structured sampling of olfactory input by the fly mushroom body. Curr Biol 2022; 32:3334-3349.e6. [PMID: 35797998 PMCID: PMC9413950 DOI: 10.1016/j.cub.2022.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 02/07/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
Associative memory formation and recall in the fruit fly Drosophila melanogaster is subserved by the mushroom body (MB). Upon arrival in the MB, sensory information undergoes a profound transformation from broadly tuned and stereotyped odorant responses in the olfactory projection neuron (PN) layer to narrowly tuned and nonstereotyped responses in the Kenyon cells (KCs). Theory and experiment suggest that this transformation is implemented by random connectivity between KCs and PNs. However, this hypothesis has been challenging to test, given the difficulty of mapping synaptic connections between large numbers of brain-spanning neurons. Here, we used a recent whole-brain electron microscopy volume of the adult fruit fly to map PN-to-KC connectivity at synaptic resolution. The PN-KC connectome revealed unexpected structure, with preponderantly food-responsive PN types converging at above-chance levels on downstream KCs. Axons of the overconvergent PN types tended to arborize near one another in the MB main calyx, making local KC dendrites more likely to receive input from those types. Overconvergent PN types preferentially co-arborize and connect with dendrites of αβ and α'β' KC subtypes. Computational simulation of the observed network showed degraded discrimination performance compared with a random network, except when all signal flowed through the overconvergent, primarily food-responsive PN types. Additional theory and experiment will be needed to fully characterize the impact of the observed non-random network structure on associative memory formation and recall.
Collapse
Affiliation(s)
- Zhihao Zheng
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Feng Li
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Corey Fisher
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Iqbal J Ali
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Nadiya Sharifi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Steven Calle-Schuler
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Joseph Hsu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Najla Masoodpanah
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Lucia Kmecova
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Tom Kazimiers
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Kazmos GmbH, Dresden, Germany
| | - Eric Perlman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Yikes LLC, Baltimore, MD, USA
| | - Matthew Nichols
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | | | | | - Davi D Bock
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Neurological Sciences, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
14
|
Hermanns T, Graf-Boxhorn S, Poeck B, Strauss R. Octopamine mediates sugar relief from a chronic-stress-induced depression-like state in Drosophila. Curr Biol 2022; 32:4048-4056.e3. [PMID: 35914533 DOI: 10.1016/j.cub.2022.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/15/2022] [Accepted: 07/07/2022] [Indexed: 12/30/2022]
Abstract
Chronic, uncontrollable stress can result in psychiatric syndromes, including anxiety and major depressive disorder, in humans and mammalian disease models.1,2 Similarly, several days of chronic stress can induce depression-associated behavioral alteration in Drosophila accompanied by changes in biogenic amine levels in the adult brain.3-6 In our chronic stress paradigm, flies are subjected to 3 days of repetitive phases of 300 Hz vibrations combined with overcrowding and food deprivation. This treatment reduces voluntary behavioral activity, including the motivation to climb wide gaps (risk taking) and to stop for sweets (anhedonia), suggesting a depression-like state (DLS). These behavioral changes correlate with decreased serotonin release to the mushroom body (MB), a major behavioral control center in the central brain of the fly.7,8 Stressed flies are relieved from the DLS by feeding the anti-depressant serotonin precursor 5-HTP or the selective serotonin reuptake inhibitor fluoxetine. Notably, feeding sucrose to stressed flies results in elevated serotonin levels in the brain and ameliorates the DLS.3 Here, we show that this sugar relief is mediated by the neurotransmitter octopamine signaled from ventral unpaired medial neurons located in the subesophageal ganglion. The octopamine signaling of sweet sensation is transmitted to the MB via the dopaminergic PAM neurons. In addition, neuronal-silencing experiments reveal that the serotonergic dorsal paired medial (DPM) neurons innervating the MB are essential for sugar relief. Conversely, thermogenetic or optogenetic activation of DPMs can replace sweet sensation, elucidating that serotonergic signaling from DPMs takes part in positively modulating DLS-related behavioral changes.
Collapse
Affiliation(s)
- Tim Hermanns
- Institut für Entwicklungsbiologie und Neurobiologie, Johannes Gutenberg Universität Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Sonja Graf-Boxhorn
- Institut für Entwicklungsbiologie und Neurobiologie, Johannes Gutenberg Universität Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Burkhard Poeck
- Institut für Entwicklungsbiologie und Neurobiologie, Johannes Gutenberg Universität Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Roland Strauss
- Institut für Entwicklungsbiologie und Neurobiologie, Johannes Gutenberg Universität Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany.
| |
Collapse
|
15
|
Endogenous pannexin1 channels form functional intercellular cell-cell channels with characteristic voltage-dependent properties. Proc Natl Acad Sci U S A 2022; 119:e2202104119. [PMID: 35486697 PMCID: PMC9171361 DOI: 10.1073/pnas.2202104119] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pannexin1 is a glycoprotein that has been shown to form functional plasma membrane channels and mediate many cellular signaling pathways. However, the formation and function of pannexin1-based intercellular cell–cell channels in mammalian cells and vertebrate tissue is a question of substantial debate. This work provides robust electrophysiological evidence to demonstrate that endogenously expressed human pannexin1 forms cell–cell channels and lays the groundwork for studying a potential new type of electrical synapses between many mammalian cell types that endogenously express pannexin1. The occurrence of intercellular channels formed by pannexin1 has been challenged for more than a decade. Here, we provide an electrophysiological characterization of exogenous human pannexin1 (hPanx1) cell–cell channels expressed in HeLa cells knocked out for connexin45. The observed hPanx1 cell–cell channels show two phenotypes: O-state and S-state. The former displayed low transjunctional voltage (Vj) sensitivity and single-channel conductance of ∼175 pS, with a substate of ∼35 pS; the latter showed a peculiar dynamic asymmetry in Vj dependence and single-channel conductance identical to the substate conductance of the O-state. S-state hPanx1 cell–cell channels were also identified between TC620 cells, a human oligodendroglioma cell line that endogenously expresses hPanx1. In these cells, dye and electrical coupling increased with temperature and were strongly reduced after hPanx1 expression was knocked down by small interfering RNA or inhibited with Panx1 mimetic inhibitory peptide. Moreover, cell–cell coupling was augmented when hPanx1 levels were increased with a doxycycline-inducible expression system. Application of octanol, a connexin gap junction (GJ) channel inhibitor, was not sufficient to block electrical coupling between HeLa KO Cx45-hPanx1 or TC620 cell pairs. In silico studies suggest that several arginine residues inside the channel pore may be neutralized by hydrophobic interactions, allowing the passage of DAPI, consistent with dye coupling observed between TC620 cells. These findings demonstrate that endogenously expressed hPanx1 forms intercellular cell–cell channels and their unique properties resemble those described in innexin-based GJ channels. Since Panx1 is ubiquitously expressed, finding conditions to recognize Panx1 cell–cell channels in different cell types might require special attention.
Collapse
|
16
|
Aldworth ZN, Stopfer M. Insect neuroscience: Filling the knowledge gap on gap junctions. Curr Biol 2022; 32:R420-R423. [DOI: 10.1016/j.cub.2022.03.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
The best of both worlds: Dual systems of reasoning in animals and AI. Cognition 2022; 225:105118. [PMID: 35453083 DOI: 10.1016/j.cognition.2022.105118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 11/20/2022]
Abstract
Much of human cognition involves two different types of reasoning that operate together. Type 1 reasoning systems are intuitive and fast, whereas Type 2 reasoning systems are reflective and slow. Why has our cognition evolved with these features? Both systems are coherent and in most ecological circumstances either alone is capable of coming up with the right answer most of the time. Neural tissue is costly, and thus far evolutionary models have struggled to identify a benefit of operating two systems of reasoning. To explore this issue we take a broad comparative perspective. We discuss how dual processes of cognition have enabled the emergence of selective attention in insects, transforming the learning capacities of these animals. Modern AIs using dual systems of learning are able to learn how their vast world works and how best to interact with it, allowing them to exceed human levels of performance in strategy games. We propose that the core benefits of dual processes of reasoning are to narrow down a problem space in order to focus cognitive resources most effectively.
Collapse
|
18
|
Ammer G, Vieira RM, Fendl S, Borst A. Anatomical distribution and functional roles of electrical synapses in Drosophila. Curr Biol 2022; 32:2022-2036.e4. [DOI: 10.1016/j.cub.2022.03.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/16/2022] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
|
19
|
Welzel G, Schuster S. Connexins evolved after early chordates lost innexin diversity. eLife 2022; 11:74422. [PMID: 35042580 PMCID: PMC8769644 DOI: 10.7554/elife.74422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/05/2022] [Indexed: 11/26/2022] Open
Abstract
Gap junction channels are formed by two unrelated protein families. Non-chordates use the primordial innexins, while chordates use connexins that superseded the gap junction function of innexins. Chordates retained innexin-homologs, but N-glycosylation prevents them from forming gap junctions. It is puzzling why chordates seem to exclusively use the new gap junction protein and why no chordates should exist that use non-glycosylated innexins to form gap junctions. Here, we identified glycosylation sites of 2388 innexins from 174 non-chordate and 276 chordate species. Among all chordates, we found not a single innexin without glycosylation sites. Surprisingly, the glycosylation motif is also widespread among non-chordate innexins indicating that glycosylated innexins are not a novelty of chordates. In addition, we discovered a loss of innexin diversity during early chordate evolution. Most importantly, lancelets, which lack connexins, exclusively possess only one highly conserved innexin with one glycosylation site. A bottleneck effect might thus explain why connexins have become the only protein used to form chordate gap junctions.
Collapse
Affiliation(s)
- Georg Welzel
- Department of Animal Physiology, University of Bayreuth
| | | |
Collapse
|
20
|
Devineni AV, Scaplen KM. Neural Circuits Underlying Behavioral Flexibility: Insights From Drosophila. Front Behav Neurosci 2022; 15:821680. [PMID: 35069145 PMCID: PMC8770416 DOI: 10.3389/fnbeh.2021.821680] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Behavioral flexibility is critical to survival. Animals must adapt their behavioral responses based on changes in the environmental context, internal state, or experience. Studies in Drosophila melanogaster have provided insight into the neural circuit mechanisms underlying behavioral flexibility. Here we discuss how Drosophila behavior is modulated by internal and behavioral state, environmental context, and learning. We describe general principles of neural circuit organization and modulation that underlie behavioral flexibility, principles that are likely to extend to other species.
Collapse
Affiliation(s)
- Anita V. Devineni
- Department of Biology, Emory University, Atlanta, GA, United States
- Zuckerman Mind Brain Institute, Columbia University, New York, NY, United States
| | - Kristin M. Scaplen
- Department of Psychology, Bryant University, Smithfield, RI, United States
- Center for Health and Behavioral Studies, Bryant University, Smithfield, RI, United States
- Department of Neuroscience, Brown University, Providence, RI, United States
| |
Collapse
|
21
|
Ramakrishnan A, Sheeba V. Gap junction protein Innexin2 modulates the period of free-running rhythms in Drosophila melanogaster. iScience 2021; 24:103011. [PMID: 34522854 PMCID: PMC8426565 DOI: 10.1016/j.isci.2021.103011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/13/2021] [Accepted: 08/17/2021] [Indexed: 10/25/2022] Open
Abstract
A neuronal circuit of ∼150 neurons modulates rhythmic activity-rest behavior of Drosophila melanogaster. While it is known that coherent ∼24-hr rhythms in locomotion are brought about when 7 distinct neuronal clusters function as a network due to chemical communication amongst them, there are no reports of communication via electrical synapses made up of gap junctions. Here, we report that gap junction proteins, Innexins play crucial roles in determining the intrinsic period of activity-rest rhythms in flies. We show the presence of Innexin2 in the ventral lateral neurons, wherein RNAi-based knockdown of its expression slows down the speed of activity-rest rhythm along with alterations in the oscillation of a core-clock protein PERIOD and the output molecule pigment dispersing factor. Specifically disrupting the channel-forming ability of Innexin2 causes period lengthening, suggesting that Innexin2 may function as hemichannels or gap junctions in the clock circuit.
Collapse
Affiliation(s)
- Aishwarya Ramakrishnan
- Chronobiology and Behavioural Neurogenetics Laboratory, Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
| | - Vasu Sheeba
- Chronobiology and Behavioural Neurogenetics Laboratory, Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
| |
Collapse
|
22
|
Leinwand SG, Scott K. Juvenile hormone drives the maturation of spontaneous mushroom body neural activity and learned behavior. Neuron 2021; 109:1836-1847.e5. [PMID: 33915110 DOI: 10.1016/j.neuron.2021.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/26/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022]
Abstract
Mature behaviors emerge from neural circuits sculpted by genetic programs and spontaneous and evoked neural activity. However, how neural activity is refined to drive maturation of learned behavior remains poorly understood. Here, we explore how transient hormonal signaling coordinates a neural activity state transition and maturation of associative learning. We identify spontaneous, asynchronous activity in a Drosophila learning and memory brain region, the mushroom body. This activity declines significantly over the first week of adulthood. Moreover, this activity is generated cell-autonomously via Cacophony voltage-gated calcium channels in a single cell type, α'/β' Kenyon cells. Juvenile hormone, a crucial developmental regulator, acts transiently in α'/β' Kenyon cells during a young adult sensitive period to downregulate spontaneous activity and enable subsequent enhanced learning. Hormone signaling in young animals therefore controls a neural activity state transition and is required for improved associative learning, providing insight into the maturation of circuits and behavior.
Collapse
Affiliation(s)
- Sarah G Leinwand
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Kristin Scott
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
23
|
Scaplen KM, Talay M, Fisher JD, Cohn R, Sorkaç A, Aso Y, Barnea G, Kaun KR. Transsynaptic mapping of Drosophila mushroom body output neurons. eLife 2021; 10:e63379. [PMID: 33570489 PMCID: PMC7877909 DOI: 10.7554/elife.63379] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/26/2021] [Indexed: 11/13/2022] Open
Abstract
The mushroom body (MB) is a well-characterized associative memory structure within the Drosophila brain. Analyzing MB connectivity using multiple approaches is critical for understanding the functional implications of this structure. Using the genetic anterograde transsynaptic tracing tool, trans-Tango, we identified divergent projections across the brain and convergent downstream targets of the MB output neurons (MBONs). Our analysis revealed at least three separate targets that receive convergent input from MBONs: other MBONs, the fan-shaped body (FSB), and the lateral accessory lobe (LAL). We describe, both anatomically and functionally, a multilayer circuit in which inhibitory and excitatory MBONs converge on the same genetic subset of FSB and LAL neurons. This circuit architecture enables the brain to update and integrate information with previous experience before executing appropriate behavioral responses. Our use of trans-Tango provides a genetically accessible anatomical framework for investigating the functional relevance of components within these complex and interconnected circuits.
Collapse
Affiliation(s)
- Kristin M Scaplen
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Department of Psychology, Bryant UniversitySmithfieldUnited States
- Center for Health and Behavioral Sciences, Bryant UniversitySmithfieldUnited States
| | - Mustafa Talay
- Department of Neuroscience, Brown UniversityProvidenceUnited States
| | - John D Fisher
- Department of Neuroscience, Brown UniversityProvidenceUnited States
| | - Raphael Cohn
- Laboratory of Neurophysiology and Behavior, The Rockefeller UniversityNew YorkUnited States
| | - Altar Sorkaç
- Department of Neuroscience, Brown UniversityProvidenceUnited States
| | - Yoshi Aso
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gilad Barnea
- Department of Neuroscience, Brown UniversityProvidenceUnited States
| | - Karla R Kaun
- Department of Neuroscience, Brown UniversityProvidenceUnited States
| |
Collapse
|
24
|
Amin H, Apostolopoulou AA, Suárez-Grimalt R, Vrontou E, Lin AC. Localized inhibition in the Drosophila mushroom body. eLife 2020; 9:56954. [PMID: 32955437 PMCID: PMC7541083 DOI: 10.7554/elife.56954] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/02/2020] [Indexed: 12/12/2022] Open
Abstract
Many neurons show compartmentalized activity, in which activity does not spread readily across the cell, allowing input and output to occur locally. However, the functional implications of compartmentalized activity for the wider neural circuit are often unclear. We addressed this problem in the Drosophila mushroom body, whose principal neurons, Kenyon cells, receive feedback inhibition from a non-spiking interneuron called the anterior paired lateral (APL) neuron. We used local stimulation and volumetric calcium imaging to show that APL inhibits Kenyon cells’ dendrites and axons, and that both activity in APL and APL’s inhibitory effect on Kenyon cells are spatially localized (the latter somewhat less so), allowing APL to differentially inhibit different mushroom body compartments. Applying these results to the Drosophila hemibrain connectome predicts that individual Kenyon cells inhibit themselves via APL more strongly than they inhibit other individual Kenyon cells. These findings reveal how cellular physiology and detailed network anatomy can combine to influence circuit function.
Collapse
Affiliation(s)
- Hoger Amin
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Anthi A Apostolopoulou
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Raquel Suárez-Grimalt
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Eleftheria Vrontou
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, United Kingdom
| | - Andrew C Lin
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
25
|
Wang Z, Jin T, Le Q, Liu C, Wang X, Wang F, Ma L. Retrieval-Driven Hippocampal NPTX2 Plasticity Facilitates the Extinction of Cocaine-Associated Context Memory. Biol Psychiatry 2020; 87:979-991. [PMID: 31836174 DOI: 10.1016/j.biopsych.2019.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/13/2019] [Accepted: 10/04/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Postretrieval extinction attenuates the pathological memory associated with psychiatric states such as drug addiction in both humans and rodents. The extinction of a learned response requires gene transcription and protein synthesis after memory retrieval in a time-dependent manner, yet the precise physiological basis after retrieval to allow extinction to neutralize a learned behavior is not fully understood. METHODS In a cocaine conditioned place preference paradigm, we used a ribosomal tagging strategy to measure the translational state of hippocampal pyramidal neurons after the retrieval of cocaine-associated context memory. Using approaches of electrophysiology, neuronal tracing, and a doxycycline-dependent robust activity marking system, we investigated the cellular and molecular basis of retrieval-induced plasticity that facilitated the extinction. RESULTS Bioinformatics analysis discovered the specific translational regulation of signaling pathways by retrieval and revealed Nptx2 as the hub gene. Manipulating Nptx2 in dorsal hippocampus bidirectionally regulated the extinction of cocaine-associated context memory as well as the retrieval-driven synaptic remodeling. The pentraxin (PTX) domain of NPTX2 recruited GluA1-AMPA receptors and enhanced the extinction and excitatory synaptic transmission that was prevented by overexpressing carboxyl cytoplasmic tail of GluA1. Furthermore, Nptx2 in retrieval-activated neurons was required for the extinction. CONCLUSIONS The retrieval-driven upregulation of Nptx2 contributes to the synaptic remodeling in dorsal hippocampus and facilitates the extinction of cocaine-associated context memory, indicating a potential target for the treatment of cue-induced cocaine seeking.
Collapse
Affiliation(s)
- Zhilin Wang
- Department of Neurosurgery and Institute of Translational Neuroscience, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Tao Jin
- Department of Neurosurgery and Institute of Translational Neuroscience, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Qiumin Le
- Department of Neurosurgery and Institute of Translational Neuroscience, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Cao Liu
- Department of Neurosurgery and Institute of Translational Neuroscience, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xueying Wang
- Department of Neurosurgery and Institute of Translational Neuroscience, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Feifei Wang
- Department of Neurosurgery and Institute of Translational Neuroscience, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China.
| | - Lan Ma
- Department of Neurosurgery and Institute of Translational Neuroscience, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
26
|
Bilz F, Geurten BRH, Hancock CE, Widmann A, Fiala A. Visualization of a Distributed Synaptic Memory Code in the Drosophila Brain. Neuron 2020; 106:963-976.e4. [PMID: 32268119 DOI: 10.1016/j.neuron.2020.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 11/19/2019] [Accepted: 03/13/2020] [Indexed: 10/24/2022]
Abstract
During associative conditioning, animals learn which sensory cues are predictive for positive or negative conditions. Because sensory cues are encoded by distributed neurons, one has to monitor plasticity across many synapses to capture how learned information is encoded. We analyzed synaptic boutons of Kenyon cells of the Drosophila mushroom body γ lobe, a brain structure that mediates olfactory learning. A fluorescent Ca2+ sensor was expressed in single Kenyon cells so that axonal boutons could be assigned to distinct cells and Ca2+ could be measured across many animals. Learning induced directed synaptic plasticity in specific compartments along the axons. Moreover, we show that odor-evoked Ca2+ dynamics across boutons decorrelate as a result of associative learning. Information theory indicates that learning renders the stimulus representation more distinct compared with naive stimuli. These data reveal that synaptic boutons rather than cells act as individually modifiable units, and coherence among them is a memory-encoding parameter.
Collapse
Affiliation(s)
- Florian Bilz
- Department of Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | - Bart R H Geurten
- Department of Cellular Neurobiology, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | - Clare E Hancock
- Department of Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | - Annekathrin Widmann
- Department of Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | - André Fiala
- Department of Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany.
| |
Collapse
|
27
|
Boto T, Stahl A, Tomchik SM. Cellular and circuit mechanisms of olfactory associative learning in Drosophila. J Neurogenet 2020; 34:36-46. [PMID: 32043414 DOI: 10.1080/01677063.2020.1715971] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent years have witnessed significant progress in understanding how memories are encoded, from the molecular to the cellular and the circuit/systems levels. With a good compromise between brain complexity and behavioral sophistication, the fruit fly Drosophila melanogaster is one of the preeminent animal models of learning and memory. Here we review how memories are encoded in Drosophila, with a focus on short-term memory and an eye toward future directions. Forward genetic screens have revealed a large number of genes and transcripts necessary for learning and memory, some acting cell-autonomously. Further, the relative numerical simplicity of the fly brain has enabled the reverse engineering of learning circuits with remarkable precision, in some cases ascribing behavioral phenotypes to single neurons. Functional imaging and physiological studies have localized and parsed the plasticity that occurs during learning at some of the major loci. Connectomics projects are significantly expanding anatomical knowledge of the nervous system, filling out the roadmap for ongoing functional/physiological and behavioral studies, which are being accelerated by simultaneous tool development. These developments have provided unprecedented insight into the fundamental neural principles of learning, and lay the groundwork for deep understanding in the near future.
Collapse
Affiliation(s)
- Tamara Boto
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Aaron Stahl
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Seth M Tomchik
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| |
Collapse
|
28
|
He JT, LI XY, Yang L, Zhao X. Astroglial connexins and cognition: memory formation or deterioration? Biosci Rep 2020; 40:BSR20193510. [PMID: 31868207 PMCID: PMC6954363 DOI: 10.1042/bsr20193510] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 01/20/2023] Open
Abstract
Connexins are the membrane proteins that form high-conductance plasma membrane channels and are the important constituents of gap junctions and hemichannels. Among different types of connexins, connexin 43 is the most widely expressed and studied gap junction proteins in astrocytes. Due to the key involvement of astrocytes in memory impairment and abundant expression of connexins in astrocytes, astroglial connexins have been projected as key therapeutic targets for Alzheimer's disease. On the other hand, the role of connexin gap junctions and hemichannels in memory formation and consolidation has also been reported. Moreover, deletion of these proteins and loss of gap junction communication result in loss of short-term spatial memory. Accordingly, both memory formation and memory deteriorating functions of astrocytes-located connexins have been documented. Physiologically expressed connexins may be involved in the memory formation, while pathologically increased expression of connexins with consequent excessive activation of astrocytes may induce neuronal injury and cognitive decline. The present review describes the memory formation as well as memory deteriorating functions of astroglial connexins in memory disorders of different etiology with possible mechanisms.
Collapse
Affiliation(s)
- Jin-Ting He
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, 130033, Jilin Province, China
| | - Xiao-Yan LI
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, 130033, Jilin Province, China
| | - Le Yang
- Department of Endocrinology, The People’s Hospital of Jilin Province, Changchun 130031, China
| | - Xin Zhao
- Department of Paediatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
29
|
Abstract
The Mushroom Body (MB) is the primary location of stored associative memories in the Drosophila brain. We discuss recent advances in understanding the MB's neuronal circuits made using advanced light microscopic methods and cell-type-specific genetic tools. We also review how the compartmentalized nature of the MB's organization allows this brain area to form and store memories with widely different dynamics.
Collapse
Affiliation(s)
- Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| |
Collapse
|
30
|
Jiang L, Cheng Y, Gao S, Zhong Y, Ma C, Wang T, Zhu Y. Emergence of social cluster by collective pairwise encounters in Drosophila. eLife 2020; 9:51921. [PMID: 31959283 PMCID: PMC6989122 DOI: 10.7554/elife.51921] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022] Open
Abstract
Many animals exhibit an astonishing ability to form groups of large numbers of individuals. The dynamic properties of such groups have been the subject of intensive investigation. The actual grouping processes and underlying neural mechanisms, however, remain elusive. Here, we established a social clustering paradigm in Drosophila to investigate the principles governing social group formation. Fruit flies spontaneously assembled into a stable cluster mimicking a distributed network. Social clustering was exhibited as a highly dynamic process including all individuals, which participated in stochastic pair-wise encounters mediated by appendage touches. Depriving sensory inputs resulted in abnormal encounter responses and a high failure rate of cluster formation. Furthermore, the social distance of the emergent network was regulated by ppk-specific neurons, which were activated by contact-dependent social grouping. Taken together, these findings revealed the development of an orderly social structure from initially unorganised individuals via collective actions.
Collapse
Affiliation(s)
- Lifen Jiang
- School of Life Science, University of Science and Technology of China, Hefei, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yaxin Cheng
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shan Gao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yincheng Zhong
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chengrui Ma
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tianyu Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
31
|
Awata H, Takakura M, Kimura Y, Iwata I, Masuda T, Hirano Y. The neural circuit linking mushroom body parallel circuits induces memory consolidation in Drosophila. Proc Natl Acad Sci U S A 2019; 116:16080-16085. [PMID: 31337675 PMCID: PMC6690006 DOI: 10.1073/pnas.1901292116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Memory consolidation is augmented by repeated learning following rest intervals, which is known as the spacing effect. Although the spacing effect has been associated with cumulative cellular responses in the neurons engaged in memory, here, we report the neural circuit-based mechanism for generating the spacing effect in the memory-related mushroom body (MB) parallel circuits in Drosophila To investigate the neurons activated during the training, we monitored expression of phosphorylation of mitogen-activated protein kinase (MAPK), ERK [phosphorylation of extracellular signal-related kinase (pERK)]. In an olfactory spaced training paradigm, pERK expression in one of the parallel circuits, consisting of γm neurons, was progressively inhibited via dopamine. This inhibition resulted in reduced pERK expression in a postsynaptic GABAergic neuron that, in turn, led to an increase in pERK expression in a dopaminergic neuron specifically in the later session during spaced training, suggesting that disinhibition of the dopaminergic neuron occurs during spaced training. The dopaminergic neuron was significant for gene expression in the different MB parallel circuits consisting of α/βs neurons for memory consolidation. Our results suggest that the spacing effect-generating neurons and the neurons engaged in memory reside in the distinct MB parallel circuits and that the spacing effect can be a consequence of evolved neural circuit architecture.
Collapse
Affiliation(s)
- Hiroko Awata
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Sakyo-ku, 606-8507 Kyoto, Japan
| | - Mai Takakura
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Sakyo-ku, 606-8507 Kyoto, Japan
| | - Yoko Kimura
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Sakyo-ku, 606-8507 Kyoto, Japan
| | - Ikuko Iwata
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Sakyo-ku, 606-8507 Kyoto, Japan
| | - Tomoko Masuda
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Sakyo-ku, 606-8507 Kyoto, Japan
| | - Yukinori Hirano
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Sakyo-ku, 606-8507 Kyoto, Japan
| |
Collapse
|
32
|
Shyu WH, Lee WP, Chiang MH, Chang CC, Fu TF, Chiang HC, Wu T, Wu CL. Electrical synapses between mushroom body neurons are critical for consolidated memory retrieval in Drosophila. PLoS Genet 2019; 15:e1008153. [PMID: 31071084 PMCID: PMC6529013 DOI: 10.1371/journal.pgen.1008153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/21/2019] [Accepted: 04/23/2019] [Indexed: 11/19/2022] Open
Abstract
Electrical synapses between neurons, also known as gap junctions, are direct cell membrane channels between adjacent neurons. Gap junctions play a role in the synchronization of neuronal network activity; however, their involvement in cognition has not been well characterized. Three-hour olfactory associative memory in Drosophila has two components: consolidated anesthesia-resistant memory (ARM) and labile anesthesia-sensitive memory (ASM). Here, we show that knockdown of the gap junction gene innexin5 (inx5) in mushroom body (MB) neurons disrupted ARM, while leaving ASM intact. Whole-mount brain immunohistochemistry indicated that INX5 protein was preferentially expressed in the somas, calyxes, and lobes regions of the MB neurons. Adult-stage-specific knockdown of inx5 in αβ neurons disrupted ARM, suggesting a specific requirement of INX5 in αβ neurons for ARM formation. Hyperpolarization of αβ neurons during memory retrieval by expressing an engineered halorhodopsin (eNpHR) also disrupted ARM. Administration of the gap junction blocker carbenoxolone (CBX) reduced the proportion of odor responsive αβ neurons to the training odor 3 hours after training. Finally, the α-branch-specific 3-hour ARM-specific memory trace was also diminished with CBX treatment and in inx5 knockdown flies. Altogether, our results suggest INX5 gap junction channels in αβ neurons for ARM retrieval and also provide a more detailed neuronal mechanism for consolidated memory in Drosophila.
Collapse
Affiliation(s)
- Wei-Huan Shyu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wang-Pao Lee
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Meng-Hsuan Chiang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Ching Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsai-Feng Fu
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Hsueh-Cheng Chiang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tony Wu
- Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chia-Lin Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taiwan
- * E-mail:
| |
Collapse
|
33
|
Knaden M. Learning and processing of navigational cues in the desert ant. Curr Opin Neurobiol 2019; 54:140-145. [DOI: 10.1016/j.conb.2018.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/04/2018] [Indexed: 11/25/2022]
|
34
|
Shih MFM, Davis FP, Henry GL, Dubnau J. Nuclear Transcriptomes of the Seven Neuronal Cell Types That Constitute the Drosophila Mushroom Bodies. G3 (BETHESDA, MD.) 2019; 9:81-94. [PMID: 30397017 PMCID: PMC6325895 DOI: 10.1534/g3.118.200726] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/02/2018] [Indexed: 11/18/2022]
Abstract
The insect mushroom body (MB) is a conserved brain structure that plays key roles in a diverse array of behaviors. The Drosophila melanogaster MB is the primary invertebrate model of neural circuits related to memory formation and storage, and its development, morphology, wiring, and function has been extensively studied. MBs consist of intrinsic Kenyon Cells that are divided into three major neuron classes (γ, α'/β' and α/β) and 7 cell subtypes (γd, γm, α'/β'ap, α'/β'm, α/βp, α/βs and α/βc) based on their birth order, morphology, and connectivity. These subtypes play distinct roles in memory processing, however the underlying transcriptional differences are unknown. Here, we used RNA sequencing (RNA-seq) to profile the nuclear transcriptomes of each MB neuronal cell subtypes. We identified 350 MB class- or subtype-specific genes, including the widely used α/β class marker Fas2 and the α'/β' class marker trio Immunostaining corroborates the RNA-seq measurements at the protein level for several cases. Importantly, our data provide a full accounting of the neurotransmitter receptors, transporters, neurotransmitter biosynthetic enzymes, neuropeptides, and neuropeptide receptors expressed within each of these cell types. This high-quality, cell type-level transcriptome catalog for the Drosophila MB provides a valuable resource for the fly neuroscience community.
Collapse
Affiliation(s)
| | - Fred Pejman Davis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA; National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Gilbert Lee Henry
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - Josh Dubnau
- Department of Anesthesiology, Stony Brook School of Medicine; Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY
| |
Collapse
|
35
|
Cheng Y, Chen D. Fruit fly research in China. J Genet Genomics 2018; 45:583-592. [PMID: 30455037 DOI: 10.1016/j.jgg.2018.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/21/2018] [Accepted: 09/29/2018] [Indexed: 11/19/2022]
Abstract
Served as a model organism over a century, fruit fly has significantly pushed forward the development of global scientific research, including in China. The high similarity in genomic features between fruit fly and human enables this tiny insect to benefit the biomedical studies of human diseases. In the past decades, Chinese biologists have used fruit fly to make numerous achievements on understanding the fundamental questions in many diverse areas of biology. Here, we review some of the recent fruit fly studies in China, and mainly focus on those studies in the fields of stem cell biology, cancer therapy and regeneration medicine, neurological disorders and epigenetics.
Collapse
Affiliation(s)
- Ying Cheng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dahua Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
36
|
Developmental Coordination during Olfactory Circuit Remodeling in Drosophila. Neuron 2018; 99:1204-1215.e5. [PMID: 30146303 DOI: 10.1016/j.neuron.2018.07.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 06/03/2018] [Accepted: 07/27/2018] [Indexed: 02/03/2023]
Abstract
Developmental neuronal remodeling is crucial for proper wiring of the adult nervous system. While remodeling of individual neuronal populations has been studied, how neuronal circuits remodel-and whether remodeling of synaptic partners is coordinated-is unknown. We found that the Drosophila anterior paired lateral (APL) neuron undergoes stereotypic remodeling during metamorphosis in a similar time frame as the mushroom body (MB) ɣ-neurons, with whom it forms a functional circuit. By simultaneously manipulating both neuronal populations, we found that cell-autonomous inhibition of ɣ-neuron pruning resulted in the inhibition of APL pruning in a process that is mediated, at least in part, by Ca2+-Calmodulin and neuronal activity dependent interaction. Finally, ectopic unpruned MB ɣ axons display ectopic connections with the APL, as well as with other neurons, at the adult, suggesting that inhibiting remodeling of one neuronal type can affect the functional wiring of the entire micro-circuit.
Collapse
|
37
|
Troup M, Yap MH, Rohrscheib C, Grabowska MJ, Ertekin D, Randeniya R, Kottler B, Larkin A, Munro K, Shaw PJ, van Swinderen B. Acute control of the sleep switch in Drosophila reveals a role for gap junctions in regulating behavioral responsiveness. eLife 2018; 7:37105. [PMID: 30109983 PMCID: PMC6117154 DOI: 10.7554/elife.37105] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 08/14/2018] [Indexed: 11/13/2022] Open
Abstract
Sleep is a dynamic process in most animals, involving distinct stages that probably perform multiple functions for the brain. Before sleep functions can be initiated, it is likely that behavioral responsiveness to the outside world needs to be reduced, even while the animal is still awake. Recent work in Drosophila has uncovered a sleep switch in the dorsal fan-shaped body (dFB) of the fly’s central brain, but it is not known whether these sleep-promoting neurons also govern the acute need to ignore salient stimuli in the environment during sleep transitions. We found that optogenetic activation of the sleep switch suppressed behavioral responsiveness to mechanical stimuli, even in awake flies, indicating a broader role for these neurons in regulating arousal. The dFB-mediated suppression mechanism and its associated neural correlates requires innexin6 expression, suggesting that the acute need to reduce sensory perception when flies fall asleep is mediated in part by electrical synapses.
Collapse
Affiliation(s)
- Michael Troup
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Melvyn Hw Yap
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Chelsie Rohrscheib
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Martyna J Grabowska
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Deniz Ertekin
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Roshini Randeniya
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Benjamin Kottler
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia.,King's College London, London, United Kingdom
| | - Aoife Larkin
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia.,University of Cambridge, Cambridge, United Kingdom
| | - Kelly Munro
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Paul J Shaw
- Washington University School of Medicine, St Louis, United States
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| |
Collapse
|
38
|
Abstract
Cortical oscillations are thought to be involved in many cognitive functions and processes. Several mechanisms have been proposed to regulate oscillations. One prominent but understudied mechanism is gap junction coupling. Gap junctions are ubiquitous in cortex between GABAergic interneurons. Moreover, recent experiments indicate their strength can be modified in an activity-dependent manner, similar to chemical synapses. We hypothesized that activity-dependent gap junction plasticity acts as a mechanism to regulate oscillations in the cortex. We developed a computational model of gap junction plasticity in a recurrent cortical network based on recent experimental findings. We showed that gap junction plasticity can serve as a homeostatic mechanism for oscillations by maintaining a tight balance between two network states: asynchronous irregular activity and synchronized oscillations. This homeostatic mechanism allows for robust communication between neuronal assemblies through two different mechanisms: transient oscillations and frequency modulation. This implies a direct functional role for gap junction plasticity in information transmission in cortex.
Collapse
Affiliation(s)
- Guillaume Pernelle
- Bioengineering Department, Imperial College London, London, United Kingdom
| | - Wilten Nicola
- Bioengineering Department, Imperial College London, London, United Kingdom
| | - Claudia Clopath
- Bioengineering Department, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
39
|
Uncovering Genomic Regions Associated with Trypanosoma Infections in Wild Populations of the Tsetse Fly Glossina fuscipes. G3-GENES GENOMES GENETICS 2018; 8:887-897. [PMID: 29343494 PMCID: PMC5844309 DOI: 10.1534/g3.117.300493] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vector-borne diseases are responsible for > 1 million deaths every year but genomic resources for most species responsible for their transmission are limited. This is true for neglected diseases such as sleeping sickness (Human African Trypanosomiasis), a disease caused by Trypanosoma parasites vectored by several species of tseste flies within the genus Glossina. We describe an integrative approach that identifies statistical associations between trypanosome infection status of Glossina fuscipes fuscipes (Gff) flies from Uganda, for which functional studies are complicated because the species cannot be easily maintained in laboratory colonies, and ∼73,000 polymorphic sites distributed across the genome. Then, we identify candidate genes involved in Gff trypanosome susceptibility by taking advantage of genomic resources from a closely related species, G. morsitans morsitans (Gmm). We compiled a comprehensive transcript library from 72 published and unpublished RNAseq experiments of trypanosome-infected and uninfected Gmm flies, and improved the current Gmm transcriptome assembly. This new assembly was then used to enhance the functional annotations on the Gff genome. As a consequence, we identified 56 candidate genes in the vicinity of the 18 regions associated with Trypanosoma infection status in Gff. Twenty-nine of these genes were differentially expressed (DE) among parasite-infected and uninfected Gmm, suggesting that their orthologs in Gff may correlate with disease transmission. These genes were involved in DNA regulation, neurophysiological functions, and immune responses. We highlight the power of integrating population and functional genomics from related species to enhance our understanding of the genetic basis of physiological traits, particularly in nonmodel organisms.
Collapse
|
40
|
Electrical synapses mediate synergism between pheromone and food odors in Drosophila melanogaster. Proc Natl Acad Sci U S A 2017; 114:E9962-E9971. [PMID: 29087946 DOI: 10.1073/pnas.1712706114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In Drosophila melanogaster, the sex pheromone produced by males, cis-vaccenyl acetate (cVA), evokes a stereotypic gender-specific behavior in both males and females. As Drosophila adults feed, mate, and oviposit on food, they perceive the pheromone as a blend against a background of food odors. Previous studies have reported that food odors enhance flies' behavioral response to cVA, specifically in virgin females. However, how and where the different olfactory inputs interact has so far remained unknown. In this study, we elucidated the neuronal mechanism underlying the response at an anatomical, functional, and behavioral level. Our data show that in virgin females cVA and the complex food odor vinegar evoke a synergistic response in the cVA-responsive glomerulus DA1. This synergism, however, does not appear at the input level of the glomerulus, but is restricted to the projection neuron level only. Notably, it is abolished by a mutation in gap junctions in projection neurons and is found to be mediated by electrical synapses between excitatory local interneurons and projection neurons. As a behavioral consequence, we demonstrate that virgin females in the presence of vinegar become receptive more rapidly to courting males, while male courtship is not affected. Altogether, our results suggest that lateral excitation via gap junctions modulates odor tuning in the antennal lobe and drives synergistic interactions between two ecologically relevant odors, representing food and sex.
Collapse
|
41
|
Long-term memory requires sequential protein synthesis in three subsets of mushroom body output neurons in Drosophila. Sci Rep 2017; 7:7112. [PMID: 28769066 PMCID: PMC5540930 DOI: 10.1038/s41598-017-07600-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/27/2017] [Indexed: 11/09/2022] Open
Abstract
Creating long-term memory (LTM) requires new protein synthesis to stabilize learning-induced synaptic changes in the brain. In the fruit fly, Drosophila melanogaster, aversive olfactory learning forms several phases of labile memory to associate an odor with coincident punishment in the mushroom body (MB). It remains unclear how the brain consolidates early labile memory into LTM. Here, we survey 183 Gal4 lines containing almost all 21 distinct types of MB output neurons (MBONs) and show that sequential synthesis of learning-induced proteins occurs at three types of MBONs. Downregulation of oo18 RNA-binding proteins (ORBs) in any of these MBONs impaired LTM. And, neurotransmission outputs from these MBONs are all required during LTM retrieval. Together, these results suggest an LTM consolidation model in which transient neural activities of early labile memory in the MB are consolidated into stable LTM at a few postsynaptic MBONs through sequential ORB-regulated local protein synthesis.
Collapse
|
42
|
Takemura SY, Aso Y, Hige T, Wong A, Lu Z, Xu CS, Rivlin PK, Hess H, Zhao T, Parag T, Berg S, Huang G, Katz W, Olbris DJ, Plaza S, Umayam L, Aniceto R, Chang LA, Lauchie S, Ogundeyi O, Ordish C, Shinomiya A, Sigmund C, Takemura S, Tran J, Turner GC, Rubin GM, Scheffer LK. A connectome of a learning and memory center in the adult Drosophila brain. eLife 2017; 6. [PMID: 28718765 PMCID: PMC5550281 DOI: 10.7554/elife.26975] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 07/17/2017] [Indexed: 12/12/2022] Open
Abstract
Understanding memory formation, storage and retrieval requires knowledge of the underlying neuronal circuits. In Drosophila, the mushroom body (MB) is the major site of associative learning. We reconstructed the morphologies and synaptic connections of all 983 neurons within the three functional units, or compartments, that compose the adult MB’s α lobe, using a dataset of isotropic 8 nm voxels collected by focused ion-beam milling scanning electron microscopy. We found that Kenyon cells (KCs), whose sparse activity encodes sensory information, each make multiple en passant synapses to MB output neurons (MBONs) in each compartment. Some MBONs have inputs from all KCs, while others differentially sample sensory modalities. Only 6% of KC>MBON synapses receive a direct synapse from a dopaminergic neuron (DAN). We identified two unanticipated classes of synapses, KC>DAN and DAN>MBON. DAN activation produces a slow depolarization of the MBON in these DAN>MBON synapses and can weaken memory recall. DOI:http://dx.doi.org/10.7554/eLife.26975.001
Collapse
Affiliation(s)
- Shin-Ya Takemura
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Toshihide Hige
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Allan Wong
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Zhiyuan Lu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Patricia K Rivlin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Harald Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Ting Zhao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Toufiq Parag
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Stuart Berg
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Gary Huang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - William Katz
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Donald J Olbris
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Stephen Plaza
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Lowell Umayam
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Roxanne Aniceto
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Lei-Ann Chang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Shirley Lauchie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Omotara Ogundeyi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Christopher Ordish
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Aya Shinomiya
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Christopher Sigmund
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Satoko Takemura
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Julie Tran
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Glenn C Turner
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Louis K Scheffer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
43
|
Genes and neural circuits for sleep of the fruit fly. Neurosci Res 2017; 118:82-91. [DOI: 10.1016/j.neures.2017.04.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/29/2017] [Accepted: 03/29/2017] [Indexed: 02/07/2023]
|
44
|
Liu Q, Tian J, Yang X, Li Y, Guo A. Locomotor Assay in Drosophila melanogaster. Bio Protoc 2017; 7:e2283. [DOI: 10.21769/bioprotoc.2283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/19/2017] [Accepted: 04/20/2017] [Indexed: 11/02/2022] Open
|
45
|
Schürmann FW. Fine structure of synaptic sites and circuits in mushroom bodies of insect brains. ARTHROPOD STRUCTURE & DEVELOPMENT 2016; 45:399-421. [PMID: 27555065 DOI: 10.1016/j.asd.2016.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/01/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
In the insect brain, mushroom bodies represent a prominent central neuropil for multisensory integration and, crucially, for learning and memory. For this reason, special attention has been focused on its small chemical synapses. Early studies on synaptic types and their distribution, using conventional electron microscopy, and recent publications have resolved basic features of synaptic circuits. More recent studies, using experimental methods for resolving neurons, such as immunocytochemistry, genetic labelling, high resolution confocal microscopy and more advanced electron microscopy, have revealed many new details about the fine structure and molecular contents of identifiable neurons of mushroom bodies and has led to more refined modelling of functional organisation. Synaptic circuitries have been described in most detail for the calyces. In contrast, the mushroom bodies' columnar peduncle and lobes have been explored to a lesser degree. In dissecting local microcircuits, the scientist is confronted with complex neuronal compartmentalisation and specific synaptic arrangements. This article reviews classical and modern studies on the fine structure of synapses and their networks in mushroom bodies across several insect species.
Collapse
Affiliation(s)
- Friedrich-Wilhelm Schürmann
- Johann-Friedrich-Blumenbach Institut für Zoologie und Anthropologie, Georg-August-University Göttingen, Berlinerstrasse 28, D-37073 Göttingen, Germany.
| |
Collapse
|