1
|
Verdonk C, Agostino M, Eto KY, Hall D, Bond C, Ramsay J. Structural basis for control of integrative and conjugative element excision and transfer by the oligomeric winged helix-turn-helix protein RdfS. Nucleic Acids Res 2025; 53:gkaf249. [PMID: 40173017 PMCID: PMC11963761 DOI: 10.1093/nar/gkaf249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/12/2025] [Accepted: 03/20/2025] [Indexed: 04/04/2025] Open
Abstract
Winged helix-turn-helix (wHTH) proteins are diverse DNA-binding proteins that often oligomerize on DNA and participate in DNA recombination and transcriptional regulation. wHTH recombination directionality factors (RDFs) associated with tyrosine recombinases, stimulate excision of prophage and integrative and conjugative elements (ICEs). RdfS is required for excision and conjugation of the Mesorhizobium japonicum R7A ICE, ICEMlSymR7A, which carries genes for nitrogen-fixing symbiosis. We show RdfS binds to DNA regions within the IntS attachment site (attP) and within the rdfS promoter, enabling RdfS to coordinate rdfS/intS expression and stimulate RdfS/IntS-mediated ICEMlSymR7A excision. Several RdfS DNA-binding sites were identified. However, no consensus motif was apparent and no individual nucleotide substitutions in attP prevented RdfS binding. RdfS forms extensive helical filaments in crystals, with subunits contacting via a novel α1-helix absent in other wHTH-RDFs. RdfS oligomerized in solution in the absence of DNA. Molecular dynamics simulations supported a role for the α1-helix in oligomerization and compaction of nucleoprotein complexes. Removal of RdfS-α1 did not eliminate DNA-binding in vitro but reduced oligomerization and abolished RdfS-mediated ICEMlSymR7A excision and conjugative transfer. We propose the novel RdfS-α1 mediated oligomerization enables RdfS to specifically recognize larger DNA regions with low primary sequence conservation through an indirect readout mechanism.
Collapse
Affiliation(s)
- Callum J Verdonk
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Curtin Medical Research Institute, Curtin University, Perth, WA 6102, Australia
- Centre for Crop and Disease Management, Curtin University, Perth, WA 6102, Australia
| | - Mark Agostino
- Curtin Medical Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Karina Yui Eto
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Curtin Medical Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Drew A Hall
- Curtin Medical Research Institute, Curtin University, Perth, WA 6102, Australia
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- Australian National Phenome Centre, Murdoch University, Perth, WA 6150, Australia
| | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Marshall Centre for Infectious Disease Research and Training, The University of Western Australia, Perth, WA 6009, Australia
| | - Joshua P Ramsay
- Curtin Medical Research Institute, Curtin University, Perth, WA 6102, Australia
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
2
|
Alsaleh A, Holland A, Shin H, Reyes T, Baksh A, Taiwo-Aiyerin O, Pigli Y, Rice P, Olorunniji F. Large serine integrases utilise scavenged phage proteins as directionality cofactors. Nucleic Acids Res 2025; 53:gkaf050. [PMID: 39907112 PMCID: PMC11795197 DOI: 10.1093/nar/gkaf050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/15/2025] [Accepted: 01/21/2025] [Indexed: 02/06/2025] Open
Abstract
Recombination directionality factors (RDFs) for large serine integrases (LSIs) are cofactor proteins that control the directionality of recombination to favour excision over insertion. Although RDFs are predicted to bind their cognate LSIs in similar ways, there is no overall common structural theme across LSI RDFs, leading to the suggestion that some of them may be moonlighting proteins with other primary functions. To test this hypothesis, we searched for characterized proteins with structures similar to the predicted structures of known RDFs. Our search shows that the RDFs for two LSIs, TG1 integrase and Bxb1 integrase, show high similarities to a single-stranded DNA binding (SSB) protein and an editing exonuclease, respectively. We present experimental data to show that Bxb1 RDF is probably an exonuclease and TG1 RDF is a functional SSB protein. We used mutational analysis to validate the integrase-RDF interface predicted by AlphaFold2 multimer for TG1 integrase and its RDF, and establish that control of recombination directionality is mediated via protein-protein interaction at the junction of recombinase's second DNA binding domain and the base of the coiled-coil domain.
Collapse
Affiliation(s)
- Abdulrazak Alsaleh
- School of Pharmacy & Biomolecular Sciences, Faculty of Health, Innovation, Technology, and Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom
| | - Alexandria Holland
- School of Pharmacy & Biomolecular Sciences, Faculty of Health, Innovation, Technology, and Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom
| | - Heewhan Shin
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, United States
| | - Tania Pena Reyes
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, United States
| | - Aron Baksh
- School of Pharmacy & Biomolecular Sciences, Faculty of Health, Innovation, Technology, and Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom
| | - Oluwateniola T Taiwo-Aiyerin
- School of Pharmacy & Biomolecular Sciences, Faculty of Health, Innovation, Technology, and Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom
| | - Ying Pigli
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, United States
| | - Phoebe A Rice
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, United States
| | - Femi J Olorunniji
- School of Pharmacy & Biomolecular Sciences, Faculty of Health, Innovation, Technology, and Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom
| |
Collapse
|
3
|
Agarwala P, Pal A, Hazra MK, Sasmal DK. Differential Mg 2+ deposition on DNA Holliday Junctions dictates the rate and stability of conformational exchange. NANOSCALE 2024; 17:520-532. [PMID: 39569634 DOI: 10.1039/d4nr02411g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
DNA Holliday junctions (HJs) are crucial intermediates in genetic recombination and genome repair processes, characterized by a dynamic nature and transitioning among multiple conformations on the timescale ranging from sub-milliseconds to seconds. Although the influence of ions on HJ dynamics has been extensively studied, precise quantification of the thermodynamic feasibility of transitions and detailed kinetic cooperativity remain unexplored. Understanding the heterogeneity of stochastic gene recombination using ensemble-averaged experimental techniques is extremely difficult because of its lack of ability to differentiate dynamics and function in a high spatiotemporal resolution. Herein, we developed a new technique that combines single-molecule fluorescence resonance energy transfer (smFRET) experiments and molecular simulation to investigate the kinetic choreography and preferential stability of HJ conformations under ionic conditions that closely mimic the physiological environment relevant to cellular biology. Our findings predict the prevalence of three distinct conformational macrostates in HJ dynamics. At low ion concentrations, HJs transition rapidly among three thermodynamically stable conformational macrostates. However, in a physiological ionic environment, the open conformation becomes predominant. Using a kinetic network model based on the multi-order time correlation function (TCF), we delineated thermodynamic parameters that govern heterogeneous dynamics as a function of divalent ion concentration. Stabilization of conformations due to an ionic environment and activation barriers concertedly affect transition rates between open and closed conformations. Furthermore, we observed a significant enhancement of Mg2+ condensation in the central region of HJs rather than branch ends, leading to a plausible conclusion that the differential stability of conformational states may be governed by the junction region of HJs rather than duplex branches. This study gives a new insight into the complex interplay between the ionic environment and HJ dynamics, offering a comprehensive understanding of their behavior under conditions relevant to cellular biology and roles in key biological processes for creating a heterogeneous nature of life.
Collapse
Affiliation(s)
- Pratibha Agarwala
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan 342037, India.
| | - Arumay Pal
- School of Biosciences, Engineering and Technology, Vellore Institute of Technology Bhopal, India
| | - Milan Kumar Hazra
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan 342037, India.
| | - Dibyendu K Sasmal
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan 342037, India.
| |
Collapse
|
4
|
Van Duyne GD, Landy A. Bacteriophage lambda site-specific recombination. Mol Microbiol 2024; 121:895-911. [PMID: 38372210 PMCID: PMC11096046 DOI: 10.1111/mmi.15241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024]
Abstract
The site-specific recombination pathway of bacteriophage λ encompasses isoenergetic but highly directional and tightly regulated integrative and excisive reactions that integrate and excise the vial chromosome into and out of the bacterial chromosome. The reactions require 240 bp of phage DNA and 21 bp of bacterial DNA comprising 16 protein binding sites that are differentially used in each pathway by the phage-encoded Int and Xis proteins and the host-encoded integration host factor and factor for inversion stimulation proteins. Structures of higher-order protein-DNA complexes of the four-way Holliday junction recombination intermediates provided clarifying insights into the mechanisms, directionality, and regulation of these two pathways, which are tightly linked to the physiology of the bacterial host cell. Here we review our current understanding of the mechanisms responsible for regulating and executing λ site-specific recombination, with an emphasis on key studies completed over the last decade.
Collapse
Affiliation(s)
- Gregory D Van Duyne
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Arthur Landy
- Department of Molecular Biology, Cell Biology, and Biochemistry, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
5
|
Santiago-Frangos A, Henriques WS, Wiegand T, Gauvin CC, Buyukyoruk M, Graham AB, Wilkinson RA, Triem L, Neselu K, Eng ET, Lander GC, Wiedenheft B. Structure reveals why genome folding is necessary for site-specific integration of foreign DNA into CRISPR arrays. Nat Struct Mol Biol 2023; 30:1675-1685. [PMID: 37710013 PMCID: PMC10872659 DOI: 10.1038/s41594-023-01097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023]
Abstract
Bacteria and archaea acquire resistance to viruses and plasmids by integrating fragments of foreign DNA into the first repeat of a CRISPR array. However, the mechanism of site-specific integration remains poorly understood. Here, we determine a 560-kDa integration complex structure that explains how Pseudomonas aeruginosa Cas (Cas1-Cas2/3) and non-Cas proteins (for example, integration host factor) fold 150 base pairs of host DNA into a U-shaped bend and a loop that protrude from Cas1-2/3 at right angles. The U-shaped bend traps foreign DNA on one face of the Cas1-2/3 integrase, while the loop places the first CRISPR repeat in the Cas1 active site. Both Cas3 proteins rotate 100 degrees to expose DNA-binding sites on either side of the Cas2 homodimer, which each bind an inverted repeat motif in the leader. Leader sequence motifs direct Cas1-2/3-mediated integration to diverse repeat sequences that have a 5'-GT. Collectively, this work reveals new DNA-binding surfaces on Cas2 that are critical for DNA folding and site-specific delivery of foreign DNA.
Collapse
Affiliation(s)
| | - William S Henriques
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Tanner Wiegand
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Colin C Gauvin
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
- Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| | - Murat Buyukyoruk
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Ava B Graham
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Royce A Wilkinson
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Lenny Triem
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Kasahun Neselu
- Simons Electron Microscopy Center, National Resource for Automated Molecular Microscopy, New York Structural Biology Center, New York, NY, USA
| | - Edward T Eng
- Simons Electron Microscopy Center, National Resource for Automated Molecular Microscopy, New York Structural Biology Center, New York, NY, USA
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Blake Wiedenheft
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
6
|
Norris V, Kayser C, Muskhelishvili G, Konto-Ghiorghi Y. The roles of nucleoid-associated proteins and topoisomerases in chromosome structure, strand segregation, and the generation of phenotypic heterogeneity in bacteria. FEMS Microbiol Rev 2023; 47:fuac049. [PMID: 36549664 DOI: 10.1093/femsre/fuac049] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
How to adapt to a changing environment is a fundamental, recurrent problem confronting cells. One solution is for cells to organize their constituents into a limited number of spatially extended, functionally relevant, macromolecular assemblies or hyperstructures, and then to segregate these hyperstructures asymmetrically into daughter cells. This asymmetric segregation becomes a particularly powerful way of generating a coherent phenotypic diversity when the segregation of certain hyperstructures is with only one of the parental DNA strands and when this pattern of segregation continues over successive generations. Candidate hyperstructures for such asymmetric segregation in prokaryotes include those containing the nucleoid-associated proteins (NAPs) and the topoisomerases. Another solution to the problem of creating a coherent phenotypic diversity is by creating a growth-environment-dependent gradient of supercoiling generated along the replication origin-to-terminus axis of the bacterial chromosome. This gradient is modulated by transcription, NAPs, and topoisomerases. Here, we focus primarily on two topoisomerases, TopoIV and DNA gyrase in Escherichia coli, on three of its NAPs (H-NS, HU, and IHF), and on the single-stranded binding protein, SSB. We propose that the combination of supercoiling-gradient-dependent and strand-segregation-dependent topoisomerase activities result in significant differences in the supercoiling of daughter chromosomes, and hence in the phenotypes of daughter cells.
Collapse
Affiliation(s)
- Vic Norris
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| | - Clara Kayser
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| | - Georgi Muskhelishvili
- Agricultural University of Georgia, School of Natural Sciences, 0159 Tbilisi, Georgia
| | - Yoan Konto-Ghiorghi
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| |
Collapse
|
7
|
Fosado YAG, Howard J, Weir S, Noy A, Leake MC, Michieletto D. Fluidification of Entanglements by a DNA Bending Protein. PHYSICAL REVIEW LETTERS 2023; 130:058203. [PMID: 36800460 DOI: 10.1103/physrevlett.130.058203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
In spite of the nanoscale and single-molecule insights into nucleoid associated proteins (NAPs), their role in modulating the mesoscale viscoelasticity of entangled DNA has been overlooked so far. By combining microrheology and molecular dynamics simulation, we find that the abundant NAP "integration host factor" (IHF) lowers the viscosity of entangled λDNA 20-fold at physiological concentrations and stoichiometries. Our results suggest that IHF may play a previously unappreciated role in resolving DNA entanglements and in turn may be acting as a "genomic fluidizer" for bacterial genomes.
Collapse
Affiliation(s)
- Yair A G Fosado
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Jamieson Howard
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, United Kingdom
| | - Simon Weir
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Agnes Noy
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, United Kingdom
| | - Mark C Leake
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, United Kingdom
- Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | - Davide Michieletto
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
8
|
Suzuki S, Osada S, Imamura D, Sato T. New Bacillus subtilis vector, pSSβ, as genetic tool for site-specific integration and excision of cloned DNA, and prophage elimination. J GEN APPL MICROBIOL 2022; 68:71-78. [PMID: 35387911 DOI: 10.2323/jgam.2021.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Site-specific recombination (SSR) systems are employed in many genetic mobile elements, including temperate phages, for their integration and excision. Recently, they have also been used as tools for applications in fields ranging from basic to synthetic biology. SPβ is a temperate phage of the Siphoviridae family found in the laboratory standard Bacillus subtilis strain 168. SPβ encodes a serine-type recombinase, SprA, and recombination directionality factor (RDF), SprB. SprA catalyzes recombination between the attachment site of the phage, attP, and that of the host, attB, to integrate phage genome into the attB site of the host genome and generate attL and attR at both ends of the prophage genome. SprB works in conjunction with SprA and switches from attB/attP to attL/R recombination, which leads to excision of the prophage. In the present study, we took advantage of this highly efficient recombination system to develop a site-specific integration and excision plasmid vector, named pSSβ. It was constructed using pUC plasmid and the SSR system components, attP, sprA and sprB of SPβ. pSSβ was integrated into the attB site with a significantly high efficiency, and the resulting pSSβ integrated strain also easily eliminated pSSβ itself from the host genome by the induction of SprB expression with xylose. This report presents two applications using pSSβ that are particularly suitable for gene complementation experiments and for a curing system of SPβ prophage, that may serve as a model system for the removal of prophages in other bacteria.
Collapse
Affiliation(s)
- Shota Suzuki
- Research Center of Micro-Nano Technology, Hosei University.,Department of Life Science, College of Science, Rikkyo University
| | - Sachie Osada
- Department of Frontier Bioscience, Hosei University
| | | | - Tsutomu Sato
- Research Center of Micro-Nano Technology, Hosei University.,Department of Frontier Bioscience, Hosei University
| |
Collapse
|
9
|
Bioinformatic and experimental characterization of SEN1998: a conserved gene carried by the Enterobacteriaceae-associated ROD21-like family of genomic islands. Sci Rep 2022; 12:2435. [PMID: 35165310 PMCID: PMC8844411 DOI: 10.1038/s41598-022-06183-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/12/2022] [Indexed: 12/20/2022] Open
Abstract
Genomic islands (GIs) are horizontally transferred elements that shape bacterial genomes and contributes to the adaptation to different environments. Some GIs encode an integrase and a recombination directionality factor (RDF), which are the molecular GI-encoded machinery that promotes the island excision from the chromosome, the first step for the spread of GIs by horizontal transfer. Although less studied, this process can also play a role in the virulence of bacterial pathogens. While the excision of GIs is thought to be similar to that observed in bacteriophages, this mechanism has been only studied in a few families of islands. Here, we aimed to gain a better understanding of the factors involved in the excision of ROD21 a pathogenicity island of the food-borne pathogen Salmonella enterica serovar Enteritidis and the most studied member of the recently described Enterobacteriaceae-associated ROD21-like family of GIs. Using bioinformatic and experimental approaches, we characterized the conserved gene SEN1998, showing that it encodes a protein with the features of an RDF that binds to the regulatory regions involved in the excision of ROD21. While deletion or overexpression of SEN1998 did not alter the expression of the integrase-encoding gene SEN1970, a slight but significant trend was observed in the excision of the island. Surprisingly, we found that the expression of both genes, SEN1998 and SEN1970, were negatively correlated to the excision of ROD21 which showed a growth phase-dependent pattern. Our findings contribute to the growing body of knowledge regarding the excision of GIs, providing insights about ROD21 and the recently described EARL family of genomic islands.
Collapse
|
10
|
Watson GD, Chan EW, Leake MC, Noy A. Structural interplay between DNA-shape protein recognition and supercoiling: The case of IHF. Comput Struct Biotechnol J 2022; 20:5264-5274. [PMID: 36212531 PMCID: PMC9519438 DOI: 10.1016/j.csbj.2022.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 11/03/2022] Open
|
11
|
Yoshua SB, Watson GD, Howard JAL, Velasco-Berrelleza V, Leake MC, Noy A. Integration host factor bends and bridges DNA in a multiplicity of binding modes with varying specificity. Nucleic Acids Res 2021; 49:8684-8698. [PMID: 34352078 PMCID: PMC8421141 DOI: 10.1093/nar/gkab641] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 07/02/2021] [Accepted: 07/16/2021] [Indexed: 11/29/2022] Open
Abstract
Nucleoid-associated proteins (NAPs) are crucial in organizing prokaryotic DNA and regulating genes. Vital to these activities are complex nucleoprotein structures, however, how these form remains unclear. Integration host factor (IHF) is an Escherichia coli NAP that creates very sharp bends in DNA at sequences relevant to several functions including transcription and recombination, and is also responsible for general DNA compaction when bound non-specifically. We show that IHF–DNA structural multimodality is more elaborate than previously thought, and provide insights into how this drives mechanical switching towards strongly bent DNA. Using single-molecule atomic force microscopy and atomic molecular dynamics simulations we find three binding modes in roughly equal proportions: ‘associated’ (73° of DNA bend), ‘half-wrapped’ (107°) and ‘fully-wrapped’ (147°), only the latter occurring with sequence specificity. We show IHF bridges two DNA double helices through non-specific recognition that gives IHF a stoichiometry greater than one and enables DNA mesh assembly. We observe that IHF-DNA structural multiplicity is driven through non-specific electrostatic interactions that we anticipate to be a general NAP feature for physical organization of chromosomes.
Collapse
Affiliation(s)
- Samuel B Yoshua
- Department of Physics, University of York, York YO10 5DD, UK
| | - George D Watson
- Department of Physics, University of York, York YO10 5DD, UK
| | | | | | - Mark C Leake
- Department of Physics, University of York, York YO10 5DD, UK.,Department of Biology, University of York, York YO10 5DD, UK
| | - Agnes Noy
- Department of Physics, University of York, York YO10 5DD, UK
| |
Collapse
|
12
|
Smyshlyaev G, Bateman A, Barabas O. Sequence analysis of tyrosine recombinases allows annotation of mobile genetic elements in prokaryotic genomes. Mol Syst Biol 2021; 17:e9880. [PMID: 34018328 PMCID: PMC8138268 DOI: 10.15252/msb.20209880] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022] Open
Abstract
Mobile genetic elements (MGEs) sequester and mobilize antibiotic resistance genes across bacterial genomes. Efficient and reliable identification of such elements is necessary to follow resistance spreading. However, automated tools for MGE identification are missing. Tyrosine recombinase (YR) proteins drive MGE mobilization and could provide markers for MGE detection, but they constitute a diverse family also involved in housekeeping functions. Here, we conducted a comprehensive survey of YRs from bacterial, archaeal, and phage genomes and developed a sequence-based classification system that dissects the characteristics of MGE-borne YRs. We revealed that MGE-related YRs evolved from non-mobile YRs by acquisition of a regulatory arm-binding domain that is essential for their mobility function. Based on these results, we further identified numerous unknown MGEs. This work provides a resource for comparative analysis and functional annotation of YRs and aids the development of computational tools for MGE annotation. Additionally, we reveal how YRs adapted to drive gene transfer across species and provide a tool to better characterize antibiotic resistance dissemination.
Collapse
Affiliation(s)
- Georgy Smyshlyaev
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)HinxtonUK
- European Molecular Biology Laboratory (EMBL)Structural and Computational Biology UnitHeidelbergGermany
- Department of Molecular BiologyUniversity of GenevaGenevaSwitzerland
| | - Alex Bateman
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)HinxtonUK
| | - Orsolya Barabas
- European Molecular Biology Laboratory (EMBL)Structural and Computational Biology UnitHeidelbergGermany
- Department of Molecular BiologyUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
13
|
Cutts EE, Barry Egan J, Dodd IB, Shearwin KE. A quantitative binding model for the Apl protein, the dual purpose recombination-directionality factor and lysis-lysogeny regulator of bacteriophage 186. Nucleic Acids Res 2020; 48:8914-8926. [PMID: 32789491 PMCID: PMC7498355 DOI: 10.1093/nar/gkaa655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 11/26/2022] Open
Abstract
The Apl protein of bacteriophage 186 functions both as an excisionase and as a transcriptional regulator; binding to the phage attachment site (att), and also between the major early phage promoters (pR-pL). Like other recombination directionality factors (RDFs), Apl binding sites are direct repeats spaced one DNA helix turn apart. Here, we use in vitro binding studies with purified Apl and pR-pL DNA to show that Apl binds to multiple sites with high cooperativity, bends the DNA and spreads from specific binding sites into adjacent non-specific DNA; features that are shared with other RDFs. By analysing Apl's repression of pR and pL, and the effect of operator mutants in vivo with a simple mathematical model, we were able to extract estimates of binding energies for single specific and non-specific sites and for Apl cooperativity, revealing that Apl monomers bind to DNA with low sequence specificity but with strong cooperativity between immediate neighbours. This model fit was then independently validated with in vitro data. The model we employed here is a simple but powerful tool that enabled better understanding of the balance between binding affinity and cooperativity required for RDF function. A modelling approach such as this is broadly applicable to other systems.
Collapse
Affiliation(s)
- Erin E Cutts
- Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide 5005, Australia
| | - J Barry Egan
- Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide 5005, Australia
| | - Ian B Dodd
- Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide 5005, Australia
| | - Keith E Shearwin
- Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
14
|
Zehni M, Donati L, Soubies E, Zhao ZJ, Unser M. Joint Angular Refinement and Reconstruction for Single-Particle Cryo-EM. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2020; 29:6151-6163. [PMID: 32248108 DOI: 10.1109/tip.2020.2984313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Single-particle cryo-electron microscopy (cryo-EM) reconstructs the three-dimensional (3D) structure of biomolecules from a large set of 2D projection images with random and unknown orientations. A crucial step in the single-particle cryo-EM pipeline is 3D refinement, which resolves a highresolution 3D structure from an initial approximate volume by refining the estimation of the orientation of each projection. In this work, we propose a new approach that refines the projection angles on the continuum. We formulate the optimization problem over the density map and the orientations jointly. The density map is updated using the efficient alternating-direction method of multipliers, while the orientations are updated through a semicoordinate- wise gradient descent for which we provide an explicit derivation of the gradient. Our method eliminates the requirement for a fine discretization of the orientation space and does away with the classical but computationally expensive templatematching step. Numerical results demonstrate the feasibility and performance of our approach compared to several baselines.
Collapse
|
15
|
Compatibility of Site-Specific Recombination Units between Mobile Genetic Elements. iScience 2019; 23:100805. [PMID: 31926432 PMCID: PMC6957869 DOI: 10.1016/j.isci.2019.100805] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/06/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022] Open
Abstract
Site-specific recombination (SSR) systems are employed for transfer of mobile genetic elements (MGEs), such as lysogenic phages and integrative conjugative elements (ICEs). SSR between attP/I and attB sites is mediated by an integrase (Int) and a recombination directionality factor (RDF). The genome of Bacillus subtilis 168 contains SPβ, an active prophage, skin, a defective prophage, and ICEBs1, an integrative conjugative element. Each of these MGEs harbors the classic SSR unit attL-int-rdf-attR. Here, we demonstrate that these SSR units are all compatible and can substitute for one another. Specifically, when SPβ is turned into a defective prophage by deletion of its SSR unit, introduction of the SSR unit of skin or ICE converts it back to an active prophage. We also identified closely related prophages with distinct SSR units that control developmentally regulated gene rearrangements of kamA (L-lysine 2,3-aminomutase). These results suggest that SSR units are interchangeable components of MGEs. Lysogenic phage-derived SSR unit is sufficient to drive SSR of ICE and vice versa Defective prophage-derived SSR unit can drive the excision of the active lysogenic phage Closely related prophages with distinct SSR units control each gene rearrangements Correspondence between MGEs and their cognate SSR units is not absolute
Collapse
|
16
|
Hancock SP, Cascio D, Johnson RC. Cooperative DNA binding by proteins through DNA shape complementarity. Nucleic Acids Res 2019; 47:8874-8887. [PMID: 31616952 PMCID: PMC7145599 DOI: 10.1093/nar/gkz642] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 01/13/2023] Open
Abstract
Localized arrays of proteins cooperatively assemble onto chromosomes to control DNA activity in many contexts. Binding cooperativity is often mediated by specific protein-protein interactions, but cooperativity through DNA structure is becoming increasingly recognized as an additional mechanism. During the site-specific DNA recombination reaction that excises phage λ from the chromosome, the bacterial DNA architectural protein Fis recruits multiple λ-encoded Xis proteins to the attR recombination site. Here, we report X-ray crystal structures of DNA complexes containing Fis + Xis, which show little, if any, contacts between the two proteins. Comparisons with structures of DNA complexes containing only Fis or Xis, together with mutant protein and DNA binding studies, support a mechanism for cooperative protein binding solely by DNA allostery. Fis binding both molds the minor groove to potentiate insertion of the Xis β-hairpin wing motif and bends the DNA to facilitate Xis-DNA contacts within the major groove. The Fis-structured minor groove shape that is optimized for Xis binding requires a precisely positioned pyrimidine-purine base-pair step, whose location has been shown to modulate minor groove widths in Fis-bound complexes to different DNA targets.
Collapse
MESH Headings
- Allosteric Site
- Bacteriophage lambda/genetics
- Bacteriophage lambda/metabolism
- Base Sequence
- Binding Sites
- Chromosomes, Bacterial/chemistry
- Chromosomes, Bacterial/metabolism
- Cloning, Molecular
- Crystallography, X-Ray
- DNA Nucleotidyltransferases/chemistry
- DNA Nucleotidyltransferases/genetics
- DNA Nucleotidyltransferases/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Factor For Inversion Stimulation Protein/chemistry
- Factor For Inversion Stimulation Protein/genetics
- Factor For Inversion Stimulation Protein/metabolism
- Gene Expression
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Kinetics
- Models, Molecular
- Nucleic Acid Conformation
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Recombinational DNA Repair
- Sequence Alignment
- Thermodynamics
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Stephen P Hancock
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA 90095-1737, USA
- Department of Chemistry, Towson University, 8000 York Rd., Towson, MD 21252, USA
| | - Duilio Cascio
- University of California at Los Angeles-Department of Energy Institute of Genomics and Proteomics, University of California at Los Angeles, Los Angeles, CA 90095-1570, USA
| | - Reid C Johnson
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA 90095-1737, USA
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
17
|
Connolly M, Arra A, Zvoda V, Steinbach PJ, Rice PA, Ansari A. Static Kinks or Flexible Hinges: Multiple Conformations of Bent DNA Bound to Integration Host Factor Revealed by Fluorescence Lifetime Measurements. J Phys Chem B 2018; 122:11519-11534. [DOI: 10.1021/acs.jpcb.8b07405] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mitchell Connolly
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Aline Arra
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Viktoriya Zvoda
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Peter J. Steinbach
- Center for Molecular Modeling, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Phoebe A. Rice
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, Illinois 60637, United States
| | - Anjum Ansari
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
18
|
Fan HF, Ma CH, Jayaram M. Single-Molecule Tethered Particle Motion: Stepwise Analyses of Site-Specific DNA Recombination. MICROMACHINES 2018; 9:E216. [PMID: 30424148 PMCID: PMC6187709 DOI: 10.3390/mi9050216] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/25/2018] [Accepted: 04/28/2018] [Indexed: 12/17/2022]
Abstract
Tethered particle motion/microscopy (TPM) is a biophysical tool used to analyze changes in the effective length of a polymer, tethered at one end, under changing conditions. The tether length is measured indirectly by recording the Brownian motion amplitude of a bead attached to the other end. In the biological realm, DNA, whose interactions with proteins are often accompanied by apparent or real changes in length, has almost exclusively been the subject of TPM studies. TPM has been employed to study DNA bending, looping and wrapping, DNA compaction, high-order DNA⁻protein assembly, and protein translocation along DNA. Our TPM analyses have focused on tyrosine and serine site-specific recombinases. Their pre-chemical interactions with DNA cause reversible changes in DNA length, detectable by TPM. The chemical steps of recombination, depending on the substrate and the type of recombinase, may result in a permanent length change. Single molecule TPM time traces provide thermodynamic and kinetic information on each step of the recombination pathway. They reveal how mechanistically related recombinases may differ in their early commitment to recombination, reversibility of individual steps, and in the rate-limiting step of the reaction. They shed light on the pre-chemical roles of catalytic residues, and on the mechanisms by which accessory proteins regulate recombination directionality.
Collapse
Affiliation(s)
- Hsiu-Fang Fan
- Biophotonics and Molecular Imaging Center, Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan.
| | - Chien-Hui Ma
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| | - Makkuni Jayaram
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
19
|
Wright AV, Liu JJ, Knott GJ, Doxzen KW, Nogales E, Doudna JA. Structures of the CRISPR genome integration complex. Science 2017; 357:1113-1118. [PMID: 28729350 DOI: 10.1126/science.aao0679] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 07/13/2017] [Indexed: 12/21/2022]
Abstract
CRISPR-Cas systems depend on the Cas1-Cas2 integrase to capture and integrate short foreign DNA fragments into the CRISPR locus, enabling adaptation to new viruses. We present crystal structures of Cas1-Cas2 bound to both donor and target DNA in intermediate and product integration complexes, as well as a cryo-electron microscopy structure of the full CRISPR locus integration complex, including the accessory protein IHF (integration host factor). The structures show unexpectedly that indirect sequence recognition dictates integration site selection by favoring deformation of the repeat and the flanking sequences. IHF binding bends the DNA sharply, bringing an upstream recognition motif into contact with Cas1 to increase both the specificity and efficiency of integration. These results explain how the Cas1-Cas2 CRISPR integrase recognizes a sequence-dependent DNA structure to ensure site-selective CRISPR array expansion during the initial step of bacterial adaptive immunity.
Collapse
Affiliation(s)
- Addison V Wright
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jun-Jie Liu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Gavin J Knott
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kevin W Doxzen
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Eva Nogales
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA. .,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.,Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA.,Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA.,Center for RNA Systems Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|