1
|
Defelipe LA, Veith K, Burastero O, Kupriianova T, Bento I, Skruzny M, Kölbel K, Uetrecht C, Thuenauer R, García-Alai MM. Subtleties in Clathrin heavy chain binding boxes provide selectivity among adaptor proteins of budding yeast. Nat Commun 2024; 15:9655. [PMID: 39511183 PMCID: PMC11543927 DOI: 10.1038/s41467-024-54037-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024] Open
Abstract
Clathrin forms a triskelion, or three-legged, network that regulates cellular processes by facilitating cargo internalization and trafficking in eukaryotes. Its N-terminal domain is crucial for interacting with adaptor proteins, which link clathrin to the membrane and engage with specific cargo. The N-terminal domain contains up to four adaptor-binding sites, though their role in preferential occupancy by adaptor proteins remains unclear. In this study, we examine the binding hierarchy of adaptors for clathrin, using integrative biophysical and structural approaches, along with in vivo functional experiments. We find that yeast epsin Ent5 has the highest affinity for clathrin, highlighting its key role in cellular trafficking. Epsins Ent1 and Ent2, crucial for endocytosis but thought to have redundant functions, show distinct binding patterns. Ent1 exhibits stronger interactions with clathrin than Ent2, suggesting a functional divergence toward actin binding. These results offer molecular insights into adaptor protein selectivity, suggesting they competitively bind clathrin while also targeting three different clathrin sites.
Collapse
Affiliation(s)
- Lucas A Defelipe
- European Molecular Biology Laboratory - Hamburg Unit, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | - Katharina Veith
- European Molecular Biology Laboratory - Hamburg Unit, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | - Osvaldo Burastero
- European Molecular Biology Laboratory - Hamburg Unit, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | - Tatiana Kupriianova
- European Molecular Biology Laboratory - Hamburg Unit, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | - Isabel Bento
- European Molecular Biology Laboratory - Hamburg Unit, Hamburg, Germany
| | - Michal Skruzny
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Carl Zeiss Microscopy GmbH, Jena, Germany
| | - Knut Kölbel
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- Deutsches Elektronen Synchrotron - DESY, Hamburg, Germany
| | - Charlotte Uetrecht
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- Deutsches Elektronen Synchrotron - DESY, Hamburg, Germany
- Institute of Chemistry and Metabolomics, University of Lübeck, Lübeck, Germany
| | - Roland Thuenauer
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- Technology Platform Light Microscopy (TPLM), Universität Hamburg (UHH), Hamburg, Germany
| | - Maria M García-Alai
- European Molecular Biology Laboratory - Hamburg Unit, Hamburg, Germany.
- Centre for Structural Systems Biology, Hamburg, Germany.
| |
Collapse
|
2
|
Wang X, Berro J, Ma R. Vesiculation pathways in clathrin-mediated endocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607731. [PMID: 39185216 PMCID: PMC11343097 DOI: 10.1101/2024.08.13.607731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
During clathrin-mediated endocytosis, a patch of flat plasma membrane is internalized to form a vesicle. In mammalian cells, how the clathrin coat deforms the membrane into a vesicle remains unclear and two main hypotheses have been debated. The "constant area" hypothesis assumes that clathrin molecules initially form a flat lattice on the membrane and deform the membrane by changing its intrinsic curvature while keeping the coating area constant. The alternative "constant curvature" hypothesis assumes that the intrinsic curvature of the clathrin lattice remains constant during the formation of a vesicle while the surface area it covers increases. Previous experimental studies were unable to unambiguously determine which hypothesis is correct. In this paper, we show that these two hypotheses are only two extreme cases of a continuum of vesiculation pathways if we account for the free energies associated with clathrin assembly and curvature generation. By tracing the negative gradient of the free energy, we define vesiculation pathways in the phase space of the coating area and the intrinsic curvature of clathrin coat. Our results show that, overall, the differences in measurable membrane morphology between the different models are not as big as expected, and the main differences are most salient at the early stage of endocytosis. Furthermore, the best fitting pathway to experimental data is not compatible with the constant-curvature model and resembles a constant-area-like pathway where the coating area initially expands with minor changes in the intrinsic curvature, later followed by a dramatic increase in the intrinsic curvature and minor change in the coating area. Our results also suggest that experimental measurement of the tip radius and the projected area of the clathrin coat will be the key to distinguish between models.
Collapse
Affiliation(s)
- Xinran Wang
- Department of Physics, Xiamen University, Xiamen 361005, China
- Fujian Provincial Key Lab for Soft Functional Materials Research, Xiamen University, 361005, China
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Nanobiology Institute, Yale University, West Haven, CT 06516, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rui Ma
- Department of Physics, Xiamen University, Xiamen 361005, China
- Fujian Provincial Key Lab for Soft Functional Materials Research, Xiamen University, 361005, China
| |
Collapse
|
3
|
Johnson A. Mechanistic divergences of endocytic clathrin-coated vesicle formation in mammals, yeasts and plants. J Cell Sci 2024; 137:jcs261847. [PMID: 39161994 PMCID: PMC11361644 DOI: 10.1242/jcs.261847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Clathrin-coated vesicles (CCVs), generated by clathrin-mediated endocytosis (CME), are essential eukaryotic trafficking organelles that transport extracellular and plasma membrane-bound materials into the cell. In this Review, we explore mechanisms of CME in mammals, yeasts and plants, and highlight recent advances in the characterization of endocytosis in plants. Plants separated from mammals and yeast over 1.5 billion years ago, and plant cells have distinct biophysical parameters that can influence CME, such as extreme turgor pressure. Plants can therefore provide a wider perspective on fundamental processes in eukaryotic cells. We compare key mechanisms that drive CCV formation and explore what these mechanisms might reveal about the core principles of endocytosis across the tree of life. Fascinatingly, CME in plants appears to more closely resemble that in mammalian cells than that in yeasts, despite plants being evolutionarily further from mammals than yeast. Endocytic initiation appears to be highly conserved across these three systems, requiring similar protein domains and regulatory processes. Clathrin coat proteins and their honeycomb lattice structures are also highly conserved. However, major differences are found in membrane-bending mechanisms. Unlike in mammals or yeast, plant endocytosis occurs independently of actin, highlighting that mechanistic assumptions about CME across different systems should be made with caution.
Collapse
Affiliation(s)
- Alexander Johnson
- Division of Anatomy, Center for Anatomy & Cell Biology, Medical University of Vienna, Vienna 1090, Austria
- Medical Imaging Cluster (MIC), Medical University of Vienna, Vienna 1090, Austria
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
4
|
Lin Z, Mao Z, Ma R. Inferring biophysical properties of membranes during endocytosis using machine learning. SOFT MATTER 2024; 20:651-660. [PMID: 38164011 DOI: 10.1039/d3sm01221b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Endocytosis is a fundamental cellular process in eukaryotic cells that facilitates the transport of molecules into the cell. With the help of fluorescence microscopy and electron tomography, researchers have accumulated extensive geometric data of membrane shapes during endocytosis. These data contain rich information about the mechanical properties of membranes, which are hard to access via experiments due to the small dimensions of the endocytic patch. In this study, we propose an approach that combines machine learning with the Helfrich theory of membranes to infer the mechanical properties of membranes during endocytosis from a dataset of membrane shapes extracted from electron tomography. Our results demonstrate that machine learning can output solutions that both match the experimental profile and satisfy the membrane shape equations derived from Helfrich theory. The learning results show that during the early stage of endocytosis, the inferred membrane tension is negative, indicating the presence of strong compressive forces at the boundary of the endocytic invagination. Our method presents a generic framework for extracting membrane information from super-resolution imaging.
Collapse
Affiliation(s)
- Zhiwei Lin
- Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China.
| | - Zhiping Mao
- School of Mathematical Sciences, Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computing, Xiamen University, Xiamen 361005, China.
| | - Rui Ma
- Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China.
- Fujian Provincial Key Laboratory for Soft Functional Materials Research, Research Institute for Biomimetics and Soft Matter, Xiamen University, Xiamen 361005, China
| |
Collapse
|
5
|
Transcriptomic-Guided Phosphonate Utilization Analysis Unveils Evidence of Clathrin-Mediated Endocytosis and Phospholipid Synthesis in the Model Diatom, Phaeodactylum tricornutum. mSystems 2022; 7:e0056322. [PMID: 36317887 PMCID: PMC9765203 DOI: 10.1128/msystems.00563-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Phosphonates are important components of marine organic phosphorus, but their bioavailability and catabolism by eukaryotic phytoplankton remain enigmatic. Here, diatom Phaeodactylum tricornutum was used to investigate the bioavailability of phosphonates and describe the underlying molecular mechanism. The results showed that 2-aminoethylphosphonic acid (2-AEP) can be utilized as an alternative phosphorus source. Comparative transcriptomics revealed that the utilization of 2-AEP comprised 2 steps, including molecular uptake through clathrin-mediated endocytosis and incorporation into the membrane phospholipids in the form of diacylglyceryl-2-AEP (DAG-2-AEP). In the global ocean, we found the prevalence and dynamic expression pattern of key genes that are responsible for vesicle formation (CLTC, AP-2) and DAG-AEP synthesis (PCYT2, EPT1) in diatom assemblages. This study elucidates a distinctive mechanism of phosphonate utilization by diatoms, and discusses the ecological implications. IMPORTANCE Phosphonates contribute ~25% of total dissolved organic phosphorus in the ocean, and are found to be important for marine phosphorus biogeochemical cycle. As a type of biogenic phosphonate produced by microorganisms, 2-aminoethylphosphonic acid (2-AEP) widely exists in the ocean. It is well known that 2-AEP can be cleaved and utilized by prokaryotes, but its ability to support the growth of eukaryotic phytoplankton remains unclear. Our research identified the bioavailability of 2-AEP for the diatom Phaeodactylum tricornutum, and proposed a distinctive metabolic pathway of 2-AEP utilization. Different from the enzymatic hydrolysis of phosphonates, the results suggested that P. tricornutum utilizes 2-AEP by incorporating it into phospholipid instead of cleaving the C-P bond. Moreover, the ubiquitous distribution of associated representative gene transcripts in the environmental assemblages and the higher gene transcript abundance in the cold regions were observed, which suggests the possible environmental adaption of 2-AEP utilization by diatoms.
Collapse
|
6
|
Skruzny M. The endocytic protein machinery as an actin-driven membrane-remodeling machine. Eur J Cell Biol 2022; 101:151267. [PMID: 35970066 DOI: 10.1016/j.ejcb.2022.151267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022] Open
Abstract
In clathrin-mediated endocytosis, a principal membrane trafficking route of all eukaryotic cells, forces are applied to invaginate the plasma membrane and form endocytic vesicles. These forces are provided by specific endocytic proteins and the polymerizing actin cytoskeleton. One of the best-studied endocytic systems is endocytosis in yeast, known for its simplicity, experimental amenability, and overall similarity to human endocytosis. Importantly, the yeast endocytic protein machinery generates and transmits tremendous force to bend the plasma membrane, making this system beneficial for mechanistic studies of cellular force-driven membrane reshaping. This review summarizes important protein players, molecular functions, applied forces, and open questions and perspectives of this robust, actin-powered membrane-remodeling protein machine.
Collapse
Affiliation(s)
- Michal Skruzny
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
7
|
Schiano Lomoriello I, Sigismund S, Day KJ. Biophysics of endocytic vesicle formation: A focus on liquid–liquid phase separation. Curr Opin Cell Biol 2022; 75:102068. [DOI: 10.1016/j.ceb.2022.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
|
8
|
Abstract
The cytoskeleton is a complex of detergent-insoluble components of the cytoplasm playing critical roles in cell motility, shape generation, and mechanical properties of a cell. Fibrillar polymers-actin filaments, microtubules, and intermediate filaments-are major constituents of the cytoskeleton, which constantly change their organization during cellular activities. The actin cytoskeleton is especially polymorphic, as actin filaments can form multiple higher-order assemblies performing different functions. Structural information about cytoskeleton organization is critical for understanding its functions and mechanisms underlying various forms of cellular activity. Because of the nanometer-scale thickness of cytoskeletal fibers, electron microscopy (EM) is a key tool to determine the structure of the cytoskeleton.This article describes application of rotary shadowing (or platinum replica ) EM (PREM) for visualization of the cytoskeleton . The procedure is applicable to thin cultured cells growing on glass coverslips and consists of detergent extraction (or mechanical "unroofing") of cells to expose their cytoskeleton , chemical fixation to provide stability, ethanol dehydration and critical point drying to preserve three-dimensionality, rotary shadowing with platinum to create contrast, and carbon coating to stabilize replicas. This technique provides easily interpretable three-dimensional images, in which individual cytoskeletal fibers are clearly resolved and individual proteins can be identified by immunogold labeling. More importantly, PREM is easily compatible with live cell imaging, so that one can correlate the dynamics of a cell or its components, e.g., expressed fluorescent proteins, with high-resolution structural organization of the cytoskeleton in the same cell.
Collapse
Affiliation(s)
- Tatyana Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Yan X, Wang Y, Xu M, Dahhan DA, Liu C, Zhang Y, Lin J, Bednarek SY, Pan J. Cross-talk between clathrin-dependent post-Golgi trafficking and clathrin-mediated endocytosis in Arabidopsis root cells. THE PLANT CELL 2021; 33:3057-3075. [PMID: 34240193 PMCID: PMC8462817 DOI: 10.1093/plcell/koab180] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/30/2021] [Indexed: 05/26/2023]
Abstract
Coupling of post-Golgi and endocytic membrane transport ensures that the flow of materials to/from the plasma membrane (PM) is properly balanced. The mechanisms underlying the coordinated trafficking of PM proteins in plants, however, are not well understood. In plant cells, clathrin and its adaptor protein complexes, AP-2 and the TPLATE complex (TPC) at the PM, and AP-1 at the trans-Golgi network/early endosome (TGN/EE), function in clathrin-mediated endocytosis (CME) and post-Golgi trafficking. Here, we utilized mutants with defects in clathrin-dependent post-Golgi trafficking and CME, in combination with other cytological and pharmacological approaches, to further investigate the machinery behind the coordination of protein delivery and recycling to/from the TGN/EE and PM in Arabidopsis (Arabidopsis thaliana) root cells. In mutants with defective AP-2-/TPC-dependent CME, we determined that clathrin and AP-1 recruitment to the TGN/EE as well as exocytosis are significantly impaired. Likewise, defects in AP-1-dependent post-Golgi trafficking and pharmacological inhibition of exocytosis resulted in the reduced association of clathrin and AP-2/TPC subunits with the PM and a reduction in the internalization of cargoes via CME. Together, these results suggest that post-Golgi trafficking and CME are coupled via modulation of clathrin and adaptor protein complex recruitment to the TGN/EE and PM.
Collapse
Affiliation(s)
- Xu Yan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yutong Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Mei Xu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dana A. Dahhan
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | - Chan Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Jinxing Lin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Sebastian Y. Bednarek
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | - Jianwei Pan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
10
|
Lizarrondo J, Klebl DP, Niebling S, Abella M, Schroer MA, Mertens HDT, Veith K, Thuenauer R, Svergun DI, Skruzny M, Sobott F, Muench SP, Garcia-Alai MM. Structure of the endocytic adaptor complex reveals the basis for efficient membrane anchoring during clathrin-mediated endocytosis. Nat Commun 2021; 12:2889. [PMID: 34001871 PMCID: PMC8129110 DOI: 10.1038/s41467-021-23151-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 04/13/2021] [Indexed: 12/13/2022] Open
Abstract
During clathrin-mediated endocytosis, a complex and dynamic network of protein-membrane interactions cooperate to achieve membrane invagination. Throughout this process in yeast, endocytic coat adaptors, Sla2 and Ent1, must remain attached to the plasma membrane to transmit force from the actin cytoskeleton required for successful membrane invagination. Here, we present a cryo-EM structure of a 16-mer complex of the ANTH and ENTH membrane-binding domains from Sla2 and Ent1 bound to PIP2 that constitutes the anchor to the plasma membrane. Detailed in vitro and in vivo mutagenesis of the complex interfaces delineate the key interactions for complex formation and deficient cell growth phenotypes demonstrate its biological relevance. A hetero-tetrameric unit binds PIP2 molecules at the ANTH-ENTH interfaces and can form larger assemblies to contribute to membrane remodeling. Finally, a time-resolved small-angle X-ray scattering study of the interaction of these adaptor domains in vitro suggests that ANTH and ENTH domains have evolved to achieve a fast subsecond timescale assembly in the presence of PIP2 and do not require further proteins to form a stable complex. Together, these findings provide a molecular understanding of an essential piece in the molecular puzzle of clathrin-coated endocytic sites.
Collapse
Affiliation(s)
- Javier Lizarrondo
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany
| | - David P Klebl
- School of Biomedical Sciences, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - Stephan Niebling
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany
| | - Marc Abella
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Martin A Schroer
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany
| | - Haydyn D T Mertens
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany
| | - Katharina Veith
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany
| | - Roland Thuenauer
- Technology Platform Microscopy and Image Analysis, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany
| | - Michal Skruzny
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Frank Sobott
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK.,Department of Chemistry, Biomolecular and Analytical Mass Spectrometry group, University of Antwerp, Antwerp, Belgium
| | - Stephen P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - Maria M Garcia-Alai
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany. .,Centre for Structural Systems Biology, Hamburg, Germany.
| |
Collapse
|
11
|
Find your coat: Using correlative light and electron microscopy to study intracellular protein coats. Curr Opin Cell Biol 2021; 71:21-28. [PMID: 33684808 DOI: 10.1016/j.ceb.2021.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 12/14/2022]
Abstract
Protein coats, important for vesicular trafficking in eukaryotic cells, help shape membranes and package cargo. But their dynamic construction cannot be fully understood until the distinct steps of their assembly in their native intracellular context at molecular resolution can be visualized. For this, correlative light and electron microscopy (CLEM) is an essential tool. Here, we discuss how emerging CLEM techniques have been used to study the assembly of protein coats inside cells. We review how current and developing CLEM technologies are poised to answer fundamental questions of protein coat architecture at the nanoscale.
Collapse
|
12
|
Day KJ, Stachowiak JC. Biophysical forces in membrane bending and traffic. Curr Opin Cell Biol 2020; 65:72-77. [PMID: 32229366 PMCID: PMC7529674 DOI: 10.1016/j.ceb.2020.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/17/2020] [Accepted: 02/25/2020] [Indexed: 11/20/2022]
Abstract
Intracellular trafficking requires extensive changes in membrane morphology. Cells use several distinct molecular factors and physical cues to remodel membranes. Here, we highlight recent advances in identifying the biophysical mechanisms of membrane curvature generation. In particular, we focus on the cooperation of molecular and physical drivers of membrane bending during three stages of vesiculation: budding, cargo selection, and scission. Taken together, the studies reviewed here emphasize that, rather than a single dominant mechanism, several mechanisms typically work in parallel during each step of membrane remodeling. Important challenges for the future of this field are to understand how multiple mechanisms work together synergistically and how a series of stochastic events can be combined to achieve a deterministic result-assembly of the trafficking vesicle.
Collapse
Affiliation(s)
- Kasey J Day
- Department of Biomedical Engineering, 107 W. Dean Keeton St., C0800, Austin, TX, 78712, USA
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, 107 W. Dean Keeton St., C0800, Austin, TX, 78712, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Norman Hackerman Building, 100 East 24th St., NHB 4500, Austin, TX, 78712, USA.
| |
Collapse
|
13
|
Ganeva I, Kukulski W. Membrane Architecture in the Spotlight of Correlative Microscopy. Trends Cell Biol 2020; 30:577-587. [DOI: 10.1016/j.tcb.2020.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022]
|
14
|
Prigent M, Chaillot J, Tisserand H, Boy-Marcotte E, Cuif MH. Three members of the yeast N-BAR proteins family form heterogeneous lattices in vivo and interact differentially with two RabGAP proteins. Sci Rep 2020; 10:1698. [PMID: 32015451 PMCID: PMC6997364 DOI: 10.1038/s41598-020-58606-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/08/2020] [Indexed: 11/26/2022] Open
Abstract
The yeast N-BAR (Bin/Amphiphysin/Rvs167) protein Rvs167 is recruited by the Rab GTPase Activating Proteins (RabGAP) Gyp5 and Gyl1 to the tip of small buds to act in exocytosis. Investigating other N-BAR proteins involved in Gyp5/Gyl1/Rvs167 complexes, we found that Rvs161, an Rvs167 paralog, is absent from the complexes formed at the tip of small buds. Immunoprecipitation and Bimolecular Fluorescence Complementation (BiFC) analysis show that both Rvs167 and Rvs161 interact in vivo with Gvp36, an N-BAR protein. Rvs167 molecules also interact independently of Rvs161 and Gvp36. Rvs167/Rvs167 and Rvs167/Gyp5 interactions predominate over other combinations at the tip of small buds, suggesting that N-BAR lattices enriched in Rvs167 molecules form at these sites. By combining BiFC with markers specific to each organelle, we analyzed systematically in living cells the locations of the BiFC signals generated by combinations of the three N-BAR proteins. We show that the BiFC signals differ according to organelle and cell site, strongly suggesting heterogeneity in the composition of N-BAR protein lattices in vivo. Our results reveal that the organization of N-BAR protein lattices in vivo is complex and are consistent with N-BAR proteins forming various types of dimers and lattices of variable composition.
Collapse
Affiliation(s)
- Magali Prigent
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Julien Chaillot
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, 2440 Boulevard Hochelaga, Québec, QC, G1V 0A6, Canada
| | - Hélène Tisserand
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Emmanuelle Boy-Marcotte
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Marie-Hélène Cuif
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
15
|
Heidemann J, Kölbel K, Konijnenberg A, Van Dyck J, Garcia-Alai M, Meijers R, Sobott F, Uetrecht C. Further insights from structural mass spectrometry into endocytosis adaptor protein assemblies. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2020; 447:116240. [PMID: 33244295 PMCID: PMC7116418 DOI: 10.1016/j.ijms.2019.116240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
As a fundament in many biologically relevant processes, endocytosis in its different guises has been arousing interest for decades and still does so. This is true for the actual transport and its initiation alike. In clathrin-mediated endocytosis, a comparatively well understood endocytic pathway, a set of adaptor proteins bind specific lipids in the plasma membrane, subsequently assemble and thus form a crucial bridge from clathrin to actin for the ongoing process. These adaptor proteins are highly interesting themselves and the subject of this manuscript. Using many of the instruments that are available now in the mass spectrometry toolbox, we added some facets to the picture of how these minimal assemblies may look, how they form, and what influences the structure. Especially, lipids in the adaptor protein complexes result in reduced charging of a normal sized complex due to their specific binding position. The results further support our structural model of a double ring structure with interfacial lipids.
Collapse
Affiliation(s)
- Johannes Heidemann
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251, Hamburg, Germany
| | - Knut Kölbel
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251, Hamburg, Germany
| | - Albert Konijnenberg
- University of Antwerp, Biomolecular & Analytical Mass Spectrometry, Chemistry Dept. Campus Groenenborger V4, Groenenborgerlaan, 171 2020, Antwerp, Belgium
| | - Jeroen Van Dyck
- University of Antwerp, Biomolecular & Analytical Mass Spectrometry, Chemistry Dept. Campus Groenenborger V4, Groenenborgerlaan, 171 2020, Antwerp, Belgium
| | - Maria Garcia-Alai
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607, Hamburg, Germany
| | - Rob Meijers
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607, Hamburg, Germany
| | - Frank Sobott
- University of Antwerp, Biomolecular & Analytical Mass Spectrometry, Chemistry Dept. Campus Groenenborger V4, Groenenborgerlaan, 171 2020, Antwerp, Belgium
- Astbury Centre for Structural Molecular and Cellular Biology, School of Molecular and Cellular Biology, University of Leeds, LS3 9JT, United Kingdom
| | - Charlotte Uetrecht
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251, Hamburg, Germany
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
- Corresponding author. Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251, Hamburg, Germany.
| |
Collapse
|
16
|
Taraska JW. A primer on resolving the nanoscale structure of the plasma membrane with light and electron microscopy. J Gen Physiol 2019; 151:974-985. [PMID: 31253697 PMCID: PMC6683668 DOI: 10.1085/jgp.201812227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022] Open
Abstract
Taraska reviews the imaging methods that are being used to understand the structure of the plasma membrane at the molecular level. The plasma membrane separates a cell from its external environment. All materials and signals that enter or leave the cell must cross this hydrophobic barrier. Understanding the architecture and dynamics of the plasma membrane has been a central focus of general cellular physiology. Both light and electron microscopy have been fundamental in this endeavor and have been used to reveal the dense, complex, and dynamic nanoscale landscape of the plasma membrane. Here, I review classic and recent developments in the methods used to image and study the structure of the plasma membrane, particularly light, electron, and correlative microscopies. I will discuss their history and use for mapping the plasma membrane and focus on how these tools have provided a structural framework for understanding the membrane at the scale of molecules. Finally, I will describe how these studies provide a roadmap for determining the nanoscale architecture of other organelles and entire cells in order to bridge the gap between cellular form and function.
Collapse
Affiliation(s)
- Justin W Taraska
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
17
|
Porrati F, Grewe D, Seybert A, Frangakis AS, Eltsov M. FIB-SEM imaging properties of Drosophila melanogaster tissues embedded in Lowicryl HM20. J Microsc 2018; 273:91-104. [PMID: 30417390 DOI: 10.1111/jmi.12764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 09/17/2018] [Accepted: 10/12/2018] [Indexed: 11/27/2022]
Abstract
Lowicryl resins enable processing of biological material for electron microscopy at the lowest temperatures compatible with resin embedding. When combined with high-pressure freezing and freeze-substitution, Lowicryl embedding supports preservation of fine structural details and fluorescent markers. Here, we analysed the applicability of Lowicryl HM20 embedding for focused ion beam (FIB) scanning electron microscopy (SEM) tomography of Drosophila melanogaster embryonic and larval model systems. We show that the freeze-substitution with per-mill concentrations of uranyl acetate provided sufficient contrast and an image quality of SEM imaging in the range of similar samples analysed by transmission electron microscopy (TEM). Preservation of genetically encoded fluorescent proteins allowed correlative localization of regions of interest (ROI) within the embedded tissue block. TEM on sections cut from the block face enabled evaluation of structural preservation to allow ROI ranking and thus targeted, time-efficient FIB-SEM tomography data collection. The versatility of Lowicryl embedding opens new perspectives for designing hybrid SEM-TEM workflows to comprehensively analyse biological structures. LAY DESCRIPTION: Focused ion beam scanning electron microscopy is becoming a widely used technique for the three-dimensional analysis of biological samples at fine structural details beyond levels feasible for light microscopy. To withstand the abrasion of material by the ion beam and the imaging by the scanning electron beam, biological samples have to be embedded into resins, most commonly these are very dense epoxy-based plastics. However, dense resins generate electron scattering which interferes with the signal from the biological specimen. Furthermore, to improve the imaging contrast, epoxy embedding requires chemical treatments with e.g. heavy metals, which deteriorate the ultrastructure of the biological specimen. In this study we explored the applicability of an electron lucent resin, Lowicryl HM 20, for focused ion beam scanning electron microscopy. The Lowicryl embedding workflow operates at milder chemical treatments and lower temperatures, thus preserving the sub-cellular and sub-organellar organization, as well as fluorescent markers visible by light microscopy. Here we show that focus ion beam scanning electron microscopy of Lowicryl-embedded fruit flies tissues provides reliable imaging revealing fine structural details. Our workflow benefited from use of transmission electron microscopy for the quality control of the ultrastructural preservation and fluorescent light microscopy for localization of regions of interest. The versatility of Lowicryl embedding opens up new perspectives for designing hybrid workflows combining fluorescent light, scanning, and transmission electron microscopy techniques to comprehensively analyze biological structures.
Collapse
Affiliation(s)
- F Porrati
- Buchmann Institute for Molecular Life Sciences and Institute for Biophysics, Goethe-University, Frankfurt am Main, Germany
| | - D Grewe
- Buchmann Institute for Molecular Life Sciences and Institute for Biophysics, Goethe-University, Frankfurt am Main, Germany
| | - A Seybert
- Buchmann Institute for Molecular Life Sciences and Institute for Biophysics, Goethe-University, Frankfurt am Main, Germany
| | - A S Frangakis
- Buchmann Institute for Molecular Life Sciences and Institute for Biophysics, Goethe-University, Frankfurt am Main, Germany
| | - M Eltsov
- Buchmann Institute for Molecular Life Sciences and Institute for Biophysics, Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
18
|
Lacy MM, Ma R, Ravindra NG, Berro J. Molecular mechanisms of force production in clathrin-mediated endocytosis. FEBS Lett 2018; 592:3586-3605. [PMID: 30006986 PMCID: PMC6231980 DOI: 10.1002/1873-3468.13192] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/21/2018] [Accepted: 07/12/2018] [Indexed: 01/21/2023]
Abstract
During clathrin-mediated endocytosis (CME), a flat patch of membrane is invaginated and pinched off to release a vesicle into the cytoplasm. In yeast CME, over 60 proteins-including a dynamic actin meshwork-self-assemble to deform the plasma membrane. Several models have been proposed for how actin and other molecules produce the forces necessary to overcome the mechanical barriers of membrane tension and turgor pressure, but the precise mechanisms and a full picture of their interplay are still not clear. In this review, we discuss the evidence for these force production models from a quantitative perspective and propose future directions for experimental and theoretical work that could clarify their various contributions.
Collapse
Affiliation(s)
- Michael M Lacy
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT, USA
| | - Rui Ma
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Neal G Ravindra
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT, USA
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
19
|
Qi X, Pleskot R, Irani NG, Van Damme D. Meeting report - Cellular gateways: expanding the role of endocytosis in plant development. J Cell Sci 2018; 131:131/17/jcs222604. [PMID: 30177507 DOI: 10.1242/jcs.222604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The occasion of The Company of Biologists' workshop 'Cellular gateways: expanding the role of endocytosis in plant development' on 22-25 April 2018, at Wiston House, an Elizabethan mansion in West Sussex, England, witnessed stimulating and lively discussions on the mechanism and functions of endocytosis in plant cells. The workshop was organized by Jenny Russinova, Daniël Van Damme (both VIB/University of Ghent, Belgium) and Takashi Ueda (National Institute for Basic Biology, Okazaki, Japan), and aimed to bridge the gap in knowledge about the endocytic machinery and its cargos in the plant field.
Collapse
Affiliation(s)
- Xingyun Qi
- Howard Hughes Medical Institute and Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Roman Pleskot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Niloufer G Irani
- Department of Plant Science, University of Oxford, OX1 3RB Oxford, UK
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium .,Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
20
|
Tolsma TO, Cuevas LM, Di Pietro SM. The Sla1 adaptor-clathrin interaction regulates coat formation and progression of endocytosis. Traffic 2018. [PMID: 29542219 DOI: 10.1111/tra.12563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Clathrin-mediated endocytosis is a fundamental transport pathway that depends on numerous protein-protein interactions. Testing the importance of the adaptor protein-clathrin interaction for coat formation and progression of endocytosis in vivo has been difficult due to experimental constrains. Here, we addressed this question using the yeast clathrin adaptor Sla1, which is unique in showing a cargo endocytosis defect upon substitution of 3 amino acids in its clathrin-binding motif (sla1AAA ) that disrupt clathrin binding. Live-cell imaging showed an impaired Sla1-clathrin interaction causes reduced clathrin levels but increased Sla1 levels at endocytic sites. Moreover, the rate of Sla1 recruitment was reduced indicating proper dynamics of both clathrin and Sla1 depend on their interaction. sla1AAA cells showed a delay in progression through the various stages of endocytosis. The Arp2/3-dependent actin polymerization machinery was present for significantly longer time before actin polymerization ensued, revealing a link between coat formation and activation of actin polymerization. Ultimately, in sla1AAA cells a larger than normal actin network was formed, dramatically higher levels of various machinery proteins other than clathrin were recruited, and the membrane profile of endocytic invaginations was longer. Thus, the Sla1-clathrin interaction is important for coat formation, regulation of endocytic progression and membrane bending.
Collapse
Affiliation(s)
- Thomas O Tolsma
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado
| | - Lena M Cuevas
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado
| | - Santiago M Di Pietro
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
21
|
Picco A, Kukulski W, Manenschijn HE, Specht T, Briggs JAG, Kaksonen M. The contributions of the actin machinery to endocytic membrane bending and vesicle formation. Mol Biol Cell 2018; 29:1346-1358. [PMID: 29851558 PMCID: PMC5994895 DOI: 10.1091/mbc.e17-11-0688] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Branched and cross-linked actin networks mediate cellular processes that move and shape membranes. To understand how actin contributes during the different stages of endocytic membrane reshaping, we analyzed deletion mutants of yeast actin network components using a hybrid imaging approach that combines live imaging with correlative microscopy. We could thus temporally dissect the effects of different actin network perturbations, revealing distinct stages of actin-based membrane reshaping. Our data show that initiation of membrane bending requires the actin network to be physically linked to the plasma membrane and to be optimally cross-linked. Once initiated, the membrane invagination process is driven by nucleation and polymerization of new actin filaments, independent of the degree of cross-linking and unaffected by a surplus of actin network components. A key transition occurs 2 s before scission, when the filament nucleation rate drops. From that time point on, invagination growth and vesicle scission are driven by an expansion of the actin network without a proportional increase of net actin amounts. The expansion is sensitive to the amount of filamentous actin and its cross-linking. Our results suggest that the mechanism by which actin reshapes the membrane changes during the progress of endocytosis, possibly adapting to varying force requirements.
Collapse
Affiliation(s)
- Andrea Picco
- Department of Biochemistry and NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Wanda Kukulski
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Hetty E Manenschijn
- Department of Biochemistry and NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Tanja Specht
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - John A G Briggs
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Marko Kaksonen
- Department of Biochemistry and NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
22
|
|
23
|
|
24
|
Martzoukou O, Amillis S, Zervakou A, Christoforidis S, Diallinas G. The AP-2 complex has a specialized clathrin-independent role in apical endocytosis and polar growth in fungi. eLife 2017; 6. [PMID: 28220754 PMCID: PMC5338921 DOI: 10.7554/elife.20083] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 02/07/2017] [Indexed: 12/26/2022] Open
Abstract
Filamentous fungi provide excellent systems for investigating the role of the AP-2 complex in polar growth. Using Aspergillus nidulans, we show that AP-2 has a clathrin-independent essential role in polarity maintenance and growth. This is in line with a sequence analysis showing that the AP-2 β subunit (β2) of higher fungi lacks a clathrin-binding domain, and experiments showing that AP-2 does not co-localize with clathrin. We provide genetic and cellular evidence that AP-2 interacts with endocytic markers SlaBEnd4 and SagAEnd3 and the lipid flippases DnfA and DnfB in the sub-apical collar region of hyphae. The role of AP-2 in the maintenance of proper apical membrane lipid and cell wall composition is further supported by its functional interaction with BasA (sphingolipid biosynthesis) and StoA (apical sterol-rich membrane domains), and its essentiality in polar deposition of chitin. Our findings support that the AP-2 complex of dikarya has acquired, in the course of evolution, a specialized clathrin-independent function necessary for fungal polar growth. DOI:http://dx.doi.org/10.7554/eLife.20083.001
Collapse
Affiliation(s)
- Olga Martzoukou
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Sotiris Amillis
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Amalia Zervakou
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Savvas Christoforidis
- Institute of Molecular Biology and Biotechnology-Biomedical Research, Foundation for Research and Technology, Ioannina, Greece.,Laboratory of Biological Chemistry, Department of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
25
|
Schultzhaus Z, Johnson TB, Shaw BD. Clathrin localization and dynamics in Aspergillus nidulans. Mol Microbiol 2016; 103:299-318. [PMID: 27741567 DOI: 10.1111/mmi.13557] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2016] [Indexed: 12/15/2022]
Abstract
Cell growth necessitates extensive membrane remodeling events including vesicle fusion or fission, processes that are regulated by coat proteins. The hyphal cells of filamentous fungi concentrate both exocytosis and endocytosis at the apex. This investigation focuses on clathrin in Aspergillus nidulans, with the aim of understanding its role in membrane remodeling in growing hyphae. We examined clathrin heavy chain (ClaH-GFP) which localized to three distinct subcellular structures: late Golgi (trans-Golgi equivalents of filamentous fungi), which are concentrated just behind the hyphal tip but are intermittently present throughout all hyphal cells; the region of concentrated endocytosis just behind the hyphal apex (the "endocytic collar"); and small, rapidly moving puncta that were seen trafficking long distances in nearly all hyphal compartments. ClaH localized to distinct domains on late Golgi, and these clathrin "hubs" dispersed in synchrony after the late Golgi marker PHOSBP . Although clathrin was essential for growth, ClaH did not colocalize well with the endocytic patch marker fimbrin. Tests of FM4-64 internalization and repression of ClaH corroborated the observation that clathrin does not play an important role in endocytosis in A. nidulans. A minor portion of ClaH puncta exhibited bidirectional movement, likely along microtubules, but were generally distinct from early endosomes.
Collapse
Affiliation(s)
- Z Schultzhaus
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX, 77845, USA
| | - T B Johnson
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX, 77845, USA
| | - B D Shaw
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX, 77845, USA
| |
Collapse
|