1
|
Harris TJC. Dynamic Plasma Membrane Topography Linked With Arp2/3 Actin Network Induction During Cell Shape Change. Bioessays 2025:e70004. [PMID: 40159841 DOI: 10.1002/bies.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Abstract
Recent studies show the importance of mesoscale changes to plasma membrane (PM) topography during cell shape change. Local folding and flattening of the cell surface is mechanosensitive, changing in response to both microenvironment structural elements and intracellular cytoskeletal activities. These topography changes elicit local mechanical signaling events that act in conjunction with molecular signal transduction pathways to remodel the cell cortex. Experimental manipulations of local PM curvature show its sufficiency for recruiting Arp2/3 actin network induction pathways. Additionally, studies of diverse cell shape changes-ranging from neutrophil migration to early Drosophila embryo cleavage to neural stem cell asymmetric division-show that local generation of PM folding is linked with local Arp2/3 actin network induction, which then remodels the PM topography during dynamic control of cell structure. These examples are reviewed in detail, together with known and potential causes of PM topography changes, downstream effects, and higher-order feedback.
Collapse
Affiliation(s)
- Tony J C Harris
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Zellag RM, Poupart V, Negishi T, Labbé JC, Gerhold AR. The spatiotemporal distribution of LIN-5/NuMA regulates spindle orientation in the C. elegans germ line. Cell Rep 2025; 44:115296. [PMID: 39946234 DOI: 10.1016/j.celrep.2025.115296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/06/2024] [Accepted: 01/20/2025] [Indexed: 02/28/2025] Open
Abstract
Mitotic spindle orientation contributes to tissue organization and shape by setting the cell division plane. How spindle orientation is coupled to diverse tissue architectures is incompletely understood. The C. elegans gonad is a tube-shaped organ with germ cells forming a circumferential monolayer around a common cytoplasmic lumen. How this organization is maintained during development is unclear, as germ cells lack the canonical cell-cell junctions that ensure spindle orientation in other tissue types. Here, we show that the microtubule force generator dynein and its conserved regulator LIN-5/NuMA regulate germ cell spindle orientation and are required for germline tissue organization. We uncover a cyclic, polarized pattern of LIN-5/NuMA cortical localization that predicts centrosome positioning throughout the cell cycle, providing a means to align spindle orientation with the tissue plane. This work reveals a new mechanism by which oriented cell division can be achieved to maintain tissue organization during animal development.
Collapse
Affiliation(s)
- Réda M Zellag
- Institute for Research in Immunology and Cancer (IRIC), Montréal, QC H3C 3J7, Canada; Department of Pathology and Cell Biology, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada; Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montréal, QC H2A 1B1, Canada
| | - Vincent Poupart
- Institute for Research in Immunology and Cancer (IRIC), Montréal, QC H3C 3J7, Canada
| | - Takefumi Negishi
- Multicellular Organization Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Shizuoka 411-8540, Japan; Department of Genetics, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
| | - Jean-Claude Labbé
- Institute for Research in Immunology and Cancer (IRIC), Montréal, QC H3C 3J7, Canada; Department of Pathology and Cell Biology, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada.
| | - Abigail R Gerhold
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montréal, QC H2A 1B1, Canada.
| |
Collapse
|
3
|
Tam R, Harris TJ. Centrosome-organized plasma membrane infoldings linked to growth of a cortical actin domain. J Cell Biol 2024; 223:e202403115. [PMID: 38935075 PMCID: PMC11215285 DOI: 10.1083/jcb.202403115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/27/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Regulated cell shape change requires the induction of cortical cytoskeletal domains. Often, local changes to plasma membrane (PM) topography are involved. Centrosomes organize cortical domains and can affect PM topography by locally pulling the PM inward. Are these centrosome effects coupled? At the syncytial Drosophila embryo cortex, centrosome-induced actin caps grow into dome-like compartments for mitoses. We found the nascent cap to be a collection of PM folds and tubules formed over the astral centrosomal MT array. The localized infoldings require centrosome and dynein activities, and myosin-based surface tension prevents them elsewhere. Centrosome-engaged PM infoldings become specifically enriched with an Arp2/3 induction pathway. Arp2/3 actin network growth between the infoldings counterbalances centrosomal pulling forces and disperses the folds for actin cap expansion. Abnormal domain topography with either centrosome or Arp2/3 disruption correlates with decreased exocytic vesicle association. Together, our data implicate centrosome-organized PM infoldings in coordinating Arp2/3 network growth and exocytosis for cortical domain assembly.
Collapse
Affiliation(s)
- Rebecca Tam
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Tony J.C. Harris
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
4
|
Donati A, Schneider-Maunoury S, Vesque C. Centriole Translational Planar Polarity in Monociliated Epithelia. Cells 2024; 13:1403. [PMID: 39272975 PMCID: PMC11393834 DOI: 10.3390/cells13171403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Ciliated epithelia are widespread in animals and play crucial roles in many developmental and physiological processes. Epithelia composed of multi-ciliated cells allow for directional fluid flow in the trachea, oviduct and brain cavities. Monociliated epithelia play crucial roles in vertebrate embryos, from the establishment of left-right asymmetry to the control of axis curvature via cerebrospinal flow motility in zebrafish. Cilia also have a central role in the motility and feeding of free-swimming larvae in a variety of marine organisms. These diverse functions rely on the coordinated orientation (rotational polarity) and asymmetric localization (translational polarity) of cilia and of their centriole-derived basal bodies across the epithelium, both being forms of planar cell polarity (PCP). Here, we review our current knowledge on the mechanisms of the translational polarity of basal bodies in vertebrate monociliated epithelia from the molecule to the whole organism. We highlight the importance of live imaging for understanding the dynamics of centriole polarization. We review the roles of core PCP pathways and of apicobasal polarity proteins, such as Par3, whose central function in this process has been recently uncovered. Finally, we emphasize the importance of the coordination between polarity proteins, the cytoskeleton and the basal body itself in this highly dynamic process.
Collapse
Affiliation(s)
- Antoine Donati
- Developmental Biology Unit, UMR7622, Institut de Biologie Paris Seine (IBPS), Sorbonne Université, CNRS, INSERM U1156, 75005 Paris, France
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Sylvie Schneider-Maunoury
- Developmental Biology Unit, UMR7622, Institut de Biologie Paris Seine (IBPS), Sorbonne Université, CNRS, INSERM U1156, 75005 Paris, France
| | - Christine Vesque
- Developmental Biology Unit, UMR7622, Institut de Biologie Paris Seine (IBPS), Sorbonne Université, CNRS, INSERM U1156, 75005 Paris, France
| |
Collapse
|
5
|
Donati A, Anselme I, Schneider-Maunoury S, Vesque C. Planar polarization of cilia in the zebrafish floor-plate involves Par3-mediated posterior localization of highly motile basal bodies. Development 2021; 148:269080. [PMID: 34104942 DOI: 10.1242/dev.196386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
Epithelial cilia, whether motile or primary, often display an off-center planar localization within the apical cell surface. This form of planar cell polarity (PCP) involves the asymmetric positioning of the ciliary basal body (BB). Using the monociliated epithelium of the embryonic zebrafish floor-plate, we investigated the dynamics and mechanisms of BB polarization by live imaging. BBs were highly motile, making back-and-forth movements along the antero-posterior (AP) axis and contacting both the anterior and posterior membranes. Contacts exclusively occurred at junctional Par3 patches and were often preceded by membrane digitations extending towards the BB, suggesting focused cortical pulling forces. Accordingly, BBs and Par3 patches were linked by dynamic microtubules. Later, BBs became less motile and eventually settled at posterior apical junctions enriched in Par3. BB posterior positioning followed Par3 posterior enrichment and was impaired upon Par3 depletion or disorganization of Par3 patches. In the PCP mutant vangl2, BBs were still motile but displayed poorly oriented membrane contacts that correlated with Par3 patch fragmentation and lateral spreading. Thus, we propose an unexpected function for posterior Par3 enrichment in controlling BB positioning downstream of the PCP pathway.
Collapse
Affiliation(s)
- Antoine Donati
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS), Developmental Biology Unit, 75005 Paris, France
| | - Isabelle Anselme
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS), Developmental Biology Unit, 75005 Paris, France
| | - Sylvie Schneider-Maunoury
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS), Developmental Biology Unit, 75005 Paris, France
| | - Christine Vesque
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS), Developmental Biology Unit, 75005 Paris, France
| |
Collapse
|
6
|
Lu Q, Gao Y, Fu Y, Peng H, Shi W, Li B, Lv Z, Feng XQ, Dong B. Ciona embryonic tail bending is driven by asymmetrical notochord contractility and coordinated by epithelial proliferation. Development 2020; 147:147/24/dev185868. [DOI: 10.1242/dev.185868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/16/2020] [Indexed: 02/05/2023]
Abstract
ABSTRACT
Ventral bending of the embryonic tail within the chorion is an evolutionarily conserved morphogenetic event in both invertebrates and vertebrates. However, the complexity of the anatomical structure of vertebrate embryos makes it difficult to experimentally identify the mechanisms underlying embryonic folding. This study investigated the mechanisms underlying embryonic tail bending in chordates. To further understand the mechanical role of each tissue, we also developed a physical model with experimentally measured parameters to simulate embryonic tail bending. Actomyosin asymmetrically accumulated at the ventral side of the notochord, and cell proliferation of the dorsal tail epidermis was faster than that in the ventral counterpart during embryonic tail bending. Genetic disruption of actomyosin activity and inhibition of cell proliferation dorsally caused abnormal tail bending, indicating that both asymmetrical actomyosin contractility in the notochord and the discrepancy of epidermis cell proliferation are required for tail bending. In addition, asymmetrical notochord contractility was sufficient to drive embryonic tail bending, whereas differential epidermis proliferation was a passive response to mechanical forces. These findings showed that asymmetrical notochord contractility coordinates with differential epidermis proliferation mechanisms to drive embryonic tail bending.
This article has an associated ‘The people behind the papers’ interview.
Collapse
Affiliation(s)
- Qiongxuan Lu
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yuan Gao
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Yuanyuan Fu
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Hongzhe Peng
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Wenjie Shi
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Zhiyi Lv
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bo Dong
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
7
|
A Pushing Mechanism for Microtubule Aster Positioning in a Large Cell Type. Cell Rep 2020; 33:108213. [DOI: 10.1016/j.celrep.2020.108213] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 01/12/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022] Open
|
8
|
Morita R, Onuma TA, Manni L, Ohno N, Nishida H. Mouth opening is mediated by separation of dorsal and ventral daughter cells of the lip precursor cells in the larvacean, Oikopleura dioica. Dev Genes Evol 2020; 230:315-327. [PMID: 32803391 DOI: 10.1007/s00427-020-00667-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022]
Abstract
Mouth formation involves the processes of mouth opening, formation of the oral cavity, and the development of associated sensory organs. In deuterostomes, the surface ectoderm and the anterior part of the archenteron are reconfigured and reconnected to make a mouth opening. This study of the larval development of the larvacean, Oikopleura dioica, investigates the cellular organization of the oral region, the developmental processes of the mouth, and the formation of associated sensory cells. O. dioica is a simple chordate whose larvae are transparent and have a small number of constituent cells. It completes organ morphogenesis in 7 h, between hatching 3 h after fertilization and the juvenile stage at 10 h, when it attains adult form and starts to feed. It has two types of mechanosensory cell embedded in the oral epithelium, which is a single layer of cells. There are twenty coronal sensory cells in the circumoral nerve ring and two dorsal sensory organ cells. Two bilateral lip precursor cells (LPCs), facing the anterior surface, divide dorsoventrally and make a wedge-shaped cleft between the two daughter cells named the dorsal lip cell (DLC) and the ventral lip cell (VLC). Eventually, the DLC and VLC become detached and separated into dorsal and ventral lips, triggering mouth opening. This is an intriguing example of cell division itself contributing to morphogenesis. The boundary between the ectoderm and endoderm is present between the lip cells and coronal sensory cells. All oral sensory cells, including dorsal sensory organ cells, were of endodermal origin and were not derived from the ectodermal placode. These observations on mouth formation provide a cellular basis for further studies at a molecular level, in this simple chordate.
Collapse
Affiliation(s)
- Ryo Morita
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Takeshi A Onuma
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Lucia Manni
- Dipartimento di Biologia, Università degli Studi di Padova, via U. Bassi 58/B, I-35121, Padova, Italy
| | - Nobuhiko Ohno
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University, Shimotsuke, Tochigi, 329-0498, Japan
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
9
|
Nakamoto A, Kumano G. Dynein-Mediated Regional Cell Division Reorientation Shapes a Tailbud Embryo. iScience 2020; 23:100964. [PMID: 32199290 PMCID: PMC7082557 DOI: 10.1016/j.isci.2020.100964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/17/2020] [Accepted: 03/03/2020] [Indexed: 11/17/2022] Open
Abstract
Regulation of cell division orientation controls the spatial distribution of cells during development and is essential for one-directional tissue transformation, such as elongation. However, little is known about whether it plays a role in other types of tissue morphogenesis. Using an ascidian Halocynthia roretzi, we found that differently oriented cell divisions in the epidermis of the future trunk (anterior) and tail (posterior) regions create an hourglass-like epithelial bending between the two regions to shape the tailbud embryo. Our results show that posterior epidermal cells are polarized with dynein protein anteriorly localized, undergo dynein-dependent spindle rotation, and divide along the anteroposterior axis. This cell division facilitates constriction around the embryo's circumference only in the posterior region and epithelial bending formation. Our findings, therefore, provide an important insight into the role of oriented cell division in tissue morphogenesis.
Collapse
Affiliation(s)
- Ayaki Nakamoto
- Asamushi Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, 9 Sakamoto, Asamushi, Aomori 039-3501, Japan.
| | - Gaku Kumano
- Asamushi Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, 9 Sakamoto, Asamushi, Aomori 039-3501, Japan
| |
Collapse
|
10
|
Prokaryotic and Mitochondrial Lipids: A Survey of Evolutionary Origins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 31502197 DOI: 10.1007/978-3-030-21162-2_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Mitochondria and bacteria share a myriad of properties since it is believed that the powerhouses of the eukaryotic cell have evolved from a prokaryotic origin. Ribosomal RNA sequences, DNA architecture and metabolism are strikingly similar in these two entities. Proteins and nucleic acids have been a hallmark for comparison between mitochondria and prokaryotes. In this chapter, similarities (and differences) between mitochondrial and prokaryotic membranes are addressed with a focus on structure-function relationship of different lipid classes. In order to be suitable for the theme of the book, a special emphasis is reserved to the effects of bioactive sphingolipids, mainly ceramide, on mitochondrial membranes and their roles in initiating programmed cell death.
Collapse
|
11
|
Kita AM, Swider ZT, Erofeev I, Halloran MC, Goryachev AB, Bement WM. Spindle-F-actin interactions in mitotic spindles in an intact vertebrate epithelium. Mol Biol Cell 2019; 30:1645-1654. [PMID: 31091161 PMCID: PMC6727749 DOI: 10.1091/mbc.e19-02-0126] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Mitotic spindles are well known to be assembled from and dependent on microtubules. In contrast, whether actin filaments (F-actin) are required for or are even present in mitotic spindles has long been controversial. Here we have developed improved methods for simultaneously preserving F-actin and microtubules in fixed samples and exploited them to demonstrate that F-actin is indeed associated with mitotic spindles in intact Xenopus laevis embryonic epithelia. We also find that there is an “F-actin cycle,” in which the distribution and organization of spindle F-actin changes over the course of the cell cycle. Live imaging using a probe for F-actin reveals that at least two pools of F-actin are associated with mitotic spindles: a relatively stable internal network of cables that moves in concert with and appears to be linked to spindles, and F-actin “fingers” that rapidly extend from the cell cortex toward the spindle and make transient contact with the spindle poles. We conclude that there is a robust endoplasmic F-actin network in normal vertebrate epithelial cells and that this network is also a component of mitotic spindles. More broadly, we conclude that there is far more internal F-actin in epithelial cells than is commonly believed.
Collapse
Affiliation(s)
- Angela M Kita
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI 53706.,Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Zachary T Swider
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI 53706.,Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Ivan Erofeev
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh EH9 3JD, United Kingdom
| | - Mary C Halloran
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706.,Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53706
| | - Andrew B Goryachev
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh EH9 3JD, United Kingdom
| | - William M Bement
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI 53706.,Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706.,Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
12
|
Yamada S, Tanaka Y, Imai KS, Saigou M, Onuma TA, Nishida H. Wavy movements of epidermis monocilia drive the neurula rotation that determines left-right asymmetry in ascidian embryos. Dev Biol 2019; 448:173-182. [PMID: 30059669 DOI: 10.1016/j.ydbio.2018.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/19/2018] [Accepted: 07/26/2018] [Indexed: 12/22/2022]
Abstract
Tadpole larvae of the ascidian, Halocynthia roretzi, show morphological left-right asymmetry in the brain structures and the orientation of tail bending within the vitelline membrane. Neurula embryos rotate along the anterior-posterior axis in a counterclockwise direction, and then this rotation stops when the left side of the embryo is oriented downwards. Contact of the left-side epidermis with the vitelline membrane promotes nodal gene expression in the left-side epidermis. This is a novel mechanism in which rotation of whole embryos provides the initial cue for breaking left-right symmetry. Here we show that epidermal monocilia, which appear at the neurula rotation stage, generate the driving force for rotation. A ciliary protein, Arl13b, fused with Venus YFP was used for live imaging of ciliary movements. Although overexpression of wild-type Arl13b fusion protein resulted in aberrant movements of the cilia and abrogation of neurula rotation, mutant Arl13b fusion protein, in which the GTPase and coiled-coil domains were removed, did not affect the normal ciliary movements and neurula rotation. Epidermis cilia moved in a wavy and serpentine way like sperm flagella but not in a rotational way or beating way with effective stroke and recovery stroke. They moved very slowly, at 1/7 Hz, consistent with the low angular velocity of neurula rotation (ca. 43°/min). The tips of most cilia pointed in the opposite direction of embryonic rotation. Similar motility was also observed in Ciona robusta embryos. When embryos were treated with a dynein inhibitor, Ciliobrevin D, both ciliary movements and neurula rotation were abrogated, showing that ciliary movements drive neurula rotation in Halocynthia. The drug also inhibited Ciona neurula rotation. Our observations suggest that the driving force of rotation is generated using the vitelline membrane as a substrate but not by making a water current around the embryo. It is of evolutionary interest that ascidians use ciliary movements to break embryonic left-right symmetry, like in many vertebrates. Meanwhile, ascidian embryos rotate as a whole, similar to embryos of non-vertebrate deuterostomes, such as echinoderm, hemichordate, and amphioxus, while swimming.
Collapse
Affiliation(s)
- Shiori Yamada
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yuka Tanaka
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Kaoru S Imai
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Motohiko Saigou
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Takeshi A Onuma
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
13
|
Tanaka Y, Yamada S, Connop SL, Hashii N, Sawada H, Shih Y, Nishida H. Vitelline membrane proteins promote left-sided nodal expression after neurula rotation in the ascidian, Halocynthia roretzi. Dev Biol 2019; 449:52-61. [PMID: 30710513 DOI: 10.1016/j.ydbio.2019.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 11/19/2022]
Abstract
Stereotyped left-right asymmetry both in external and internal organization is found in various animals. Left-right symmetry is broken by the neurula rotation in the ascidian, Halocynthia roretzi. Neurula embryos rotate along the anterior-posterior axis in a counterclockwise direction, and the rotation stops when the left side of the embryo is oriented downwards, resulting in contact of the left-side epidermis with the vitelline membrane at the bottom of perivitelline space. Then, such contact induces the expression of nodal and its downstream Pitx2 gene in the left-side epidermis. Vitelline membrane is required for the promotion of nodal expression. Here, we showed that a chemical signal from the vitelline membrane promotes nodal gene expression, but mechanical stimulus at the point of contact is unnecessary since the treatment of devitellinated neurulae with an extract of the vitelline membrane promoted nodal expression on both sides. The signal molecules are already present in the vitelline membranes of unfertilized eggs. These signal molecules are proteins but not sugars. Specific fractions in gel filtration chromatography had the nodal promoting activity. By mass spectrometry, we selected 48 candidate proteins. Proteins that contain both a zona pellucida (ZP) domain and epidermal growth factor (EGF) repeats were enriched in the candidates of the nodal inducing molecules. Six of the ZP proteins had multiple EGF repeats that are only found in ascidian ZP proteins. These were considered to be the most viable candidates of the nodal-inducing molecules. Signal molecules are anchored to the entire vitelline membrane, and contact sites of signal-receiving cells are spatially and mechanically controlled by the neurula rotation. In this context, ascidians are unusual with respect to mechanisms for specification of the left-right axis. By suppressing formation of epidermis monocilia, we also showed that epidermal cilia drive the neurula rotation but are dispensable for sensing the signal from the vitelline membrane.
Collapse
Affiliation(s)
- Yuka Tanaka
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Shiori Yamada
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Samantha L Connop
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Noritaka Hashii
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kawasaki, Kanagawa 210-9501, Japan
| | - Hitoshi Sawada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba 517-0004, Japan
| | - Yu Shih
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
14
|
Saade M, Blanco-Ameijeiras J, Gonzalez-Gobartt E, Martí E. A centrosomal view of CNS growth. Development 2018; 145:145/21/dev170613. [DOI: 10.1242/dev.170613] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
ABSTRACT
Embryonic development of the central nervous system (CNS) requires the proliferation of neural progenitor cells to be tightly regulated, allowing the formation of an organ with the right size and shape. This includes regulation of both the spatial distribution of mitosis and the mode of cell division. The centrosome, which is the main microtubule-organizing centre of animal cells, contributes to both of these processes. Here, we discuss the impact that centrosome-mediated control of cell division has on the shape of the overall growing CNS. We also review the intrinsic properties of the centrosome, both in terms of its molecular composition and its signalling capabilities, and discuss the fascinating notion that intrinsic centrosomal asymmetries in dividing neural progenitor cells are instructive for neurogenesis. Finally, we discuss the genetic links between centrosome dysfunction during development and the aetiology of microcephaly.
Collapse
Affiliation(s)
- Murielle Saade
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, Parc Científic de Barcelona, Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Jose Blanco-Ameijeiras
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, Parc Científic de Barcelona, Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Elena Gonzalez-Gobartt
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, Parc Científic de Barcelona, Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Elisa Martí
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, Parc Científic de Barcelona, Baldiri i Reixac 20, Barcelona 08028, Spain
| |
Collapse
|
15
|
Poux S, Arighi CN, Magrane M, Bateman A, Wei CH, Lu Z, Boutet E, Bye-A-Jee H, Famiglietti ML, Roechert B, UniProt Consortium T. On expert curation and scalability: UniProtKB/Swiss-Prot as a case study. Bioinformatics 2018; 33:3454-3460. [PMID: 29036270 PMCID: PMC5860168 DOI: 10.1093/bioinformatics/btx439] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 07/10/2017] [Indexed: 11/14/2022] Open
Abstract
Motivation Biological knowledgebases, such as UniProtKB/Swiss-Prot, constitute an essential component of daily scientific research by offering distilled, summarized and computable knowledge extracted from the literature by expert curators. While knowledgebases play an increasingly important role in the scientific community, their ability to keep up with the growth of biomedical literature is under scrutiny. Using UniProtKB/Swiss-Prot as a case study, we address this concern via multiple literature triage approaches. Results With the assistance of the PubTator text-mining tool, we tagged more than 10 000 articles to assess the ratio of papers relevant for curation. We first show that curators read and evaluate many more papers than they curate, and that measuring the number of curated publications is insufficient to provide a complete picture as demonstrated by the fact that 8000–10 000 papers are curated in UniProt each year while curators evaluate 50 000–70 000 papers per year. We show that 90% of the papers in PubMed are out of the scope of UniProt, that a maximum of 2–3% of the papers indexed in PubMed each year are relevant for UniProt curation, and that, despite appearances, expert curation in UniProt is scalable. Availability and implementation UniProt is freely available at http://www.uniprot.org/. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sylvain Poux
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, 1211 Geneva 4, Switzerland
| | - Cecilia N Arighi
- Protein Information Resource, University of Delaware, Newark, DE 19711, USA
| | - Michele Magrane
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Chih-Hsuan Wei
- National Center for Biotechnology Information (NCBI), US National Library of Medicine, Bethesda, MD 20894, USA
| | - Zhiyong Lu
- National Center for Biotechnology Information (NCBI), US National Library of Medicine, Bethesda, MD 20894, USA
| | - Emmanuel Boutet
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, 1211 Geneva 4, Switzerland
| | - Hema Bye-A-Jee
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Maria Livia Famiglietti
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, 1211 Geneva 4, Switzerland
| | - Bernd Roechert
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, 1211 Geneva 4, Switzerland
| | - The UniProt Consortium
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, 1211 Geneva 4, Switzerland.,Protein Information Resource, University of Delaware, Newark, DE 19711, USA.,European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK.,Protein Information Resource, Georgetown University Medical Center, Washington, DC 20007, USA
| |
Collapse
|
16
|
Hashimoto H, Munro E. Dynamic interplay of cell fate, polarity and force generation in ascidian embryos. Curr Opin Genet Dev 2018; 51:67-77. [PMID: 30007244 DOI: 10.1016/j.gde.2018.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/11/2018] [Accepted: 06/22/2018] [Indexed: 10/28/2022]
Abstract
A fundamental challenge in developmental biology is to understand how forces produced by individual cells are patterned in space and time and then integrated to produce stereotyped changes in tissue-level or embryo-level morphology. Ascidians offer a unique opportunity to address this challenge by studying how small groups of cells collectively execute complex, but highly stereotyped morphogenetic movements. Here we highlight recent progress and open questions in the study of ascidian morphogenesis, emphasizing the dynamic interplay of cell fate determination, cellular force generation and tissue-level mechanics.
Collapse
Affiliation(s)
- Hidehiko Hashimoto
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, United States.
| | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, United States; Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, United States.
| |
Collapse
|
17
|
Nakao A, Miyazaki N, Ohira K, Hagihara H, Takagi T, Usuda N, Ishii S, Murata K, Miyakawa T. Immature morphological properties in subcellular-scale structures in the dentate gyrus of Schnurri-2 knockout mice: a model for schizophrenia and intellectual disability. Mol Brain 2017; 10:60. [PMID: 29233179 PMCID: PMC5727961 DOI: 10.1186/s13041-017-0339-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/19/2017] [Indexed: 01/18/2023] Open
Abstract
Accumulating evidence suggests that subcellular-scale structures such as dendritic spine and mitochondria may be involved in the pathogenesis/pathophysiology of schizophrenia and intellectual disability. Previously, we proposed mice lacking Schnurri-2 (Shn2; also called major histocompatibility complex [MHC]-binding protein 2 [MBP-2], or human immunodeficiency virus type I enhancer binding protein 2 [HIVEP2]) as a schizophrenia and intellectual disability model with mild chronic inflammation. In the mutants’ brains, there are increases in C4b and C1q genes, which are considered to mediate synapse elimination during postnatal development. However, morphological properties of subcellular-scale structures such as dendritic spine in Shn2 knockout (KO) mice remain unknown. In this study, we conducted three-dimensional morphological analyses in subcellular-scale structures in dentate gyrus granule cells of Shn2 KO mice by serial block-face scanning electron microscopy. Shn2 KO mice showed immature dendritic spine morphology characterized by increases in spine length and decreases in spine diameter. There was a non-significant tendency toward decrease in spine density of Shn2 KO mice over wild-type mice, and spine volume was indistinguishable between genotypes. Shn2 KO mice exhibited a significant reduction in GluR1 expression and a nominally significant decrease in SV2 expression, while PSD95 expression had a non-significant tendency to decrease in Shn2 KO mice. There were significant decreases in dendrite diameter, nuclear volume, and the number of constricted mitochondria in the mutants. Additionally, neuronal density was elevated in Shn2 KO mice. These results suggest that Shn2 KO mice serve as a unique tool for investigating morphological abnormalities of subcellular-scale structures in schizophrenia, intellectual disability, and its related disorders.
Collapse
Affiliation(s)
- Akito Nakao
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Naoyuki Miyazaki
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Koji Ohira
- Department of Food Science and Nutrition, Mukogawa Women's University, Nishinomiya, Japan
| | - Hideo Hagihara
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Tsuyoshi Takagi
- Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan.,RIKEN Tsukuba Institute, Tsukuba, Japan
| | - Nobuteru Usuda
- Department of Anatomy II, Fujita Health University School of Medicine, Toyoake, Japan
| | | | - Kazuyoshi Murata
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
18
|
Bergstralh DT, Dawney NS, St Johnston D. Spindle orientation: a question of complex positioning. Development 2017; 144:1137-1145. [DOI: 10.1242/dev.140764] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The direction in which a cell divides is determined by the orientation of its mitotic spindle at metaphase. Spindle orientation is therefore important for a wide range of developmental processes, ranging from germline stem cell division to epithelial tissue homeostasis and regeneration. In multiple cell types in multiple animals, spindle orientation is controlled by a conserved biological machine that mediates a pulling force on astral microtubules. Restricting the localization of this machine to only specific regions of the cortex can thus determine how the mitotic spindle is oriented. As we review here, recent findings based on studies in tunicate, worm, fly and vertebrate cells have revealed that the mechanisms for mediating this restriction are surprisingly diverse.
Collapse
Affiliation(s)
- Dan T. Bergstralh
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Nicole S. Dawney
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| |
Collapse
|
19
|
Yamashita YM. Cellular fingers take hold. eLife 2016; 5. [PMID: 27502558 PMCID: PMC4978518 DOI: 10.7554/elife.19405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 07/28/2016] [Indexed: 12/03/2022] Open
Abstract
Invaginations in the membranes of embryonic cells appear to orient cell division in sea squirts.
Collapse
Affiliation(s)
- Yukiko M Yamashita
- Life Sciences Institute, Department of Cell and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, United States
| |
Collapse
|