1
|
Xie H, Song L, Mao G, Han J, Pu J, Wu Z, Chen J, Zhou J, Huang J, Fang D, Liu T. Synergistic protection of nascent DNA at stalled forks by MSANTD4 and BRCA1/2-RAD51. Nat Chem Biol 2025:10.1038/s41589-024-01833-9. [PMID: 39809895 DOI: 10.1038/s41589-024-01833-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025]
Abstract
The regressed arms of reversed replication forks exhibit structural similarities to one-ended double-stranded breaks and need to be protected against uncontrolled nucleolytic degradation. Here, we identify MSANTD4 (Myb/SANT-like DNA-binding domain-containing protein 4), a functionally uncharacterized protein that uniquely counters the replication protein A (RPA)-Bloom (BLM)/Werner syndrome helicase (WRN)-DNA replication helicase/nuclease 2 (DNA2) complex to safeguard reversed replication forks from detrimental degradation, independently of the breast cancer susceptibility proteins (BRCA1/2)-DNA repair protein RAD51 pathway. MSANTD4 specifically interacts with the junctions between single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) in DNA substrates harboring a 3' overhang, which resemble the structural features of regressed arms processed by WRN-DNA2. This DNA-binding capability allows MSANTD4 to accumulate at reversed forks, strategically antagonizing the RPA-BLM/WRN-DNA2 complex by impeding its access to the ssDNA-dsDNA junction of the regressed arms. Loss of MSANTD4 exacerbates genome instability induced by replication stress in BRCA1/2-deficient cells. Our findings unveil a collaborative defense mechanism orchestrated by MSANTD4 and BRCA1/2-RAD51, effectively counteracting nucleolytic attacks on the regressed arms and synergistically preserving the integrity of reversed forks.
Collapse
Affiliation(s)
- Haihua Xie
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lizhi Song
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, China
| | - Genxiang Mao
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinhua Han
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiali Pu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhibing Wu
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Chen
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Huang
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, China.
| | - Dong Fang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.
| | - Ting Liu
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Ceppi I, Dello Stritto MR, Mütze M, Braunshier S, Mengoli V, Reginato G, Võ HMP, Jimeno S, Acharya A, Roy M, Sanchez A, Halder S, Howard SM, Guérois R, Huertas P, Noordermeer SM, Seidel R, Cejka P. Mechanism of BRCA1-BARD1 function in DNA end resection and DNA protection. Nature 2024; 634:492-500. [PMID: 39261728 PMCID: PMC11464378 DOI: 10.1038/s41586-024-07909-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/05/2024] [Indexed: 09/13/2024]
Abstract
DNA double-strand break (DSB) repair by homologous recombination is initiated by DNA end resection, a process involving the controlled degradation of the 5'-terminated strands at DSB sites1,2. The breast cancer suppressor BRCA1-BARD1 not only promotes resection and homologous recombination, but it also protects DNA upon replication stress1,3-9. BRCA1-BARD1 counteracts the anti-resection and pro-non-homologous end-joining factor 53BP1, but whether it functions in resection directly has been unclear10-16. Using purified recombinant proteins, we show here that BRCA1-BARD1 directly promotes long-range DNA end resection pathways catalysed by the EXO1 or DNA2 nucleases. In the DNA2-dependent pathway, BRCA1-BARD1 stimulates DNA unwinding by the Werner or Bloom helicase. Together with MRE11-RAD50-NBS1 and phosphorylated CtIP, BRCA1-BARD1 forms the BRCA1-C complex17,18, which stimulates resection synergistically to an even greater extent. A mutation in phosphorylated CtIP (S327A), which disrupts its binding to the BRCT repeats of BRCA1 and hence the integrity of the BRCA1-C complex19-21, inhibits resection, showing that BRCA1-C is a functionally integrated ensemble. Whereas BRCA1-BARD1 stimulates resection in DSB repair, it paradoxically also protects replication forks from unscheduled degradation upon stress, which involves a homologous recombination-independent function of the recombinase RAD51 (refs. 4-6,8). We show that in the presence of RAD51, BRCA1-BARD1 instead inhibits DNA degradation. On the basis of our data, the presence and local concentration of RAD51 might determine the balance between the pronuclease and the DNA protection functions of BRCA1-BARD1 in various physiological contexts.
Collapse
Affiliation(s)
- Ilaria Ceppi
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Maria Rosaria Dello Stritto
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Martin Mütze
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, Germany
| | - Stefan Braunshier
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Valentina Mengoli
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Giordano Reginato
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Hồ Mỹ Phúc Võ
- Leiden University Medical Center, Leiden, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Sonia Jimeno
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Ananya Acharya
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Megha Roy
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Aurore Sanchez
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
- Institut Curie, Paris Sciences and Lettres University, Sorbonne Université, CNRS UMR 3244, Dynamics of Genetic Information, Paris, France
| | - Swagata Halder
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
- Biological Systems Engineering, Plaksha University, Mohali, India
| | - Sean Michael Howard
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID, USA
| | - Raphaël Guérois
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pablo Huertas
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Sylvie M Noordermeer
- Leiden University Medical Center, Leiden, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Ralf Seidel
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, Germany
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland.
| |
Collapse
|
3
|
Mackay HL, Stone HR, Ronson GE, Ellis K, Lanz A, Aghabi Y, Walker AK, Starowicz K, Garvin AJ, Van Eijk P, Koestler SA, Anthony EJ, Piberger AL, Chauhan AS, Conway-Thomas P, Vaitsiankova A, Vijayendran S, Beesley JF, Petermann E, Brown EJ, Densham RM, Reed SH, Dobbs F, Saponaro M, Morris JR. USP50 suppresses alternative RecQ helicase use and deleterious DNA2 activity during replication. Nat Commun 2024; 15:8102. [PMID: 39284827 PMCID: PMC11405836 DOI: 10.1038/s41467-024-52250-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/30/2024] [Indexed: 09/22/2024] Open
Abstract
Mammalian DNA replication relies on various DNA helicase and nuclease activities to ensure accurate genetic duplication, but how different helicase and nuclease activities are properly directed remains unclear. Here, we identify the ubiquitin-specific protease, USP50, as a chromatin-associated protein required to promote ongoing replication, fork restart, telomere maintenance, cellular survival following hydroxyurea or pyridostatin treatment, and suppression of DNA breaks near GC-rich sequences. We find that USP50 supports proper WRN-FEN1 localisation at or near stalled replication forks. Nascent DNA in cells lacking USP50 shows increased association of the DNA2 nuclease and RECQL4 and RECQL5 helicases and replication defects in cells lacking USP50, or FEN1 are driven by these proteins. Consequently, suppression of DNA2 or RECQL4/5 improves USP50-depleted cell resistance to agents inducing replicative stress and restores telomere stability. These data define an unexpected regulatory protein that promotes the balance of helicase and nuclease use at ongoing and stalled replication forks.
Collapse
Affiliation(s)
- Hannah L Mackay
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Helen R Stone
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- CCTT-C Cancer Research UK, Clinical trials unit, Sir Robert Aitken building, College of Medicine and Health, University of Birmingham, Birmingham, B15 2TT, UK
| | - George E Ronson
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Katherine Ellis
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Alexander Lanz
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Yara Aghabi
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Alexandra K Walker
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Katarzyna Starowicz
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Adthera Bio, Lyndon House, 62 Hagley Road, Birmingham, B16 8PE, UK
| | - Alexander J Garvin
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- SUMO Biology Lab, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Patrick Van Eijk
- Broken String Biosciences Ltd., BioData Innovation Centre, Unit AB3-03, Level 3, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1DR, UK
- Division of Cancer & Genetics School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Stefan A Koestler
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Elizabeth J Anthony
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ann Liza Piberger
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Anoop S Chauhan
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Poppy Conway-Thomas
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Alina Vaitsiankova
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Sobana Vijayendran
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- University Hospital Birmingham N.H.S. Foundation Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Birmingham, B15 2TH, UK
| | - James F Beesley
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Eva Petermann
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Eric J Brown
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 421 Curie Boulevard PA, 19104-6160, USA
| | - Ruth M Densham
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Simon H Reed
- Broken String Biosciences Ltd., BioData Innovation Centre, Unit AB3-03, Level 3, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1DR, UK
- Division of Cancer & Genetics School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Felix Dobbs
- Broken String Biosciences Ltd., BioData Innovation Centre, Unit AB3-03, Level 3, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1DR, UK
- Division of Cancer & Genetics School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Marco Saponaro
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Joanna R Morris
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
4
|
Reginato G, Dello Stritto MR, Wang Y, Hao J, Pavani R, Schmitz M, Halder S, Morin V, Cannavo E, Ceppi I, Braunshier S, Acharya A, Ropars V, Charbonnier JB, Jinek M, Nussenzweig A, Ha T, Cejka P. HLTF disrupts Cas9-DNA post-cleavage complexes to allow DNA break processing. Nat Commun 2024; 15:5789. [PMID: 38987539 PMCID: PMC11237066 DOI: 10.1038/s41467-024-50080-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
The outcome of CRISPR-Cas-mediated genome modifications is dependent on DNA double-strand break (DSB) processing and repair pathway choice. Homology-directed repair (HDR) of protein-blocked DSBs requires DNA end resection that is initiated by the endonuclease activity of the MRE11 complex. Using reconstituted reactions, we show that Cas9 breaks are unexpectedly not directly resectable by the MRE11 complex. In contrast, breaks catalyzed by Cas12a are readily processed. Cas9, unlike Cas12a, bridges the broken ends, preventing DSB detection and processing by MRE11. We demonstrate that Cas9 must be dislocated after DNA cleavage to allow DNA end resection and repair. Using single molecule and bulk biochemical assays, we next find that the HLTF translocase directly removes Cas9 from broken ends, which allows DSB processing by DNA end resection or non-homologous end-joining machineries. Mechanistically, the activity of HLTF requires its HIRAN domain and the release of the 3'-end generated by the cleavage of the non-target DNA strand by the Cas9 RuvC domain. Consequently, HLTF removes the H840A but not the D10A Cas9 nickase. The removal of Cas9 H840A by HLTF explains the different cellular impact of the two Cas9 nickase variants in human cells, with potential implications for gene editing.
Collapse
Affiliation(s)
- Giordano Reginato
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland
| | - Maria Rosaria Dello Stritto
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland
| | - Yanbo Wang
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jingzhou Hao
- Department of Biophysics, Johns Hopkins University, Baltimore, MD21218, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Raphael Pavani
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Michael Schmitz
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Swagata Halder
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland
- Biological Systems Engineering, Plaksha University, Mohali, Punjab, 140306, India
| | - Vincent Morin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Elda Cannavo
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland
| | - Ilaria Ceppi
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland
| | - Stefan Braunshier
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland
| | - Ananya Acharya
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland
| | - Virginie Ropars
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Jean-Baptiste Charbonnier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Andrè Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Taekjip Ha
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Biophysics, Johns Hopkins University, Baltimore, MD21218, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Petr Cejka
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland.
| |
Collapse
|
5
|
Mackay HL, Stone HR, Ellis K, Ronson GE, Walker AK, Starowicz K, Garvin AJ, van Eijk P, Vaitsiankova A, Vijayendran S, Beesley JF, Petermann E, Brown EJ, Densham RM, Reed SH, Dobbs F, Saponaro M, Morris JR. USP50 suppresses alternative RecQ helicase use and deleterious DNA2 activity during replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.574674. [PMID: 38260523 PMCID: PMC10802463 DOI: 10.1101/2024.01.10.574674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Mammalian DNA replication employs several RecQ DNA helicases to orchestrate the faithful duplication of genetic information. Helicase function is often coupled to the activity of specific nucleases, but how helicase and nuclease activities are co-directed is unclear. Here we identify the inactive ubiquitin-specific protease, USP50, as a ubiquitin-binding and chromatin-associated protein required for ongoing replication, fork restart, telomere maintenance and cellular survival during replicative stress. USP50 supports WRN:FEN1 at stalled replication forks, suppresses MUS81-dependent fork collapse and restricts double-strand DNA breaks at GC-rich sequences. Surprisingly we find that cells depleted for USP50 and recovering from a replication block exhibit increased DNA2 and RECQL4 foci and that the defects in ongoing replication, poor fork restart and increased fork collapse seen in these cells are mediated by DNA2, RECQL4 and RECQL5. These data define a novel ubiquitin-dependent pathway that promotes the balance of helicase: nuclease use at ongoing and stalled replication forks.
Collapse
|
6
|
Mengoli V, Ceppi I, Sanchez A, Cannavo E, Halder S, Scaglione S, Gaillard P, McHugh PJ, Riesen N, Pettazzoni P, Cejka P. WRN helicase and mismatch repair complexes independently and synergistically disrupt cruciform DNA structures. EMBO J 2023; 42:e111998. [PMID: 36541070 PMCID: PMC9890227 DOI: 10.15252/embj.2022111998] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/07/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
The Werner Syndrome helicase, WRN, is a promising therapeutic target in cancers with microsatellite instability (MSI). Long-term MSI leads to the expansion of TA nucleotide repeats proposed to form cruciform DNA structures, which in turn cause DNA breaks and cell lethality upon WRN downregulation. Here we employed biochemical assays to show that WRN helicase can efficiently and directly unfold cruciform structures, thereby preventing their cleavage by the SLX1-SLX4 structure-specific endonuclease. TA repeats are particularly prone to form cruciform structures, explaining why these DNA sequences are preferentially broken in MSI cells upon WRN downregulation. We further demonstrate that the activity of the DNA mismatch repair (MMR) complexes MutSα (MSH2-MSH6), MutSβ (MSH2-MSH3), and MutLα (MLH1-PMS2) similarly decreases the level of DNA cruciforms, although the mechanism is different from that employed by WRN. When combined, WRN and MutLα exhibited higher than additive effects in in vitro cruciform processing, suggesting that WRN and the MMR proteins may cooperate. Our data explain how WRN and MMR defects cause genome instability in MSI cells with expanded TA repeats, and provide a mechanistic basis for their recently discovered synthetic-lethal interaction with promising applications in precision cancer therapy.
Collapse
Affiliation(s)
- Valentina Mengoli
- Faculty of Biomedical Sciences, Institute for Research in BiomedicineUniversità della Svizzera italiana (USI)BellinzonaSwitzerland
| | - Ilaria Ceppi
- Faculty of Biomedical Sciences, Institute for Research in BiomedicineUniversità della Svizzera italiana (USI)BellinzonaSwitzerland
| | - Aurore Sanchez
- Faculty of Biomedical Sciences, Institute for Research in BiomedicineUniversità della Svizzera italiana (USI)BellinzonaSwitzerland
| | - Elda Cannavo
- Faculty of Biomedical Sciences, Institute for Research in BiomedicineUniversità della Svizzera italiana (USI)BellinzonaSwitzerland
| | - Swagata Halder
- Faculty of Biomedical Sciences, Institute for Research in BiomedicineUniversità della Svizzera italiana (USI)BellinzonaSwitzerland
| | - Sarah Scaglione
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm, CNRS, Aix‐Marseille Université, Institut Paoli‐CalmettesMarseilleFrance
| | - Pierre‐Henri Gaillard
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm, CNRS, Aix‐Marseille Université, Institut Paoli‐CalmettesMarseilleFrance
| | - Peter J McHugh
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Nathalie Riesen
- Roche Pharma Research & Early Development pREDRoche Innovation CenterBaselSwitzerland
| | | | - Petr Cejka
- Faculty of Biomedical Sciences, Institute for Research in BiomedicineUniversità della Svizzera italiana (USI)BellinzonaSwitzerland
- Department of Biology, Institute of BiochemistryEidgenössische Technische Hochschule (ETH)ZürichSwitzerland
| |
Collapse
|
7
|
Ceppi I, Cannavo E, Bret H, Camarillo R, Vivalda F, Thakur RS, Romero-Franco A, Sartori AA, Huertas P, Guérois R, Cejka P. PLK1 regulates CtIP and DNA2 interplay in long-range DNA end resection. Genes Dev 2023; 37:119-135. [PMID: 36746606 PMCID: PMC10069449 DOI: 10.1101/gad.349981.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/12/2023] [Indexed: 02/08/2023]
Abstract
DNA double-strand break (DSB) repair is initiated by DNA end resection. CtIP acts in short-range resection to stimulate MRE11-RAD50-NBS1 (MRN) to endonucleolytically cleave 5'-terminated DNA to bypass protein blocks. CtIP also promotes the DNA2 helicase-nuclease to accelerate long-range resection downstream from MRN. Here, using AlphaFold2, we identified CtIP-F728E-Y736E as a separation-of-function mutant that is still proficient in conjunction with MRN but is not able to stimulate ssDNA degradation by DNA2. Accordingly, CtIP-F728E-Y736E impairs physical interaction with DNA2. Cellular assays revealed that CtIP-F728E-Y736E cells exhibit reduced DSB-dependent chromatin-bound RPA, impaired long-range resection, and increased sensitivity to DSB-inducing drugs. Previously, CtIP was shown to be targeted by PLK1 to inhibit long-range resection, yet the underlying mechanism was unclear. We show that the DNA2-interacting region in CtIP includes the PLK1 target site at S723. The integrity of S723 in CtIP is necessary for the stimulation of DNA2, and phosphorylation of CtIP by PLK1 in vitro is consequently inhibitory, explaining why PLK1 restricts long-range resection. Our data support a model in which CDK-dependent phosphorylation of CtIP activates resection by MRN in S phase, and PLK1-mediated phosphorylation of CtIP disrupts CtIP stimulation of DNA2 to attenuate long-range resection later at G2/M.
Collapse
Affiliation(s)
- Ilaria Ceppi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona 6500, Switzerland
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich 8093, Switzerland
| | - Elda Cannavo
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona 6500, Switzerland
| | - Hélène Bret
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette 91190, France
| | - Rosa Camarillo
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla 41080, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide, Sevilla 41092, Spain
| | - Francesca Vivalda
- Institute of Molecular Cancer Research, University of Zürich, Zürich 8057, Switzerland
| | - Roshan Singh Thakur
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona 6500, Switzerland
| | - Amador Romero-Franco
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla 41080, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide, Sevilla 41092, Spain
| | - Alessandro A Sartori
- Institute of Molecular Cancer Research, University of Zürich, Zürich 8057, Switzerland
| | - Pablo Huertas
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla 41080, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide, Sevilla 41092, Spain
| | - Raphaël Guérois
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette 91190, France
| | - Petr Cejka
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona 6500, Switzerland;
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich 8093, Switzerland
| |
Collapse
|
8
|
Raducanu VS, Tehseen M, Al-Amodi A, Joudeh LI, De Biasio A, Hamdan SM. Mechanistic investigation of human maturation of Okazaki fragments reveals slow kinetics. Nat Commun 2022; 13:6973. [PMID: 36379932 PMCID: PMC9666535 DOI: 10.1038/s41467-022-34751-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
The final steps of lagging strand synthesis induce maturation of Okazaki fragments via removal of the RNA primers and ligation. Iterative cycles between Polymerase δ (Polδ) and Flap endonuclease-1 (FEN1) remove the primer, with an intermediary nick structure generated for each cycle. Here, we show that human Polδ is inefficient in releasing the nick product from FEN1, resulting in non-processive and remarkably slow RNA removal. Ligase 1 (Lig1) can release the nick from FEN1 and actively drive the reaction toward ligation. These mechanisms are coordinated by PCNA, which encircles DNA, and dynamically recruits Polδ, FEN1, and Lig1 to compete for their substrates. Our findings call for investigating additional pathways that may accelerate RNA removal in human cells, such as RNA pre-removal by RNase Hs, which, as demonstrated herein, enhances the maturation rate ~10-fold. They also suggest that FEN1 may attenuate the various activities of Polδ during DNA repair and recombination.
Collapse
Affiliation(s)
- Vlad-Stefan Raducanu
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Muhammad Tehseen
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Amani Al-Amodi
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Luay I Joudeh
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Alfredo De Biasio
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| | - Samir M Hamdan
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
9
|
Halder S, Sanchez A, Ranjha L, Reginato G, Ceppi I, Acharya A, Anand R, Cejka P. Double-stranded DNA binding function of RAD51 in DNA protection and its regulation by BRCA2. Mol Cell 2022; 82:3553-3565.e5. [PMID: 36070766 DOI: 10.1016/j.molcel.2022.08.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/16/2022] [Accepted: 08/10/2022] [Indexed: 11/26/2022]
Abstract
RAD51 and the breast cancer suppressor BRCA2 have critical functions in DNA double-strand (dsDNA) break repair by homologous recombination and the protection of newly replicated DNA from nucleolytic degradation. The recombination function of RAD51 requires its binding to single-stranded DNA (ssDNA), whereas binding to dsDNA is inhibitory. Using reconstituted MRE11-, EXO1-, and DNA2-dependent nuclease reactions, we show that the protective function of RAD51 unexpectedly depends on its binding to dsDNA. The BRC4 repeat of BRCA2 abrogates RAD51 binding to dsDNA and accordingly impairs the function of RAD51 in protection. The BRCA2 C-terminal RAD51-binding segment (TR2) acts in a dominant manner to overcome the effect of BRC4. Mechanistically, TR2 stabilizes RAD51 binding to dsDNA, even in the presence of BRC4, promoting DNA protection. Our data suggest that RAD51's dsDNA-binding capacity may have evolved together with its function in replication fork protection and provide a mechanistic basis for the DNA-protection function of BRCA2.
Collapse
Affiliation(s)
- Swagata Halder
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland
| | - Aurore Sanchez
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland
| | - Lepakshi Ranjha
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland
| | - Giordano Reginato
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8049 Zürich, Switzerland
| | - Ilaria Ceppi
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8049 Zürich, Switzerland
| | - Ananya Acharya
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8049 Zürich, Switzerland
| | - Roopesh Anand
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8049 Zürich, Switzerland.
| |
Collapse
|
10
|
Qiu Z, Hao S, Song S, Zhang R, Yan T, Lu Z, Wang H, Jia Z, Zheng J. PLK1-mediated phosphorylation of PPIL2 regulates HR via CtIP. Front Cell Dev Biol 2022; 10:902403. [PMID: 36092721 PMCID: PMC9452783 DOI: 10.3389/fcell.2022.902403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Homologous recombination (HR) is an error-free DNA double-strand break (DSB) repair pathway, which safeguards genome integrity and cell viability. Human C-terminal binding protein (CtBP)—interacting protein (CtIP) is a central regulator of the pathway which initiates the DNA end resection in HR. Ubiquitination modification of CtIP is known in some cases to control DNA resection and promote HR. However, it remains unclear how cells restrain CtIP activity in unstressed cells. We show that the ubiquitin E3 ligase PPIL2 is recruited to DNA damage sites through interactions with an HR-related protein ZNF830, implying PPIL2’s involvement in DNA repair. We found that PPIL2 interacts with and ubiquitinates CtIP at the K426 site, representing a hereunto unknown ubiquitination site. Ubiquitination of CtIP by PPIL2 suppresses HR and DNA resection. This inhibition of PPIL2 is also modulated by phosphorylation at multiple sites by PLK1, which reduces PPIL2 ubiquitination of CtIP. Our findings reveal new regulatory complexity in CtIP ubiquitination in DSB repair. We propose that the PPIL2-dependent CtIP ubiquitination prevents CtIP from interacting with DNA, thereby inhibiting HR.
Collapse
Affiliation(s)
- Zhiyu Qiu
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Shuailin Hao
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - Shikai Song
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Ruiling Zhang
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Tingyu Yan
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Zhifang Lu
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Hailong Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
- *Correspondence: Zongchao Jia, ; Jimin Zheng,
| | - Jimin Zheng
- College of Chemistry, Beijing Normal University, Beijing, China
- *Correspondence: Zongchao Jia, ; Jimin Zheng,
| |
Collapse
|
11
|
Halder S, Ranjha L, Taglialatela A, Ciccia A, Cejka P. Strand annealing and motor driven activities of SMARCAL1 and ZRANB3 are stimulated by RAD51 and the paralog complex. Nucleic Acids Res 2022; 50:8008-8022. [PMID: 35801922 PMCID: PMC9371921 DOI: 10.1093/nar/gkac583] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 12/17/2022] Open
Abstract
SMARCAL1, ZRANB3 and HLTF are required for the remodeling of replication forks upon stress to promote genome stability. RAD51, along with the RAD51 paralog complex, were also found to have recombination-independent functions in fork reversal, yet the underlying mechanisms remained unclear. Using reconstituted reactions, we build upon previous data to show that SMARCAL1, ZRANB3 and HLTF have unequal biochemical capacities, explaining why they have non-redundant functions. SMARCAL1 uniquely anneals RPA-coated ssDNA, which depends on its direct interaction with RPA, but not on ATP. SMARCAL1, along with ZRANB3, but not HLTF efficiently employ ATPase driven translocase activity to rezip RPA-covered bubbled DNA, which was proposed to mimic elements of fork reversal. In contrast, ZRANB3 and HLTF but not SMARCAL1 are efficient in branch migration that occurs downstream in fork remodeling. We also show that low concentrations of RAD51 and the RAD51 paralog complex, RAD51B–RAD51C–RAD51D–XRCC2 (BCDX2), directly stimulate the motor-driven activities of SMARCAL1 and ZRANB3 but not HLTF, and the interplay is underpinned by physical interactions. Our data provide a possible mechanism explaining previous cellular experiments implicating RAD51 and BCDX2 in fork reversal.
Collapse
Affiliation(s)
- Swagata Halder
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Lepakshi Ranjha
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Angelo Taglialatela
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, NY, USA
| | - Alberto Ciccia
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, NY, USA
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland.,Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| |
Collapse
|
12
|
Ho HN, West SC. Generation of double Holliday junction DNAs and their dissolution/resolution within a chromatin context. Proc Natl Acad Sci U S A 2022; 119:e2123420119. [PMID: 35452329 PMCID: PMC9170140 DOI: 10.1073/pnas.2123420119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/20/2022] [Indexed: 12/31/2022] Open
Abstract
Four-way DNA intermediates, also known as Holliday junctions (HJs), are formed during homologous recombination and DNA repair, and their resolution is necessary for proper chromosome segregation. To facilitate the biochemical analysis of HJ processing, we developed a method involving DNAzyme self-cleavage to generate 1.8-kb DNA molecules containing either single (sHJ) or double Holliday junctions (dHJs). We show that dHJ DNAs (referred to as HoJo DNAs) are dissolved by the human BLM–TopIIIα–RMI1–RMI2 complex to form two noncrossover products. However, structure-selective endonucleases (human GEN1 and SMX complex) resolve DNA containing single or double HJs to yield a mixture of crossover and noncrossover products. Finally, we demonstrate that chromatin inhibits the resolution of the double HJ by GEN or SMX while allowing BTRR-mediated dissolution.
Collapse
Affiliation(s)
- Han N. Ho
- DNA Recombination and Repair Laboratory, Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Stephen C. West
- DNA Recombination and Repair Laboratory, Francis Crick Institute, London NW1 1AT, United Kingdom
| |
Collapse
|
13
|
A POLD3/BLM dependent pathway handles DSBs in transcribed chromatin upon excessive RNA:DNA hybrid accumulation. Nat Commun 2022; 13:2012. [PMID: 35440629 PMCID: PMC9019021 DOI: 10.1038/s41467-022-29629-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 03/25/2022] [Indexed: 12/03/2022] Open
Abstract
Transcriptionally active loci are particularly prone to breakage and mounting evidence suggests that DNA Double-Strand Breaks arising in active genes are handled by a dedicated repair pathway, Transcription-Coupled DSB Repair (TC-DSBR), that entails R-loop accumulation and dissolution. Here, we uncover a function for the Bloom RecQ DNA helicase (BLM) in TC-DSBR in human cells. BLM is recruited in a transcription dependent-manner at DSBs where it fosters resection, RAD51 binding and accurate Homologous Recombination repair. However, in an R-loop dissolution-deficient background, we find that BLM promotes cell death. We report that upon excessive RNA:DNA hybrid accumulation, DNA synthesis is enhanced at DSBs, in a manner that depends on BLM and POLD3. Altogether our work unveils a role for BLM at DSBs in active chromatin, and highlights the toxic potential of RNA:DNA hybrids that accumulate at transcription-associated DSBs. DNA Double Strand breaks in transcriptionally active loci (TC-DSBs) undergo a dedicated repair pathway. Here, the authors show that excessive RNA:DNA hybrid accumulation at TC-DSBs elicits POLD3/BLM-dependent DNA synthesis that induces cell toxicity.
Collapse
|
14
|
The nuclease activity of DNA2 promotes exonuclease 1-independent mismatch repair. J Biol Chem 2022; 298:101831. [PMID: 35300981 PMCID: PMC9036127 DOI: 10.1016/j.jbc.2022.101831] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/03/2022] Open
Abstract
The DNA mismatch repair (MMR) system is a major DNA repair system that corrects DNA replication errors. In eukaryotes, the MMR system functions via mechanisms both dependent on and independent of exonuclease 1 (EXO1), an enzyme that has multiple roles in DNA metabolism. Although the mechanism of EXO1-dependent MMR is well understood, less is known about EXO1-independent MMR. Here, we provide genetic and biochemical evidence that the DNA2 nuclease/helicase has a role in EXO1-independent MMR. Biochemical reactions reconstituted with purified human proteins demonstrated that the nuclease activity of DNA2 promotes an EXO1-independent MMR reaction via a mismatch excision-independent mechanism that involves DNA polymerase δ. We show that DNA polymerase ε is not able to replace DNA polymerase δ in the DNA2-promoted MMR reaction. Unlike its nuclease activity, the helicase activity of DNA2 is dispensable for the ability of the protein to enhance the MMR reaction. Further examination established that DNA2 acts in the EXO1-independent MMR reaction by increasing the strand-displacement activity of DNA polymerase δ. These data reveal a mechanism for EXO1-independent mismatch repair.
Collapse
|
15
|
Abdisalaam S, Mukherjee S, Bhattacharya S, Kumari S, Sinha D, Ortega J, Li GM, Sadek H, Krishnan S, Asaithamby A. NBS1-CtIP-mediated DNA end resection suppresses cGAS binding to micronuclei. Nucleic Acids Res 2022; 50:2681-2699. [PMID: 35189637 PMCID: PMC8934670 DOI: 10.1093/nar/gkac079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 01/12/2022] [Accepted: 01/25/2022] [Indexed: 01/07/2023] Open
Abstract
Cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) is activated in cells with defective DNA damage repair and signaling (DDR) factors, but a direct role for DDR factors in regulating cGAS activation in response to micronuclear DNA is still poorly understood. Here, we provide novel evidence that Nijmegen breakage syndrome 1 (NBS1) protein, a well-studied DNA double-strand break (DSB) sensor-in coordination with Ataxia Telangiectasia Mutated (ATM), a protein kinase, and Carboxy-terminal binding protein 1 interacting protein (CtIP), a DNA end resection factor-functions as an upstream regulator that prevents cGAS from binding micronuclear DNA. When NBS1 binds to micronuclear DNA via its fork-head-associated domain, it recruits CtIP and ATM via its N- and C-terminal domains, respectively. Subsequently, ATM stabilizes NBS1's interaction with micronuclear DNA, and CtIP converts DSB ends into single-strand DNA ends; these two key events prevent cGAS from binding micronuclear DNA. Additionally, by using a cGAS tripartite system, we show that cells lacking NBS1 not only recruit cGAS to a major fraction of micronuclear DNA but also activate cGAS in response to these micronuclear DNA. Collectively, our results underscore how NBS1 and its binding partners prevent cGAS from binding micronuclear DNA, in addition to their classical functions in DDR signaling.
Collapse
Affiliation(s)
- Salim Abdisalaam
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shibani Mukherjee
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Souparno Bhattacharya
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sharda Kumari
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Debapriya Sinha
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Janice Ortega
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guo-Min Li
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hesham A Sadek
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL 32082, USA
| | - Aroumougame Asaithamby
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
16
|
Balbo Pogliano C, Ceppi I, Giovannini S, Petroulaki V, Palmer N, Uliana F, Gatti M, Kasaciunaite K, Freire R, Seidel R, Altmeyer M, Cejka P, Matos J. The CDK1-TOPBP1-PLK1 axis regulates the Bloom's syndrome helicase BLM to suppress crossover recombination in somatic cells. SCIENCE ADVANCES 2022; 8:eabk0221. [PMID: 35119917 PMCID: PMC8816346 DOI: 10.1126/sciadv.abk0221] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Bloom's syndrome is caused by inactivation of the BLM helicase, which functions with TOP3A and RMI1-2 (BTR complex) to dissolve recombination intermediates and avoid somatic crossing-over. We show here that crossover avoidance by BTR further requires the activity of cyclin-dependent kinase-1 (CDK1), Polo-like kinase-1 (PLK1), and the DDR mediator protein TOPBP1, which act in the same pathway. Mechanistically, CDK1 phosphorylates BLM and TOPBP1 and promotes the interaction of both proteins with PLK1. This is amplified by the ability of TOPBP1 to facilitate phosphorylation of BLM at sites that stimulate both BLM-PLK1 and BLM-TOPBP1 binding, creating a positive feedback loop that drives rapid BLM phosphorylation at the G2-M transition. In vitro, BLM phosphorylation by CDK/PLK1/TOPBP1 stimulates the dissolution of topologically linked DNA intermediates by BLM-TOP3A. Thus, we propose that the CDK1-TOPBP1-PLK1 axis enhances BTR-mediated dissolution of recombination intermediates late in the cell cycle to suppress crossover recombination and curtail genomic instability.
Collapse
Affiliation(s)
| | - Ilaria Ceppi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), 6500 Bellinzona, Switzerland
| | - Sara Giovannini
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Vasiliki Petroulaki
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Nathan Palmer
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Federico Uliana
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Marco Gatti
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Kristina Kasaciunaite
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103 Leipzig, Germany
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias–FIISC, Ofra s/n, 38320 La Laguna, Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Tenerife, Spain
- Universidad Fernando Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain
| | - Ralf Seidel
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103 Leipzig, Germany
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Petr Cejka
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), 6500 Bellinzona, Switzerland
| | - Joao Matos
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter, Vienna, Austria
| |
Collapse
|
17
|
De Falco M, De Felice M. Take a Break to Repair: A Dip in the World of Double-Strand Break Repair Mechanisms Pointing the Gaze on Archaea. Int J Mol Sci 2021; 22:ijms222413296. [PMID: 34948099 PMCID: PMC8708640 DOI: 10.3390/ijms222413296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022] Open
Abstract
All organisms have evolved many DNA repair pathways to counteract the different types of DNA damages. The detection of DNA damage leads to distinct cellular responses that bring about cell cycle arrest and the induction of DNA repair mechanisms. In particular, DNA double-strand breaks (DSBs) are extremely toxic for cell survival, that is why cells use specific mechanisms of DNA repair in order to maintain genome stability. The choice among the repair pathways is mainly linked to the cell cycle phases. Indeed, if it occurs in an inappropriate cellular context, it may cause genome rearrangements, giving rise to many types of human diseases, from developmental disorders to cancer. Here, we analyze the most recent remarks about the main pathways of DSB repair with the focus on homologous recombination. A thorough knowledge in DNA repair mechanisms is pivotal for identifying the most accurate treatments in human diseases.
Collapse
|
18
|
Abstract
DNA double-strand breaks (DSBs) are cytotoxic lesions that threaten genome integrity and cell viability. Typically, cells repair DSBs by either nonhomologous end joining (NHEJ) or homologous recombination (HR). The relative use of these two pathways depends on many factors, including cell cycle stage and the nature of the DNA ends. A critical determinant of repair pathway selection is the initiation of 5'→3' nucleolytic degradation of DNA ends, a process referred to as DNA end resection. End resection is essential to create single-stranded DNA overhangs, which serve as the substrate for the Rad51 recombinase to initiate HR and are refractory to NHEJ repair. Here, we review recent insights into the mechanisms of end resection, how it is regulated, and the pathological consequences of its dysregulation.
Collapse
Affiliation(s)
- Petr Cejka
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500 Bellinzona, Switzerland; .,Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; .,Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
19
|
Distinct RPA domains promote recruitment and the helicase-nuclease activities of Dna2. Nat Commun 2021; 12:6521. [PMID: 34764291 PMCID: PMC8586334 DOI: 10.1038/s41467-021-26863-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 10/21/2021] [Indexed: 01/25/2023] Open
Abstract
The Dna2 helicase-nuclease functions in concert with the replication protein A (RPA) in DNA double-strand break repair. Using ensemble and single-molecule biochemistry, coupled with structure modeling, we demonstrate that the stimulation of S. cerevisiae Dna2 by RPA is not a simple consequence of Dna2 recruitment to single-stranded DNA. The large RPA subunit Rfa1 alone can promote the Dna2 nuclease activity, and we identified mutations in a helix embedded in the N-terminal domain of Rfa1 that specifically disrupt this capacity. The same RPA mutant is instead fully functional to recruit Dna2 and promote its helicase activity. Furthermore, we found residues located on the outside of the central DNA-binding OB-fold domain Rfa1-A, which are required to promote the Dna2 motor activity. Our experiments thus unexpectedly demonstrate that different domains of Rfa1 regulate Dna2 recruitment, and its nuclease and helicase activities. Consequently, the identified separation-of-function RPA variants are compromised to stimulate Dna2 in the processing of DNA breaks. The results explain phenotypes of replication-proficient but radiation-sensitive RPA mutants and illustrate the unprecedented functional interplay of RPA and Dna2. An enzymatic ensemble including Dna2 functions in DNA end resection; the function of the single-stranded DNA binding protein RPA in this complex has been underappreciated. Here the authors employ molecular modeling, biochemistry, and single molecule biophysics to reveal RPA directly promotes Dna2 recruitment, nuclease and helicase activities.
Collapse
|
20
|
DNA2 in Chromosome Stability and Cell Survival-Is It All about Replication Forks? Int J Mol Sci 2021; 22:ijms22083984. [PMID: 33924313 PMCID: PMC8069077 DOI: 10.3390/ijms22083984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 01/16/2023] Open
Abstract
The conserved nuclease-helicase DNA2 has been linked to mitochondrial myopathy, Seckel syndrome, and cancer. Across species, the protein is indispensable for cell proliferation. On the molecular level, DNA2 has been implicated in DNA double-strand break (DSB) repair, checkpoint activation, Okazaki fragment processing (OFP), and telomere homeostasis. More recently, a critical contribution of DNA2 to the replication stress response and recovery of stalled DNA replication forks (RFs) has emerged. Here, we review the available functional and phenotypic data and propose that the major cellular defects associated with DNA2 dysfunction, and the links that exist with human disease, can be rationalized through the fundamental importance of DNA2-dependent RF recovery to genome duplication. Being a crucial player at stalled RFs, DNA2 is a promising target for anti-cancer therapy aimed at eliminating cancer cells by replication-stress overload.
Collapse
|
21
|
Mendez-Dorantes C, Tsai LJ, Jahanshir E, Lopezcolorado FW, Stark JM. BLM has Contrary Effects on Repeat-Mediated Deletions, based on the Distance of DNA DSBs to a Repeat and Repeat Divergence. Cell Rep 2021; 30:1342-1357.e4. [PMID: 32023454 PMCID: PMC7085117 DOI: 10.1016/j.celrep.2020.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/08/2019] [Accepted: 12/31/2019] [Indexed: 12/30/2022] Open
Abstract
Repeat-mediated deletions (RMDs) often involve repetitive elements (e.g., short interspersed elements) with sequence divergence that is separated by several kilobase pairs (kbps). We have examined RMDs induced by DNA double-strand breaks (DSBs) under varying conditions of repeat sequence divergence (identical versus 1% and 3% divergent) and DSB/repeat distance (16 bp–28.4 kbp). We find that the BLM helicase promotes RMDs with long DSB/repeat distances (e.g., 28.4 kbp), which is consistent with a role in extensive DSB end resection, because the resection nucleases EXO1 and DNA2 affect RMDs similarly to BLM. In contrast, BLM suppresses RMDs with sequence divergence and intermediate (e.g., 3.3 kbp) DSB/repeat distances, which supports a role in heteroduplex rejection. The role of BLM in heteroduplex rejection is not epistatic with MSH2 and is independent of the annealing factor RAD52. Accordingly, the role of BLM on RMDs is substantially affected by DSB/repeat distance and repeat sequence divergence. Mendez-Dorantes et al. identify the BLM helicase as a key regulator of repeat-mediated deletions (RMDs). BLM, EXO1, and DNA2 mediate RMDs with remarkably long DNA break/repeat distances. BLM suppresses RMDs with sequence divergence that is optimal with a long non-homologous tail and is independent of MSH2 and RAD52.
Collapse
Affiliation(s)
- Carlos Mendez-Dorantes
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - L Jillianne Tsai
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Eva Jahanshir
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
22
|
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
23
|
Lu H, Davis AJ. Human RecQ Helicases in DNA Double-Strand Break Repair. Front Cell Dev Biol 2021. [DOI: 10.3389/fcell.2021.640755 order by 1-- znbp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
24
|
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
25
|
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
26
|
Lu H, Davis AJ. Human RecQ Helicases in DNA Double-Strand Break Repair. Front Cell Dev Biol 2021. [DOI: 10.3389/fcell.2021.640755 order by 1-- azli] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
27
|
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
28
|
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
29
|
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
30
|
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
31
|
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
32
|
Lu H, Davis AJ. Human RecQ Helicases in DNA Double-Strand Break Repair. Front Cell Dev Biol 2021; 9:640755. [PMID: 33718381 PMCID: PMC7947261 DOI: 10.3389/fcell.2021.640755] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund-Thomson syndrome (RTS), Baller-Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
Affiliation(s)
- Huiming Lu
- Division of Molecular Radiation Biology, Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Anthony J. Davis
- Division of Molecular Radiation Biology, Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
33
|
Zhao F, Kim W, Kloeber JA, Lou Z. DNA end resection and its role in DNA replication and DSB repair choice in mammalian cells. Exp Mol Med 2020; 52:1705-1714. [PMID: 33122806 PMCID: PMC8080561 DOI: 10.1038/s12276-020-00519-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/29/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022] Open
Abstract
DNA end resection has a key role in double-strand break repair and DNA replication. Defective DNA end resection can cause malfunctions in DNA repair and replication, leading to greater genomic instability. DNA end resection is initiated by MRN-CtIP generating short, 3′-single-stranded DNA (ssDNA). This newly generated ssDNA is further elongated by multiple nucleases and DNA helicases, such as EXO1, DNA2, and BLM. Effective DNA end resection is essential for error-free homologous recombination DNA repair, the degradation of incorrectly replicated DNA and double-strand break repair choice. Because of its importance in DNA repair, DNA end resection is strictly regulated. Numerous mechanisms have been reported to regulate the initiation, extension, and termination of DNA end resection. Here, we review the general process of DNA end resection and its role in DNA replication and repair pathway choice. Carefully regulated enzymatic processing of the ends of DNA strands is essential for efficient replication and damage repair while also minimizing the risk of genomic instability. Replication and repair depend on a mechanism known as DNA resection, in which enzymes trim back double-stranded DNA ends to leave single-stranded overhangs. Zhenkun Lou and colleagues at the Mayo Clinic in Rochester, USA, have reviewed the various steps involved in the initiation and control of DNA resection. There are multiple different DNA repair processes, and the manner in which resection occurs can determine which of these processes subsequently takes place. The authors note that cancer cells rely heavily on these repair pathways to survive radiotherapy and chemotherapy, and highlight research opportunities that might reveal therapeutically useful vulnerabilities in the resection mechanism.
Collapse
Affiliation(s)
- Fei Zhao
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Wootae Kim
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jake A Kloeber
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.,Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN, 55905, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
34
|
Wilkinson OJ, Carrasco C, Aicart-Ramos C, Moreno-Herrero F, Dillingham MS. Bulk and single-molecule analysis of a bacterial DNA2-like helicase-nuclease reveals a single-stranded DNA looping motor. Nucleic Acids Res 2020; 48:7991-8005. [PMID: 32621607 PMCID: PMC7430649 DOI: 10.1093/nar/gkaa562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/12/2020] [Accepted: 06/19/2020] [Indexed: 11/14/2022] Open
Abstract
DNA2 is an essential enzyme involved in DNA replication and repair in eukaryotes. In a search for homologues of this protein, we identified and characterised Geobacillus stearothermophilus Bad, a bacterial DNA helicase-nuclease with similarity to human DNA2. We show that Bad contains an Fe-S cluster and identify four cysteine residues that are likely to co-ordinate the cluster by analogy to DNA2. The purified enzyme specifically recognises ss-dsDNA junctions and possesses ssDNA-dependent ATPase, ssDNA binding, ssDNA endonuclease, 5' to 3' ssDNA translocase and 5' to 3' helicase activity. Single molecule analysis reveals that Bad is a processive DNA motor capable of moving along DNA for distances of >4 kb at a rate of ∼200 bp per second at room temperature. Interestingly, as reported for the homologous human and yeast DNA2 proteins, the DNA unwinding activity of Bad is cryptic and can be unmasked by inactivating the intrinsic nuclease activity. Strikingly, our experiments show that the enzyme loops DNA while translocating, which is an emerging feature of processive DNA unwinding enzymes. The bacterial Bad enzymes will provide an excellent model system for understanding the biochemical properties of DNA2-like helicase-nucleases and DNA looping motor proteins in general.
Collapse
Affiliation(s)
- Oliver J Wilkinson
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Carolina Carrasco
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Cantoblanco, Madrid, Spain
| | - Clara Aicart-Ramos
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Cantoblanco, Madrid, Spain
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Cantoblanco, Madrid, Spain
| | - Mark S Dillingham
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
35
|
Falquet B, Ölmezer G, Enkner F, Klein D, Challa K, Appanah R, Gasser SM, Rass U. Disease-associated DNA2 nuclease-helicase protects cells from lethal chromosome under-replication. Nucleic Acids Res 2020; 48:7265-7278. [PMID: 32544229 PMCID: PMC7367196 DOI: 10.1093/nar/gkaa524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/21/2020] [Accepted: 06/09/2020] [Indexed: 01/28/2023] Open
Abstract
DNA2 is an essential nuclease–helicase implicated in DNA repair, lagging-strand DNA synthesis, and the recovery of stalled DNA replication forks (RFs). In Saccharomyces cerevisiae, dna2Δ inviability is reversed by deletion of the conserved helicase PIF1 and/or DNA damage checkpoint-mediator RAD9. It has been suggested that Pif1 drives the formation of long 5′-flaps during Okazaki fragment maturation, and that the essential function of Dna2 is to remove these intermediates. In the absence of Dna2, 5′-flaps are thought to accumulate on the lagging strand, resulting in DNA damage-checkpoint arrest and cell death. In line with Dna2’s role in RF recovery, we find that the loss of Dna2 results in severe chromosome under-replication downstream of endogenous and exogenous RF-stalling. Importantly, unfaithful chromosome replication in Dna2-mutant cells is exacerbated by Pif1, which triggers the DNA damage checkpoint along a pathway involving Pif1’s ability to promote homologous recombination-coupled replication. We propose that Dna2 fulfils its essential function by promoting RF recovery, facilitating replication completion while suppressing excessive RF restart by recombination-dependent replication (RDR) and checkpoint activation. The critical nature of Dna2’s role in controlling the fate of stalled RFs provides a framework to rationalize the involvement of DNA2 in Seckel syndrome and cancer.
Collapse
Affiliation(s)
- Benoît Falquet
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, CH-4056 Basel, Switzerland
| | - Gizem Ölmezer
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, CH-4056 Basel, Switzerland
| | - Franz Enkner
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Dominique Klein
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Kiran Challa
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Rowin Appanah
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, CH-4056 Basel, Switzerland
| | - Ulrich Rass
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland.,Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| |
Collapse
|
36
|
Howard SM, Ceppi I, Anand R, Geiger R, Cejka P. The internal region of CtIP negatively regulates DNA end resection. Nucleic Acids Res 2020; 48:5485-5498. [PMID: 32347940 PMCID: PMC7261161 DOI: 10.1093/nar/gkaa273] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/05/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022] Open
Abstract
DNA double-strand breaks are repaired by end-joining or homologous recombination. A key-committing step of recombination is DNA end resection. In resection, phosphorylated CtIP first promotes the endonuclease of MRE11-RAD50-NBS1 (MRN). Subsequently, CtIP also stimulates the WRN/BLM-DNA2 pathway, coordinating thus both short and long-range resection. The structure of CtIP differs from its orthologues in yeast, as it contains a large internal unstructured region. Here, we conducted a domain analysis of CtIP to define the function of the internal region in DNA end resection. We found that residues 350-600 were entirely dispensable for resection in vitro. A mutant lacking these residues was unexpectedly more efficient than full-length CtIP in DNA end resection and homologous recombination in vivo, and consequently conferred resistance to lesions induced by the topoisomerase poison camptothecin, which require high MRN-CtIP-dependent resection activity for repair. This suggested that the internal CtIP region, further mapped to residues 550-600, may mediate a negative regulatory function to prevent over resection in vivo. The CtIP internal deletion mutant exhibited sensitivity to other DNA-damaging drugs, showing that upregulated resection may be instead toxic under different conditions. These experiments together identify a region within the central CtIP domain that negatively regulates DNA end resection.
Collapse
Affiliation(s)
- Sean Michael Howard
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Ilaria Ceppi
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland.,Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Switzerland
| | - Roopesh Anand
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Roger Geiger
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland.,Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Switzerland
| |
Collapse
|
37
|
Reginato G, Cejka P. The MRE11 complex: A versatile toolkit for the repair of broken DNA. DNA Repair (Amst) 2020; 91-92:102869. [PMID: 32480356 DOI: 10.1016/j.dnarep.2020.102869] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
When DNA breaks, the ends need to be stabilized and processed to facilitate subsequent repair, which can occur by either direct but error-prone end-joining with another broken DNA molecule or a more accurate homology-directed repair by the recombination machinery. At the same time, the presence of broken DNA triggers a signaling cascade that regulates the repair events and cellular progression through the cell cycle. The MRE11 nuclease, together with RAD50 and NBS1 forms a complex termed MRN that participates in all these processes. Although MRE11 was first identified more than 20 years ago, deep insights into its mechanism of action and regulation are much more recent. Here we review how MRE11 functions within MRN, and how the complex is further regulated by CtIP and its phosphorylation in a cell cycle dependent manner. We describe how RAD50, NBS1 and CtIP convert MRE11, exhibiting per se a 3'→5' exonuclease activity, into an ensemble that instead degrades primarily the 5'-terminated strand by endonucleolytic cleavage at DNA break sites to generate 3' overhangs, as required for the initiation of homologous recombination. The unique mechanism of DNA end resection by MRN-CtIP makes it a very flexible toolkit to process DNA breaks with a variety of secondary structures and protein blocks. Such a block can also be the Ku heterodimer, and emerging evidence suggests that MRN-CtIP may often need to remove Ku from DNA ends before initiating homologous recombination. Misregulation of DNA break repair results in mutations and chromosome rearrangements that can drive cancer development. Therefore, a detailed understanding of the underlying processes is highly relevant for human health.
Collapse
Affiliation(s)
- Giordano Reginato
- Institute for Research in Biomedicine, Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland.
| |
Collapse
|
38
|
Mariotti L, Wild S, Brunoldi G, Piceni A, Ceppi I, Kummer S, Lutz RE, Cejka P, Gari K. The iron-sulphur cluster in human DNA2 is required for all biochemical activities of DNA2. Commun Biol 2020; 3:322. [PMID: 32576938 PMCID: PMC7311471 DOI: 10.1038/s42003-020-1048-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 06/03/2020] [Indexed: 11/25/2022] Open
Abstract
The nuclease/helicase DNA2 plays important roles in DNA replication, repair and processing of stalled replication forks. DNA2 contains an iron-sulphur (FeS) cluster, conserved in eukaryotes and in a related bacterial nuclease. FeS clusters in DNA maintenance proteins are required for structural integrity and/or act as redox-sensors. Here, we demonstrate that loss of the FeS cluster affects binding of human DNA2 to specific DNA substrates, likely through a conformational change that distorts the central DNA binding tunnel. Moreover, we show that the FeS cluster is required for DNA2’s nuclease, helicase and ATPase activities. Our data also establish that oxidation of DNA2 impairs DNA binding in vitro, an effect that is reversible upon reduction. Unexpectedly, though, this redox-regulation is independent of the presence of the FeS cluster. Together, our study establishes an important structural role for the FeS cluster in human DNA2 and discovers a redox-regulatory mechanism to control DNA binding. Mariotti et al. show that the iron-sulphur cluster in human DNA2 is required for its nuclease, helicase and ATPase activities. This study highlights the structural importance of the iron-sulphur cluster in human DNA2 and presents a separate redox-regulatory mechanism that controls DNA binding.
Collapse
Affiliation(s)
- Laura Mariotti
- Institute of Molecular Cancer Research, University of Zurich, 8057, Zurich, Switzerland.
| | - Sebastian Wild
- Institute of Molecular Cancer Research, University of Zurich, 8057, Zurich, Switzerland
| | - Giulia Brunoldi
- Institute of Molecular Cancer Research, University of Zurich, 8057, Zurich, Switzerland
| | - Alessandra Piceni
- Institute of Molecular Cancer Research, University of Zurich, 8057, Zurich, Switzerland
| | - Ilaria Ceppi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana, 6500, Bellinzona, Switzerland.,Department of Biology, Institute of Biochemistry, ETH Zurich, 8092, Zurich, Switzerland
| | - Sandra Kummer
- Institute of Molecular Cancer Research, University of Zurich, 8057, Zurich, Switzerland
| | - Richard E Lutz
- Institute of Molecular Cancer Research, University of Zurich, 8057, Zurich, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana, 6500, Bellinzona, Switzerland.,Department of Biology, Institute of Biochemistry, ETH Zurich, 8092, Zurich, Switzerland
| | - Kerstin Gari
- Institute of Molecular Cancer Research, University of Zurich, 8057, Zurich, Switzerland.
| |
Collapse
|
39
|
Huang JW, Acharya A, Taglialatela A, Nambiar TS, Cuella-Martin R, Leuzzi G, Hayward SB, Joseph SA, Brunette GJ, Anand R, Soni RK, Clark NL, Bernstein KA, Cejka P, Ciccia A. MCM8IP activates the MCM8-9 helicase to promote DNA synthesis and homologous recombination upon DNA damage. Nat Commun 2020; 11:2948. [PMID: 32528060 PMCID: PMC7290032 DOI: 10.1038/s41467-020-16718-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 05/19/2020] [Indexed: 02/06/2023] Open
Abstract
Homologous recombination (HR) mediates the error-free repair of DNA double-strand breaks to maintain genomic stability. Here we characterize C17orf53/MCM8IP, an OB-fold containing protein that binds ssDNA, as a DNA repair factor involved in HR. MCM8IP-deficient cells exhibit HR defects, especially in long-tract gene conversion, occurring downstream of RAD51 loading, consistent with a role for MCM8IP in HR-dependent DNA synthesis. Moreover, loss of MCM8IP confers cellular sensitivity to crosslinking agents and PARP inhibition. Importantly, we report that MCM8IP directly associates with MCM8-9, a helicase complex mutated in primary ovarian insufficiency, and RPA1. We additionally show that the interactions of MCM8IP with MCM8-9 and RPA facilitate HR and promote replication fork progression and cellular viability in response to treatment with crosslinking agents. Mechanistically, MCM8IP stimulates the helicase activity of MCM8-9. Collectively, our work identifies MCM8IP as a key regulator of MCM8-9-dependent DNA synthesis during DNA recombination and replication.
Collapse
Affiliation(s)
- Jen-Wei Huang
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Ananya Acharya
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Angelo Taglialatela
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Tarun S Nambiar
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Raquel Cuella-Martin
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Giuseppe Leuzzi
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Samuel B Hayward
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Sarah A Joseph
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Gregory J Brunette
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Roopesh Anand
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Rajesh K Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Nathan L Clark
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Kara A Bernstein
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Petr Cejka
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Alberto Ciccia
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
40
|
Grigaitis R, Ranjha L, Wild P, Kasaciunaite K, Ceppi I, Kissling V, Henggeler A, Susperregui A, Peter M, Seidel R, Cejka P, Matos J. Phosphorylation of the RecQ Helicase Sgs1/BLM Controls Its DNA Unwinding Activity during Meiosis and Mitosis. Dev Cell 2020; 53:706-723.e5. [DOI: 10.1016/j.devcel.2020.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/18/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022]
|
41
|
Ceppi I, Howard SM, Kasaciunaite K, Pinto C, Anand R, Seidel R, Cejka P. CtIP promotes the motor activity of DNA2 to accelerate long-range DNA end resection. Proc Natl Acad Sci U S A 2020; 117:8859-8869. [PMID: 32241893 PMCID: PMC7183222 DOI: 10.1073/pnas.2001165117] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
To repair a DNA double-strand break by homologous recombination, 5'-terminated DNA strands must first be resected to reveal 3'-overhangs. This process is initiated by a short-range resection catalyzed by MRE11-RAD50-NBS1 (MRN) stimulated by CtIP, which is followed by a long-range step involving EXO1 or DNA2 nuclease. DNA2 is a bifunctional enzyme that contains both single-stranded DNA (ssDNA)-specific nuclease and motor activities. Upon DNA unwinding by Bloom (BLM) or Werner (WRN) helicase, RPA directs the DNA2 nuclease to degrade the 5'-strand. RPA bound to ssDNA also represents a barrier, explaining the need for the motor activity of DNA2 to displace RPA prior to resection. Using ensemble and single-molecule biochemistry, we show that CtIP also dramatically stimulates the adenosine 5'-triphosphate (ATP) hydrolysis-driven motor activity of DNA2 involved in the long-range resection step. This activation in turn strongly promotes the degradation of RPA-coated ssDNA by DNA2. Accordingly, the stimulatory effect of CtIP is only observed with wild-type DNA2, but not the helicase-deficient variant. Similarly to the function of CtIP to promote MRN, also the DNA2 stimulatory effect is facilitated by CtIP phosphorylation. The domain of CtIP required to promote DNA2 is located in the central region lacking in lower eukaryotes and is fully separable from domains involved in the stimulation of MRN. These results establish how CtIP couples both MRE11-dependent short-range and DNA2-dependent long-range resection and define the involvement of the motor activity of DNA2 in this process. Our data might help explain the less severe resection defects of MRE11 nuclease-deficient cells compared to those lacking CtIP.
Collapse
Affiliation(s)
- Ilaria Ceppi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, 6500, Switzerland
- Institute of Biochemistry, Department of Biology, ETH, Zürich, 8093, Switzerland
| | - Sean M Howard
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, 6500, Switzerland
| | - Kristina Kasaciunaite
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, 04103, Germany
| | - Cosimo Pinto
- Institute of Molecular Cancer Research, University of Zürich, Zürich, 8057, Switzerland
| | - Roopesh Anand
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, 6500, Switzerland
| | - Ralf Seidel
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, 04103, Germany
| | - Petr Cejka
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, 6500, Switzerland;
- Institute of Biochemistry, Department of Biology, ETH, Zürich, 8093, Switzerland
| |
Collapse
|
42
|
Grabuschnig S, Soh J, Heidinger P, Bachler T, Hirschböck E, Rosales Rodriguez I, Schwendenwein D, Sensen CW. Circulating cell-free DNA is predominantly composed of retrotransposable elements and non-telomeric satellite DNA. J Biotechnol 2020; 313:48-56. [DOI: 10.1016/j.jbiotec.2020.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 12/19/2022]
|
43
|
Kasaciunaite K, Fettes F, Levikova M, Daldrop P, Anand R, Cejka P, Seidel R. Competing interaction partners modulate the activity of Sgs1 helicase during DNA end resection. EMBO J 2019; 38:e101516. [PMID: 31268598 PMCID: PMC6601037 DOI: 10.15252/embj.2019101516] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/24/2019] [Accepted: 05/08/2019] [Indexed: 11/09/2022] Open
Abstract
DNA double-strand break repair by homologous recombination employs long-range resection of the 5' DNA ends at the break points. In Saccharomyces cerevisiae, this process can be performed by the RecQ helicase Sgs1 and the helicase-nuclease Dna2. Though functional interplay between them has been shown, it remains unclear whether and how these proteins cooperate on the molecular level. Here, we resolved the dynamics of DNA unwinding by Sgs1 at the single-molecule level and investigated Sgs1 regulation by Dna2, the single-stranded DNA-binding protein RPA, and the Top3-Rmi1 complex. We found that Dna2 modulates the velocity of Sgs1, indicating that during end resection both proteins form a functional complex and couple their activities. Sgs1 drives DNA unwinding and feeds single-stranded DNA to Dna2 for degradation. RPA was found to regulate the processivity and the affinity of Sgs1 to the DNA fork, while Top3-Rmi1 modulated the velocity of Sgs1. We hypothesize that the differential regulation of Sgs1 activity by its protein partners is important to support diverse cellular functions of Sgs1 during the maintenance of genome stability.
Collapse
Affiliation(s)
- Kristina Kasaciunaite
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, Germany
| | - Fergus Fettes
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, Germany
| | - Maryna Levikova
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Peter Daldrop
- Institute for Molecular Cell Biology, University of Münster, Münster, Germany
| | - Roopesh Anand
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zurich, Switzerland
| | - Ralf Seidel
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, Germany
- Institute for Molecular Cell Biology, University of Münster, Münster, Germany
| |
Collapse
|
44
|
Casari E, Rinaldi C, Marsella A, Gnugnoli M, Colombo CV, Bonetti D, Longhese MP. Processing of DNA Double-Strand Breaks by the MRX Complex in a Chromatin Context. Front Mol Biosci 2019; 6:43. [PMID: 31231660 PMCID: PMC6567933 DOI: 10.3389/fmolb.2019.00043] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/21/2019] [Indexed: 12/24/2022] Open
Abstract
DNA double-strand breaks (DSBs) are highly cytotoxic lesions that must be repaired to ensure genomic stability and avoid cell death. The cellular response to DSBs is initiated by the evolutionarily conserved Mre11-Rad50-Xrs2/NBS1 (MRX/MRN) complex that has structural and catalytic functions. Furthermore, it is responsible for DSB signaling through the activation of the checkpoint kinase Tel1/ATM. Here, we review functions and regulation of the MRX/MRN complex in DSB processing in a chromatin context, as well as its interplay with Tel1/ATM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy
| |
Collapse
|
45
|
Garzón J, Ursich S, Lopes M, Hiraga SI, Donaldson AD. Human RIF1-Protein Phosphatase 1 Prevents Degradation and Breakage of Nascent DNA on Replication Stalling. Cell Rep 2019; 27:2558-2566.e4. [PMID: 31141682 PMCID: PMC6547018 DOI: 10.1016/j.celrep.2019.05.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/31/2019] [Accepted: 04/29/2019] [Indexed: 01/13/2023] Open
Abstract
RIF1 is a multifunctional protein implicated in controlling DNA replication and repair. Here, we show that human RIF1 protects nascent DNA from over-degradation at stalled replication forks. The major nuclease resecting nascent DNA in the absence of RIF1 is DNA2, operating with WRN as an accessory helicase. We show that RIF1 acts with protein phosphatase 1 to prevent over-degradation and that RIF1 limits phosphorylation of WRN at sites implicated in resection control. Protection by RIF1 against inappropriate degradation prevents accumulation of DNA breakage. Our observations uncover a crucial function of human RIF1 in preventing genome instability by protecting forks from unscheduled DNA2-WRN-mediated degradation.
Collapse
Affiliation(s)
- Javier Garzón
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Sebastian Ursich
- Institute of Molecular Cancer Research, University of Zürich, 8057 Zürich, Switzerland
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zürich, 8057 Zürich, Switzerland
| | - Shin-Ichiro Hiraga
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Anne D Donaldson
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
46
|
Zhao W, Wiese C, Kwon Y, Hromas R, Sung P. The BRCA Tumor Suppressor Network in Chromosome Damage Repair by Homologous Recombination. Annu Rev Biochem 2019; 88:221-245. [PMID: 30917004 DOI: 10.1146/annurev-biochem-013118-111058] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mutations in the BRCA1 and BRCA2 genes predispose afflicted individuals to breast, ovarian, and other cancers. The BRCA-encoded products form complexes with other tumor suppressor proteins and with the recombinase enzyme RAD51 to mediate chromosome damage repair by homologous recombination and also to protect stressed DNA replication forks against spurious nucleolytic attrition. Understanding how the BRCA tumor suppressor network executes its biological functions would provide the foundation for developing targeted cancer therapeutics, but progress in this area has been greatly hampered by the challenge of obtaining purified BRCA complexes for mechanistic studies. In this article, we review how recent effort begins to overcome this technical challenge, leading to functional and structural insights into the biochemical attributes of these complexes and the multifaceted roles that they fulfill in genome maintenance. We also highlight the major mechanistic questions that remain.
Collapse
Affiliation(s)
- Weixing Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas 78229, USA; ,
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Youngho Kwon
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas 78229, USA; ,
| | - Robert Hromas
- Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas 78229, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas 78229, USA; ,
| |
Collapse
|
47
|
Regulatory control of Sgs1 and Dna2 during eukaryotic DNA end resection. Proc Natl Acad Sci U S A 2019; 116:6091-6100. [PMID: 30850524 DOI: 10.1073/pnas.1819276116] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In the repair of DNA double-strand breaks by homologous recombination, the DNA break ends must first be processed into 3' single-strand DNA overhangs. In budding yeast, end processing requires the helicase Sgs1 (BLM in humans), the nuclease/helicase Dna2, Top3-Rmi1, and replication protein A (RPA). Here, we use single-molecule imaging to visualize Sgs1-dependent end processing in real-time. We show that Sgs1 is recruited to DNA ends through Top3-Rmi1-dependent or -independent means, and in both cases Sgs1 is maintained in an immoble state at the DNA ends. Importantly, the addition of Dna2 triggers processive Sgs1 translocation, but DNA resection only occurs when RPA is also present. We also demonstrate that the Sgs1-Dna2-Top3-Rmi1-RPA ensemble can efficiently disrupt nucleosomes, and that Sgs1 itself possesses nucleosome remodeling activity. Together, these results shed light on the regulatory interplay among conserved protein factors that mediate the nucleolytic processing of DNA ends in preparation for homologous recombination-mediated chromosome damage repair.
Collapse
|
48
|
Abstract
DNA double-strand breaks (DSBs) are a potentially lethal DNA lesions that disrupt both the physical and genetic continuity of the DNA duplex. Homologous recombination (HR) is a universally conserved genome maintenance pathway that initiates via nucleolytic processing of the broken DNA ends (resection). Eukaryotic DNA resection is catalyzed by the resectosome-a multicomponent molecular machine consisting of the nucleases DNA2 or Exonuclease 1 (EXO1), Bloom's helicase (BLM), the MRE11-RAD50-NBS1 (MRN) complex, and additional regulatory factors. Here, we describe methods for purification and single-molecule imaging and analysis of EXO1, DNA2, and BLM. We also describe how to adapt resection assays to the high-throughput single-molecule DNA curtain assay. By organizing hundreds of individual molecules on the surface of a microfluidic flowcell, DNA curtains visualize protein complexes with the required spatial and temporal resolution to resolve the molecular choreography during critical DNA-processing reactions.
Collapse
|
49
|
Jimeno S, Mejías-Navarro F, Prados-Carvajal R, Huertas P. Controlling the balance between chromosome break repair pathways. DNA Repair (Amst) 2019; 115:95-134. [DOI: 10.1016/bs.apcsb.2018.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
50
|
Al-Behadili A, Uhler JP, Berglund AK, Peter B, Doimo M, Reyes A, Wanrooij S, Zeviani M, Falkenberg M. A two-nuclease pathway involving RNase H1 is required for primer removal at human mitochondrial OriL. Nucleic Acids Res 2018; 46:9471-9483. [PMID: 30102370 PMCID: PMC6182146 DOI: 10.1093/nar/gky708] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/21/2018] [Accepted: 07/24/2018] [Indexed: 11/12/2022] Open
Abstract
The role of Ribonuclease H1 (RNase H1) during primer removal and ligation at the mitochondrial origin of light-strand DNA synthesis (OriL) is a key, yet poorly understood, step in mitochondrial DNA maintenance. Here, we reconstitute the replication cycle of L-strand synthesis in vitro using recombinant mitochondrial proteins and model OriL substrates. The process begins with initiation of DNA replication at OriL and ends with primer removal and ligation. We find that RNase H1 partially removes the primer, leaving behind the last one to three ribonucleotides. These 5'-end ribonucleotides disturb ligation, a conclusion which is supported by analysis of RNase H1-deficient patient cells. A second nuclease is therefore required to remove the last ribonucleotides and we demonstrate that Flap endonuclease 1 (FEN1) can execute this function in vitro. Removal of RNA primers at OriL thus depends on a two-nuclease model, which in addition to RNase H1 requires FEN1 or a FEN1-like activity. These findings define the role of RNase H1 at OriL and help to explain the pathogenic consequences of disease causing mutations in RNase H1.
Collapse
Affiliation(s)
- Ali Al-Behadili
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, Sweden
| | - Jay P Uhler
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, Sweden
| | - Anna-Karin Berglund
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, Sweden
| | - Bradley Peter
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, Sweden
| | - Mara Doimo
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Aurelio Reyes
- MRC-Mitochondrial Biology Unit, University of Cambridge, MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Sjoerd Wanrooij
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Massimo Zeviani
- MRC-Mitochondrial Biology Unit, University of Cambridge, MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, Sweden
| |
Collapse
|