1
|
Bouzek H, Srinivasan S, Jones DS, McMahon EF, Strenk SM, Fiedler TL, Fredricks DN, Johnston CD. A Syntenic Pangenome for Gardnerella Reveals Taxonomic Boundaries and Stratification of Metabolic and Virulence Potential across Species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.636902. [PMID: 40027674 PMCID: PMC11870614 DOI: 10.1101/2025.02.19.636902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Bacterial vaginosis (BV) is a prevalent condition associated with an imbalance in the vaginal microbiota, often involving species of Gardnerella . The taxonomic complexity and inconsistent nomenclature of Gardnerella have impeded progress in understanding the role of specific species in health and disease. In this study, we conducted a comprehensive genomic and pangenomic analysis to resolve taxonomic ambiguities and elucidate metabolic and virulence potential across Gardnerella species. We obtained complete, closed genomes for 42 Gardnerella isolates from women with BV and curated publicly available genome sequences (n = 291). Average nucleotide identity (ANI) analysis, digital DNA-DNA hybridization (dDDH), and the cpn60 gene sequences identified nine species and eleven subspecies within Gardnerella , for which we refined species and subspecies boundaries and proposed updated nomenclature. Pangenome analysis revealed species-specific gene clusters linked to metabolic pathways, virulence factors, and niche adaptations, distinguishing species specialized for mucin degradation in the vaginal environment from those potentially adapted to urinary tract colonization. Notably, we identified lineage-specific evolutionary divergence in gene clusters associated with biofilm formation, carbohydrate metabolism, and antimicrobial resistance. We further discovered the first cryptic plasmids naturally present within the Gardnerella genus. Our findings provide a unified framework for Gardnerella taxonomy and nomenclature, and enhance our understanding of species-specific functional capabilities, with implications for Gardnerella research, diagnostics, and targeted therapeutics in BV.
Collapse
|
2
|
Wright GD. The Janus Effect: The Biochemical Logic of Antibiotic Resistance. Biochemistry 2025; 64:301-311. [PMID: 39772429 DOI: 10.1021/acs.biochem.4c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Antibiotics are essential medicines threatened by the emergence of resistance in all relevant bacterial pathogens. The engagement of the molecular targets of antibiotics offers multiple opportunities for resistance to emerge. Successful target engagement often requires passage of the antibiotic from outside into the cell interior through one or two distinct membrane barriers. Resistance can occur by preventing the accumulation of antibiotics in sufficient quantities outside the cell, decreasing the rates of entry into the cell, and modifying the antibiotic or the target once inside the cell. These competing equilibria and rates are the lens through which the balance of antibiotic efficacy or failure can be viewed. The two faces of antibiotics, cell growth inhibition or resistance, are reminiscent of Janus, the Roman god of doorways and beginnings and endings, and offer a framework through which antibiotic discovery, use, and the emergence of resistance can be rationally viewed.
Collapse
Affiliation(s)
- Gerard D Wright
- David Braley Centre for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
3
|
Youngblom MA, Imhoff MR, Smyth LM, Mohamed MA, Pepperell CS. Portrait of a generalist bacterium: pathoadaptation, metabolic specialization and extreme environments shape diversity of Staphylococcus saprophyticus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.18.553882. [PMID: 37645846 PMCID: PMC10462137 DOI: 10.1101/2023.08.18.553882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Staphylococcus saprophyticus is a Gram-positive, coagulase-negative staphylococcus found in diverse environments including soil and freshwater, meat, and dairy foods. S. saprophyticus is also an important cause of urinary tract infections (UTIs) in humans, and mastitis in cattle. However, the genetic determinants of virulence have not yet been identified, and it remains unclear whether there are distinct sub-populations adapted to human and animal hosts. Using a diverse sample of S. saprophyticus isolates from food, animals, environmental sources, and human infections, we characterized the population structure and diversity of global populations of S. saprophyticus . We found that divergence of the two major clades of S. saprophyticus is likely facilitated by barriers to horizontal gene transfer (HGT) and differences in metabolism. Using genome-wide association study (GWAS) tools we identified the first Type VII secretion system (T7SS) described in S. saprophyticus and its association with bovine mastitis. Finally, we found that in general, strains of S. saprophyticus from different niches are genetically similar with the exception of built environments, which function as a 'sink' for S. saprophyticus populations. This work increases our understanding of the ecology of S. saprophyticus and of the genomics of bacterial generalists. Data summary Raw sequencing data for newly sequenced S. saprophyticus isolates have been deposited to the NCBI SRA under the project accession PRJNA928770. A list of all genomes used in this work and their associated metadata are available in the supplementary material. Custom scripts used in the comparative genomics and GWAS analyses are available here: https://github.com/myoungblom/sapro_genomics . Impact statement It is not known whether human and cattle diseases caused by S. saprophyticus represent spillover events from a generalist adapted to survive in a range of environments, or whether the capacity to cause disease represents a specific adaptation. Seasonal cycles of S. saprophyticus UTIs and molecular epidemiological evidence suggest that these infections may be environmentally-acquired rather than via transmission from person to person. Using comparative genomics and genome wide association study tools, we found that S. saprophyticus appears adapted to inhabit a wide range of environments (generalist), with isolates from animals, food, natural environments and human infections being closely related. Bacteria that routinely switch environments, particularly between humans and animals, are of particular concern when it comes to the spread of antibiotic resistance from farm environments into human populations. This work provides a framework for comparative genomic analyses of bacterial generalists and furthers our understanding of how bacterial populations move between humans, animals, and the environment.
Collapse
|
4
|
Long GS, Hider J, Duggan AT, Klunk J, Eaton K, Karpinski E, Giuffra V, Ventura L, Prowse TL, Fornaciari A, Fornaciari G, Holmes EC, Golding GB, Poinar HN. A 14th century CE Brucella melitensis genome and the recent expansion of the Western Mediterranean clade. PLoS Pathog 2023; 19:e1011538. [PMID: 37523413 PMCID: PMC10414615 DOI: 10.1371/journal.ppat.1011538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 08/10/2023] [Accepted: 07/05/2023] [Indexed: 08/02/2023] Open
Abstract
Brucellosis is a disease caused by the bacterium Brucella and typically transmitted through contact with infected ruminants. It is one of the most common chronic zoonotic diseases and of particular interest to public health agencies. Despite its well-known transmission history and characteristic symptoms, we lack a more complete understanding of the evolutionary history of its best-known species-Brucella melitensis. To address this knowledge gap we fortuitously found, sequenced and assembled a high-quality ancient B. melitensis draft genome from the kidney stone of a 14th-century Italian friar. The ancient strain contained fewer core genes than modern B. melitensis isolates, carried a complete complement of virulence genes, and did not contain any indication of significant antimicrobial resistances. The ancient B. melitensis genome fell as a basal sister lineage to a subgroup of B. melitensis strains within the Western Mediterranean phylogenetic group, with a short branch length indicative of its earlier sampling time, along with a similar gene content. By calibrating the molecular clock we suggest that the speciation event between B. melitensis and B. abortus is contemporaneous with the estimated time frame for the domestication of both sheep and goats. These results confirm the existence of the Western Mediterranean clade as a separate group in the 14th CE and suggest that its divergence was due to human and ruminant co-migration.
Collapse
Affiliation(s)
- George S. Long
- Department of Biology, McMaster University, Hamilton, Canada
- McMaster Ancient DNA Centre, Departments of Anthropology and Biochemistry, McMaster University, Hamilton, Canada
| | - Jessica Hider
- McMaster Ancient DNA Centre, Departments of Anthropology and Biochemistry, McMaster University, Hamilton, Canada
- Department of Anthropology, McMaster University, Hamilton, Canada
| | - Ana T. Duggan
- McMaster Ancient DNA Centre, Departments of Anthropology and Biochemistry, McMaster University, Hamilton, Canada
- Department of Anthropology, McMaster University, Hamilton, Canada
| | - Jennifer Klunk
- Department of Biology, McMaster University, Hamilton, Canada
- McMaster Ancient DNA Centre, Departments of Anthropology and Biochemistry, McMaster University, Hamilton, Canada
- Daicel Arbor Biosciences, Ann Arbor, Michigan, United States of America
| | - Katherine Eaton
- McMaster Ancient DNA Centre, Departments of Anthropology and Biochemistry, McMaster University, Hamilton, Canada
- Department of Anthropology, McMaster University, Hamilton, Canada
| | - Emil Karpinski
- Department of Biology, McMaster University, Hamilton, Canada
- McMaster Ancient DNA Centre, Departments of Anthropology and Biochemistry, McMaster University, Hamilton, Canada
| | - Valentina Giuffra
- Division of Paleopathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Luca Ventura
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
- Division of Pathology, San Salvatore Hospital, Coppito, Italy
| | - Tracy L. Prowse
- Department of Anthropology, McMaster University, Hamilton, Canada
| | - Antonio Fornaciari
- Division of Paleopathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, University of Sydney, Sydney, Australia
| | | | - Hendrik N. Poinar
- McMaster Ancient DNA Centre, Departments of Anthropology and Biochemistry, McMaster University, Hamilton, Canada
- Department of Anthropology, McMaster University, Hamilton, Canada
- Department of Biochemistry, McMaster University, Hamilton, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
- CIFAR Humans and the Microbiome Program, Toronto, Canada
| |
Collapse
|
5
|
van der Kuyl AC. Historic and Prehistoric Epidemics: An Overview of Sources Available for the Study of Ancient Pathogens. EPIDEMIOLOGIA 2022; 3:443-464. [PMID: 36547255 PMCID: PMC9778136 DOI: 10.3390/epidemiologia3040034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
Abstract
Since life on earth developed, parasitic microbes have thrived. Increases in host numbers, or the conquest of a new species, provide an opportunity for such a pathogen to enjoy, before host defense systems kick in, a similar upsurge in reproduction. Outbreaks, caused by "endemic" pathogens, and epidemics, caused by "novel" pathogens, have thus been creating chaos and destruction since prehistorical times. To study such (pre)historic epidemics, recent advances in the ancient DNA field, applied to both archeological and historical remains, have helped tremendously to elucidate the evolutionary trajectory of pathogens. These studies have offered new and unexpected insights into the evolution of, for instance, smallpox virus, hepatitis B virus, and the plague-causing bacterium Yersinia pestis. Furthermore, burial patterns and historical publications can help in tracking down ancient pathogens. Another source of information is our genome, where selective sweeps in immune-related genes relate to past pathogen attacks, while multiple viruses have left their genomes behind for us to study. This review will discuss the sources available to investigate (pre)historic diseases, as molecular knowledge of historic and prehistoric pathogens may help us understand the past and the present, and prepare us for future epidemics.
Collapse
Affiliation(s)
- Antoinette C. van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; ; Tel.: +31-205-666-778
- Amsterdam Institute for Infection and Immunity, 1100 DD Amsterdam, The Netherlands
| |
Collapse
|
6
|
A 16 th century Escherichia coli draft genome associated with an opportunistic bile infection. Commun Biol 2022; 5:599. [PMID: 35710940 PMCID: PMC9203756 DOI: 10.1038/s42003-022-03527-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/23/2022] [Indexed: 11/12/2022] Open
Abstract
Escherichia coli – one of the most characterized bacteria and a major public health concern – remains invisible across the temporal landscape. Here, we present the meticulous reconstruction of the first ancient E. coli genome from a 16th century gallstone from an Italian mummy with chronic cholecystitis. We isolated ancient DNA and reconstructed the ancient E. coli genome. It consisted of one chromosome of 4446 genes and two putative plasmids with 52 genes. The E. coli strain belonged to the phylogroup A and an exceptionally rare sequence type 4995. The type VI secretion system component genes appears to be horizontally acquired from Klebsiella aerogenes, however we could not identify any pathovar specific genes nor any acquired antibiotic resistances. A sepsis mouse assay showed that a closely related contemporary E. coli strain was avirulent. Our reconstruction of this ancient E. coli helps paint a more complete picture of the burden of opportunistic infections of the past. Ancient DNA from an Italian mummy’s gallstone provides insight into opportunistic E. coli infection.
Collapse
|
7
|
Waglechner N, Culp EJ, Wright GD. Ancient Antibiotics, Ancient Resistance. EcoSal Plus 2021; 9:eESP-0027-2020. [PMID: 33734062 PMCID: PMC11163840 DOI: 10.1128/ecosalplus.esp-0027-2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
As the spread of antibiotic resistance threatens our ability to treat infections, avoiding the return of a preantibiotic era requires the discovery of new drugs. While therapeutic use of antibiotics followed by the inevitable selection of resistance is a modern phenomenon, these molecules and the genetic determinants of resistance were in use by environmental microbes long before humans discovered them. In this review, we discuss evidence that antibiotics and resistance were present in the environment before anthropogenic use, describing techniques including direct sampling of ancient DNA and phylogenetic analyses that are used to reconstruct the past. We also pay special attention to the ecological and evolutionary forces that have shaped the natural history of antibiotic biosynthesis, including a discussion of competitive versus signaling roles for antibiotics, proto-resistance, and substrate promiscuity of biosynthetic and resistance enzymes. Finally, by applying an evolutionary lens, we describe concepts governing the origins and evolution of biosynthetic gene clusters and cluster-associated resistance determinants. These insights into microbes' use of antibiotics in nature, a game they have been playing for millennia, can provide inspiration for discovery technologies and management strategies to combat the growing resistance crisis.
Collapse
Affiliation(s)
- Nicholas Waglechner
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Elizabeth J. Culp
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Gerard D. Wright
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
8
|
Duchêne S, Ho SYW, Carmichael AG, Holmes EC, Poinar H. The Recovery, Interpretation and Use of Ancient Pathogen Genomes. Curr Biol 2020; 30:R1215-R1231. [PMID: 33022266 PMCID: PMC7534838 DOI: 10.1016/j.cub.2020.08.081] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ability to sequence genomes from ancient biological material has provided a rich source of information for evolutionary biology and engaged considerable public interest. Although most studies of ancient genomes have focused on vertebrates, particularly archaic humans, newer technologies allow the capture of microbial pathogens and microbiomes from ancient and historical human and non-human remains. This coming of age has been made possible by techniques that allow the preferential capture and amplification of discrete genomes from a background of predominantly host and environmental DNA. There are now near-complete ancient genome sequences for three pathogens of considerable historical interest - pre-modern bubonic plague (Yersinia pestis), smallpox (Variola virus) and cholera (Vibrio cholerae) - and for three equally important endemic human disease agents - Mycobacterium tuberculosis (tuberculosis), Mycobacterium leprae (leprosy) and Treponema pallidum pallidum (syphilis). Genomic data from these pathogens have extended earlier work by paleopathologists. There have been efforts to sequence the genomes of additional ancient pathogens, with the potential to broaden our understanding of the infectious disease burden common to past populations from the Bronze Age to the early 20th century. In this review we describe the state-of-the-art of this rapidly developing field, highlight the contributions of ancient pathogen genomics to multidisciplinary endeavors and describe some of the limitations in resolving questions about the emergence and long-term evolution of pathogens.
Collapse
Affiliation(s)
- Sebastián Duchêne
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia.
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | | | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| | - Hendrik Poinar
- McMaster Ancient DNA Centre, Departments of Anthropology and Biochemistry, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4L9, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4L8, Canada; Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Canada.
| |
Collapse
|
9
|
Sabin S, Herbig A, Vågene ÅJ, Ahlström T, Bozovic G, Arcini C, Kühnert D, Bos KI. A seventeenth-century Mycobacterium tuberculosis genome supports a Neolithic emergence of the Mycobacterium tuberculosis complex. Genome Biol 2020; 21:201. [PMID: 32778135 PMCID: PMC7418204 DOI: 10.1186/s13059-020-02112-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 07/17/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Although tuberculosis accounts for the highest mortality from a bacterial infection on a global scale, questions persist regarding its origin. One hypothesis based on modern Mycobacterium tuberculosis complex (MTBC) genomes suggests their most recent common ancestor followed human migrations out of Africa approximately 70,000 years before present. However, studies using ancient genomes as calibration points have yielded much younger dates of less than 6000 years. Here, we aim to address this discrepancy through the analysis of the highest-coverage and highest-quality ancient MTBC genome available to date, reconstructed from a calcified lung nodule of Bishop Peder Winstrup of Lund (b. 1605-d. 1679). RESULTS A metagenomic approach for taxonomic classification of whole DNA content permitted the identification of abundant DNA belonging to the human host and the MTBC, with few non-TB bacterial taxa comprising the background. Genomic enrichment enabled the reconstruction of a 141-fold coverage M. tuberculosis genome. In utilizing this high-quality, high-coverage seventeenth-century genome as a calibration point for dating the MTBC, we employed multiple Bayesian tree models, including birth-death models, which allowed us to model pathogen population dynamics and data sampling strategies more realistically than those based on the coalescent. CONCLUSIONS The results of our metagenomic analysis demonstrate the unique preservation environment calcified nodules provide for DNA. Importantly, we estimate a most recent common ancestor date for the MTBC of between 2190 and 4501 before present and for Lineage 4 of between 929 and 2084 before present using multiple models, confirming a Neolithic emergence for the MTBC.
Collapse
Affiliation(s)
- Susanna Sabin
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Alexander Herbig
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Åshild J. Vågene
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
- Present address: Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Torbjörn Ahlström
- Department of Archaeology and Ancient History, Lund University, 221 00 Lund, Sweden
| | - Gracijela Bozovic
- Department of Medical Imaging and Clinical Physiology, Skåne University Hospital Lund and Lund University, 221 00 Lund, Sweden
| | - Caroline Arcini
- Arkeologerna, National Historical Museum, 226 60 Lund, Sweden
| | - Denise Kühnert
- Transmission, Infection, Diversification & Evolution Group, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Kirsten I. Bos
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| |
Collapse
|
10
|
Duggan AT, Klunk J, Porter AF, Dhody AN, Hicks R, Smith GL, Humphreys M, McCollum AM, Davidson WB, Wilkins K, Li Y, Burke A, Polasky H, Flanders L, Poinar D, Raphenya AR, Lau TTY, Alcock B, McArthur AG, Golding GB, Holmes EC, Poinar HN. The origins and genomic diversity of American Civil War Era smallpox vaccine strains. Genome Biol 2020; 21:175. [PMID: 32684155 PMCID: PMC7370420 DOI: 10.1186/s13059-020-02079-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 06/19/2020] [Indexed: 12/11/2022] Open
Abstract
Vaccination has transformed public health, most notably including the eradication of smallpox. Despite its profound historical importance, little is known of the origins and diversity of the viruses used in smallpox vaccination. Prior to the twentieth century, the method, source and origin of smallpox vaccinations remained unstandardised and opaque. We reconstruct and analyse viral vaccine genomes associated with smallpox vaccination from historical artefacts. Significantly, we recover viral molecules through non-destructive sampling of historical materials lacking signs of biological residues. We use the authenticated ancient genomes to reveal the evolutionary relationships of smallpox vaccination viruses within the poxviruses as a whole.
Collapse
Affiliation(s)
- Ana T Duggan
- Department of Anthropology, McMaster University, Hamilton, L8S 4L9, Canada.
| | - Jennifer Klunk
- Department of Biology, McMaster University, Hamilton, L8S 4L9, Canada.,Present address: Arbor Biosciences, Ann Arbor, MI, 48103, USA
| | - Ashleigh F Porter
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Anna N Dhody
- Mütter Research Institute, Philadelphia, PA, 19103, USA.,Mütter Museum of The College of Physicians of Philadelphia, Philadelphia, PA, 19103, USA
| | - Robert Hicks
- Mütter Research Institute, Philadelphia, PA, 19103, USA.,Mütter Museum of The College of Physicians of Philadelphia, Philadelphia, PA, 19103, USA
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | | | - Andrea M McCollum
- U.S. Centers for Disease Control and Prevention, Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, Atlanta, GA, 30333, USA
| | - Whitni B Davidson
- U.S. Centers for Disease Control and Prevention, Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, Atlanta, GA, 30333, USA
| | - Kimberly Wilkins
- U.S. Centers for Disease Control and Prevention, Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, Atlanta, GA, 30333, USA
| | - Yu Li
- U.S. Centers for Disease Control and Prevention, Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, Atlanta, GA, 30333, USA
| | - Amanda Burke
- Mütter Museum of The College of Physicians of Philadelphia, Philadelphia, PA, 19103, USA
| | - Hanna Polasky
- Mütter Museum of The College of Physicians of Philadelphia, Philadelphia, PA, 19103, USA
| | - Lowell Flanders
- Mütter Museum of The College of Physicians of Philadelphia, Philadelphia, PA, 19103, USA
| | - Debi Poinar
- Department of Anthropology, McMaster University, Hamilton, L8S 4L9, Canada
| | | | - Tammy T Y Lau
- Present address: BC Cancer Research Centre, Vancouver, V5Z 1G1, Canada.,M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, L8S 4K1, Canada
| | - Brian Alcock
- Present address: BC Cancer Research Centre, Vancouver, V5Z 1G1, Canada
| | - Andrew G McArthur
- Present address: BC Cancer Research Centre, Vancouver, V5Z 1G1, Canada
| | - G Brian Golding
- Department of Biology, McMaster University, Hamilton, L8S 4L9, Canada
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Hendrik N Poinar
- Department of Anthropology, McMaster University, Hamilton, L8S 4L9, Canada.,Present address: BC Cancer Research Centre, Vancouver, V5Z 1G1, Canada.,Department of Biochemistry, McMaster University, Hamilton, L8S 4L9, Canada
| |
Collapse
|
11
|
Arning N, Wilson DJ. The past, present and future of ancient bacterial DNA. Microb Genom 2020; 6:mgen000384. [PMID: 32598277 PMCID: PMC7478633 DOI: 10.1099/mgen.0.000384] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Groundbreaking studies conducted in the mid-1980s demonstrated the possibility of sequencing ancient DNA (aDNA), which has allowed us to answer fundamental questions about the human past. Microbiologists were thus given a powerful tool to glimpse directly into inscrutable bacterial history, hitherto inaccessible due to a poor fossil record. Initially plagued by concerns regarding contamination, the field has grown alongside technical progress, with the advent of high-throughput sequencing being a breakthrough in sequence output and authentication. Albeit burdened with challenges unique to the analysis of bacteria, a growing number of viable sources for aDNA has opened multiple avenues of microbial research. Ancient pathogens have been extracted from bones, dental pulp, mummies and historical medical specimens and have answered focal historical questions such as identifying the aetiological agent of the black death as Yersinia pestis. Furthermore, ancient human microbiomes from fossilized faeces, mummies and dental plaque have shown shifts in human commensals through the Neolithic demographic transition and industrial revolution, whereas environmental isolates stemming from permafrost samples have revealed signs of ancient antimicrobial resistance. Culminating in an ever-growing repertoire of ancient genomes, the quickly expanding body of bacterial aDNA studies has also enabled comparisons of ancient genomes to their extant counterparts, illuminating the evolutionary history of bacteria. In this review we summarize the present avenues of research and contextualize them in the past of the field whilst also pointing towards questions still to be answered.
Collapse
Affiliation(s)
- Nicolas Arning
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, OX3 7LF, UK
| | - Daniel J. Wilson
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, OX3 7LF, UK
| |
Collapse
|
12
|
Bohr LL, Mortimer TD, Pepperell CS. Lateral Gene Transfer Shapes Diversity of Gardnerella spp. Front Cell Infect Microbiol 2020; 10:293. [PMID: 32656099 PMCID: PMC7324480 DOI: 10.3389/fcimb.2020.00293] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Gardnerella spp. are pathognomonic for bacterial vaginosis, which increases the risk of preterm birth and the transmission of sexually transmitted infections. Gardnerella spp. are genetically diverse, comprising what have recently been defined as distinct species with differing functional capacities. Disease associations with Gardnerella spp. are not straightforward: patients with BV are usually infected with multiple species, and Gardnerella spp. are also found in the vaginal microbiome of healthy women. Genome comparisons of Gardnerella spp. show evidence of lateral gene transfer (LGT), but patterns of LGT have not been characterized in detail. Here we sought to define the role of LGT in shaping the genetic structure of Gardnerella spp. We analyzed whole genome sequencing data for 106 Gardnerella strains and used these data for pan genome analysis and to characterize LGT in the core and accessory genomes, over recent and remote timescales. In our diverse sample of Gardnerella strains, we found that both the core and accessory genomes are clearly differentiated in accordance with newly defined species designations. We identified putative competence and pilus assembly genes across most species; we also found them to be differentiated between species. Competence machinery has diverged in parallel with the core genome, with selection against deleterious mutations as a predominant influence on their evolution. By contrast, the virulence factor vaginolysin, which encodes a toxin, appears to be readily exchanged among species. We identified five distinct prophage clusters in Gardnerella genomes, two of which appear to be exchanged between Gardnerella species. Differences among species are apparent in their patterns of LGT, including their exchange with diverse gene pools. Despite frequent LGT and co-localization in the same niche, our results show that Gardnerella spp. are clearly genetically differentiated and yet capable of exchanging specific genetic material. This likely reflects complex interactions within bacterial communities associated with the vaginal microbiome. Our results provide insight into how such interactions evolve and are maintained, allowing these multi-species communities to colonize and invade human tissues and adapt to antibiotics and other stressors.
Collapse
Affiliation(s)
- Lindsey L Bohr
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Tatum D Mortimer
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Caitlin S Pepperell
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States.,Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
13
|
Arriola LA, Cooper A, Weyrich LS. Palaeomicrobiology: Application of Ancient DNA Sequencing to Better Understand Bacterial Genome Evolution and Adaptation. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
14
|
Eduardo-Correia B, Morales-Filloy H, Abad JP. Bacteria From the Multi-Contaminated Tinto River Estuary (SW, Spain) Show High Multi-Resistance to Antibiotics and Point to Paenibacillus spp. as Antibiotic-Resistance-Dissemination Players. Front Microbiol 2020; 10:3071. [PMID: 31998281 PMCID: PMC6965355 DOI: 10.3389/fmicb.2019.03071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/19/2019] [Indexed: 12/31/2022] Open
Abstract
Bacterial resistance to antibiotics is an ever-increasing phenomenon that, besides clinical settings, is generally assumed to be prevalent in environmental soils and waters. The analysis of bacteria resistant to each one of 11 antibiotics in waters and sediments of the Huelva’s estuary, a multi-contaminated environment, showed high levels of bacteria resistant mainly to Tm, among others. To further gain knowledge on the fate of multi-drug resistance (MDR) in environmental bacteria, 579 ampicillin-resistant bacteria were isolated tested for resistance to 10 antibiotics. 92.7% of the isolates were resistant to four or more antibiotic classes, indicating a high level of multi-resistance. 143 resistance profiles were found. The isolates with different MDR profiles and/or colony morphologies were phylogenetically ascribed based on 16S rDNA to phyla Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes, including 48 genera. Putative intrinsic resistance was detected in different phylogenetic groups including genera Altererythrobacter, Bacillus, Brevundimonas, Erythrobacter, Mesonia, Ochrobactrum, and Ponticaulis. Correlation of the presence of pairs of the non-intrinsic-resistances in phylogenetic groups based on the kappa index (κ) highlighted the co-habitation of some of the tested pairs at different phylogenetic levels. Maximum correlation (κ = 1.000) was found for pairs CzR/TcR in Betaproteobacteria, and CcR/TcR and EmR/SmR in Sphingobacteriia at the class level, while at the genus level, was found for CcR/TcR and NxR/TmR in Mesonia, CzR/TmR and EmR/KmR in Paenibacillus, and CcR/EmR and RpR/TcR in Pseudomonas. These results could suggest the existence of intra-class and intra-genus-transmissible genetic elements containing determinants for both members of each pair. Network analysis based on κ values higher than 0.4 indicated the sharing of paired resistances among several genera, many of them centered on the Paenibacillus node and raising the hypothesis of inter-genera transmission of resistances interconnected through members of this genus. This is the first time that a possible hotspot of resistance interchange in a particular environment may have been detected, opening up the possibility that one, or a few, bacterial members of the community could be important promoters of antibiotic resistance (AR) dissemination in this environment’s bacterial population. Further studies using the available isolates will likely give insights of the possible mechanisms and genetic elements involved.
Collapse
Affiliation(s)
- Benedito Eduardo-Correia
- Department of Molecular Biology, Faculty of Sciences-Biology Building, Universidad Autónoma de Madrid, Madrid, Spain
| | - Héctor Morales-Filloy
- Department of Molecular Biology, Faculty of Sciences-Biology Building, Universidad Autónoma de Madrid, Madrid, Spain
| | - José P Abad
- Department of Molecular Biology, Faculty of Sciences-Biology Building, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
15
|
Capturing the Resistome: a Targeted Capture Method To Reveal Antibiotic Resistance Determinants in Metagenomes. Antimicrob Agents Chemother 2019; 64:AAC.01324-19. [PMID: 31611361 PMCID: PMC7187591 DOI: 10.1128/aac.01324-19] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/01/2019] [Indexed: 12/31/2022] Open
Abstract
Identification of the nucleotide sequences encoding antibiotic resistance elements and determination of their association with antibiotic resistance are critical to improve surveillance and monitor trends in antibiotic resistance. Current methods to study antibiotic resistance in various environments rely on extensive deep sequencing or laborious culturing of fastidious organisms, both of which are heavily time-consuming operations. An accurate and sensitive method to identify both rare and common resistance elements in complex metagenomic samples is needed. Referencing the sequences in the Comprehensive Antibiotic Resistance Database, we designed a set of 37,826 probes to specifically target over 2,000 nucleotide sequences associated with antibiotic resistance in clinically relevant bacteria. Testing of this probe set on DNA libraries generated from multidrug-resistant bacteria to selectively capture resistance genes reproducibly produced higher numbers of reads on target at a greater length of coverage than shotgun sequencing. We also identified additional resistance gene sequences from human gut microbiome samples that sequencing alone was not able to detect. Our method to capture the resistome enables a sensitive means of gene detection in diverse environments where genes encoding antibiotic resistance represent less than 0.1% of the metagenome.
Collapse
|
16
|
Wright GD. Environmental and clinical antibiotic resistomes, same only different. Curr Opin Microbiol 2019; 51:57-63. [DOI: 10.1016/j.mib.2019.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/10/2019] [Accepted: 06/20/2019] [Indexed: 10/26/2022]
|
17
|
Abstract
Over the past decade, a genomics revolution, made possible through the development of high-throughput sequencing, has triggered considerable progress in the study of ancient DNA, enabling complete genomes of past organisms to be reconstructed. A newly established branch of this field, ancient pathogen genomics, affords an in-depth view of microbial evolution by providing a molecular fossil record for a number of human-associated pathogens. Recent accomplishments include the confident identification of causative agents from past pandemics, the discovery of microbial lineages that are now extinct, the extrapolation of past emergence events on a chronological scale and the characterization of long-term evolutionary history of microorganisms that remain relevant to public health today. In this Review, we discuss methodological advancements, persistent challenges and novel revelations gained through the study of ancient pathogen genomes.
Collapse
|
18
|
Bos KI, Kühnert D, Herbig A, Esquivel-Gomez LR, Andrades Valtueña A, Barquera R, Giffin K, Kumar Lankapalli A, Nelson EA, Sabin S, Spyrou MA, Krause J. Paleomicrobiology: Diagnosis and Evolution of Ancient Pathogens. Annu Rev Microbiol 2019; 73:639-666. [PMID: 31283430 DOI: 10.1146/annurev-micro-090817-062436] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The last century has witnessed progress in the study of ancient infectious disease from purely medical descriptions of past ailments to dynamic interpretations of past population health that draw upon multiple perspectives. The recent adoption of high-throughput DNA sequencing has led to an expanded understanding of pathogen presence, evolution, and ecology across the globe. This genomic revolution has led to the identification of disease-causing microbes in both expected and unexpected contexts, while also providing for the genomic characterization of ancient pathogens previously believed to be unattainable by available methods. In this review we explore the development of DNA-based ancient pathogen research, the specialized methods and tools that have emerged to authenticate and explore infectious disease of the past, and the unique challenges that persist in molecular paleopathology. We offer guidelines to mitigate the impact of these challenges, which will allow for more reliable interpretations of data in this rapidly evolving field of investigation.
Collapse
Affiliation(s)
- Kirsten I Bos
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany;
| | - Denise Kühnert
- Transmission, Infection, Diversification and Evolution Group, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Alexander Herbig
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany;
| | - Luis Roger Esquivel-Gomez
- Transmission, Infection, Diversification and Evolution Group, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Aida Andrades Valtueña
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany;
| | - Rodrigo Barquera
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany;
| | - Karen Giffin
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany;
| | - Aditya Kumar Lankapalli
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany;
| | - Elizabeth A Nelson
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany;
| | - Susanna Sabin
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany;
| | - Maria A Spyrou
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany;
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany; .,Faculty of Biological Sciences, Friedrich Schiller University, 07737 Jena, Germany
| |
Collapse
|
19
|
Amato KR, Maurice CF, Guillemin K, Giles-Vernick T. Multidisciplinarity in Microbiome Research: A Challenge and Opportunity to Rethink Causation, Variability, and Scale. Bioessays 2019; 41:e1900007. [PMID: 31099415 DOI: 10.1002/bies.201900007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/16/2019] [Indexed: 02/06/2023]
Abstract
This essay, written by a biologist, a microbial ecologist, a biological anthropologist, and an anthropologist-historian, examines tensions and translations in microbiome research on animals in the laboratory and field. The authors trace how research questions and findings in the laboratory are extrapolated into the field and vice versa, and the shifting evidentiary standards that these research settings require. Showing how complexities of microbiomes challenge traditional standards of causation, the authors contend that these challenges require new approaches to inferences used in ecology, anthropology, and history. As social scientists incorporate investigations of microbial life into their human studies, microbiome researchers venture into field settings to develop mechanistic understandings about the functions of complex microbial communities. These efforts generate new possibilities for cross-fertilizations and inference frameworks to interpret microbiome findings. Microbiome research should integrate multiple scales, levels of variability, and other disciplinary approaches to tackle questions spanning conditions from the laboratory to the field.
Collapse
Affiliation(s)
- Katherine R Amato
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, 661 University Avenue, Suite 505, Toronto, ON, M5G 1Z8, Canada.,Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Corinne F Maurice
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, 661 University Avenue, Suite 505, Toronto, ON, M5G 1Z8, Canada.,Microbiology and Immunology Department, McGill University, Room 332, Bellini Building, Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | - Karen Guillemin
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, 661 University Avenue, Suite 505, Toronto, ON, M5G 1Z8, Canada.,Institute of Molecular Biology, University of Oregon, 1318 Franklin Blvd, Eugene, OR, 97403, USA
| | - Tamara Giles-Vernick
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, 661 University Avenue, Suite 505, Toronto, ON, M5G 1Z8, Canada.,Emerging Diseases Epidemiology Unit, Institut Pasteur, 25 rue du Docteur Roux, 75015, Paris, France
| |
Collapse
|
20
|
Jabaley CS, Groff RF, Stentz MJ, Moll V, Lynde GC, Blum JM, O'Reilly-Shah VN. Highly visible sepsis publications from 2012 to 2017: Analysis and comparison of altmetrics and bibliometrics. J Crit Care 2018; 48:357-371. [PMID: 30296750 DOI: 10.1016/j.jcrc.2018.09.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE We sought to delineate highly visible publications related to sepsis. Within these subsets, elements of altmetrics performance, including mentions on Twitter, and the correlation between altmetrics and conventional citation counts were ascertained. MATERIALS AND METHODS Three subsets of sepsis publications from 2012 to 2017 were synthesized by the overall Altmetric.com attention score, number of mentions by unique Twitter users, and conventional citation counts. For these subsets, geolocated Twitter activity was plotted on a choropleth, the lag between publication date and altmetrics mentions was characterized, and correlations were examined between altmetrics performance and normalized conventional citation counts. RESULTS Of 57,152 PubMed query results, Altmetric.com data was available for 28,344 (49.6%). The top 50 publications by Altmetric.com attention score and Twitter attention represented a mix of original research and other types of work, garnering attention from Twitter users in 143 countries that was highly contemporaneous with publication. Altmetrics performance and conventional citation counts were poorly correlated. CONCLUSIONS While unreliable to gauge impact or future citation potential, altmetrics may be valuable for parties who wish to detect and drive public awareness of research findings and may enable researchers to dynamically explore the reach of their work in novel dimensions.
Collapse
Affiliation(s)
- Craig S Jabaley
- Department of Anesthesiology, Emory University, 1750 Gambrell Dr, Atlanta, GA 30322, USA; Anesthesiology Service Line, Division of Critical Care Medicine, Atlanta Veterans Affairs Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, USA.
| | - Robert F Groff
- Department of Anesthesiology, Emory University, 1750 Gambrell Dr, Atlanta, GA 30322, USA; Anesthesiology Service Line, Division of Critical Care Medicine, Atlanta Veterans Affairs Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, USA.
| | - Michael J Stentz
- Department of Anesthesiology, Emory University, 1750 Gambrell Dr, Atlanta, GA 30322, USA.
| | - Vanessa Moll
- Department of Anesthesiology, Emory University, 1750 Gambrell Dr, Atlanta, GA 30322, USA.
| | - Grant C Lynde
- Department of Anesthesiology, Emory University, 1750 Gambrell Dr, Atlanta, GA 30322, USA.
| | - James M Blum
- Department of Anesthesiology, Emory University, 1750 Gambrell Dr, Atlanta, GA 30322, USA; Anesthesiology Service Line, Division of Critical Care Medicine, Atlanta Veterans Affairs Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, USA; Department of Biomedical Informatics, Emory University School of Medicine, 201 Bowman Dr, Atlanta, GA 30322, USA.
| | - Vikas N O'Reilly-Shah
- Department of Anesthesiology, Emory University, 1750 Gambrell Dr, Atlanta, GA 30322, USA; Department of Anesthesiology, Children's Healthcare of Atlanta, 1405 Clifton Rd, Atlanta, GA 30329, USA.
| |
Collapse
|
21
|
Salmonella enterica genomes from victims of a major sixteenth-century epidemic in Mexico. Nat Ecol Evol 2018; 2:520-528. [PMID: 29335577 DOI: 10.1038/s41559-017-0446-6] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 12/07/2017] [Indexed: 11/08/2022]
Abstract
Indigenous populations of the Americas experienced high mortality rates during the early contact period as a result of infectious diseases, many of which were introduced by Europeans. Most of the pathogenic agents that caused these outbreaks remain unknown. Through the introduction of a new metagenomic analysis tool called MALT, applied here to search for traces of ancient pathogen DNA, we were able to identify Salmonella enterica in individuals buried in an early contact era epidemic cemetery at Teposcolula-Yucundaa, Oaxaca in southern Mexico. This cemetery is linked, based on historical and archaeological evidence, to the 1545-1550 CE epidemic that affected large parts of Mexico. Locally, this epidemic was known as 'cocoliztli', the pathogenic cause of which has been debated for more than a century. Here, we present genome-wide data from ten individuals for Salmonella enterica subsp. enterica serovar Paratyphi C, a bacterial cause of enteric fever. We propose that S. Paratyphi C be considered a strong candidate for the epidemic population decline during the 1545 cocoliztli outbreak at Teposcolula-Yucundaa.
Collapse
|
22
|
Kouskouti C, Evangelatos N, Brand A, Kainer F. Maternal sepsis in the era of genomic medicine. Arch Gynecol Obstet 2017; 297:49-60. [PMID: 29103195 DOI: 10.1007/s00404-017-4584-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/26/2017] [Indexed: 12/23/2022]
Abstract
PURPOSE Maternal sepsis remains one of the leading causes of direct and indirect maternal mortality both in high- and low-income environments. In the last two decades, systems biology approaches, based on '-omics' technologies, have started revolutionizing the diagnosis and management of the septic syndrome. The scope of this narrative review is to present an overview of the basic '-omics' technologies, exemplified by cases relevant to maternal sepsis. METHODS Narrative review of the new '-omics' technologies based on a detailed review of the literature. RESULTS After presenting the main 'omics' technologies, we discuss their limitations and the need for integrated approaches that encompass research efforts across multiple '-omics' layers in the '-omics' cascade between the genome and the phenome. CONCLUSIONS Systems biology approaches are revolutionizing the research landscape in maternal sepsis. There is a need for increased awareness, from the side of health practitioners, as a requirement for the effective implementation of the new technologies in the research and clinical practice in maternal sepsis.
Collapse
Affiliation(s)
- C Kouskouti
- Department of Obstetrics and Perinatal Medicine, Klinik Hallerwiese, St. Johannis-Mühlgasse 19, 90419, Nuremberg, Germany.
| | - N Evangelatos
- Intensive Care Medicine Unit, Department of Respiratory Medicine, Allergology and Sleep Medicine, Paracelsus Medical University, Nuremberg, Germany.,UNU-MERIT (Maastricht Economic and Social Research Institute on Innovation and Technology), Maastricht University, Boschstraat 24, 6211 AX, Maastricht, The Netherlands
| | - A Brand
- Public Health Genomics, Department International Health, Maastricht University, Duboisdomain 30, 6229 GT, Maastricht, The Netherlands.,Professorial Fellow, UNU-MERIT (Maastricht Economic and Social Research Institute on Innovation and Technology), Maastricht University, Boschstraat 24, 6211 AX, Maastricht, The Netherlands.,Dr. TMA Pai Endowed Chair Public Health Genomics, Manipal University, Madhav Nagar, Manipal, Karnataka, 576104, India
| | - F Kainer
- Department of Obstetrics and Perinatal Medicine, Klinik Hallerwiese, St. Johannis-Mühlgasse 19, 90419, Nuremberg, Germany
| |
Collapse
|
23
|
Marciniak S, Perry GH. Harnessing ancient genomes to study the history of human adaptation. Nat Rev Genet 2017; 18:659-674. [PMID: 28890534 DOI: 10.1038/nrg.2017.65] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The past several years have witnessed an explosion of successful ancient human genome-sequencing projects, with genomic-scale ancient DNA data sets now available for more than 1,100 ancient human and archaic hominin (for example, Neandertal) individuals. Recent 'evolution in action' analyses have started using these data sets to identify and track the spatiotemporal trajectories of genetic variants associated with human adaptations to novel and changing environments, agricultural lifestyles, and introduced or co-evolving pathogens. Together with evidence of adaptive introgression of genetic variants from archaic hominins to humans and emerging ancient genome data sets for domesticated animals and plants, these studies provide novel insights into human evolution and the evolutionary consequences of human behaviour that go well beyond those that can be obtained from modern genomic data or the fossil and archaeological records alone.
Collapse
Affiliation(s)
- Stephanie Marciniak
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - George H Perry
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
24
|
Mortimer TD, Annis DS, O’Neill MB, Bohr LL, Smith TM, Poinar HN, Mosher DF, Pepperell CS. Adaptation in a Fibronectin Binding Autolysin of Staphylococcus saprophyticus. mSphere 2017; 2:e00511-17. [PMID: 29202045 PMCID: PMC5705806 DOI: 10.1128/msphere.00511-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/13/2017] [Indexed: 12/18/2022] Open
Abstract
Human-pathogenic bacteria are found in a variety of niches, including free-living, zoonotic, and microbiome environments. Identifying bacterial adaptations that enable invasive disease is an important means of gaining insight into the molecular basis of pathogenesis and understanding pathogen emergence. Staphylococcus saprophyticus, a leading cause of urinary tract infections, can be found in the environment, food, animals, and the human microbiome. We identified a selective sweep in the gene encoding the Aas adhesin, a key virulence factor that binds host fibronectin. We hypothesize that the mutation under selection (aas_2206A>C) facilitates colonization of the urinary tract, an environment where bacteria are subject to strong shearing forces. The mutation appears to have enabled emergence and expansion of a human-pathogenic lineage of S. saprophyticus. These results demonstrate the power of evolutionary genomic approaches in discovering the genetic basis of virulence and emphasize the pleiotropy and adaptability of bacteria occupying diverse niches. IMPORTANCEStaphylococcus saprophyticus is an important cause of urinary tract infections (UTI) in women; such UTI are common, can be severe, and are associated with significant impacts to public health. In addition to being a cause of human UTI, S. saprophyticus can be found in the environment, in food, and associated with animals. After discovering that UTI strains of S. saprophyticus are for the most part closely related to each other, we sought to determine whether these strains are specially adapted to cause disease in humans. We found evidence suggesting that a mutation in the gene aas is advantageous in the context of human infection. We hypothesize that the mutation allows S. saprophyticus to survive better in the human urinary tract. These results show how bacteria found in the environment can evolve to cause disease.
Collapse
Affiliation(s)
- Tatum D. Mortimer
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Douglas S. Annis
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Mary B. O’Neill
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Lindsey L. Bohr
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Tracy M. Smith
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Medicine, Division of Infectious Diseases, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Hendrik N. Poinar
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, Hamilton, Ontario, Canada
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Deane F. Mosher
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Caitlin S. Pepperell
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Medicine, Division of Infectious Diseases, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
25
|
Abstract
Antibiotic natural products are ancient and so is resistance. Consequently, environmental bacteria harbor numerous and varied antibiotic resistance elements. Nevertheless, despite long histories of antibiotic production and exposure, environmental bacteria are not resistant to all known antibiotics. This means that there are barriers to the acquisition of a complete resistance armamentarium. The sources, distribution, and movement of resistance mechanisms in different microbes and bacterial populations are mosaic features that act as barriers to slow this movement, thus moderating the emergence of bacterial pan-resistance. This is highly relevant to understanding the emergence of resistance in pathogenic bacteria that can inform better antibiotic management practices and influence new drug discovery.
Collapse
Affiliation(s)
- Nicholas Waglechner
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8N 4K1, Canada
| | - Gerard D Wright
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8N 4K1, Canada.
| |
Collapse
|
26
|
Green EJ, Speller CF. Novel Substrates as Sources of Ancient DNA: Prospects and Hurdles. Genes (Basel) 2017; 8:E180. [PMID: 28703741 PMCID: PMC5541313 DOI: 10.3390/genes8070180] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/22/2017] [Accepted: 07/10/2017] [Indexed: 12/17/2022] Open
Abstract
Following the discovery in the late 1980s that hard tissues such as bones and teeth preserve genetic information, the field of ancient DNA analysis has typically concentrated upon these substrates. The onset of high-throughput sequencing, combined with optimized DNA recovery methods, has enabled the analysis of a myriad of ancient species and specimens worldwide, dating back to the Middle Pleistocene. Despite the growing sophistication of analytical techniques, the genetic analysis of substrates other than bone and dentine remain comparatively "novel". Here, we review analyses of other biological substrates which offer great potential for elucidating phylogenetic relationships, paleoenvironments, and microbial ecosystems including (1) archaeological artifacts and ecofacts; (2) calcified and/or mineralized biological deposits; and (3) biological and cultural archives. We conclude that there is a pressing need for more refined models of DNA preservation and bespoke tools for DNA extraction and analysis to authenticate and maximize the utility of the data obtained. With such tools in place the potential for neglected or underexploited substrates to provide a unique insight into phylogenetics, microbial evolution and evolutionary processes will be realized.
Collapse
Affiliation(s)
- Eleanor Joan Green
- BioArCh, Department of Archaeology, University of York, Wentworth Way, York YO10 5DD, UK.
| | - Camilla F Speller
- BioArCh, Department of Archaeology, University of York, Wentworth Way, York YO10 5DD, UK.
| |
Collapse
|
27
|
Key FM, Posth C, Krause J, Herbig A, Bos KI. Mining Metagenomic Data Sets for Ancient DNA: Recommended Protocols for Authentication. Trends Genet 2017; 33:508-520. [PMID: 28688671 DOI: 10.1016/j.tig.2017.05.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/19/2017] [Accepted: 05/24/2017] [Indexed: 12/21/2022]
Abstract
While a comparatively young area of research, investigations relying on ancient DNA data have been highly valuable in revealing snapshots of genetic variation in both the recent and the not-so-recent past. Born out of a tradition of single-locus PCR-based approaches that often target individual species, stringent criteria for both data acquisition and analysis were introduced early to establish high standards of data quality. Today, the immense volume of data made available through next-generation sequencing has significantly increased the analytical resolution offered by processing ancient tissues and permits parallel analyses of host and microbial communities. The adoption of this new approach to data acquisition, however, requires an accompanying update on methods of DNA authentication, especially given that ancient molecules are expected to exist in low proportions in archaeological material, where an environmental signal is likely to dominate. In this review, we provide a summary of recent data authentication approaches that have been successfully used to distinguish between endogenous and nonendogenous DNA sequences in metagenomic data sets. While our discussion mostly centers on the detection of ancient human and ancient bacterial pathogen DNA, their applicability is far wider.
Collapse
Affiliation(s)
- Felix M Key
- Max Planck Institute for the Science of Human History, Jena, Germany.
| | - Cosimo Posth
- Max Planck Institute for the Science of Human History, Jena, Germany
| | - Johannes Krause
- Max Planck Institute for the Science of Human History, Jena, Germany
| | - Alexander Herbig
- Max Planck Institute for the Science of Human History, Jena, Germany
| | - Kirsten I Bos
- Max Planck Institute for the Science of Human History, Jena, Germany.
| |
Collapse
|