1
|
Zanolli C, Hublin JJ, Kullmer O, Schrenk F, Kgasi L, Tawane M, Xing S. Taxonomic revision of the SK 15 mandible based on bone and tooth structural organization. J Hum Evol 2025; 200:103634. [PMID: 39752989 DOI: 10.1016/j.jhevol.2024.103634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 03/09/2025]
Abstract
The hominin mandible SK 15 was discovered in April 1949 in Swartkrans Member 2, dated to ∼1.4 Ma. Albeit distorted on the right side, the left and right corpus of SK 15 are relatively low and thick, even compared to most Early to Middle Pleistocene Homo specimens. It preserves the left molar row and the right M2 and M3 that show a distalward increase in mesiodistal diameter. SK 15 was originally attributed to Telanthropus capensis but is now generally attributed to Homo erectus/Homo ergaster, even if it was previously suggested to possibly belong to Australopithecus. Similarities between SK 15 and Homo naledi mandible and tooth morphology were also claimed. To clarify the taxonomy of SK 15, we used X-ray microtomography to investigate aspects of bone and tooth structural organization. Geometric morphometric analyses of the dental arcade shape, mandible symphysis outline, and the M2 and M3 enamel-dentine junction shape were conducted. For mandibular symphysis shape, SK 15 exhibits an australopith signal, whereas for both the dental arcade and enamel-dentine junction analyses, the specimen is statistically classified as Paranthropus. Altogether, the results show that SK 15 unambiguously falls outside the variation of H. erectus/H. ergaster and that it is most compatible with the morphology of Paranthropus, albeit showing smaller dimensions and an absence of some dental morphological features (e.g., developed protostylid, distally tapering M3, short molar roots) typically found in specimens of Paranthropus aethiopicus, Paranthropus boisei, and Paranthropus robustus. In particular, SK 15 differs markedly in size and morphology from mandibular remains of P. robustus from Swartkrans Member 2. We thus tentatively attribute SK 15 to Paranthropus capensis, a more gracile species of Paranthropus than the other three currently recognized species of this genus and discuss the implications for the existence of another species of Paranthropus in southern Africa during the Early Pleistocene.
Collapse
Affiliation(s)
- Clément Zanolli
- Univ. Bordeaux, CNRS, MCC, PACEA, UMR 5199, Pessac F-33600, France; Evolutionary Studies Institute, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg, Johannesburg 2000, South Africa.
| | - Jean-Jacques Hublin
- Chaire de Paléoanthropologie, CIRB (UMR 7241-U1050), Collège de France, 11, Place Marcelin-Berthelot, Cedex 05, Paris 75231, France
| | - Ottmar Kullmer
- Division of Palaeoanthropology, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Germany; Department of Palaeobiology and Environment, Institute of Ecology, Evolution, and Diversity, Goethe University Frankfurt, Frankfurt, Germany
| | - Friedemann Schrenk
- Division of Palaeoanthropology, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Germany; Department of Palaeobiology and Environment, Institute of Ecology, Evolution, and Diversity, Goethe University Frankfurt, Frankfurt, Germany
| | - Lazarus Kgasi
- Ditsong National Museum of Natural History, Pretoria 0001, South Africa; Palaeo-Research Institute, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
| | - Mirriam Tawane
- Ditsong National Museum of Natural History, Pretoria 0001, South Africa
| | - Song Xing
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
| |
Collapse
|
2
|
Pettitt P, Wood B. What we know and do not know after the first decade of Homo naledi. Nat Ecol Evol 2024; 8:1579-1583. [PMID: 39112660 DOI: 10.1038/s41559-024-02470-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/17/2024] [Indexed: 09/11/2024]
Abstract
It has been just over 10 years since the first fossils attributed to Homo naledi were recovered from the Rising Star Cave system in South Africa's Cradle of Humankind. The hominin fossil evidence for H. naledi displays a distinctive combination of primitive and derived morphology, yet for a time-averaged fossil sample it is remarkable for its relatively low level of variation. Thus-unusually for palaeoanthropology-there has been little pushback against the decision to recognize a single novel taxon for all of the material recovered from the Rising Star Cave system. However, almost everything else claimed about H. naledi-its age, burial context and behaviour-has been controversial. Here we examine the strength of the evidence for these claims.
Collapse
Affiliation(s)
- Paul Pettitt
- Department of Archaeology, Durham University, Durham, UK
| | - Bernard Wood
- CASHP, Department of Anthropology, George Washington University, Washington, DC, USA.
| |
Collapse
|
3
|
Hurst SD, Holloway RL, Balzeau A, Garvin HM, Vanti WB, Berger LR, Hawks J. The endocast morphology of LES1, Homo naledi. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 184:e24983. [PMID: 38864146 DOI: 10.1002/ajpa.24983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 05/27/2024] [Accepted: 06/02/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVES Homo naledi is near the extreme of small brain size within Homo but is easily recognized as Homo in other aspects of endocast morphology. This study adds new evidence of the endocast morphology of H. naledi by describing the Lesedi Hominin 1 (LES1) endocranium from the Lesedi Chamber and compares it to the previously known H. naledi individual Dinaledi Hominin 3 (DH3) as well as other hominin taxa. MATERIALS AND METHODS We examined interlandmark distances with both univariate and multivariate methods in multiple hominin taxa and both species of Pan. For each distance, we compared groups using adjusted Z-scores (Azs). Our multivariate analyses included both principal component analyses (PCA) and linear discriminant analyses (LDA). RESULTS DH3 and LES1 each have absolute third frontal convolution measures that enter the upper half of the variation for Homo sapiens, Homo erectus, and Homo neanderthalensis. Examined relative to the cube root of endocranial volume, H. naledi ranks among the highest values in these samples of Homo. Both absolute and relative values for H. naledi specimens are far above Pan, Australopithecus, and Paranthropus, suggesting an expanded Broca's area. CONCLUSIONS Both qualitative and quantitative analyses show consistency between LES1 and other H. naledi endocasts and confirm the shared morphology of H. naledi with H. sapiens, H. neanderthalensis, and some specimens of H. erectus.
Collapse
Affiliation(s)
- Shawn D Hurst
- Department of Biology, University of Indianapolis, Indianapolis, USA
| | | | - Antoine Balzeau
- Département Homme et Environnement, Muséum National d'Histoire Naturelle, PaleoFED team, Paris, France
- Department of African Zoology, Royal Museum for Central Africa, Tervuren, Belgium
| | - Heather M Garvin
- Department of Anatomy, Des Moines University, Des Moines, USA
- Centre for the Exploration of the Deep Human Journey, University of Witwatersrand, Johannesburg, South Africa
| | - William B Vanti
- Science and Engineering Library, Columbia University, New York, USA
| | - Lee R Berger
- Centre for the Exploration of the Deep Human Journey, University of Witwatersrand, Johannesburg, South Africa
- The National Geographic Society, Washington, DC, USA
- The Carnegie Institution for Science, Washington, DC, USA
| | - John Hawks
- Centre for the Exploration of the Deep Human Journey, University of Witwatersrand, Johannesburg, South Africa
- Department of Anthropology, University of Wisconsin-Madison, Madison, USA
| |
Collapse
|
4
|
Chai H. Edge chipping patterns in posterior teeth of hominins and apes. J Mech Behav Biomed Mater 2024; 156:106582. [PMID: 38781774 DOI: 10.1016/j.jmbbm.2024.106582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Chip scars in fossil teeth are a lasting evidence that bears on human evolution. Chip dimensions in posterior teeth of hominins, apes and white-lipped peccary (Tayassu pecari) are measured from published occlusal images. The results are plotted as D/Dm vs. h/Dm, where h, D and Dm denote indent distance, chip width and mean tooth crown diameter. The hominin species follow a similar pattern where D/Dm monotonically increases up to h/Dm ≈ 0.3. The behavior for the apes is characterized by two phases. In the first, h/Dm monotonically increases up to h/Dm ≈ 0.26 while in the second (h/Dm ≈ 0.26 to 0.42), D/Dm experiences a drastic change in behavior. The interpretation of chip morphology is assisted by results from controlled spherical indentation tests on extracted human molars. This study shows that in addition to the commonly recognized chipping due to cusp loading, a chip may also initiate from the inner wall of the tooth's central fossa. Accordingly, it is suggested that the chipping in hominins generally initiates from a (worn) cusp while that in apes involves cusp loading up to h/Dm ≈ 0.26 and fossa loading thereafter. The behavior for T. pecari is much similar to that of the apes. The fossa chipping is facilitated by a consumption of hard, large-size diet (e.g., plants, roots, barks and nuts) and presence of broad central fossa, conditions that are met in apes. Finally, a simple expression for the critical chipping force Pch due to fossa loading is developed.
Collapse
Affiliation(s)
- Herzl Chai
- School of Mechanical Engineering, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
5
|
Gómez-Olivencia A, Arsuaga JL. The Sima de los Huesos thorax and lumbar spine: Selected traits and state-of-the-art. Anat Rec (Hoboken) 2024; 307:2465-2490. [PMID: 38450997 DOI: 10.1002/ar.25414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
Information on the evolution of the thorax and lumbar spine in the genus Homo is hampered by a limited fossil record due to the inherent fragility of vertebrae and ribs. Neandertals show significant metric and morphological differences in these two anatomical regions, when compared to Homo sapiens. Thus, the important fossil record from the Middle Pleistocene site of Sima de los Huesos (SH) not only offers important information on the evolution of these anatomical regions within the Neandertal lineage but also provides important clues to understand the evolution of these regions at the genus level. We present the current knowledge of the costal skeleton, and the thoracic and lumbar spine anatomy of the hominins found in Sima de los Huesos compared to that of Neandertals and modern humans. The current SH fossil record comprises 738 vertebral specimens representing a minimum of 70 cervical, 95 thoracic and 47 lumbar vertebrae, 652 rib fragments representing a minimum of 118 ribs, and 26 sternal fragments representing 4 sterna. The SH hominins exhibit a morphological pattern in their thorax and lumbar spine more similar to that of Neandertals than to that of H. sapiens, which is consistent with the phylogenetic position of these hominins. However, there are some differences between the SH hominins and Neandertals in these anatomical regions, primarily in the orientation of the lumbar transverse processes and in the robusticity of the second ribs. The presence of some but not all of the suite of Neandertal-derived features is consistent with the pattern found in the cranium and other postcranial regions of this population.
Collapse
Affiliation(s)
- Asier Gómez-Olivencia
- Dept. Geología, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Spain
- Sociedad de Ciencias Aranzadi, Donostia-San Sebastián, Spain
- Centro UCM-ISCIII de Investigación sobre Evolución y Comportamiento Humanos, Madrid, Spain
| | - Juan Luis Arsuaga
- Centro UCM-ISCIII de Investigación sobre Evolución y Comportamiento Humanos, Madrid, Spain
- Departamento de Geodinámica, Estratigrafía y Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
6
|
Gómez-Olivencia A, Arsuaga JL. The Sima de los Huesos cervical spine. Anat Rec (Hoboken) 2024; 307:2451-2464. [PMID: 37070424 DOI: 10.1002/ar.25224] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 12/29/2022] [Accepted: 02/16/2023] [Indexed: 04/19/2023]
Abstract
Information regarding the evolution of the neck in genus Homo is hampered owing to a limited fossil record. Neandertals display significant metric and/or morphological differences in all the cervical vertebrae, when compared to Homo sapiens. Thus, the important fossil record from the Middle Pleistocene site of Sima de los Huesos (SH) not only offers important information about the evolution of this anatomical region within the Neandertal lineage, but also provides important clues to understand the evolution of this region at the genus level. We present the current knowledge of the anatomy of the cervical spine of the hominins found in SH compared to that of Neandertals and modern humans, and, when possible, to Homo erectus and Homo antecessor. The current SH fossil record comprises 172 cervical specimens (after refittings) belonging to a minimum of 11 atlases, 13 axes, and 52 subaxial cervical vertebrae. The SH hominins exhibit a morphological pattern in their cervical spine more similar to that of Neandertals than that of H. sapiens, which is consistent with the phylogenetic position of these hominins. However, there are some differences between the SH hominins and Neandertals in this anatomical region, primarily in the length and robusticity, and to a lesser extent in the orientation of the spinous processes of the lowermost cervical vertebrae. We hypothesize that these differences in the lowermost subaxial cervical vertebrae could be related to the increase in the brain size and/or changes in the morphology of the skull that occurred in the Neandertal lineage.
Collapse
Affiliation(s)
- Asier Gómez-Olivencia
- Departamento de Geología, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Spain
- Sociedad de Ciencias Aranzadi, Donostia-San Sebastián, Spain
- Centro UCM-ISCIII de Investigación sobre Evolución y Comportamiento Humanos, Madrid, Spain
| | - Juan Luis Arsuaga
- Centro UCM-ISCIII de Investigación sobre Evolución y Comportamiento Humanos, Madrid, Spain
- Departamento de Geodinámica, Estratigrafía y Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
7
|
Villamil CI, Middleton ER. Conserved patterns and locomotor-related evolutionary constraints in the hominoid vertebral column. J Hum Evol 2024; 190:103528. [PMID: 38579429 DOI: 10.1016/j.jhevol.2024.103528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024]
Abstract
The evolution of the hominoid lineage is characterized by pervasive homoplasy, notably in regions such as the vertebral column, which plays a central role in body support and locomotion. Few isolated and fewer associated vertebrae are known for most fossil hominoid taxa, but identified specimens indicate potentially high levels of convergence in terms of both form and number. Homoplasy thus complicates attempts to identify the anatomy of the last common ancestor of hominins and other taxa and stymies reconstructions of evolutionary scenarios. One way to clarify the role of homoplasy is by investigating constraints via phenotypic integration, which assesses covariation among traits, shapes evolutionary pathways, and itself evolves in response to selection. We assessed phenotypic integration and evolvability across the subaxial (cervical, thoracic, lumbar, sacral) vertebral column of macaques (n = 96), gibbons (n = 77), chimpanzees (n = 92), and modern humans (n = 151). We found a mid-cervical cluster that may have shifted cranially in hominoids, a persistent thoracic cluster that is most marked in chimpanzees, and an expanded lumbosacral cluster in hominoids that is most expanded in gibbons. Our results highlight the highly conserved nature of the vertebral column. Taxa appear to exploit existing patterns of integration and ontogenetic processes to shift, expand, or reduce cluster boundaries. Gibbons appear to be the most highly derived taxon in our sample, possibly in response to their highly specialized locomotion.
Collapse
Affiliation(s)
- Catalina I Villamil
- School of Chiropractic, Universidad Central del Caribe, Puerto Rico, PO Box 60327, Bayamón, USA.
| | - Emily R Middleton
- Department of Anthropology, University of Wisconsin-Milwaukee, 3413 N. Downer Ave., Sabin Hall 390, Milwaukee, WI, USA
| |
Collapse
|
8
|
Mahoney P, McFarlane G, Taurozzi AJ, Madupe PP, O'Hara MC, Molopyane K, Cappellini E, Hawks J, Skinner MM, Berger L. Human-like enamel growth in Homo naledi. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 184:e24893. [PMID: 38180115 DOI: 10.1002/ajpa.24893] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/12/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVES A modern pattern (rate and duration) of dental development occurs relatively recently during human evolution. Given the temporal overlap of Homo naledi with the first appearance of fossil Homo sapiens in Africa, this small-bodied and small-brained hominin presents an opportunity to elucidate the evolution of enamel growth in the hominin clade. Here we conduct the first histological study of two permanent mandibular canines and one permanent maxillary first molar, representing three individuals attributed to H. naledi. We reconstruct the rate and duration of enamel growth and compare these findings to those reported for other fossil hominins and recent humans. MATERIALS AND METHODS Thin sections of each tooth were produced using standard histological methods. Daily and longer period incremental markings were measured to reconstruct enamel secretion and extension rates, Retzius periodicity, canine crown and molar cusp formation time. RESULTS Daily enamel secretion rates overlapped with those from recent hominins. Canine crown formation time is similar to that observed in recent Europeans but is longer than canine formation times reported for most other hominins including Australopithecus and H. neanderthalensis. The extended period of canine formation appears to be due to a relatively tall enamel crown and a sustained slow rate of enamel extension in the cervical portion of the crown. A Retzius periodicity of 11 days for the canines, and nine days for the molar, in H. naledi parallel results found in recent humans. An 11-day periodicity has not been reported for Late Pleistocene Homo (H. erectus, H. neanderthalensis) and is rarely found in Australopithecus and Paranthropus species. DISCUSSION Enamel growth of H. naledi is most similar to recent humans though comparative data are limited for most fossil hominin species. The high Retzius periodicity values do not follow expectations for a small-brained hominin.
Collapse
Affiliation(s)
- Patrick Mahoney
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Gina McFarlane
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Alberto J Taurozzi
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Palesa P Madupe
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Human Evolution Research Institute, University of Cape Town, Rondebosch, South Africa
| | - Mackie C O'Hara
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Keneiloe Molopyane
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
- The National Geographic Society, Washington, District of Columbia, USA
| | - Enrico Cappellini
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - John Hawks
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
- Department of Anthropology, University of Wisconsin-Madison, USA
| | - Matthew M Skinner
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Lee Berger
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
- The National Geographic Society, Washington, District of Columbia, USA
- The Carnegie Institution for Science, Washington, District of Columbia, USA
| |
Collapse
|
9
|
Bird EE, Kivell TL, Dunmore CJ, Tocheri MW, Skinner MM. Trabecular bone structure of the proximal capitate in extant hominids and fossil hominins with implications for midcarpal joint loading and the dart-thrower's motion. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:e24824. [PMID: 37493308 DOI: 10.1002/ajpa.24824] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 05/05/2023] [Accepted: 07/10/2023] [Indexed: 07/27/2023]
Abstract
OBJECTIVES This research examines whether the distribution of trabecular bone in the proximal capitates of extant hominids, as well as several fossil hominin taxa, is associated with the oblique path of the midcarpal joint known as the dart-thrower's motion (DTM). MATERIALS AND METHODS We analyzed proximal capitates from extant (Pongo n = 12; Gorilla n = 11; Pan n = 10; fossil and recent Homo sapiens n = 29) and extinct (Australopithecus sediba n = 2; Homo naledi n = 1; Homo floresiensis n = 2; Neandertals n = 3) hominids using a new canonical holistic morphometric analysis, which quantifies and visualizes the distribution of trabecular bone using relative bone volume as a fraction of total volume (rBV/TV). RESULTS Homo sapiens and Neandertals had a continuous band of high rBV/TV that extended across the scaphoid, lunate, and hamate subarticular regions, but other fossil hominins and extant great apes did not. A. sediba expressed a distinct combination of human-like and Pan-like rBV/TV distribution. Both H. floresiensis and H. naledi had high rBV/TV on the ulnar-side of the capitate but low rBV/TV on the radial-side. CONCLUSION The proximal capitates of H. sapiens and Neandertals share a distinctive distribution of trabecular bone that suggests that these two species of Homo regularly load(ed) their midcarpal joints along the full extent of the oblique path of the DTM. The observed pattern in A. sediba suggests that human-like stress at the capito-scaphoid articular surface was combined with Pan-like wrist postures, whereas the patterns in H. floresiensis and H. naledi suggest their midcarpal joints were loaded differently from that of H. sapiens and Neandertals.
Collapse
Affiliation(s)
- Emma E Bird
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
- Centre for Human Evolution Research, Natural History Museum, London, UK
| | - Tracy L Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| | - Christopher J Dunmore
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Matthew W Tocheri
- Department of Anthropology, Lakehead University, Thunder Bay, Ontario, Canada
- Human Origins Program, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Australian Research Council, Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, New South Wales, Australia
| | - Matthew M Skinner
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
10
|
Delezene LK, Scott JE, Irish JD, Villaseñor A, Skinner MM, Hawks J, Berger LR. Sex-biased sampling may influence Homo naledi tooth size variation. J Hum Evol 2024; 187:103490. [PMID: 38266614 DOI: 10.1016/j.jhevol.2023.103490] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024]
Abstract
A frequent source of debate in paleoanthropology concerns the taxonomic unity of fossil assemblages, with many hominin samples exhibiting elevated levels of variation that can be interpreted as indicating the presence of multiple species. By contrast, the large assemblage of hominin fossils from the Rising Star cave system, assigned to Homo naledi, exhibits a remarkably low degree of variation for most skeletal elements. Many factors can contribute to low sample variation, including genetic drift, strong natural selection, biased sex ratios, and sampling of closely related individuals. In this study, we tested for potential sex-biased sampling in the Rising Star dental sample. We compared coefficients of variation for the H. naledi teeth to those for eight extant hominoid samples. We used a resampling procedure that generated samples from the extant taxa that matched the sample size of the fossil sample for each possible Rising Star dental sex ratio. We found that variation at four H. naledi tooth positions-I2, M1, P4, M1-is so low that the possibility that one sex is represented by few or no individuals in the sample cannot be excluded. Additional evidence is needed to corroborate this inference, such as ancient DNA or enamel proteome data, and our study design does not address other potential factors that would account for low sample variation. Nevertheless, our results highlight the importance of considering the taphonomic history of a hominin assemblage and suggest that sex-biased sampling is a plausible explanation for the low level of phenotypic variation found in some aspects of the current H. naledi assemblage.
Collapse
Affiliation(s)
- Lucas K Delezene
- Department of Anthropology, University of Arkansas, Fayetteville, AR, 72701, USA; Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Private Bag 3, WITS, 2050, South Africa.
| | - Jeremiah E Scott
- Department of Medical Anatomical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Joel D Irish
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Private Bag 3, WITS, 2050, South Africa; School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Amelia Villaseñor
- Department of Anthropology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Matthew M Skinner
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Private Bag 3, WITS, 2050, South Africa; Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - John Hawks
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Private Bag 3, WITS, 2050, South Africa; Department of Anthropology, University of Wisconsin-Madison. Madison, WI, 53706, USA
| | - Lee R Berger
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Private Bag 3, WITS, 2050, South Africa; National Geographic Society, 1145 17th Street NW, Washington DC, 20036, USA
| |
Collapse
|
11
|
Brophy JK, Bolter DR, Elliott M, Hawks J, Berger LR. An examination of Homo naledi early juveniles recovered from the Rising Star cave system, South Africa. Ann Hum Biol 2024; 51:2321128. [PMID: 38509686 DOI: 10.1080/03014460.2024.2321128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/06/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Six Homo naledi early juveniles were recovered from U.W. 101 (Dinaledi Chamber), U.W. 102 (Lesedi Chamber), and U.W. 110 in the Rising Star cave system. AIM This paper develops the information for the H. naledi early juvenile life stage, as defined by a combination of deciduous and permanent dentition, and the eruption of the first permanent molar. SUBJECTS AND METHODS The growing number of young individuals recovered from the Rising Star cave system allows us to gain a better understanding of their variation, or lack thereof, and provides a basis to estimate broad ranges for age at death of the individuals. The individuals are identified and described through craniodental remains and spatial associations. RESULTS AND CONCLUSION Our results show that the teeth are remarkably consistent across the localities in their metric and non-metric traits, and our analyses refine previous estimations on dental eruptions with the first permanent molar erupting first in the sequence among permanent teeth.
Collapse
Affiliation(s)
- Juliet K Brophy
- Department of Geography and Anthropology, LA State University, Baton Rouge, LA, USA
- The Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| | - Debra R Bolter
- The Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
- Department of Anthropology, Modesto Junior College, Modesto, CA, USA
- Department of Anthropology, CA State University Stanislaus, Turlock, CA, USA
| | - Marina Elliott
- The Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
- Department of Archaeology, Simon Fraser University, Burnaby, BC, Canada
| | - John Hawks
- The Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
- Department of Anthropology, University of WI-Madison, Madison, WI, USA
| | - Lee R Berger
- The Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
12
|
Litavec H. A novel method for sorting and reassociating commingled human remains using deviation analysis. J Forensic Sci 2023; 68:1780-1791. [PMID: 37452736 DOI: 10.1111/1556-4029.15338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
This study provides an innovative and novel method for sorting commingled human remains at the sacroiliac joint using deviation analyses. Virtual models were created at the University of Tennessee-Knoxville Donated Skeletal Collection from 69 os coxae and 66 sacra using an EinScan-Pro 2× + Handheld Surface Scanner. The shape of the auricular surfaces was analyzed in Geomagic Wrap 2017, and the congruency of the two auricular surfaces was measured using a deviation analysis. ROC curves were performed on a reference sample composed of 200 commingled and non-commingled joint pairs to identify threshold values that could help sort the commingled remains. A validation sample of 225 pairs was subsequently analyzed to demonstrate the efficacy of this new method on a sample of unknown individuals. Statistical analyses demonstrated that the deviation analysis values from sacroiliac joints of commingled pairs were significantly larger than those from non-commingled individuals (p < 0.0001). Based on the selected threshold values, 98%-100% of pairs were correctly sorted and reassociated. This novel and objective technique improves upon previously subjective strategies for sorting commingled remains and, in the future, will be applied to additional joint surfaces.
Collapse
Affiliation(s)
- Helen Litavec
- Department of Anthropology, Binghamton University, Binghamton, New York, USA
| |
Collapse
|
13
|
Bolter DR, Cameron N, Hawks J, Churchill SE, Berger L, Bernstein R, Boughner JC, Elton S, Leece AB, Mahoney P, Molopyane K, Monson TA, Pruetz J, Schell L, Stull KE, Wolfe CA. Addressing the growing fossil record of subadult hominins by reaching across disciplines. Evol Anthropol 2023; 32:180-184. [PMID: 37555538 DOI: 10.1002/evan.21995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 08/10/2023]
Affiliation(s)
- Debra R Bolter
- Department of Anthropology, Modesto Junior College, Modesto, California, USA
- Faculty of Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Anthropology, California State University Stanislaus, Turlock, California, USA
| | - Noel Cameron
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire, UK
| | - John Hawks
- Faculty of Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Anthropology Department, University of Wisconsin, Madison, Wisconsin, USA
| | - Steven E Churchill
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
| | - Lee Berger
- Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Explorer in Residence, National Geographic Society, Washington, District of Columbia, USA
| | - Robin Bernstein
- Department of Anthropology, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Julia C Boughner
- Department of Anatomy, Physiology and Pharmacology, University of the Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sarah Elton
- Faculty of Social Sciences and Health, Durham University, Durham, UK
| | - A B Leece
- Palaeoscience, Department of Archaeology and History, LaTrobe University, Melbourne, Victoria, Australia
- Geoarchaeology and Archaeometry Research Group, Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Patrick Mahoney
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Keneiloe Molopyane
- Faculty of Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tesla A Monson
- Department of Anthropology, Western Washington University, Bellingham, Washington, USA
| | - Jill Pruetz
- Department of Anthropology, Texas State University San Marcos, San Marcos, Texas, USA
| | - Lawrence Schell
- Department of Anthropology, State University of New York, Albany, New York, USA
| | - Kyra E Stull
- Department of Anthropology, University of Reno, Reno, Nevada, USA
| | | |
Collapse
|
14
|
Delezene LK, Skinner MM, Bailey SE, Brophy JK, Elliott MC, Gurtov A, Irish JD, Moggi-Cecchi J, de Ruiter DJ, Hawks J, Berger LR. Descriptive catalog of Homo naledi dental remains from the 2013 to 2015 excavations of the Dinaledi Chamber, site U.W. 101, within the Rising Star cave system, South Africa. J Hum Evol 2023; 180:103372. [PMID: 37229947 DOI: 10.1016/j.jhevol.2023.103372] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 05/27/2023]
Abstract
More than 150 hominin teeth, dated to ∼330-241 thousand years ago, were recovered during the 2013-2015 excavations of the Dinaledi Chamber of the Rising Star cave system, South Africa. These fossils comprise the first large single-site sample of hominin teeth from the Middle Pleistocene of Africa. Though scattered remains attributable to Homo sapiens, or their possible lineal ancestors, are known from older and younger sites across the continent, the distinctive morphological feature set of the Dinaledi teeth supports the recognition of a novel hominin species, Homo naledi. This material provides evidence of African Homo lineage diversity that lasts until at least the Middle Pleistocene. Here, a catalog, anatomical descriptions, and details of preservation and taphonomic alteration are provided for the Dinaledi teeth. Where possible, provisional associations among teeth are also proposed. To facilitate future research, we also provide access to a catalog of surface files of the Rising Star jaws and teeth.
Collapse
Affiliation(s)
- Lucas K Delezene
- Department of Anthropology, University of Arkansas, Fayetteville, AR 72701, USA; Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Private Bag 3, WITS 2050, South Africa.
| | - Matthew M Skinner
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Private Bag 3, WITS 2050, South Africa; School of Anthropology and Conservation, University of Kent, Marlowe Building, Canterbury CT2 7NR, UK; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Shara E Bailey
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Department of Anthropology, Center for the Study of Human Origins, New York University, New York, NY 10003, USA
| | - Juliet K Brophy
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Private Bag 3, WITS 2050, South Africa; Department of Geography and Anthropology, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Marina C Elliott
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Private Bag 3, WITS 2050, South Africa; Department of Archaeology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, USA
| | - Alia Gurtov
- Stripe, Inc., 199 Water Street, 30th Floor, New York, NY 10038, USA
| | - Joel D Irish
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Private Bag 3, WITS 2050, South Africa; School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Jacopo Moggi-Cecchi
- Laboratory of Anthropology, Department of Biology, University of Florence, Via del Proconsolo 12, Firenze 50122, Italy
| | - Darryl J de Ruiter
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Private Bag 3, WITS 2050, South Africa; Department of Anthropology, Texas A&M University, College Station, TX 77843, USA
| | - John Hawks
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Private Bag 3, WITS 2050, South Africa; Department of Anthropology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lee R Berger
- National Geographic Society, 1145 17th Street NW, Washington, DC 20036, USA; Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Private Bag 3, WITS 2050, South Africa
| |
Collapse
|
15
|
Meyer MR, Jung JP, Spear JK, Araiza IF, Galway-Witham J, Williams SA. Knuckle-walking in Sahelanthropus? Locomotor inferences from the ulnae of fossil hominins and other hominoids. J Hum Evol 2023; 179:103355. [PMID: 37003245 DOI: 10.1016/j.jhevol.2023.103355] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 04/03/2023]
Abstract
Because the ulna supports and transmits forces during movement, its morphology can signal aspects of functional adaptation. To test whether, like extant apes, some hominins habitually recruit the forelimb in locomotion, we separate the ulna shaft and ulna proximal complex for independent shape analyses via elliptical Fourier methods to identify functional signals. We examine the relative influence of locomotion, taxonomy, and body mass on ulna contours in Homo sapiens (n = 22), five species of extant apes (n = 33), two Miocene apes (Hispanopithecus and Danuvius), and 17 fossil hominin specimens including Sahelanthropus, Ardipithecus, Australopithecus, Paranthropus, and early Homo. Ulna proximal complex contours correlate with body mass but not locomotor patterns, while ulna shafts significantly correlate with locomotion. African apes' ulna shafts are more robust and curved than Asian apes and are unlike other terrestrial mammals (including other primates), curving ventrally rather than dorsally. Because this distinctive curvature is absent in orangutans and hylobatids, it is likely a function of powerful flexors engaged in wrist and hand stabilization during knuckle-walking, and not an adaptation to climbing or suspensory behavior. The OH 36 (purported Paranthropus boisei) and TM 266 (assigned to Sahelanthropus tchadensis) fossils differ from other hominins by falling within the knuckle-walking morphospace, and thus appear to show forelimb morphology consistent with terrestrial locomotion. Discriminant function analysis classifies both OH 36 and TM 266 with Pan and Gorilla with high posterior probability. Along with its associated femur, the TM 266 ulna shaft contours and its deep, keeled trochlear notch comprise a suite of traits signaling African ape-like quadrupedalism. While implications for the phylogenetic position and hominin status of S. tchadensis remain equivocal, this study supports the growing body of evidence indicating that S. tchadensis was not an obligate biped, but instead represents a late Miocene hominid with knuckle-walking adaptations.
Collapse
Affiliation(s)
- Marc R Meyer
- Department of Anthropology, Chaffey College, Rancho Cucamonga, CA 91737, USA.
| | - Jason P Jung
- Department of Biology, California State University, San Bernardino, CA 92407, USA
| | - Jeffrey K Spear
- Center for the Study of Human Origins, Department of Anthropology, New York University, 25 Waverly Place, New York, NY 10003, USA; New York Consortium in Evolutionary Primatology, New York, NY 10024, USA
| | - Isabella Fx Araiza
- Center for the Study of Human Origins, Department of Anthropology, New York University, 25 Waverly Place, New York, NY 10003, USA; New York Consortium in Evolutionary Primatology, New York, NY 10024, USA
| | - Julia Galway-Witham
- Center for the Study of Human Origins, Department of Anthropology, New York University, 25 Waverly Place, New York, NY 10003, USA; New York Consortium in Evolutionary Primatology, New York, NY 10024, USA
| | - Scott A Williams
- Center for the Study of Human Origins, Department of Anthropology, New York University, 25 Waverly Place, New York, NY 10003, USA; New York Consortium in Evolutionary Primatology, New York, NY 10024, USA
| |
Collapse
|
16
|
Grine FE, Mongle CS, Fleagle JG, Hammond AS. The taxonomic attribution of African hominin postcrania from the Miocene through the Pleistocene: Associations and assumptions. J Hum Evol 2022; 173:103255. [PMID: 36375243 DOI: 10.1016/j.jhevol.2022.103255] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022]
Abstract
Postcranial bones may provide valuable information about fossil taxa relating to their locomotor habits, manipulative abilities and body sizes. Distinctive features of the postcranial skeleton are sometimes noted in species diagnoses. Although numerous isolated postcranial fossils have become accepted by many workers as belonging to a particular species, it is worthwhile revisiting the evidence for each attribution before including them in comparative samples in relation to the descriptions of new fossils, functional analyses in relation to particular taxa, or in evolutionary contexts. Although some workers eschew the taxonomic attribution of postcranial fossils as being less important (or interesting) than interpreting their functional morphology, it is impossible to consider the evolution of functional anatomy in a taxonomic and phylogenetic vacuum. There are 21 widely recognized hominin taxa that have been described from sites in Africa dated from the Late Miocene to the Middle Pleistocene; postcranial elements have been attributed to 17 of these. The bones that have been thus assigned range from many parts of a skeleton to isolated elements. However, the extent to which postcranial material can be reliably attributed to a specific taxon varies considerably from site to site and species to species, and is often the subject of considerable debate. Here, we review the postcranial remains attributed to African hominin taxa from the Late Miocene to the Middle and Late Pleistocene and place these assignations into categories of reliability. The catalog of attributions presented here may serve as a guide for making taxonomic decisions in the future.
Collapse
Affiliation(s)
- Frederick E Grine
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794-4364, USA; Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794-4364, USA.
| | - Carrie S Mongle
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794-4364, USA; Division of Anthropology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA; Turkana Basin Institute, Stony Brook University, Stony Brook, NY 11794-4364, USA
| | - John G Fleagle
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794-4364, USA
| | - Ashley S Hammond
- Division of Anthropology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA; New York Consortium of Evolutionary Primatology (NYCEP), New York, NY 10024, USA
| |
Collapse
|
17
|
Cofran Z, VanSickle C, Valenzuela R, García‐Martínez D, Walker CS, Hawks J, Zipfel B, Williams SA, Berger LR. The immature
Homo naledi
ilium from the Lesedi Chamber, Rising Star Cave, South Africa. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022. [PMCID: PMC9546141 DOI: 10.1002/ajpa.24522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Objectives Homo naledi is represented by abundant remains from the Dinaledi Chamber of the Rising Star Cave system in South Africa. While pelvic elements from the Dinaledi Chamber of the cave are fragmentary, a relatively complete ilium (U.W. 102a–138) was recovered from the Lesedi Chamber. We reconstructed and analyzed the Lesedi ilium, providing qualitative descriptions and quantitative assessment of its morphology and developmental state. Materials and Methods We compared the Lesedi ilium to remains from the Dinaledi Chamber, other South African hominin fossils, and an ontogenetic series of human ilia. We used the Dinaledi adults as a guide for reconstructing the Lesedi ilium. To assess development of the Lesedi ilium, we compared immature/mature proportional ilium height for fossils and humans. We used 3D geometric morphometrics (GMs) to examine size and shape variation among this sample. Results The Lesedi ilium showed incipient development of features expressed in adult H. naledi ilia. The proportional height of the Lesedi ilium was within the range of human juveniles between 4–11 years of age. GM analyses showed that the Lesedi ilium had an iliac blade shape similar to those of australopiths and an expanded auricular surface more similar to humans. Conclusions The reconstructed Lesedi specimen represents the best preserved ilium of H. naledi, confirming the australopith‐like iliac blade morphology first hypothesized in adult specimens, and establishing that this anatomy was present early in this species' ontogeny. In contrast to australopiths, the Lesedi ilium displays an enlarged sacroiliac joint, the significance of which requires further investigation.
Collapse
Affiliation(s)
- Zachary Cofran
- Anthropology Department, Vassar College Poughkeepsie New York USA
- Centre for the Exploration of the Deep Human Journey University of the Witwatersrand Johannesburg South Africa
| | - Caroline VanSickle
- Centre for the Exploration of the Deep Human Journey University of the Witwatersrand Johannesburg South Africa
- Department of Anatomy A.T. Still University, Kirksville College of Osteopathic Medicine Kirksville Missouri USA
| | | | - Daniel García‐Martínez
- Centre for the Exploration of the Deep Human Journey University of the Witwatersrand Johannesburg South Africa
- Physical Anthropology Unit, Department of Biodiversity, Ecology, and Evolution, Faculty of Biological Sciences Complutense University of Madrid Madrid Spain
- Centro Nacional de Investigación sobre la Evolución Humana Burgos Spain
| | - Christopher S. Walker
- Centre for the Exploration of the Deep Human Journey University of the Witwatersrand Johannesburg South Africa
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine North Carolina State University Raleigh North Carolina USA
| | - John Hawks
- Centre for the Exploration of the Deep Human Journey University of the Witwatersrand Johannesburg South Africa
- Department of Anthropology University of Wisconsin Madison Wisconsin USA
| | - Bernhard Zipfel
- Centre for the Exploration of the Deep Human Journey University of the Witwatersrand Johannesburg South Africa
- Evolutionary Studies Institute University of the Witwatersrand Johannesburg South Africa
| | - Scott A. Williams
- Centre for the Exploration of the Deep Human Journey University of the Witwatersrand Johannesburg South Africa
- Evolutionary Studies Institute University of the Witwatersrand Johannesburg South Africa
- Center for the Study of Human Origins, Department of Anthropology New York University New York New York USA
- New York Consortium in Evolutionary Primatology New York New York USA
| | - Lee R. Berger
- Centre for the Exploration of the Deep Human Journey University of the Witwatersrand Johannesburg South Africa
| |
Collapse
|
18
|
Pérez-Claros JA, Palmqvist P. Heterochronies and allometries in the evolution of the hominid cranium: a morphometric approach using classical anthropometric variables. PeerJ 2022; 10:e13991. [PMID: 36042865 PMCID: PMC9420405 DOI: 10.7717/peerj.13991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 08/11/2022] [Indexed: 01/19/2023] Open
Abstract
This article studies the evolutionary change of allometries in the relative size of the two main cranial modules (neurocranium and splanchnocranium) in the five living hominid species and a diverse sample of extinct hominins. We use six standard craniometric variables as proxies for the length, width and height of each cranial module. Factor analysis and two-block partial least squares (2B-PLS) show that the great apes and modern humans share a pervasive negative ontogenetic allometry in the neurocranium and a positive one in the splanchnocranium. This developmental constraint makes it possible to interpret the cranial heterochronies in terms of ontogenetic scaling processes (i.e., extensions or truncations of the ancestral ontogenetic trajectory) and lateral transpositions (i.e., parallel translations of the entire trajectory starting from a different shape for a given cranial size). We hypothesize that ontogenetic scaling is the main evolutionary modality in the australopithecines while in the species of Homo it is also necessary to apply transpositions. Both types of processes are coordinated in Homo, which result in an evolutionary trend toward an increase in brain size and in the degree of paedomorphosis from the earliest habilines.
Collapse
|
19
|
The relative limb size of Homonaledi. J Hum Evol 2022; 170:103235. [PMID: 35994845 DOI: 10.1016/j.jhevol.2022.103235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/03/2022] [Accepted: 07/03/2022] [Indexed: 11/20/2022]
|
20
|
Gingerich PD. Pattern and rate in the Plio-Pleistocene evolution of modern human brain size. Sci Rep 2022; 12:11216. [PMID: 35780143 PMCID: PMC9250492 DOI: 10.1038/s41598-022-15481-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/24/2022] [Indexed: 11/11/2022] Open
Abstract
Fourteen studies of brain size evolution in Plio-Pleistocene hominins published over the past fifty years show substantial long-term increase in endocranial volume (ECV) for the broad lineage leading to modern humans. The median generation-to-generation step rate for a consensus time series of ECV values, h0 = 0.15 standard deviations per generation, is almost identical to the median step rate observed in modern biological field studies. When specimens are aggregated in a series of 100 k.y. time bins to reflect the precision of their geological ages, temporal scaling identifies four successive phases of stasis and change that are significantly different from random. Phase I from about 3.2 to 2.0 million years before present is an initial phase of relative stasis. Phase II from 2.0 to 1.5 m.y. is a phase of directional brain size increase. Phase III from 1.5 to 0.7 m.y. is a second phase of stasis. Finally, Phase IV from about 0.7 m.y. to 10 k.y. is a second phase of directional increase. The tempo (rate) and the mode (stasis, random, or directional change) of an evolutionary time series are related to each other, and both are related to the time scale appropriate for analysis.
Collapse
Affiliation(s)
- Philip D Gingerich
- Museum of Paleontology, Research Museum Center, University of Michigan, 3600 Varsity Drive, Ann Arbor, MI, 48108-2228, USA.
| |
Collapse
|
21
|
Pavia M, Val A, Carrera L, Steininger CM. Fossil birds from Cooper's D aid in reconstructing the Early Pleistocene paleoenvironment in the Cradle of Humankind (Gauteng, South Africa). J Hum Evol 2022; 167:103185. [PMID: 35489251 DOI: 10.1016/j.jhevol.2022.103185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 03/13/2022] [Accepted: 03/13/2022] [Indexed: 11/18/2022]
Abstract
Several large-bodied hominin and nonhuman primates have coexisted in the Cradle of Humankind in South Africa during the Early Pleistocene. Previous paleoenvironmental studies regarding the Plio-Pleistocene of South Africa have focused heavily on mammal assemblages. Here, we conducted a comprehensive taxonomic analysis of the fossil bird remains from Cooper's D, the most fossiliferous locality of the hominin-bearing Cooper's Cave complex in South Africa. Our taxonomic evaluation of 505 remains reveals the presence of 23 bird taxa, two of which are extinct and already reported from the nearby fossil locality of Kromdraai. The taxonomically diverse bird assemblage is dominated by Francolinus sp. and other species associated with open grassland habitats, followed by rock-dwelling species, including Tyto cf. alba and the extinct Corvus bragai, and by woodland species such as Agapornis sp., Accipiter melanoleucos, and the extinct Glaucidium ireneae. The occurrence of these taxa and their respective proportions in the assemblage, in terms of both numbers of bones and individuals, point to the presence of extensive open grassland and/or savannah with rocky outcrops and woodland. These findings corroborate previous analyses of mammals from Cooper's D, with the exception of aquatic species, which are rare in the bird assemblage. Comparison with older deposits from Kromdraai confirms the definitive establishment of open habitats in the Cradle of Humankind during the Early Pleistocene following a transition from woodier habitats during the Late Pliocene. This study constitutes a further step in investigating the fossil bird diversity in the Cradle of Humankind during the Plio-Pleistocene. Our results add to the larger body of work using avian fossils for paleoenvironmental reconstructions in Africa and support the utility of birds as paleoenvironmental proxies. Similar future studies will refine our understanding of the paleoenvironments and landscape transformation during the Plio-Pleistocene, a critical timeframe for hominin evolution in southern Africa.
Collapse
Affiliation(s)
- Marco Pavia
- Museo di Geologia e Paleontologia, Dipartimento di Scienze della Terra, Università di Torino, Via Valperga Caluso 35, I-10125 Torino, Italy; Evolutionary Studies Institute, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg 2000, South Africa.
| | - Aurore Val
- Evolutionary Studies Institute, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg 2000, South Africa; Abteilung für Ältere Urgeschichte und Quartärökologie, Universität Tübingen, Tübingen, Germany
| | - Lisa Carrera
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Piazza di Porta San Donato, 1, I-40126 Bologna, Italy
| | - Christine M Steininger
- Evolutionary Studies Institute, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg 2000, South Africa
| |
Collapse
|
22
|
Williams SA, Prang TC, Meyer MR, Nalley TK, Van Der Merwe R, Yelverton C, García-Martínez D, Russo GA, Ostrofsky KR, Spear J, Eyre J, Grabowski M, Nalla S, Bastir M, Schmid P, Churchill SE, Berger LR. New fossils of Australopithecus sediba reveal a nearly complete lower back. eLife 2021; 10:70447. [PMID: 34812141 PMCID: PMC8610421 DOI: 10.7554/elife.70447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/19/2021] [Indexed: 01/16/2023] Open
Abstract
Adaptations of the lower back to bipedalism are frequently discussed but infrequently demonstrated in early fossil hominins. Newly discovered lumbar vertebrae contribute to a near-complete lower back of Malapa Hominin 2 (MH2), offering additional insights into posture and locomotion in Australopithecus sediba. We show that MH2 possessed a lower back consistent with lumbar lordosis and other adaptations to bipedalism, including an increase in the width of intervertebral articular facets from the upper to lower lumbar column (‘pyramidal configuration’). These results contrast with some recent work on lordosis in fossil hominins, where MH2 was argued to demonstrate no appreciable lordosis (‘hypolordosis’) similar to Neandertals. Our three-dimensional geometric morphometric (3D GM) analyses show that MH2’s nearly complete middle lumbar vertebra is human-like in overall shape but its vertebral body is somewhat intermediate in shape between modern humans and great apes. Additionally, it bears long, cranially and ventrally oriented costal (transverse) processes, implying powerful trunk musculature. We interpret this combination of features to indicate that A. sediba used its lower back in both bipedal and arboreal positional behaviors, as previously suggested based on multiple lines of evidence from other parts of the skeleton and reconstructed paleobiology of A. sediba. One of the defining features of humans is our ability to walk comfortably on two legs. To achieve this, our skeletons have evolved certain physical characteristics. For example, the lower part of the human spine has a forward curve that supports an upright posture; whereas the lower backs of chimpanzees and other apes – which walk around on four limbs and spend much of their time in trees – lack this curvature. Studying the fossilized back bones of ancient human remains can help us to understand how we evolved these features, and whether our ancestors moved in a similar way. Australopithecus sediba was a close-relative of modern humans that lived about two million years ago. In 2008, fossils from an adult female were discovered at a cave site in South Africa called Malapa. However, the fossils of the lower back region were incomplete, so it was unclear whether the female – referred to as Malapa Hominin 2 (MH2) – had a forward-curving spine and other adaptations needed to walk on two legs. Here, Williams et al. report the discovery of new A. sediba fossils from Malapa. The new fossils are mainly bones from the lower back, and they fit together with the previously discovered MH2 fossils, providing a nearly complete lower spine. Analysis of the fossils suggested that MH2 would have had an upright posture and comfortably walked on two legs, and the curvature of their lower back was similar to modern females. However, other aspects of the bones’ shape suggest that as well as walking, A. sediba probably spent a significant amount of time climbing in trees. The findings of Williams et al. provide new insights in to our evolutionary history, and ultimately, our place in the natural world around us. Our lower back is prone to injury and pain associated with posture, pregnancy and exercise (or lack thereof). Therefore, understanding how the lower back evolved may help us to learn how to prevent injuries and maintain a healthy back.
Collapse
Affiliation(s)
- Scott A Williams
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, United States.,New York Consortium in Evolutionary Primatology, New York, United States.,Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa.,Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Thomas Cody Prang
- Department of Anthropology, Texas A&M University, College Station, United States
| | - Marc R Meyer
- Department of Anthropology, Chaffey College, Rancho Cucamonga, United States
| | - Thierra K Nalley
- Western University of Health Sciences, College of Osteopathic Medicine of the Pacific, Department of Medical Anatomical Sciences, Pomona, United States
| | - Renier Van Der Merwe
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| | - Christopher Yelverton
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa.,Department of Chiropractic, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Daniel García-Martínez
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa.,Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, Spain.,Departamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Gabrielle A Russo
- Department of Anthropology, Stony Brook University, Stony Brook, United States
| | - Kelly R Ostrofsky
- Department of Anatomy, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, United States
| | - Jeffrey Spear
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, United States.,New York Consortium in Evolutionary Primatology, New York, United States
| | - Jennifer Eyre
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, United States.,Department of Anthropology, Bryn Mawr College, Bryn Mawr, United States
| | - Mark Grabowski
- Research Centre in Evolutionary Anthropology and Palaeoecology, Liverpool John Moores University, Liverpool, United Kingdom
| | - Shahed Nalla
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa.,Department of Human Anatomy and Physiology, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Markus Bastir
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa.,Departamento de Paleobiología, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | - Peter Schmid
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa.,Anthropological Institute and Museum, University of Zurich, Zurich, Switzerland
| | - Steven E Churchill
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa.,Department of Evolutionary Anthropology, Duke University, Durham, United States
| | - Lee R Berger
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
23
|
Bowland LA, Scott JE, Kivell TL, Patel BA, Tocheri MW, Orr CM. Homo naledi pollical metacarpal shaft morphology is distinctive and intermediate between that of australopiths and other members of the genus Homo. J Hum Evol 2021; 158:103048. [PMID: 34340120 DOI: 10.1016/j.jhevol.2021.103048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 10/20/2022]
Abstract
Homo naledi fossils from the Rising Star cave system provide important insights into the diversity of hand morphology within the genus Homo. Notably, the pollical (thumb) metacarpal (Mc1) displays an unusual suite of characteristics including a median longitudinal crest, a narrow proximal base, and broad flaring intrinsic muscle flanges. The present study evaluates the affinities of H. naledi Mc1 morphology via 3D geometric morphometric analysis of shaft shape using a broader comparative sample (n = 337) of fossil hominins, recent humans, apes, and cercopithecoid monkeys than in prior work. Results confirm that the H. naledi Mc1 is distinctive from most other hominins in being narrow at the proximal end but surmounted by flaring muscle flanges distally. Only StW 418 (Australopithecus cf. africanus) is similar in these aspects of shape. The gracile proximal shaft is most similar to cercopithecoids, Pan, Pongo, Australopithecus afarensis, and Australopithecus sediba, suggesting that H. naledi retains the condition primitive for the genus Homo. In contrast, Neandertal Mc1s are characterized by wide proximal bases and shafts, pinched midshafts, and broad distal flanges, while those of recent humans generally have straight shafts, less robust muscle flanges, and wide proximal shafts/bases. Although uncertainties remain regarding character polarity, the morphology of the H. naledi thumb might be interpreted as a retained intermediate state in a transformation series between the overall gracility of the shaft and the robust shafts of later hominins. Such a model suggests that the addition of broad medial and lateral muscle flanges to a primitively slender shaft was the first modification in transforming the Mc1 into the overall more robust structure exhibited by other Homo taxa including Neandertals and recent Homo sapiens in whose shared lineage the bases and proximal shafts became expanded, possibly as an adaptation to the repeated recruitment of powerful intrinsic pollical muscles.
Collapse
Affiliation(s)
- Lucyna A Bowland
- Department of Anthropology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Jill E Scott
- Department of Sociology and Anthropology, Metropolitan State University of Denver, Denver, CO, 80217, USA; Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, WITS 2050, Johannesburg, South Africa
| | - Tracy L Kivell
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, WITS 2050, Johannesburg, South Africa; School of Anthropology and Conservation, University of Kent, Canterbury, CT2 7NR, UK; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Biren A Patel
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA; Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Matthew W Tocheri
- Department of Anthropology, Lakehead University, Thunder Bay, ON, P7K 1L8, Canada; Human Origins Program, Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington DC, 20560, USA; Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Caley M Orr
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, 80045, USA; Department of Anthropology, University of Colorado Denver, Denver, CO, 80217, USA.
| |
Collapse
|
24
|
Bergmann I, Hublin JJ, Gunz P, Freidline SE. How did modern morphology evolve in the human mandible? The relationship between static adult allometry and mandibular variability in Homo sapiens. J Hum Evol 2021; 157:103026. [PMID: 34214909 DOI: 10.1016/j.jhevol.2021.103026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023]
Abstract
Key to understanding human origins are early Homo sapiens fossils from Jebel Irhoud, as well as from the early Late Pleistocene sites Tabun, Border Cave, Klasies River Mouth, Skhul, and Qafzeh. While their upper facial shape falls within the recent human range of variation, their mandibles display a mosaic morphology. Here we quantify how mandibular shape covaries with mandible size and how static allometry differs between Neanderthals, early H. sapiens, and modern humans from the Upper Paleolithic/Later Stone Age and Holocene (= later H. sapiens). We use 3D (semi)landmark geometric morphometric methods to visualize allometric trends and to explore how gracilization affects the expression of diagnostic shape features. Early H. sapiens were highly variable in mandible size, exhibiting a unique allometric trajectory that explains aspects of their 'archaic' appearance. At the same time, early H. sapiens share a suite of diagnostic features with later H. sapiens that are not related to mandibular sizes, such as an incipient chin and an anteroposteriorly decreasing corpus height. The mandibular morphology, often referred to as 'modern', can partly be explained by gracilization owing to size reduction. Despite distinct static allometric shape changes in each group studied, bicondylar and bigonial breadth represent important structural constraints for the expression of shape features in most Middle to Late Pleistocene hominin mandibles.
Collapse
Affiliation(s)
- Inga Bergmann
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany.
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Philipp Gunz
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Sarah E Freidline
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| |
Collapse
|
25
|
Irish JD, Grabowski M. Relative tooth size, Bayesian inference, and Homo naledi. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 176:262-282. [PMID: 34190335 DOI: 10.1002/ajpa.24353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/04/2021] [Accepted: 06/08/2021] [Indexed: 01/29/2023]
Abstract
OBJECTIVES Size-corrected tooth crown measurements were used to estimate phenetic affinities among Homo naledi (~335-236 ka) and 11 other Plio-Pleistocene and recent species. To assess further their efficacy, and identify dental evolutionary trends, the data were then quantitatively coded for phylogenetic analyses. Results from both methods contribute additional characterization of H. naledi relative to other hominins. MATERIALS AND METHODS After division by their geometric mean, scaled mesiodistal and buccolingual dimensions were used in tooth size apportionment analysis to compare H. naledi with Australopithecus africanus, A. afarensis, Paranthropus robustus, P. boisei, H. habilis, H. ergaster, H. erectus, H. heidelbergensis, H. neanderthalensis, H. sapiens, and Pan troglodytes. These data produce equivalently scaled samples unaffected by interspecific size differences. The data were then gap-weighted for Bayesian inference. RESULTS Congruence in interspecific relationships is evident between methods, and with many inferred from earlier systematic studies. However, the present results place H. naledi as a sister taxon to H. habilis, based on a symplesiomorphic pattern of relative tooth size. In the preferred Bayesian phylogram, H. naledi is nested within a clade comprising all Homo species, but it shares some characteristics with australopiths and, particularly, early Homo. DISCUSSION Phylogenetic analyses of relative tooth size yield information about evolutionary dental trends not previously reported in H. naledi and the other hominins. Moreover, with an appropriate model these data recovered plausible evolutionary relationships. Together, the findings support recent study suggesting H. naledi originated long before the geological date of the Dinaledi Chamber, from which the specimens under study were recovered.
Collapse
Affiliation(s)
- Joel D Irish
- Research Centre in Evolutionary Anthropology and Palaeoecology, School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK.,The Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| | - Mark Grabowski
- Research Centre in Evolutionary Anthropology and Palaeoecology, School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK.,Centre for Ecology and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
26
|
Spitzer M. Unsere Vorfahren. NERVENHEILKUNDE 2021; 40:492-510. [DOI: 10.1055/a-1389-6941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
27
|
Prabhat AM, Miller CK, Prang TC, Spear J, Williams SA, DeSilva JM. Homoplasy in the evolution of modern human-like joint proportions in Australopithecus afarensis. eLife 2021; 10:65897. [PMID: 33978569 PMCID: PMC8116054 DOI: 10.7554/elife.65897] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/19/2021] [Indexed: 11/22/2022] Open
Abstract
The evolution of bipedalism and reduced reliance on arboreality in hominins resulted in larger lower limb joints relative to the joints of the upper limb. The pattern and timing of this transition, however, remains unresolved. Here, we find the limb joint proportions of Australopithecus afarensis, Homo erectus, and Homo naledi to resemble those of modern humans, whereas those of A. africanus, Australopithecus sediba, Paranthropus robustus, Paranthropus boisei, Homo habilis, and Homo floresiensis are more ape-like. The homology of limb joint proportions in A. afarensis and modern humans can only be explained by a series of evolutionary reversals irrespective of differing phylogenetic hypotheses. Thus, the independent evolution of modern human-like limb joint proportions in A. afarensis is a more parsimonious explanation. Overall, these results support an emerging perspective in hominin paleobiology that A. afarensis was the most terrestrially adapted australopith despite the importance of arboreality throughout much of early hominin evolution.
Collapse
Affiliation(s)
| | - Catherine K Miller
- Anthropology, Dartmouth College, Hanover, United States.,Ecology, Evolution, Ecosystems, and Society, Dartmouth College, Hanover, United States
| | - Thomas Cody Prang
- Department of Anthropology, Texas A&M University, College Station, United States
| | - Jeffrey Spear
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, United States.,New York Consortium in Evolutionary Primatology, New York, United States
| | - Scott A Williams
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, United States.,New York Consortium in Evolutionary Primatology, New York, United States
| | - Jeremy M DeSilva
- Anthropology, Dartmouth College, Hanover, United States.,Ecology, Evolution, Ecosystems, and Society, Dartmouth College, Hanover, United States
| |
Collapse
|
28
|
Árnason Ú, Hallström B. The reversal of human phylogeny: Homo left Africa as erectus, came back as sapiens sapiens. Hereditas 2020; 157:51. [PMID: 33341120 PMCID: PMC7749984 DOI: 10.1186/s41065-020-00163-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/27/2020] [Indexed: 11/25/2022] Open
Abstract
Background The molecular out of Africa hypothesis, OOAH, has been considered as an established fact amid population geneticists for some 25–30 years despite the early concern with it among phylogeneticists with experience beyond that of Homo. The palaeontological support for the hypothesis is also questionable, a circumstance that in the light of expanding Eurasian palaeontological knowledge has become accentuated through the last decades. Results The direction of evolution in the phylogenetic tree of modern humans (Homo sapiens sapiens, Hss) was established inter alia by applying progressive phylogenetic analysis to an mtDNA sampling that included a Eurasian, Lund, and the African Mbuti, San and Yoruba. The examination identified the African populations as paraphyletic, thereby compromising the OOAH. The finding, which was consistent with the out of Eurasia hypothesis, OOEH, was corroborated by the mtDNA introgression from Hss into Hsnn (Neanderthals) that demonstrated the temporal and physical Eurasian coexistence of the two lineages. The results are consistent with the palaeontologically established presence of H. erectus in Eurasia, a Eurasian divergence between H. sapiens and H. antecessor ≈ 850,000 YBP, an Hs divergence between Hss and Hsn (Neanderthals + Denisovans) ≈ 800,000 YBP, an mtDNA introgression from Hss into Hsnn* ≈ 500,000 YBP and an Eurasian divergence among the ancestors of extant Hss ≈ 250,000 YBP at the exodus of Mbuti/San into Africa. Conclusions The present study showed that Eurasia was not the receiver but the donor in Hss evolution. The findings that Homo left Africa as erectus and returned as sapiens sapiens constitute a change in the understanding of Hs evolution to one that conforms to the extensive Eurasian record of Hs palaeontology and archaeology.
Collapse
Affiliation(s)
- Úlfur Árnason
- Department of Brain Surgery, Faculty of Medicine, University of Lund, Lund, Sweden.
| | - Björn Hallström
- Center for Translational Genomics, Faculty of Medicine, University of Lund, Lund, Sweden
| |
Collapse
|
29
|
Brophy JK, Moggi-Cecchi J, Matthews GJ, Bailey SE. Comparative morphometric analyses of the deciduous molars of Homo naledi from the Dinaledi Chamber, South Africa. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 174:299-314. [PMID: 33290582 DOI: 10.1002/ajpa.24190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/12/2020] [Accepted: 11/09/2020] [Indexed: 11/08/2022]
Abstract
OBJECTIVES The purpose of this study is to help elucidate the taxonomic relationship between Homo naledi and other hominins. MATERIALS AND METHODS Homo naledi deciduous maxillary and mandibular molars from the Dinaledi Chamber, South Africa were compared to those of Australopithecus africanus, Australopithecus afarensis, Paranthropus robustus, Paranthropus boisei, early Homo sp., Homo erectus, early Homo sapiens, Upper Paleolithic H. sapiens, recent southern African H. sapiens, and Neanderthals by means of morphometric analyses of crown outlines and relative cusp areas. The crown shapes were analyzed using elliptical Fourier analyses followed by principal component analyses (PCA). The absolute and relative cusp areas were obtained in ImageJ and compared using PCA and cluster analyses. RESULTS PCA suggests that the crown shapes and relative cusp areas of mandibular molars are more diagnostic than the maxillary molars. The H. naledi deciduous mandibular first and second molar (dm1 and dm2 ) do not have a strong affinity to any taxon in the comparative sample in all analyses. While the H. naledi dm2 plots as an outlier in the relative cusp analysis, the H. naledi specimen fall closest to Australopithecus due to their relatively large metaconid, a primitive trait for the genus Homo. Although useful for differentiating Neanderthals from recent southern African H. sapiens and UP H. sapiens, the PCA of the relative cusp areas suggests that the deciduous maxillary second molars (dm2 ) do not differentiate other groups. The three H. naledi dm2 cuspal areas are variable and fall within the ranges of other Homo, as well as Australopithecus, and Paranthropus suggesting weak diagnostic utility. DISCUSSION This research provides another perspective on the morphology of, and variation within, H. naledi. The H. naledi deciduous molars do not consistently align with any genus or species in the comparative sample in either the crown shape or relative cusp analyses. This line of inquiry is consistent with other cranial and postcranial studies suggesting that H. naledi is unique.
Collapse
Affiliation(s)
- Juliet K Brophy
- Department of Geography and Anthropology, Louisiana State University, Baton Rouge, Louisiana, USA.,Evolutionary Studies Institute, University of the Witwatersrand, WITS, South Africa
| | - Jacopo Moggi-Cecchi
- Laboratori di Antropologia, Dipartimento di Biologia, Università degli Studi di Firenze, Florence, Italy
| | - Gregory J Matthews
- Department of Mathematics and Statistics, Loyola University Chicago, Chicago, Illinois, USA
| | - Shara E Bailey
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, New York, USA.,New York Consortium in Evolutionary Primatology, New York, New York, USA.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
30
|
Bolter DR, Cameron N. Utilizing auxology to understand ontogeny of extinct hominins: A case study on Homo naledi. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 173:368-380. [PMID: 32537780 DOI: 10.1002/ajpa.24088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/03/2020] [Accepted: 05/10/2020] [Indexed: 02/05/2023]
Abstract
The methods used to study human growth and development (auxology) have not previously been applied within the setting of hominin maturation (ontogeny). Ontogeny is defined here as the pattern of biological change into an adult form, both at the individual and species level. The hominin fossil record has a lack of recovered immature materials, due to such factors as taphonomic processes that destroy pre-adults; the fragility of immature compared to adult bone; and the lower mortality rates of juveniles compared to adults. The recent discovery of pre-adult hominin skeletal material from a single, homogeneous Homo naledi species from the Rising Star cave system in South Africa provides the opportunity for a broader application of auxology methods and thus the need to understand their use in a modern context. Human auxology studies benefit from a robust database, across multiple populations, and with longitudinal studies in order to assess the patterns and variations in typical growth, development and life history stages. Here, we review the approach, vocabulary, and methods of these human studies, investigate commonalities in data with the fossil record, and then advance the reconstruction of ontogeny for the extinct hominin species H. naledi. To this end, we apply an auxology model into the paleontological context to broadly predict H. naledi birthweight of the offspring at 2.06 kg with a range (±1 SD) of 1.89 to 2.24 kg, with a length at birth 45.5 cm. We estimate a H. naledi juvenile partial skeleton DH7 to be a height of 111-125 cm at death.
Collapse
Affiliation(s)
- Debra R Bolter
- Department of Anthropology, Modesto Junior College, Modesto, California, USA
- Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Noel Cameron
- Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Johannesburg, South Africa
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
31
|
A genotype:phenotype approach to testing taxonomic hypotheses in hominids. Naturwissenschaften 2020; 107:40. [PMID: 32870408 DOI: 10.1007/s00114-020-01696-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 04/20/2020] [Accepted: 08/19/2020] [Indexed: 10/23/2022]
Abstract
Paleontology has long relied on assumptions about the genetic and developmental influences on skeletal variation. The last few decades of developmental genetics have elucidated the genetic pathways involved in making teeth and patterning the dentition. Quantitative genetic analyses have refined this genotype:phenotype map even more, especially for primates. We now have the ability to define dental traits with a fair degree of fidelity to the underlying genetic architecture; for example, the molar module component (MMC) and the premolar-molar module (PMM) that have been defined through quantitative genetic analyses. We leverage an extensive dataset of extant and extinct hominoid dental variation to explore how these two genetically patterned phenotypes have evolved through time. We assess MMC and PMM to test the hypothesis that these two traits reveal a more biologically informed taxonomy at the genus and species levels than do more traditional measurements. Our results indicate that MMC values for hominids fall into two categories and that Homo is derived compared with earlier taxa. We find a more variable, species-level pattern for PMM. These results, in combination with previous research, demonstrate that MMC reflects the phenotypic output of a more evolutionarily stable, or phylogenetically congruent, genetic mechanism, and PMM is a reflection of a more evolutionarily labile mechanism. These results suggest that the human lineage since the split with chimpanzees may not represent as much genus-level variation as has been inferred from traits whose etiologies are not understood.
Collapse
|
32
|
Distinct mandibular premolar crown morphology in Homo naledi and its implications for the evolution of Homo species in southern Africa. Sci Rep 2020; 10:13196. [PMID: 32764597 PMCID: PMC7413389 DOI: 10.1038/s41598-020-69993-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/22/2020] [Indexed: 01/13/2023] Open
Abstract
Homo naledi displays a combination of features across the skeleton not found in any other hominin taxon, which has hindered attempts to determine its placement within the hominin clade. Using geometric morphometrics, we assess the morphology of the mandibular premolars of the species at the enamel-dentine junction (EDJ). Comparing with specimens of Paranthropus, Australopithecus and Homo (n = 97), we find that the H. naledi premolars from the Dinaledi chamber consistently display a suite of traits (e.g., tall crown, well-developed P3 and P4 metaconid, strongly developed P3 mesial marginal ridge, and a P3 > P4 size relationship) that distinguish them from known hominin groups. Premolars from a second locality, the Lesedi Chamber, are consistent with this morphology. We also find that two specimens from South Africa, SK 96 (usually attributed to Paranthropus) and Stw 80 (Homo sp.), show similarities to the species, and we discuss a potential evolutionary link between H. naledi and hominins from Sterkfontein and Swartkrans.
Collapse
|
33
|
Bolter DR, Elliott MC, Hawks J, Berger LR. Immature remains and the first partial skeleton of a juvenile Homo naledi, a late Middle Pleistocene hominin from South Africa. PLoS One 2020; 15:e0230440. [PMID: 32236122 PMCID: PMC7112188 DOI: 10.1371/journal.pone.0230440] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/29/2020] [Indexed: 11/18/2022] Open
Abstract
Immature remains are critical for understanding maturational processes in hominin species as well as for interpreting changes in ontogenetic development in hominin evolution. The study of these subjects is hindered by the fact that associated juvenile remains are extremely rare in the hominin fossil record. Here we describe an assemblage of immature remains of Homo naledi recovered from the 2013–2014 excavation season. From this assemblage, we attribute 16 postcranial elements and a partial mandible with some dentition to a single juvenile Homo naledi individual. The find includes postcranial elements never before discovered as immature elements in the sub-equatorial early hominin fossil record, and contributes new data to the field of hominin ontogeny.
Collapse
Affiliation(s)
- Debra R. Bolter
- Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Anthropology, Modesto Junior College, Modesto, California, United States of America
- * E-mail:
| | - Marina C. Elliott
- Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Johannesburg, South Africa
| | - John Hawks
- Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Anthropology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Lee R. Berger
- Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
34
|
d'Errico F, Pitarch Martí A, Shipton C, Le Vraux E, Ndiema E, Goldstein S, Petraglia MD, Boivin N. Trajectories of cultural innovation from the Middle to Later Stone Age in Eastern Africa: Personal ornaments, bone artifacts, and ocher from Panga ya Saidi, Kenya. J Hum Evol 2020; 141:102737. [PMID: 32163764 DOI: 10.1016/j.jhevol.2019.102737] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 01/16/2023]
Abstract
African Middle Stone Age (MSA) populations used pigments, manufactured and wore personal ornaments, made abstract engravings, and produced fully shaped bone tools. However, ongoing research across Africa reveals variability in the emergence of cultural innovations in the MSA and their subsequent development through the Later Stone Age (LSA). When present, it appears that cultural innovations manifest regional variability, suggestive of distinct cultural traditions. In eastern Africa, several Late Pleistocene sites have produced evidence for novel activities, but the chronologies of key behavioral innovations remain unclear. The 3 m deep, well-dated, Panga ya Saidi sequence in eastern Kenya, encompassing 19 layers covering a time span of 78 kyr beginning in late Marine Isotope Stage 5, is the only known African site recording the interplay between cultural and ecological diversity in a coastal forested environment. Excavations have yielded worked and incised bones, ostrich eggshell beads (OES), beads made from seashells, worked and engraved ocher pieces, fragments of coral, and a belemnite fossil. Here, we provide, for the first time, a detailed analysis of this material. This includes a taphonomic, archeozoological, technological, and functional study of bone artifacts; a technological and morphometric analysis of personal ornaments; and a technological and geochemical analysis of ocher pieces. The interpretation of the results stemming from the analysis of OES beads is guided by an ethnoarcheological perspective and field observations. We demonstrate that key cultural innovations on the eastern African coast are evident by 67 ka and exhibit remarkable diversity through the LSA and Iron Age. We suggest the cultural trajectories evident at Panga ya Saidi were shaped by both regional traditions and cultural/demic diffusion.
Collapse
Affiliation(s)
- Francesco d'Errico
- UMR 5199 CNRS De La Préhistoire à L'Actuel: Culture, Environnement, et Anthropologie (PACEA), Université Bordeaux, Allée Geoffroy Saint Hilaire, CS 50023 F - 33615 Pessac CEDEX, Talence, France; Centre for Early Sapiens Behaviour, Øysteinsgate 3, Postboks 7805, 5020 University of Bergen, Norway.
| | - Africa Pitarch Martí
- UMR 5199 CNRS De La Préhistoire à L'Actuel: Culture, Environnement, et Anthropologie (PACEA), Université Bordeaux, Allée Geoffroy Saint Hilaire, CS 50023 F - 33615 Pessac CEDEX, Talence, France; Seminari d'Estudis i Recerques Prehistòriques (SERP), Facultat de Geografia i Història, Departament d'Història i Arqueologia, Universitat de Barcelona, Montalegre 6, 08001, Barcelona, Spain
| | - Ceri Shipton
- Centre of Excellence for Australian Biodiversity and Heritage, College of Asia and the Pacific, The Australian National University, ACT 0200, Australia
| | - Emma Le Vraux
- UMR 5199 CNRS De La Préhistoire à L'Actuel: Culture, Environnement, et Anthropologie (PACEA), Université Bordeaux, Allée Geoffroy Saint Hilaire, CS 50023 F - 33615 Pessac CEDEX, Talence, France
| | - Emmanuel Ndiema
- National Museums of Kenya, Department of Earth Sciences, Box 40658 - 00100, Nairobi, Kenya
| | - Steven Goldstein
- Department of Archaeology, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, D-07745 Jena, Germany
| | - Michael D Petraglia
- Department of Archaeology, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, D-07745 Jena, Germany; Human Origins Program, Smithsonian Institution, Washington, D.C., 20560, USA; School of Social Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nicole Boivin
- Department of Archaeology, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, D-07745 Jena, Germany; School of Social Science, The University of Queensland, Brisbane, QLD 4072, Australia; Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr. N.W., Calgary, AB, T2N 1N4, Canada; Department of Anthropology, National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave. NW Washington, D.C. 20560, USA
| |
Collapse
|
35
|
Semaw S, Rogers MJ, Simpson SW, Levin NE, Quade J, Dunbar N, McIntosh WC, Cáceres I, Stinchcomb GE, Holloway RL, Brown FH, Butler RF, Stout D, Everett M. Co-occurrence of Acheulian and Oldowan artifacts with Homo erectus cranial fossils from Gona, Afar, Ethiopia. SCIENCE ADVANCES 2020; 6:eaaw4694. [PMID: 32181331 PMCID: PMC7056306 DOI: 10.1126/sciadv.aaw4694] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Although stone tools generally co-occur with early members of the genus Homo, they are rarely found in direct association with hominins. We report that both Acheulian and Oldowan artifacts and Homo erectus crania were found in close association at 1.26 million years (Ma) ago at Busidima North (BSN12), and ca. 1.6 to 1.5 Ma ago at Dana Aoule North (DAN5) archaeological sites at Gona, Afar, Ethiopia. The BSN12 partial cranium is robust and large, while the DAN5 cranium is smaller and more gracile, suggesting that H. erectus was probably a sexually dimorphic species. The evidence from Gona shows behavioral diversity and flexibility with a lengthy and concurrent use of both stone technologies by H. erectus, confounding a simple "single species/single technology" view of early Homo.
Collapse
Affiliation(s)
- Sileshi Semaw
- Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Sierra de Atapuerca 3, 09002 Burgos, Spain
- Stone Age Institute and CRAFT Research Center, 1392 W. Dittemore Rd., Gosport, IN 47408, USA
| | - Michael J. Rogers
- Department of Anthropology, Southern Connecticut State University, 501 Crescent Street, New Haven, CT 06515, USA
| | - Scott W. Simpson
- Department of Anatomy, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Laboratory of Physical Anthropology, Cleveland Museum of Natural History, Cleveland, OH 44106, USA
| | - Naomi E. Levin
- Department of Earth and Environmental Sciences, University of Michigan, 1100 North University Avenue, Ann Arbor, MI 48109, USA
| | - Jay Quade
- Department of Geosciences/Desert Laboratory, University of Arizona, Tucson, AZ 85721, USA
| | - Nelia Dunbar
- New Mexico Bureau of Geology and Mineral Resources, Earth and Environmental Science Department, New Mexico Tech, 801 Leroy Place, Socorro, NM 87801-4796, USA
| | - William C. McIntosh
- New Mexico Bureau of Geology and Mineral Resources, Earth and Environmental Science Department, New Mexico Tech, 801 Leroy Place, Socorro, NM 87801-4796, USA
| | - Isabel Cáceres
- Universitat Rovira i Virgili (URV), Avinguda de Catalunya 35, 43002 Tarragona, Spain
- IPHES, Institut Català de Paleoecologia Humana i Evolució Social, Zona Educacional 4–Campus Sescelades URV (Edifici W3), 43007 Tarragona, Spain
| | - Gary E. Stinchcomb
- Watershed Studies Institute and Department of Earth and Environmental Sciences, Murray State University, Murray, KY 42071, USA
| | - Ralph L. Holloway
- Department of Anthropology, Columbia University, 1200 Amsterdam Ave., New York, NY 10027, USA
| | - Francis H. Brown
- The University of Utah, 201 South Presidents Circle Room 201, Salt Lake City, UT 84112, USA
| | - Robert F. Butler
- Department of Physics, University of Portland, Portland, OR 97203, USA
| | - Dietrich Stout
- Department of Anthropology, Emory University, 1557 Dickey Drive, Atlanta, GA 30322, USA
| | - Melanie Everett
- Chevron Energy Technology Company, 1500 Louisiana St., Houston, TX 77002, USA
| |
Collapse
|
36
|
Wareham CS. On the moral status of hominins. Monash Bioeth Rev 2019; 38:205-218. [PMID: 31696412 DOI: 10.1007/s40592-019-00098-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This article evaluates the moral status of hominins, and obligations we may have towards them. In exploring these ethical considerations, I consider one of the most recent hominin finds: the 'graveyard' of Homo naledi in the Dinaledi caves at the Cradle of Humankind in South Africa. I argue that findings about H. naledi establish a pro tanto duty not to excavate their remains.
Collapse
Affiliation(s)
- C S Wareham
- Steve Biko Cente for Bioethics, University of the Witwatersrand, Rm 312, 3rd Floor, P.V. Tobias Building, Cnr Carse O'Gowrie and York Road, Parktown, Johannesburg, 2193, South Africa.
| |
Collapse
|
37
|
Bailey SE, Brophy JK, Moggi-Cecchi J, Delezene LK. The deciduous dentition of Homo naledi: A comparative study. J Hum Evol 2019; 136:102655. [DOI: 10.1016/j.jhevol.2019.102655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 12/23/2022]
|
38
|
Friedl L, Claxton AG, Walker CS, Churchill SE, Holliday TW, Hawks J, Berger LR, DeSilva JM, Marchi D. Femoral neck and shaft structure in Homo naledi from the Dinaledi Chamber (Rising Star System, South Africa). J Hum Evol 2019; 133:61-77. [PMID: 31358184 DOI: 10.1016/j.jhevol.2019.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 01/27/2023]
Abstract
The abundant femoral assemblage of Homo naledi found in the Dinaledi Chamber provides a unique opportunity to test hypotheses regarding the taxonomy, locomotion, and loading patterns of this species. Here we describe neck and shaft cross-sectional structure of all the femoral fossils recovered in the Dinaledi Chamber and compare them to a broad sample of fossil hominins, recent humans, and extant apes. Cross-sectional geometric (CSG) properties from the femoral neck (base of neck and midneck) and diaphysis (subtrochanteric region and midshaft) were obtained through CT scans for H. naledi and through CT scans or from the literature for the comparative sample. The comparison of CSG properties of H. naledi and the comparative samples shows that H. naledi femoral neck is quite derived with low superoinferior cortical thickness ratio and high relative cortical area. The neck appears superoinferiorly elongated because of two bony pilasters on its superior surface. Homo naledi femoral shaft shows a relatively thick cortex compared to the other hominins. The subtrochanteric region of the diaphysis is mediolaterally elongated resembling early hominins while the midshaft is anteroposteriorly elongated, indicating high mobility levels. In term of diaphyseal robusticity, the H. naledi femur is more gracile that other hominins and most apes. Homo naledi shows a unique combination of characteristics in its femur that undoubtedly indicate a species committed to terrestrial bipedalism but with a unique loading pattern of the femur possibly consequence of the unique postcranial anatomy of the species.
Collapse
Affiliation(s)
- Lukas Friedl
- Department of Anthropology, University of West Bohemia, Plzeň, Czech Republic
| | - Alex G Claxton
- Department of Anthropology, Dartmouth College, 409 Silsby, HB 6047, Hanover, USA
| | - Christopher S Walker
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA; Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, South Africa; Department of Evolutionary Anthropology, Duke University, 04 Bio Sci Bldg, Durham, NC, 27708, USA
| | - Steven E Churchill
- Department of Evolutionary Anthropology, Duke University, 04 Bio Sci Bldg, Durham, NC, 27708, USA; Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, South Africa
| | - Trenton W Holliday
- Department of Anthropology, Tulane University, 417 Dinwiddie Hall, New Orleans, LA, 70118, USA; Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, South Africa
| | - John Hawks
- Department of Anthropology, University of Wisconsin, 5325 Sewell Social Science Building, Madison, WI, 53706, USA; Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, South Africa
| | - Lee R Berger
- Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, South Africa
| | - Jeremy M DeSilva
- Department of Anthropology, Dartmouth College, 409 Silsby, HB 6047, Hanover, USA; Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, South Africa
| | - Damiano Marchi
- Department of Biology, University of Pisa, vis Derna 1, Pisa, 56126, Italy; Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, South Africa.
| |
Collapse
|
39
|
Walker CS, Cofran ZD, Grabowski M, Marchi D, Cook RW, Churchill SE, Tommy KA, Throckmorton Z, Ross AH, Hawks J, Yapuncich GS, Van Arsdale AP, Rentzeperis FI, Berger LR, DeSilva JM. Morphology of the Homo naledi femora from Lesedi. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 170:5-23. [PMID: 31228254 DOI: 10.1002/ajpa.23877] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 05/26/2019] [Accepted: 05/27/2019] [Indexed: 11/07/2022]
Abstract
OBJECTIVES The femoral remains recovered from the Lesedi Chamber are among the most complete South African fossil hominin femora discovered to date and offer new and valuable insights into the anatomy and variation of the bone in Homo naledi. While the femur is one of the best represented postcranial elements in the H. naledi assemblage from the Dinaledi Chamber, the fragmentary and commingled nature of the Dinaledi femoral remains has impeded the assessment of this element in its complete state. MATERIALS AND METHODS Here we analyze and provide descriptions of three new relatively well-preserved femoral specimens of H. naledi from the Lesedi Chamber: U.W. 102a-001, U.W. 102a-003, and U.W. 102a-004. These femora are quantitatively and qualitatively compared to multiple extinct hominin femoral specimens, extant hominid taxa, and, where possible, each other. RESULTS The Lesedi femora are morphologically similar to the Dinaledi femora for all overlapping regions, with differences limited to few traits of presently unknown significance. The Lesedi distal femur and mid-diaphysis preserve anatomy previously unidentified or unconfirmed in the species, including an anteroposteriorly expanded midshaft and anteriorly expanded patellar surface. The hypothesis that the Lesedi femoral sample may represent two individuals is supported. DISCUSSION The Lesedi femora increase the range of variation of femoral morphology in H. naledi. Newly described features of the diaphysis and distal femur are either taxonomically uninformative or Homo-like. Overall, these three new femora are consistent with previous functional interpretations of the H. naledi lower limb as belonging to a species adapted for long distance walking and, possibly, running.
Collapse
Affiliation(s)
- Christopher S Walker
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina.,Department of Evolutionary Anthropology, Duke University, Durham, North Carolina.,Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Zachary D Cofran
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa.,Anthropology Department, Vassar College, Poughkeepsie, New York
| | - Mark Grabowski
- Research Centre in Evolutionary Anthropology and Palaeoecology, School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, UK
| | - Damiano Marchi
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa.,Department of Biology, University of Pisa, Pisa, Italy
| | - Rebecca W Cook
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina.,Department of Evolutionary Anthropology, Duke University, Durham, North Carolina
| | - Steven E Churchill
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina.,Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Kimberleigh A Tommy
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa.,Human Variation and Identification Research Unit, School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Zachary Throckmorton
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa.,Department of Anatomy, Arkansas College of Osteopathic Medicine, Fort Smith, Arkansas
| | - Ann H Ross
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| | - John Hawks
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa.,Department of Anthropology, University of Wisconsin, Madison, Wisconsin
| | - Gabriel S Yapuncich
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina.,Department of Evolutionary Anthropology, Duke University, Durham, North Carolina
| | | | | | - Lee R Berger
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Jeremy M DeSilva
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa.,Department of Anthropology, Dartmouth College, Hanover, New Hampshire
| |
Collapse
|
40
|
Williams AC, Hill LJ. Nicotinamide as Independent Variable for Intelligence, Fertility, and Health: Origin of Human Creative Explosions? Int J Tryptophan Res 2019; 12:1178646919855944. [PMID: 31258332 PMCID: PMC6585247 DOI: 10.1177/1178646919855944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/03/2019] [Indexed: 12/28/2022] Open
Abstract
Meat and nicotinamide acquisition was a defining force during the 2-million-year evolution of the big brains necessary for, anatomically modern, Homo sapiens to survive. Our next move was down the food chain during the Mesolithic 'broad spectrum', then horticultural, followed by the Neolithic agricultural revolutions and progressively lower average 'doses' of nicotinamide. We speculate that a fertility crisis and population bottleneck around 40 000 years ago, at the time of the Last Glacial Maximum, was overcome by Homo (but not the Neanderthals) by concerted dietary change plus profertility genes and intense sexual selection culminating in behaviourally modern Homo sapiens. Increased reliance on the 'de novo' synthesis of nicotinamide from tryptophan conditioned the immune system to welcome symbionts, such as TB (that excrete nicotinamide), and to increase tolerance of the foetus and thereby fertility. The trade-offs during the warmer Holocene were physical and mental stunting and more infectious diseases and population booms and busts. Higher nicotinamide exposure could be responsible for recent demographic and epidemiological transitions to lower fertility and higher longevity, but with more degenerative and auto-immune disease.
Collapse
Affiliation(s)
- Adrian C Williams
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Lisa J Hill
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
41
|
de Ruiter DJ, Laird MF, Elliott M, Schmid P, Brophy J, Hawks J, Berger LR. Homo naledi cranial remains from the Lesedi chamber of the rising star cave system, South Africa. J Hum Evol 2019; 132:1-14. [PMID: 31203841 DOI: 10.1016/j.jhevol.2019.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/19/2019] [Accepted: 03/30/2019] [Indexed: 11/30/2022]
Abstract
Excavations in the Lesedi Chamber (U.W. 102) of the Rising Star cave system from 2013 to 2015 resulted in the recovery of 131 fossils representing at least three individuals attributed to Homo naledi. Hominin fossils were recovered from three collection areas within the Lesedi Chamber. A partial skull with near complete dentition (LES1) and an associated partial skeleton were recovered from Area 102a, while craniodental remains from two other individuals were recovered from Areas 102b and 102c. Here we present detailed anatomical descriptions and metrical comparisons of the Lesedi Chamber H. naledi craniodental remains that preserve diagnostic morphology. The LES1 skull is a presumed male that is slightly larger in size, and shows greater development of ectocranial structures compared to other H. naledi specimens from the Dinaledi Chamber of the Rising Star cave system. Otherwise the Lesedi fossils are notably similar to the Dinaledi fossils in shape and morphology. The Lesedi fossils also preserve the delicate nasal and lacrimal bones that are otherwise unrecorded in the Dinaledi sample. Limited morphological differences between the Dinaledi and Lesedi Chamber hominin samples provides support for the hypothesis that these two assemblages share a close phyletic relationship.
Collapse
Affiliation(s)
- Darryl J de Ruiter
- Department of Anthropology, Texas A&M University, College Station, TX 77843, USA; Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg 2050, South Africa.
| | - Myra F Laird
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA.
| | - Marina Elliott
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg 2050, South Africa.
| | - Peter Schmid
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg 2050, South Africa; Anthropological Institute and Museum, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| | - Juliet Brophy
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg 2050, South Africa; Department of Geography and Anthropology, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - John Hawks
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg 2050, South Africa; Department of Anthropology, University of Wisconsin - Madison, Madison, WI 53706, USA.
| | - Lee R Berger
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
42
|
Enamel pearls: Their occurrence in recent human populations and earliest manifestation in the modern human lineage. Arch Oral Biol 2019; 101:147-155. [PMID: 30939297 DOI: 10.1016/j.archoralbio.2019.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/22/2019] [Accepted: 03/04/2019] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To document and describe the occurrence of an enamel pearl on the distal root surface of the maxillary M3 of the fossil hominin specimen from Florisbad, South Africa that is dated to ca. 259,000 years B.P., and is an early representative of Homo sapiens or as a member of the evolutionary line that was directly ancestral to modern humans. DESIGN The molar was examined macroscopically and by micro-computed tomography (μCT) to enable accurate measurement and visualization of the structure of the enamel pearl. RESULTS The single pearl has a diameter of 0.97 mm; it is a Type 2 "composite" pearl comprising an enamel cap and dentine core without pulp chamber involvement. The size of the Florisbad pearl falls within or just below the size ranges of this anomaly in modern human samples. Type 2 pearls are most commonly encountered in recent human populations, and the location of the pearl on the distal root surface of the Florisbad M3 is consistent with its most frequent location in recent humans. Pearls in recent human populations affect between 0.2-4.8% of individuals, and 1.7-6.8% of permanent molars. Pearls have been documented in several prehistoric human dentitions, and all examples are less than 4000 years old. CONCLUSIONS Enamel pearls have been associated with periodontal disease, but it is not possible to relate its presence to the advanced periodontal inflammation and alveolar bone loss in the Florisbad fossil. Florisbad presents the earliest evidence of this anomaly in the fossil record pertaining to modern humans.
Collapse
|
43
|
Kupczik K, Delezene LK, Skinner MM. Mandibular molar root and pulp cavity morphology in Homo naledi and other Plio-Pleistocene hominins. J Hum Evol 2019; 130:83-95. [PMID: 31010546 DOI: 10.1016/j.jhevol.2019.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/31/2022]
Abstract
The craniomandibular morphology of Homo naledi shows variable resemblances with species across Homo, which confounds an easy assessment of its phylogenetic position. In terms of skull shape, H. naledi has its closest affinities with Homo erectus, while mandibular shape places it closer to early Homo. From a tooth crown perspective, the smaller molars of H. naledi make it distinct from early Homo and H. erectus. Here, we compare the mandibular molar root morphology of six H. naledi individuals from the Dinaledi Chamber to those of African and Eurasian Plio-Pleistocene fossil hominins (totalling 183 mandibular first, second and third molars). The analysis of five root metric variables (cervical plane area, root length, root cervix volume, root branch volume, and root surface area) derived from microCT reconstructions reveals that the molar roots of H. naledi are smaller than those of Homo habilis, Homo rudolfensis, and H. erectus, but that they resemble those of three Homo sp. specimens from Swartkrans and Koobi Fora in size and overall appearance. Moreover, though H. naledi molar roots are similar in absolute size to Pleistocene Homo sapiens, they differ from H. sapiens in having a larger root volume for a given cervical plane area and less taurodont roots; the root cervix-to-branch proportions of H. naledi are comparable to those of Australopithecus africanus and species of Paranthropus. H. naledi also shares a metameric root volume pattern (M2 > M3 > M1) with Australopithecus and Paranthropus but not with any of the other Homo species (M2 > M1 > M3). Our findings therefore concur with previous studies that found that H. naledi shares plesiomorphic features with early Homo, Australopithecus, and Paranthropus. While absolute molar root size aligns H. naledi with Homo from North and South Africa, it is distinguishable from these in terms of root volumetric proportions.
Collapse
Affiliation(s)
- Kornelius Kupczik
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany.
| | - Lucas K Delezene
- Department of Anthropology, University of Arkansas, 330 Old Main, Fayetteville, AR, 72701, USA; Evolutionary Studies Institute and Centre for Excellence in PaleoSciences, University of the Witwatersrand, South Africa
| | - Matthew M Skinner
- Evolutionary Studies Institute and Centre for Excellence in PaleoSciences, University of the Witwatersrand, South Africa; School of Anthropology and Conservation, University of Kent, Canterbury, UK; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
44
|
Braga J, Zimmer V, Dumoncel J, Samir C, de Beer F, Zanolli C, Pinto D, Rohlf FJ, Grine FE. Efficacy of diffeomorphic surface matching and 3D geometric morphometrics for taxonomic discrimination of Early Pleistocene hominin mandibular molars. J Hum Evol 2019; 130:21-35. [PMID: 31010541 DOI: 10.1016/j.jhevol.2019.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/23/2022]
Abstract
Morphometric assessments of the dentition have played significant roles in hypotheses relating to taxonomic diversity among extinct hominins. In this regard, emphasis has been placed on the statistical appraisal of intraspecific variation to identify morphological criteria that convey maximum discriminatory power. Three-dimensional geometric morphometric (3D GM) approaches that utilize landmarks and semi-landmarks to quantify shape variation have enjoyed increasingly popular use over the past twenty-five years in assessments of the outer enamel surface (OES) and enamel-dentine junction (EDJ) of fossil molars. Recently developed diffeomorphic surface matching (DSM) methods that model the deformation between shapes have drastically reduced if not altogether eliminated potential methodological inconsistencies associated with the a priori identification of landmarks and delineation of semi-landmarks. As such, DSM has the potential to better capture the geometric details that describe tooth shape by accounting for both homologous and non-homologous (i.e., discrete) features, and permitting the statistical determination of geometric correspondence. We compare the discriminatory power of 3D GM and DSM in the evaluation of the OES and EDJ of mandibular permanent molars attributed to Australopithecus africanus, Paranthropus robustus and early Homo sp. from the sites of Sterkfontein and Swartkrans. For all three molars, classification and clustering scores demonstrate that DSM performs better at separating the A. africanus and P. robustus samples than does 3D GM. The EDJ provided the best results. P. robustus evinces greater morphological variability than A. africanus. The DSM assessment of the early Homo molar from Swartkrans reveals its distinctiveness from either australopith sample, and the "unknown" specimen from Sterkfontein (Stw 151) is notably more similar to Homo than to A. africanus.
Collapse
Affiliation(s)
- José Braga
- Computer-assisted Palaeoanthropology Team, UMR 5288 CNRS-Université de Toulouse (Paul Sabatier), 37 Allées Jules Guesde, 31000 Toulouse, France; Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg 2050, South Africa.
| | - Veronika Zimmer
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; Department of Biomedical Engineering, King's College London, London, UK.
| | - Jean Dumoncel
- Computer-assisted Palaeoanthropology Team, UMR 5288 CNRS-Université de Toulouse (Paul Sabatier), 37 Allées Jules Guesde, 31000 Toulouse, France.
| | - Chafik Samir
- LIMOS, UMR 6158 CNRS-Université Clermont Auvergne, 63173 Aubière, France.
| | - Frikkie de Beer
- South African Nuclear Energy Corporation (NECSA), Pelindaba, North West Province, South Africa.
| | - Clément Zanolli
- Computer-assisted Palaeoanthropology Team, UMR 5288 CNRS-Université de Toulouse (Paul Sabatier), 37 Allées Jules Guesde, 31000 Toulouse, France.
| | - Deborah Pinto
- Computer-assisted Palaeoanthropology Team, UMR 5288 CNRS-Université de Toulouse (Paul Sabatier), 37 Allées Jules Guesde, 31000 Toulouse, France.
| | - F James Rohlf
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Frederick E Grine
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA; Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
45
|
Melillo S, Gunz P, Coqueugniot H, Reske S, Hublin JJ. Structural effects of variation in the human clavicle. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 168:687-704. [DOI: 10.1002/ajpa.23787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/04/2018] [Accepted: 01/08/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Stephanie Melillo
- Department of Human Evolution; Max Planck Institute for Evolutionary Anthropology; Leipzig Germany
| | - Philipp Gunz
- Department of Human Evolution; Max Planck Institute for Evolutionary Anthropology; Leipzig Germany
| | - Hélène Coqueugniot
- Department of Human Evolution; Max Planck Institute for Evolutionary Anthropology; Leipzig Germany
- UMR 5199 PACEA, CNRS, University of Bordeaux; LaScArBx Cluster of excellence (ANR-10-LABX-52); Bordeaux France
- Chair of biological anthropology Paul Broca; École Pratique des Hautes Études (EPHE), PSL University Paris; Paris France
| | - Stefan Reske
- Klinik für bildgebende Diagnostik und Interventionsradiologie; BG Klinikum Bergmannstrost Halle; Halle (Saale) Germany
| | - Jean-Jacques Hublin
- Department of Human Evolution; Max Planck Institute for Evolutionary Anthropology; Leipzig Germany
| |
Collapse
|
46
|
Multiple Components of Phylogenetic Non-stationarity in the Evolution of Brain Size in Fossil Hominins. Evol Biol 2019. [DOI: 10.1007/s11692-019-09471-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
47
|
DeSilva J, McNutt E, Benoit J, Zipfel B. One small step: A review of Plio‐Pleistocene hominin foot evolution. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 168 Suppl 67:63-140. [DOI: 10.1002/ajpa.23750] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Jeremy DeSilva
- Department of AnthropologyDartmouth College Hanover New Hampshire
- Evolutionary Studies Institute and School of GeosciencesUniversity of the Witwatersrand Johannesburg South Africa
| | - Ellison McNutt
- Department of AnthropologyDartmouth College Hanover New Hampshire
| | - Julien Benoit
- Evolutionary Studies Institute and School of GeosciencesUniversity of the Witwatersrand Johannesburg South Africa
| | - Bernhard Zipfel
- Evolutionary Studies Institute and School of GeosciencesUniversity of the Witwatersrand Johannesburg South Africa
| |
Collapse
|
48
|
VanSickle C, Cofran Z, García-Martínez D, Williams SA, Churchill SE, Berger LR, Hawks J. Homo naledi pelvic remains from the Dinaledi Chamber, South Africa. J Hum Evol 2018; 125:122-136. [DOI: 10.1016/j.jhevol.2017.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 09/27/2017] [Accepted: 10/03/2017] [Indexed: 11/30/2022]
|
49
|
Ancient teeth, phenetic affinities, and African hominins: Another look at where Homo naledi fits in. J Hum Evol 2018; 122:108-123. [DOI: 10.1016/j.jhevol.2018.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 12/25/2022]
|
50
|
Guatelli-Steinberg D, O'Hara MC, Le Cabec A, Delezene LK, Reid DJ, Skinner MM, Berger LR. Patterns of lateral enamel growth in Homo naledi as assessed through perikymata distribution and number. J Hum Evol 2018; 121:40-54. [DOI: 10.1016/j.jhevol.2018.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 11/24/2022]
|