1
|
Pradel K, Tymorek A, Marzec M, Chrobok Ł, Solecki W, Błasiak T. Superior Colliculus Controls the Activity of the Substantia Nigra Pars Compacta and Ventral Tegmental Area in an Asymmetrical Manner. J Neurosci 2025; 45:e1976222024. [PMID: 39819512 PMCID: PMC11968530 DOI: 10.1523/jneurosci.1976-22.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/30/2024] [Accepted: 11/18/2024] [Indexed: 01/19/2025] Open
Abstract
Dopaminergic (DA) neurons of the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) play a crucial role in controlling animals' orienting and approach behaviors toward relevant environmental stimuli. The ventral midbrain receives sensory input from the superior colliculus (SC), a tectal region that processes information from contralateral receptive fields of various modalities. Given the significant influence of dopamine release imbalance in the left and right striatum on animals' movement direction, our study aimed to investigate the lateralization of the connection between the lateral SC and the midbrain DA system in male rats. We explored the circuit's anatomy using transsynaptic viral tract-tracing and its physiology using in vivo single-unit and ex vivo multi-electrode array recordings of SNc and VTA neuronal activity combined with optogenetic stimulation of either the ipsilateral or contralateral SC or its terminals. During the experiments, DA neurons were identified optogenetically (in vivo recordings) or pharmacologically (ex vivo recordings). Anatomical findings revealed a bilateral innervation pattern of the lateral SC to the ventral midbrain, with a significantly stronger ipsilateral connection, particularly evident in the SNc, involving both DA and non-DA neurons. This anatomical asymmetry was also expressed during in vivo and ex vivo recordings, which showed a predominance of ipsilateral connections, especially within the SNc. Ex vivo recordings also confirmed that this lateralized pathway is direct. The described features of the SC→VTA/SNc neuronal circuit, particularly its anatomical and physiological asymmetry, suggest its involvement in orienting and approach behaviors guided by the direction of incoming sensory stimuli.
Collapse
Affiliation(s)
- Kamil Pradel
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków 30-387, Poland
| | - Adrian Tymorek
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków 30-387, Poland
| | - Martyna Marzec
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków 30-387, Poland
| | - Łukasz Chrobok
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków 30-387, Poland
| | - Wojciech Solecki
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Faculty of Management and Social Communication, Jagiellonian University, Kraków 30-348, Poland
| | - Tomasz Błasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków 30-387, Poland
| |
Collapse
|
2
|
Cang J, Chen C, Li C, Liu Y. Genetically defined neuron types underlying visuomotor transformation in the superior colliculus. Nat Rev Neurosci 2024; 25:726-739. [PMID: 39333418 DOI: 10.1038/s41583-024-00856-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 09/29/2024]
Abstract
The superior colliculus (SC) is a conserved midbrain structure that is important for transforming visual and other sensory information into motor actions. Decades of investigations in numerous species have made the SC and its nonmammalian homologue, the optic tectum, one of the best studied structures in the brain, with rich information now available regarding its anatomical organization, its extensive inputs and outputs and its important functions in many reflexive and cognitive behaviours. Excitingly, recent studies using modern genomic and physiological approaches have begun to reveal the diverse neuronal subtypes in the SC, as well as their unique functions in visuomotor transformation. Studies have also started to uncover how subtypes of SC neurons form intricate circuits to mediate visual processing and visually guided behaviours. Here, we review these recent discoveries on the cell types and neuronal circuits underlying visuomotor transformations mediated by the SC. We also highlight the important future directions made possible by these new developments.
Collapse
Affiliation(s)
- Jianhua Cang
- Department of Biology, University of Virginia, Charlottesville, VA, USA.
- Department of Psychology, University of Virginia, Charlottesville, VA, USA.
| | - Chen Chen
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Chuiwen Li
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Yuanming Liu
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
3
|
Sugawara SK, Nishimura Y. The Mesocortical System Encodes the Strength of Subsequent Force Generation. Neurosci Insights 2024; 19:26331055241256948. [PMID: 38827248 PMCID: PMC11141215 DOI: 10.1177/26331055241256948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/08/2024] [Indexed: 06/04/2024] Open
Abstract
Our minds impact motor outputs. Such mind-motor interactions are critical for understanding motor control mechanisms and optimizing motor performance. In particular, incentive motivation strongly enhances motor performance. Dopaminergic neurons located in the ventral midbrain (VM) are believed to be the center of incentive motivation. Direct projections from the VM to the primary motor cortex constitute a mesocortical pathway. However, the functional role of this pathway in humans remains unclear. Recently, we demonstrated the functional role of the mesocortical pathway in human motor control in the context of incentive motivation by using functional magnetic resonance imaging (fMRI). Incentive motivation remarkably improved not only reaction times but also the peak grip force in subsequent grip responses. Although the reaction time has been used as a proxy for incentive motivation mediated by dopaminergic midbrain activity, the premovement activity of the mesocortical pathway is involved in controlling the force strength rather than the initiation of subsequent force generation. In this commentary, we review our recent findings and discuss remaining questions regarding the functional role of the mesocortical pathway in mind-motor interactions.
Collapse
Affiliation(s)
- Sho K Sugawara
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Yukio Nishimura
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| |
Collapse
|
4
|
Yu X, Yamaguchi R, Isa T. How to study subjective experience in an animal model of blindsight? Neurosci Res 2024; 201:39-45. [PMID: 37696449 DOI: 10.1016/j.neures.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
The nature of subjective conscious experience, which accompanies us throughout our waking lives, and how it is generated, remain elusive. One of the challenges in studying subjective experience is disentangling the brain activity related to the sensory stimulus processing and stimulus-guided behavior from those associated with subjective perception. Blindsight, a phenomenon characterized by the retained visual discrimination performance but impaired visual consciousness due to damage to the primary visual cortex, becomes a special entry point to address this question. However, to fully understand the underlying neural mechanism, relying on studies involving human patients alone is insufficient. In this paper, we tried to address this issue, by first introducing the well-known cases of blindsight, especially the reports on subjective experience in both human and monkey subjects. And then we described how the impaired visual awareness of blindsight monkeys has been discovered and further studied by specifically designed tasks, as verbal reporting is not possible for these animals. Our previous studies also demonstrated that many complex visually guided cognitive processes were still retained despite the impairment of visual awareness. Further investigation needs to be conducted to explore the relationship between visually guided behavior, visual awareness and brain activity in blindsight subjects.
Collapse
Affiliation(s)
- Xiyao Yu
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Reona Yamaguchi
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Tadashi Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
5
|
Baruchin LJ, Alleman M, Schröder S. Reward Modulates Visual Responses in the Superficial Superior Colliculus of Mice. J Neurosci 2023; 43:8663-8680. [PMID: 37879894 PMCID: PMC7615379 DOI: 10.1523/jneurosci.0089-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023] Open
Abstract
The processing of sensory input is constantly adapting to behavioral demands and internal states. The drive to obtain reward, e.g., searching for water when thirsty, is a strong behavioral demand and associating the reward with its source, a certain environment or action, is paramount for survival. Here, we show that water reward increases subsequent visual activity in the superficial layers of the superior colliculus (SC), which receive direct input from the retina and belong to the earliest stages of visual processing. We trained mice of either sex to perform a visual decision task and recorded the activity of neurons in the SC using two-photon calcium imaging and high-density electrophysiological recordings. Responses to visual stimuli in around 20% of visually responsive neurons in the superficial SC were affected by reward delivered in the previous trial. Reward mostly increased visual responses independent from modulations due to pupil size changes. The modulation of visual responses by reward could not be explained by movements like licking. It was specific to responses to the following visual stimulus, independent of slow fluctuations in neural activity and independent of how often the stimulus was previously rewarded. Electrophysiological recordings confirmed these results and revealed that reward affected the early phase of the visual response around 80 ms after stimulus onset. Modulation of visual responses by reward, but not pupil size, significantly improved the performance of a population decoder to detect visual stimuli, indicating the relevance of reward modulation for the visual performance of the animal.SIGNIFICANCE STATEMENT To learn which actions lead to food, water, or safety, it is necessary to integrate the receiving of reward with sensory stimuli related to the reward. Cortical stages of sensory processing have been shown to represent stimulus-reward associations. Here, we show, however, that reward influences neurons at a much earlier stage of sensory processing, the superior colliculus (SC), receiving direct input from the retina. Visual responses were increased shortly after the animal received the water reward, which led to an improved stimulus signal in the population of these visual neurons. Reward modulation of early visual responses may thus improve perception of visual environments predictive of reward.
Collapse
Affiliation(s)
- Liad J Baruchin
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Matteo Alleman
- Institute of Ophthalmology, University College London, London WC1E 6BT, United Kingdom
| | - Sylvia Schröder
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
- Institute of Ophthalmology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
6
|
Sugawara SK, Yamamoto T, Nakayama Y, Hamano YH, Fukunaga M, Sadato N, Nishimura Y. Premovement activity in the mesocortical system links peak force but not initiation of force generation under incentive motivation. Cereb Cortex 2023; 33:11408-11419. [PMID: 37814358 PMCID: PMC10690858 DOI: 10.1093/cercor/bhad376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023] Open
Abstract
Motivation facilitates motor performance; however, the neural substrates of the psychological effects on motor performance remain unclear. We conducted a functional magnetic resonance imaging experiment while human subjects performed a ready-set-go task with monetary incentives. Although subjects were only motivated to respond quickly, increasing the incentives improved not only reaction time but also peak grip force. However, the trial-by-trial correlation between reaction time and peak grip force was weak. Extensive areas in the mesocortical system, including the ventral midbrain (VM) and cortical motor-related areas, exhibited motivation-dependent activity in the premovement "Ready" period when the anticipated monetary reward was displayed. This premovement activity in the mesocortical system correlated only with subsequent peak grip force, whereas the activity in motor-related areas alone was associated with subsequent reaction time and peak grip force. These findings suggest that the mesocortical system linking the VM and motor-related regions plays a role in controlling the peak of force generation indirectly associated with incentives but not the initiation of force generation.
Collapse
Affiliation(s)
- Sho K Sugawara
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
- Section of Brain Function Information, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Hayama, Kanagawa 340-0193, Japan
| | - Tetsuya Yamamoto
- Section of Brain Function Information, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Yoshihisa Nakayama
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Yuki H Hamano
- Section of Brain Function Information, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Masaki Fukunaga
- Section of Brain Function Information, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Hayama, Kanagawa 340-0193, Japan
| | - Norihiro Sadato
- Section of Brain Function Information, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Hayama, Kanagawa 340-0193, Japan
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Yukio Nishimura
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| |
Collapse
|
7
|
Roberta C, Vera S, Hans A H, Michael H H. Activation patterns of dopaminergic cell populations reflect different learning scenarios in a cichlid fish, Pseudotropheus zebra. J Chem Neuroanat 2023; 133:102342. [PMID: 37722435 DOI: 10.1016/j.jchemneu.2023.102342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Dopamine is present in all vertebrates and the functional roles of the subsystems are assumed to be similar. Whereas the effect of dopaminergic modulation is well investigated in different target systems, less is known about the factors that are causing the modulation of dopaminergic cells. Using the zebra mbuna, Pseudotropheus zebra, a cichlid fish from Lake Malawi as a model system, we investigated the activation of specific dopaminergic cell populations detected by double-labeling with TH and pS6 antibodies while the animals were solving different learning tasks. Specifically, we compared an intense avoidance learning situation, an instrumental learning task, and a non-learning isolated group and found strong activation of different dopaminergic cell populations. Preoptic-hypothalamic cell populations respond to the stress component in the avoidance task, and the forced movement/locomotion may be responsible for activation in the posterior tubercle. The instrumental learning task had little stress component, but the activation of the raphe superior in this group may be correlated with attention or arousal during the training sessions. At the same time, the weaker activation of the nucleus of the posterior commissure may be related to positive reward acting onto tectal circuits. Finally, we examined the co-activation patterns across all dopaminergic cell populations and recovered robust differences across experimental groups, largely driven by hypothalamic, posterior tubercle, and brain stem regions possibly encoding the valence and salience associated with stressful stimuli. Taken together, our results offer some insights into the different functions of the dopaminergic cell populations in the brain of a non-mammalian vertebrate in correlation with different behavioral conditions, extending our knowledge for a more comprehensive view of the mechanisms of dopaminergic modulation in vertebrates.
Collapse
Affiliation(s)
- Calvo Roberta
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115 Bonn, Germany.
| | - Schluessel Vera
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115 Bonn, Germany
| | - Hofmann Hans A
- Department of Integrative Biology, Institute for Neuroscience, University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Hofmann Michael H
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115 Bonn, Germany
| |
Collapse
|
8
|
Takakuwa N, Isa T. Visuomotor coordination and cognitive capacity in blindsight. Curr Opin Neurobiol 2023; 82:102764. [PMID: 37597456 DOI: 10.1016/j.conb.2023.102764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/07/2023] [Accepted: 07/22/2023] [Indexed: 08/21/2023]
Abstract
Classical literature on blindsight described that some patients with lesions to the primary visual cortex could respond to visual stimuli without subjective awareness. Recent studies addressed more complex arguments on the conscious state of blindsight subjects such as existence of partial awareness, namely "feeling of something happening" in the lesion-affected visual field, termed 'type II blindsight', and high-level performance in complex cognitive tasks in blindsight model monkeys. Endeavors to clarify the visual pathways for blindsight revealed the parallel thalamic routes mediating the visual inputs from the superior colliculus to extrastriate and frontoparietal cortices, which may underlie the flexible visuomotor association and cognitive control in the blindsight subjects. Furthermore, involvement of post-lesion plasticity is suggested for these neural systems to operate.
Collapse
Affiliation(s)
- Norihiro Takakuwa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Max Planck Institute for Brain Research, 60438 Frankfurt am Main, Germany
| | - Tadashi Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan; Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
9
|
Takakuwa N, Isa K, Yamaguchi R, Onoe H, Takahashi J, Yoshida M, Isa T. Protocol for making an animal model of "blindsight" in macaque monkeys. STAR Protoc 2023; 4:101960. [PMID: 36566381 PMCID: PMC9803826 DOI: 10.1016/j.xpro.2022.101960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/16/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022] Open
Abstract
Patients with damage to the primary visual cortex (V1) can respond correctly to visual stimuli in their lesion-affected visual field above the chance level, an ability named blindsight. Here, we present a protocol for making an animal model of blindsight in macaque monkeys. We describe the steps to perform pre-lesion training of monkeys on a visual task, followed by lesion surgery, post-lesion training, and evaluation of blindsight. This animal model can be used to investigate the source of visual awareness. For complete details on the use and execution of this protocol, please refer to Yoshida et al. (2008)1 and Takakuwa et al. (2021).2.
Collapse
Affiliation(s)
- Norihiro Takakuwa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Max Planck Institute for Brain Research, 60438 Frankfurt am Main, Germany.
| | - Kaoru Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Reona Yamaguchi
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Hirotaka Onoe
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Masatoshi Yoshida
- Center for Human Nature, Artificial Intelligence, and Neuroscience (CHAIN), Hokkaido University, Sapporo, Japan
| | - Tadashi Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan; Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
10
|
Rowland BA, Bushnell CD, Duncan PW, Stein BE. Ameliorating Hemianopia with Multisensory Training. J Neurosci 2023; 43:1018-1026. [PMID: 36604169 PMCID: PMC9908311 DOI: 10.1523/jneurosci.0962-22.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
Hemianopia (unilateral blindness), a common consequence of stroke and trauma to visual cortex, is a debilitating disorder for which there are few treatments. Research in an animal model has suggested that visual-auditory stimulation therapy, which exploits the multisensory architecture of the brain, may be effective in restoring visual sensitivity in hemianopia. It was tested in two male human patients who were hemianopic for at least 8 months following a stroke. The patients were repeatedly exposed to congruent visual-auditory stimuli within their blinded hemifield during 2 h sessions over several weeks. The results were dramatic. Both recovered the ability to detect and describe visual stimuli throughout their formerly blind field within a few weeks. They could also localize these stimuli, identify some of their features, and perceive multiple visual stimuli simultaneously in both fields. These results indicate that the multisensory therapy is a rapid and effective method for restoring visual function in hemianopia.SIGNIFICANCE STATEMENT Hemianopia (blindness on one side of space) is widely considered to be a permanent disorder. Here, we show that a simple multisensory training paradigm can ameliorate this disorder in human patients.
Collapse
Affiliation(s)
| | - Cheryl D Bushnell
- Neurology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| | - Pamela W Duncan
- Neurology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| | | |
Collapse
|
11
|
Zhang W, Xie Y, Yang T. Reward salience but not spatial attention dominates the value representation in the orbitofrontal cortex. Nat Commun 2022; 13:6306. [PMID: 36273229 PMCID: PMC9588087 DOI: 10.1038/s41467-022-34084-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/11/2022] [Indexed: 12/25/2022] Open
Abstract
The orbitofrontal cortex (OFC) encodes value and plays a key role in value-based decision-making. However, the attentional modulation of the OFC's value encoding is poorly understood. We trained two monkeys to detect a luminance change at a cued location between a pair of visual stimuli, which were over-trained pictures associated with different amounts of juice reward and, thus, different reward salience. Both the monkeys' behavior and the dorsolateral prefrontal cortex neuronal activities indicated that the monkeys actively directed their spatial attention toward the cued stimulus during the task. However, the OFC's neuronal responses were dominated by the stimulus with higher reward salience and encoded its value. The value of the less salient stimulus was only weakly represented regardless of spatial attention. The results demonstrate that reward and spatial attention are distinctly represented in the prefrontal cortex and the OFC maintains a stable representation of reward salience minimally affected by attention.
Collapse
Affiliation(s)
- Wenyi Zhang
- grid.9227.e0000000119573309Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yang Xie
- grid.9227.e0000000119573309Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Tianming Yang
- grid.9227.e0000000119573309Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031 China
| |
Collapse
|
12
|
Phylogenetic view of the compensatory mechanisms in motor and sensory systems after neuronal injury. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100058. [PMID: 36304591 PMCID: PMC9593282 DOI: 10.1016/j.crneur.2022.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/15/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
Through phylogeny, novel neural circuits are added on top of ancient circuits. Upon injury of a novel circuit which enabled fine control, the ancient circuits can sometimes take over its function for recovery; however, the recovered function is limited according to the capacity of the ancient circuits. In this review, we discuss two examples of functional recovery after neural injury in nonhuman primate models. The first is the recovery of dexterous hand movements following damage to the corticospinal tract. The second is the recovery of visual function after injury to the primary visual cortex (V1). In the former case, the functions of the direct cortico-motoneuronal pathway, which specifically developed in higher primates for the control of fractionated digit movements, can be partly compensated for by other descending motor pathways mediated by rubrospinal, reticulospinal, and propriospinal neurons. However, the extent of recovery depends on the location of the damage and which motor systems take over its function. In the latter case, after damage to V1, which is highly developed in primates, either the direct pathway from the lateral geniculate nucleus to extrastriate visual cortices or that from the midbrain superior colliculus-pulvinar-extrastriate/parietal cortices partly takes over the function of V1. However, the state of visual awareness is no longer the same as in the intact state, which might reflect the limited capacity of the compensatory pathways in visual recognition. Such information is valuable for determining the targets of neuromodulatory therapies and setting treatment goals after brain and spinal cord injuries.
Collapse
|
13
|
Suryanarayana SM, Robertson B, Grillner S. The neural bases of vertebrate motor behaviour through the lens of evolution. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200521. [PMID: 34957847 PMCID: PMC8710883 DOI: 10.1098/rstb.2020.0521] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/27/2021] [Indexed: 12/23/2022] Open
Abstract
The primary driver of the evolution of the vertebrate nervous system has been the necessity to move, along with the requirement of controlling the plethora of motor behavioural repertoires seen among the vast and diverse vertebrate species. Understanding the neural basis of motor control through the perspective of evolution, mandates thorough examinations of the nervous systems of species in critical phylogenetic positions. We present here, a broad review of studies on the neural motor infrastructure of the lamprey, a basal and ancient vertebrate, which enjoys a unique phylogenetic position as being an extant representative of the earliest group of vertebrates. From the central pattern generators in the spinal cord to the microcircuits of the pallial cortex, work on the lamprey brain over the years, has provided detailed insights into the basic organization (a bauplan) of the ancestral vertebrate brain, and narrates a compelling account of common ancestry of fundamental aspects of the neural bases for motion control, maintained through half a billion years of vertebrate evolution. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Shreyas M. Suryanarayana
- Department of Neuroscience, Karolinska institutet, 17177 Stockholm, Sweden
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Brita Robertson
- Department of Neuroscience, Karolinska institutet, 17177 Stockholm, Sweden
| | - Sten Grillner
- Department of Neuroscience, Karolinska institutet, 17177 Stockholm, Sweden
| |
Collapse
|
14
|
Suzuki M, Inoue KI, Nakagawa H, Ishida H, Kobayashi K, Isa T, Takada M, Nishimura Y. A multisynaptic pathway from the ventral midbrain toward spinal motoneurons in monkeys. J Physiol 2022; 600:1731-1752. [PMID: 35122444 PMCID: PMC9306604 DOI: 10.1113/jp282429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/10/2022] [Indexed: 12/02/2022] Open
Abstract
Abstract Motivation boosts motor performance. Activity of the ventral midbrain (VM), consisting of the ventral tegmental area (VTA), the substantia nigra pars compacta (SNc) and the retrorubral field (RRF), plays an important role in processing motivation. However, little is known about the neural substrate bridging the VM and the spinal motor output. We hypothesized that the VM might exert a modulatory influence over the descending motor pathways. By retrograde transneuronal labelling with rabies virus, we demonstrated the existence of multisynaptic projections from the VM to the cervical enlargement in monkeys. The distribution pattern of spinal projection neurons in the VM exhibited a caudorostral gradient, in that the RRF and the caudal part of the SNc contained more retrogradely labelled neurons than the VTA and the rostral part of the SNc. Electrical stimulation of the VM induced muscle responses in the contralateral forelimb with a delay of a few milliseconds following the responses of the ipsilateral primary motor cortex (M1). The magnitude and number of evoked muscle responses were associated with the stimulus intensity and number of pulses. The muscle responses were diminished during M1 inactivation. Thus, the present study has identified a multisynaptic VM–spinal pathway that is mediated, at least in part, by the M1 and might play a pivotal role in modulatory control of the spinal motor output. Key points Motivation to obtain reward is thought to boost motor performance, and activity in the ventral midbrain is important to the motivational process. Little is known about a neural substrate bridging the ventral midbrain and the spinal motor output. Retrograde trans‐synaptic experiments revealed that the ventral midbrain projects multisynaptically to the spinal cord in macaque monkeys. Ventral midbrain activation by electrical stimulation generated cortical activity in the motor cortex and forelimb muscle activity. A multisynaptic ventral midbrain–spinal pathway most probably plays a pivotal role in modulatory control of the spinal motor output.
Collapse
Affiliation(s)
- Michiaki Suzuki
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, 156-8506, Japan.,Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8585, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, 240-0193, Japan
| | - Ken-Ichi Inoue
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Hiroshi Nakagawa
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan.,Present address: Department of Molecular Neuroscience, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hiroaki Ishida
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, 156-8506, Japan.,Present address: Schizophrenia Research Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, 156-8506, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Tadashi Isa
- Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8585, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, 240-0193, Japan.,Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8585, Japan.,Department of Neuroscience, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, 606-8501, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Sakyo, Kyoto, 606-8501, Japan
| | - Masahiko Takada
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Yukio Nishimura
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, 156-8506, Japan.,Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8585, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, 240-0193, Japan
| |
Collapse
|
15
|
Pérez-Fernández J, Barandela M, Jiménez-López C. The Dopaminergic Control of Movement-Evolutionary Considerations. Int J Mol Sci 2021; 22:11284. [PMID: 34681941 PMCID: PMC8541398 DOI: 10.3390/ijms222011284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/11/2022] Open
Abstract
Dopamine is likely the most studied modulatory neurotransmitter, in great part due to characteristic motor deficits in Parkinson's disease that arise after the degeneration of the dopaminergic neurons in the substantia nigra pars compacta (SNc). The SNc, together with the ventral tegmental area (VTA), play a key role modulating motor responses through the basal ganglia. In contrast to the large amount of existing literature addressing the mammalian dopaminergic system, comparatively little is known in other vertebrate groups. However, in the last several years, numerous studies have been carried out in basal vertebrates, allowing a better understanding of the evolution of the dopaminergic system, especially the SNc/VTA. We provide an overview of existing research in basal vertebrates, mainly focusing on lampreys, belonging to the oldest group of extant vertebrates. The lamprey dopaminergic system and its role in modulating motor responses have been characterized in significant detail, both anatomically and functionally, providing the basis for understanding the evolution of the SNc/VTA in vertebrates. When considered alongside results from other early vertebrates, data in lampreys show that the key role of the SNc/VTA dopaminergic neurons modulating motor responses through the basal ganglia was already well developed early in vertebrate evolution.
Collapse
Affiliation(s)
- Juan Pérez-Fernández
- Center for Biomedical Research (CINBIO), Neurocircuits Group, Department of Functional Biology and Health Sciences, Campus Universitario Lagoas, Marcosende, Universidade de Vigo, 36310 Vigo, Spain; (M.B.); (C.J.-L.)
| | | | | |
Collapse
|
16
|
Abstract
In several papers published in Biological Cybernetics in the 1980s and 1990s, Kawato and colleagues proposed computational models explaining how internal models are acquired in the cerebellum. These models were later supported by neurophysiological experiments using monkeys and neuroimaging experiments involving humans. These early studies influenced neuroscience from basic, sensory-motor control to higher cognitive functions. One of the most perplexing enigmas related to internal models is to understand the neural mechanisms that enable animals to learn large-dimensional problems with so few trials. Consciousness and metacognition-the ability to monitor one's own thoughts, may be part of the solution to this enigma. Based on literature reviews of the past 20 years, here we propose a computational neuroscience model of metacognition. The model comprises a modular hierarchical reinforcement-learning architecture of parallel and layered, generative-inverse model pairs. In the prefrontal cortex, a distributed executive network called the "cognitive reality monitoring network" (CRMN) orchestrates conscious involvement of generative-inverse model pairs in perception and action. Based on mismatches between computations by generative and inverse models, as well as reward prediction errors, CRMN computes a "responsibility signal" that gates selection and learning of pairs in perception, action, and reinforcement learning. A high responsibility signal is given to the pairs that best capture the external world, that are competent in movements (small mismatch), and that are capable of reinforcement learning (small reward-prediction error). CRMN selects pairs with higher responsibility signals as objects of metacognition, and consciousness is determined by the entropy of responsibility signals across all pairs. This model could lead to new-generation AI, which exhibits metacognition, consciousness, dimension reduction, selection of modules and corresponding representations, and learning from small samples. It may also lead to the development of a new scientific paradigm that enables the causal study of consciousness by combining CRMN and decoded neurofeedback.
Collapse
Affiliation(s)
- Mitsuo Kawato
- ATR Brain Information Communication Research Group, Computational Neuroscience Laboratory, Hikaridai, Kyoto, 619-0288 Japan
| | - Aurelio Cortese
- ATR Brain Information Communication Research Group, Computational Neuroscience Laboratory, Hikaridai, Kyoto, 619-0288 Japan
| |
Collapse
|
17
|
Huang M, Li D, Cheng X, Pei Q, Xie Z, Gu H, Zhang X, Chen Z, Liu A, Wang Y, Sun F, Li Y, Zhang J, He M, Xie Y, Zhang F, Qi X, Shang C, Cao P. The tectonigral pathway regulates appetitive locomotion in predatory hunting in mice. Nat Commun 2021; 12:4409. [PMID: 34285209 PMCID: PMC8292483 DOI: 10.1038/s41467-021-24696-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
Appetitive locomotion is essential for animals to approach rewards, such as food and prey. The neuronal circuitry controlling appetitive locomotion is unclear. In a goal-directed behavior-predatory hunting, we show an excitatory brain circuit from the superior colliculus (SC) to the substantia nigra pars compacta (SNc) to enhance appetitive locomotion in mice. This tectonigral pathway transmits locomotion-speed signals to dopamine neurons and triggers dopamine release in the dorsal striatum. Synaptic inactivation of this pathway impairs appetitive locomotion but not defensive locomotion. Conversely, activation of this pathway increases the speed and frequency of approach during predatory hunting, an effect that depends on the activities of SNc dopamine neurons. Together, these data reveal that the SC regulates locomotion-speed signals to SNc dopamine neurons to enhance appetitive locomotion in mice.
Collapse
Affiliation(s)
- Meizhu Huang
- grid.508040.9Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Dapeng Li
- grid.24696.3f0000 0004 0369 153XDepartment of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xinyu Cheng
- grid.506261.60000 0001 0706 7839Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China ,grid.410717.40000 0004 0644 5086National Institute of Biological Sciences, Beijing, China
| | - Qing Pei
- grid.410717.40000 0004 0644 5086National Institute of Biological Sciences, Beijing, China
| | - Zhiyong Xie
- grid.410717.40000 0004 0644 5086National Institute of Biological Sciences, Beijing, China
| | - Huating Gu
- grid.410717.40000 0004 0644 5086National Institute of Biological Sciences, Beijing, China
| | - Xuerong Zhang
- grid.410717.40000 0004 0644 5086National Institute of Biological Sciences, Beijing, China
| | - Zijun Chen
- grid.9227.e0000000119573309State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Aixue Liu
- grid.506261.60000 0001 0706 7839Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China ,grid.410717.40000 0004 0644 5086National Institute of Biological Sciences, Beijing, China
| | - Yi Wang
- grid.9227.e0000000119573309State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Fangmiao Sun
- grid.11135.370000 0001 2256 9319College of Life Sciences, Peking University, Beijing, China
| | - Yulong Li
- grid.11135.370000 0001 2256 9319College of Life Sciences, Peking University, Beijing, China
| | - Jiayi Zhang
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Miao He
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yuan Xie
- grid.256883.20000 0004 1760 8442Key Laboratory of Neural and Vascular Biology in Ministry of Education, Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei China
| | - Fan Zhang
- grid.256883.20000 0004 1760 8442Key Laboratory of Neural and Vascular Biology in Ministry of Education, Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei China
| | - Xiangbing Qi
- grid.410717.40000 0004 0644 5086National Institute of Biological Sciences, Beijing, China ,grid.12527.330000 0001 0662 3178Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Congping Shang
- grid.508040.9Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Peng Cao
- grid.410717.40000 0004 0644 5086National Institute of Biological Sciences, Beijing, China ,grid.12527.330000 0001 0662 3178Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
18
|
Abstract
Blindsight is the residual visuo-motor ability without subjective awareness observed after lesions of the primary visual cortex (V1). Various visual functions are retained, however, instrumental visual associative learning remains to be investigated. Here we examined the secondary reinforcing properties of visual cues presented to the hemianopic field of macaque monkeys with unilateral V1 lesions. Our aim was to test the potential role of visual pathways bypassing V1 in reinforcing visual instrumental learning. When learning the location of a hidden area in an oculomotor search task, conditioned visual cues presented to the lesion-affected hemifield operated as an effective secondary reinforcer. We noted that not only the hidden area location, but also the vector of the saccade entering the target area was reinforced. Importantly, when the visual reinforcement signal was presented in the lesion-affected field, the monkeys continued searching, as opposed to stopping when the cue was presented in the intact field. This suggests the monkeys were less confident that the target location had been discovered when the reinforcement cue was presented in the affected field. These results indicate that the visual signals mediated by the residual visual pathways after V1 lesions can access fundamental reinforcement mechanisms but with impaired visual awareness.
Collapse
|
19
|
Isa T, Yoshida M. Neural Mechanism of Blindsight in a Macaque Model. Neuroscience 2021; 469:138-161. [PMID: 34153356 DOI: 10.1016/j.neuroscience.2021.06.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 11/15/2022]
Abstract
Some patients with damage to the primary visual cortex (V1) exhibit visuomotor ability, despite loss of visual awareness, a phenomenon termed "blindsight". We review a series of studies conducted mainly in our laboratory on macaque monkeys with unilateral V1 lesioning to reveal the neural pathways underlying visuomotor transformation and the cognitive capabilities retained in blindsight. After lesioning, it takes several weeks for the recovery of visually guided saccades toward the lesion-affected visual field. In addition to the lateral geniculate nucleus, the pathway from the superior colliculus to the pulvinar participates in visuomotor processing in blindsight. At the cortical level, bilateral lateral intraparietal regions become critically involved in the saccade control. These results suggest that the visual circuits experience drastic changes while the monkey acquires blindsight. In these animals, analysis based on signal detection theory adapted to behavior in the "Yes-No" task indicates reduced sensitivity to visual targets, suggesting that visual awareness is impaired. Saccades become less accurate, decisions become less deliberate, and some forms of bottom-up attention are impaired. However, a variety of cognitive functions are retained such as saliency detection during free viewing, top-down attention, short-term spatial memory, and associative learning. These observations indicate that blindsight is not a low-level sensory-motor response, but the residual visual inputs can access these cognitive capabilities. Based on these results we suggest that the macaque model of blindsight replicates type II blindsight patients who experience some "feeling" of objects, which guides cognitive capabilities that we naïvely think are not possible without phenomenal consciousness.
Collapse
Affiliation(s)
- Tadashi Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Masatoshi Yoshida
- Center for Human Nature, Artificial Intelligence, and Neuroscience (CHAIN), Hokkaido University, Sapporo, 060-0812, Japan
| |
Collapse
|
20
|
Oleson EB, Hamilton LR, Gomez DM. Cannabinoid Modulation of Dopamine Release During Motivation, Periodic Reinforcement, Exploratory Behavior, Habit Formation, and Attention. Front Synaptic Neurosci 2021; 13:660218. [PMID: 34177546 PMCID: PMC8222827 DOI: 10.3389/fnsyn.2021.660218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Motivational and attentional processes energize action sequences to facilitate evolutionary competition and promote behavioral fitness. Decades of neuropharmacology, electrophysiology and electrochemistry research indicate that the mesocorticolimbic DA pathway modulates both motivation and attention. More recently, it was realized that mesocorticolimbic DA function is tightly regulated by the brain's endocannabinoid system and greatly influenced by exogenous cannabinoids-which have been harnessed by humanity for medicinal, ritualistic, and recreational uses for 12,000 years. Exogenous cannabinoids, like the primary psychoactive component of cannabis, delta-9-tetrahydrocannabinol, produce their effects by acting at binding sites for naturally occurring endocannabinoids. The brain's endocannabinoid system consists of two G-protein coupled receptors, endogenous lipid ligands for these receptor targets, and several synthetic and metabolic enzymes involved in their production and degradation. Emerging evidence indicates that the endocannabinoid 2-arachidonoylglycerol is necessary to observe concurrent increases in DA release and motivated behavior. And the historical pharmacology literature indicates a role for cannabinoid signaling in both motivational and attentional processes. While both types of behaviors have been scrutinized under manipulation by either DA or cannabinoid agents, there is considerably less insight into prospective interactions between these two important signaling systems. This review attempts to summate the relevance of cannabinoid modulation of DA release during operant tasks designed to investigate either motivational or attentional control of behavior. We first describe how cannabinoids influence DA release and goal-directed action under a variety of reinforcement contingencies. Then we consider the role that endocannabinoids might play in switching an animal's motivation from a goal-directed action to the search for an alternative outcome, in addition to the formation of long-term habits. Finally, dissociable features of attentional behavior using both the 5-choice serial reaction time task and the attentional set-shifting task are discussed along with their distinct influences by DA and cannabinoids. We end with discussing potential targets for further research regarding DA-cannabinoid interactions within key substrates involved in motivation and attention.
Collapse
Affiliation(s)
- Erik B. Oleson
- Department of Psychology, University of Colorado Denver, Denver, CO, United States
| | - Lindsey R. Hamilton
- Department of Psychology, University of Colorado Denver, Denver, CO, United States
| | - Devan M. Gomez
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, United States
| |
Collapse
|
21
|
Isa T, Marquez-Legorreta E, Grillner S, Scott EK. The tectum/superior colliculus as the vertebrate solution for spatial sensory integration and action. Curr Biol 2021; 31:R741-R762. [PMID: 34102128 DOI: 10.1016/j.cub.2021.04.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The superior colliculus, or tectum in the case of non-mammalian vertebrates, is a part of the brain that registers events in the surrounding space, often through vision and hearing, but also through electrosensation, infrared detection, and other sensory modalities in diverse vertebrate lineages. This information is used to form maps of the surrounding space and the positions of different salient stimuli in relation to the individual. The sensory maps are arranged in layers with visual input in the uppermost layer, other senses in deeper positions, and a spatially aligned motor map in the deepest layer. Here, we will review the organization and intrinsic function of the tectum/superior colliculus and the information that is processed within tectal circuits. We will also discuss tectal/superior colliculus outputs that are conveyed directly to downstream motor circuits or via the thalamus to cortical areas to control various aspects of behavior. The tectum/superior colliculus is evolutionarily conserved among all vertebrates, but tailored to the sensory specialties of each lineage, and its roles have shifted with the emergence of the cerebral cortex in mammals. We will illustrate both the conserved and divergent properties of the tectum/superior colliculus through vertebrate evolution by comparing tectal processing in lampreys belonging to the oldest group of extant vertebrates, larval zebrafish, rodents, and other vertebrates including primates.
Collapse
Affiliation(s)
- Tadashi Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan; Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, 606-8501, Japan
| | | | - Sten Grillner
- Department of Neuroscience, Karolinska Institutet, Stockholm SE-17177, Sweden
| | - Ethan K Scott
- The Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
22
|
Pradel K, Drwiȩga G, Błasiak T. Superior Colliculus Controls the Activity of the Rostromedial Tegmental Nuclei in an Asymmetrical Manner. J Neurosci 2021; 41:4006-4022. [PMID: 33741724 PMCID: PMC8176749 DOI: 10.1523/jneurosci.1556-20.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/12/2021] [Accepted: 02/20/2021] [Indexed: 12/04/2022] Open
Abstract
Dopaminergic (DA) neurons of the midbrain are involved in controlling orienting and approach of animals toward relevant external stimuli. The firing of DA neurons is regulated by many brain structures; however, the sensory input is provided predominantly by the ipsilateral superior colliculus (SC). It is suggested that SC also innervates the contralateral rostromedial tegmental nucleus (RMTg)-the main inhibitory input to DA neurons. Therefore, this study aimed to describe the physiology and anatomy of the SC-RMTg pathway. To investigate the anatomic connections within the circuit of interest, anterograde, retrograde, and transsynaptic tract-tracing studies were performed on male Sprague Dawley rats. We have observed that RMTg is monosynaptically innervated predominantly by the lateral parts of the intermediate layer of the contralateral SC. To study the physiology of this neuronal pathway, we conducted in vivo electrophysiological experiments combined with optogenetics; the activity of RMTg neurons was recorded using silicon probes, while either contralateral or ipsilateral SC was optogenetically stimulated. Obtained results revealed that activation of the contralateral SC excites the majority of RMTg neurons, while stimulation of the ipsilateral SC evokes similar proportions of excitatory or inhibitory responses. Consequently, single-unit recordings showed that the activation of RMTg neurons innervated by the contralateral SC, or stimulation of contralateral SC-originating axon terminals within the RMTg, inhibits midbrain DA neurons. Together, the anatomy and physiology of the discovered brain circuit suggest its involvement in the orienting and motivation-driven locomotion of animals based on the direction of external sensory stimuli.SIGNIFICANCE STATEMENT Dopaminergic neurons are the target of predominantly ipsilateral, excitatory innervation originating from the superior colliculus. However, we demonstrate in our study that SC inhibits the activity of dopaminergic neurons on the contralateral side of the brain via the rostromedial tegmental nucleus. In this way, sensory information received by the animal from one hemifield could induce opposite effects on both sides of the dopaminergic system. It was shown that the side to which an animal directs its behavior is a manifestation of asymmetry in dopamine release between left and right striatum. Animals tend to move oppositely to the hemisphere with higher striatal dopamine concentration. This explains how the above-described circuit might guide the behavior of animals according to the direction of incoming sensory stimuli.
Collapse
Affiliation(s)
- Kamil Pradel
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387, Krakow, Poland
| | - Gniewosz Drwiȩga
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387, Krakow, Poland
| | - Tomasz Błasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387, Krakow, Poland
| |
Collapse
|
23
|
The posterior parietal cortex contributes to visuomotor processing for saccades in blindsight macaques. Commun Biol 2021; 4:278. [PMID: 33664430 PMCID: PMC7933420 DOI: 10.1038/s42003-021-01804-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 02/04/2021] [Indexed: 11/21/2022] Open
Abstract
Patients with damage to the primary visual cortex (V1) lose visual awareness, yet retain the ability to perform visuomotor tasks, which is called “blindsight.” To understand the neural mechanisms underlying this residual visuomotor function, we studied a non-human primate model of blindsight with a unilateral lesion of V1 using various oculomotor tasks. Functional brain imaging by positron emission tomography showed a significant change after V1 lesion in saccade-related visuomotor activity in the intraparietal sulcus area in the ipsi- and contralesional posterior parietal cortex. Single unit recordings in the lateral bank of the intraparietal sulcus (lbIPS) showed visual responses to targets in the contralateral visual field on both hemispheres. Injection of muscimol into the ipsi- or contralesional lbIPSs significantly impaired saccades to targets in the V1 lesion-affected visual field, differently from previous reports in intact animals. These results indicate that the bilateral lbIPSs contribute to visuomotor function in blindsight. Rikako Kato et al. use PET imaging to examine altered brain activity in blindsight macaques that lack visual awareness yet can still perform visuomotor tasks. They report that blindsight macaques exhibit a significant change in activity of the lateral bank of the intraparietal sulcus (lbIPS) bilaterally, and injection of muscimol into this region impairs visuomotor performance. These results suggest a role for the bilateral lbIPS in visuomotor function in blindsight conditions.
Collapse
|
24
|
Contribution of the Pulvinar and Lateral Geniculate Nucleus to the Control of Visually Guided Saccades in Blindsight Monkeys. J Neurosci 2020; 41:1755-1768. [PMID: 33443074 DOI: 10.1523/jneurosci.2293-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/23/2020] [Accepted: 12/09/2020] [Indexed: 01/16/2023] Open
Abstract
After damage to the primary visual cortex (V1), conscious vision is impaired. However, some patients can respond to visual stimuli presented in their lesion-affected visual field using residual visual pathways bypassing V1. This phenomenon is called "blindsight." Many studies have tried to identify the brain regions responsible for blindsight, and the pulvinar and/or lateral geniculate nucleus (LGN) are suggested to play key roles as the thalamic relay of visual signals. However, there are critical problems regarding these preceding studies in that subjects with different sized lesions and periods of time after lesioning were investigated; furthermore, the ability of blindsight was assessed with different measures. In this study, we used double dissociation to clarify the roles of the pulvinar and LGN by pharmacological inactivation of each region and investigated the effects in a simple task with visually guided saccades (VGSs) using monkeys with a unilateral V1 lesion, by which nearly all of the contralesional visual field was affected. Inactivating either the ipsilesional pulvinar or LGN impaired VGS toward a visual stimulus in the affected field. In contrast, inactivation of the contralesional pulvinar had no clear effect, but inactivation of the contralesional LGN impaired VGS to the intact visual field. These results suggest that the pulvinar and LGN play key roles in performing the simple VGS task after V1 lesioning, and that the visuomotor functions of blindsight monkeys were supported by plastic changes in the visual pathway involving the pulvinar, which emerged after V1 lesioning.SIGNIFICANCE STATEMENT Many studies have been devoted to understanding the mechanism of mysterious symptom called "blindsight," in which patients with damage to the primary visual cortex (V1) can respond to visual stimuli despite loss of visual awareness. However, there is still a debate on the thalamic relay of visual signals. In this study, to pin down the issue, we tried double dissociation in the same subjects (hemi-blindsight macaque monkeys) and clarified that the lateral geniculate nucleus (LGN) plays a major role in simple visually guided saccades in the intact state, while both pulvinar and LGN critically contribute after the V1 lesioning, suggesting that plasticity in the visual pathway involving the pulvinar underlies the blindsight.
Collapse
|
25
|
Herman JP, Arcizet F, Krauzlis RJ. Attention-related modulation of caudate neurons depends on superior colliculus activity. eLife 2020; 9:e53998. [PMID: 32940607 PMCID: PMC7544506 DOI: 10.7554/elife.53998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 08/26/2020] [Indexed: 11/13/2022] Open
Abstract
Recent work has implicated the primate basal ganglia in visual perception and attention, in addition to their traditional role in motor control. The basal ganglia, especially the caudate nucleus 'head' (CDh) of the striatum, receive indirect anatomical connections from the superior colliculus (SC), a midbrain structure that is known to play a crucial role in the control of visual attention. To test the possible functional relationship between these subcortical structures, we recorded CDh neuronal activity of macaque monkeys before and during unilateral SC inactivation in a spatial attention task. SC inactivation significantly altered the attention-related modulation of CDh neurons and strongly impaired the classification of task-epochs based on CDh activity. Only inactivation of SC on the same side of the brain as recorded CDh neurons, not the opposite side, had these effects. These results demonstrate a novel interaction between SC activity and attention-related visual processing in the basal ganglia.
Collapse
Affiliation(s)
- James P Herman
- Laboratory of Sensorimotor Research, National Eye InstituteBethesdaUnited States
| | | | - Richard J Krauzlis
- Laboratory of Sensorimotor Research, National Eye InstituteBethesdaUnited States
| |
Collapse
|
26
|
The influence of subcortical shortcuts on disordered sensory and cognitive processing. Nat Rev Neurosci 2020; 21:264-276. [PMID: 32269315 DOI: 10.1038/s41583-020-0287-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2020] [Indexed: 12/14/2022]
Abstract
The very earliest stages of sensory processing have the potential to alter how we perceive and respond to our environment. These initial processing circuits can incorporate subcortical regions, such as the thalamus and brainstem nuclei, which mediate complex interactions with the brain's cortical processing hierarchy. These subcortical pathways, many of which we share with other animals, are not merely vestigial but appear to function as 'shortcuts' that ensure processing efficiency and preservation of vital life-preserving functions, such as harm avoidance, adaptive social interactions and efficient decision-making. Here, we propose that functional interactions between these higher-order and lower-order brain areas contribute to atypical sensory and cognitive processing that characterizes numerous neuropsychiatric disorders.
Collapse
|
27
|
Dissecting the circuit for blindsight to reveal the critical role of pulvinar and superior colliculus. Nat Commun 2019; 10:135. [PMID: 30635570 PMCID: PMC6329824 DOI: 10.1038/s41467-018-08058-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 12/10/2018] [Indexed: 11/08/2022] Open
Abstract
In patients with damage to the primary visual cortex (V1), residual vision can guide goal-directed movements to targets in the blind field without awareness. This phenomenon has been termed blindsight, and its neural mechanisms are controversial. There should be visual pathways to the higher visual cortices bypassing V1, however some literature propose that the signal is mediated by the superior colliculus (SC) and pulvinar, while others claim the dorsal lateral geniculate nucleus (dLGN) transmits the signal. Here, we directly test the role of SC to ventrolateral pulvinar (vlPul) pathway in blindsight monkeys. Pharmacological inactivation of vlPul impairs visually guided saccades (VGS) in the blind field. Selective and reversible blockade of the SC-vlPul pathway by combining two viral vectors also impairs VGS. With these results we claim the SC-vlPul pathway contributes to blindsight. The discrepancy would be due to the extent of retrograde degeneration of dLGN and task used for assessment.
Collapse
|
28
|
Tu HY, Watanabe T, Shirai H, Yamasaki S, Kinoshita M, Matsushita K, Hashiguchi T, Onoe H, Matsuyama T, Kuwahara A, Kishino A, Kimura T, Eiraku M, Suzuma K, Kitaoka T, Takahashi M, Mandai M. Medium- to long-term survival and functional examination of human iPSC-derived retinas in rat and primate models of retinal degeneration. EBioMedicine 2018; 39:562-574. [PMID: 30502055 PMCID: PMC6354559 DOI: 10.1016/j.ebiom.2018.11.028] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/01/2018] [Accepted: 11/14/2018] [Indexed: 01/28/2023] Open
Abstract
Background We have previously reported that xeno-transplanted human ESC-derived retinas are able to mature in the immunodeficient retinal degeneration rodent models, similar to allo-transplantations using mouse iPSC-derived retina. The photoreceptors in the latter developed outer segments and formed synapses with host bipolar cells, driving light responses of host retinal ganglion cells. In view of clinical application, here we further confirmed the competency of human iPSC-derived retina (hiPSC-retina) to mature in the degenerated retinas of rat and monkey models. Methods Human iPSC-retinas were transplanted in rhodopsin mutant SD-Foxn1 Tg(S334ter)3LavRrrc nude rats and two monkeys with laser-induced photoreceptor degeneration. Graft maturation was studied by immunohistochemistry and its function was examined by multi-electrode array (MEA) recording in rat retinas and visually-guided saccade (VGS) in a monkey. Findings A substantial amount of mature photoreceptors in hiPSC-retina graft survived well in the host retinas for at least 5 months (rat) to over 2 years (monkey). In 4 of 7 transplanted rat retinas, RGC light responses were detected at the grafted area. A mild recovery of light perception was also suggested by the VGS performance 1.5 years after transplantation in that monkey. Interpretation Our results support the competency of hiPSC-derived retinas to be clinically applied for transplantation therapy in retinal degeneration, although the light responses observed in the present models were not conclusively distinguishable from residual functions of degenerating host retinas. The functional analysis may be further elaborated using other models with more advanced retinal degeneration.
Collapse
Affiliation(s)
- Hung-Ya Tu
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Takehito Watanabe
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan; Department of Ophthalmology and Visual Science, Graduate School of Biomedical Science, Nagasaki University, Nagasaki 852-8501, Japan
| | - Hiroshi Shirai
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan; Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Suguru Yamasaki
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan; Regenerative and Cellular Medicine Kobe Center; Regenerative and Cellular Medicine Office, Sumitomo Dainippon Pharma Co., Ltd., Kobe 650-0047, Japan
| | - Masaharu Kinoshita
- Department of Physiology, Hirosaki University School of Medicine, Hirosaki 036-8562, Japan
| | - Keizo Matsushita
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan; Regenerative and Cellular Medicine Office, Sumitomo Dainippon Pharma Co., Ltd., Kobe 650-0047, Japan
| | - Tomoyo Hashiguchi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Hirotaka Onoe
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Take Matsuyama
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Atsushi Kuwahara
- Regenerative and Cellular Medicine Kobe Center; Regenerative and Cellular Medicine Office, Sumitomo Dainippon Pharma Co., Ltd., Kobe 650-0047, Japan
| | - Akiyoshi Kishino
- Regenerative and Cellular Medicine Kobe Center; Regenerative and Cellular Medicine Office, Sumitomo Dainippon Pharma Co., Ltd., Kobe 650-0047, Japan
| | - Toru Kimura
- Regenerative and Cellular Medicine Kobe Center; Regenerative and Cellular Medicine Office, Sumitomo Dainippon Pharma Co., Ltd., Kobe 650-0047, Japan
| | - Mototsugu Eiraku
- Laboratory of Developmental Systems, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Kiyoshi Suzuma
- Department of Ophthalmology and Visual Science, Graduate School of Biomedical Science, Nagasaki University, Nagasaki 852-8501, Japan; Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Takashi Kitaoka
- Department of Ophthalmology and Visual Science, Graduate School of Biomedical Science, Nagasaki University, Nagasaki 852-8501, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Michiko Mandai
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan; RIKEN Program for Drug Discovery and Medical Technology Platforms (DMP), Yokohama 230-0045, Japan.
| |
Collapse
|
29
|
Elorette C, Forcelli PA, Saunders RC, Malkova L. Colocalization of Tectal Inputs With Amygdala-Projecting Neurons in the Macaque Pulvinar. Front Neural Circuits 2018; 12:91. [PMID: 30405362 PMCID: PMC6207581 DOI: 10.3389/fncir.2018.00091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/03/2018] [Indexed: 12/25/2022] Open
Abstract
Neuropsychological and neuroimaging studies have suggested the presence of a fast, subcortical route for the processing of emotionally-salient visual information in the primate brain. This putative pathway consists of the superior colliculus (SC), pulvinar and amygdala. While the presence of such a pathway has been confirmed in sub-primate species, it has yet to be documented in the primate brain using conventional anatomical methods. We injected retrograde tracers into the amygdala and anterograde tracers into the colliculus, and examined regions of colocalization of these signals within the pulvinar of the macaque. Anterograde tracers injected into the SC labeled axonal projections within the pulvinar, primarily within the oral, lateral and medial subdivisions. These axonal projections from the colliculus colocalized with cell bodies within the pulvinar that were labeled by retrograde tracer injected into the lateral amygdala. This zone of overlap was most notable in the medial portions of the medial (PM), oral (PO) and inferior pulvinar (PI), and was often densely concentrated in the vicinity of the brachium of the SC. These data provide an anatomical basis for the previously suggested pathway mediating fast processing of emotionally salient information.
Collapse
Affiliation(s)
- Catherine Elorette
- Interdisciplinary Program in Neuroscience, Georgetown University School of Medicine, Washington, DC, United States
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC, United States
| | - Patrick A. Forcelli
- Interdisciplinary Program in Neuroscience, Georgetown University School of Medicine, Washington, DC, United States
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC, United States
- Department of Neuroscience, Georgetown University School of Medicine, Washington, DC, United States
| | - Richard C. Saunders
- Laboratory of Neuropsychology, National Institute of Mental Health (NIMH), Bethesda, ML, United States
| | - Ludise Malkova
- Interdisciplinary Program in Neuroscience, Georgetown University School of Medicine, Washington, DC, United States
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC, United States
| |
Collapse
|
30
|
The timing of action determines reward prediction signals in identified midbrain dopamine neurons. Nat Neurosci 2018; 21:1563-1573. [PMID: 30323275 PMCID: PMC6226028 DOI: 10.1038/s41593-018-0245-7] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/20/2018] [Indexed: 11/25/2022]
Abstract
Animals adapt behavior in response to informative sensory cues using multiple brain circuits. The activity of midbrain dopamine (mDA) neurons is thought to convey a critical teaching signal: reward prediction error (RPE). Although RPE signals are thought to be essential to learning, little is known about the dynamic changes in mDA neuron activity as animals learn about novel sensory cues and appetitive rewards. Here we describe a large dataset of cell-attached recordings of identified dopaminergic neurons as naïve mice learned a novel cue-reward association. During learning mDA neuron activity results from summation of sensory cue-related and movement initiation-related response components. These components are both a function of reward expectation yet dissociable. Learning produces an increasingly precise coordination of action initiation following sensory cues that results in apparent RPE correlates. Our data thus provide new insights into circuit mechanisms underlying a critical computation in a highly conserved learning circuit.
Collapse
|
31
|
Takakuwa N, Redgrave P, Isa T. Cortical visual processing evokes short-latency reward-predicting cue responses in primate midbrain dopamine neurons. Sci Rep 2018; 8:14984. [PMID: 30297792 PMCID: PMC6175936 DOI: 10.1038/s41598-018-33335-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/21/2018] [Indexed: 11/09/2022] Open
Abstract
After classical conditioning dopamine (DA) neurons exhibit short latency responses to reward-predicting visual cues. At least two possible projections could induce such DA responses; the cortical and subcortical visual pathways. Our recent study has shown that after a lesion of the striate cortex (V1), the superior colliculus (SC), a critical node of the subcortical visual pathway, can mediate short latency cue responses in the DA neurons of macaque monkeys. An obvious question then is does the cortical pathway have a similar capacity? Using the monkeys with a unilateral V1 lesion that took part in the preceding study, we recorded DA activity while they were performing the same classical conditioning task. However, in this study conditioned visual stimuli were presented to the intact visual field, and the effects of ipsilateral SC inactivation were examined. We found that after the SC was inactivated by injections of muscimol both conditioned behavioral responding and reward-predicting, short latency (~100 ms) cue-elicited DA neuronal responses were unaffected These results indicate that the intact cortical visual pathway can also mediate short latency cue elicited responses in DA neurons in the absence of a normally functioning subcortical visual system.
Collapse
Affiliation(s)
- Norihiro Takakuwa
- Department Dev. Physiol., Nat'l Inst. Physiol. Sci., Okazaki, 444-0864, Japan
- Department Physiol. Sci., SOKENDAI, Hayama, 240-0115, Japan
- Department Neuroscience, Grad. Sch. Med., Kyoto University, Kyoto, 606-8501, Japan
| | - Peter Redgrave
- Department Psychol., University of Sheffield, Sheffield, S10 2TP, United Kingdom
| | - Tadashi Isa
- Department Dev. Physiol., Nat'l Inst. Physiol. Sci., Okazaki, 444-0864, Japan.
- Department Physiol. Sci., SOKENDAI, Hayama, 240-0115, Japan.
- Department Neuroscience, Grad. Sch. Med., Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
32
|
Prentiss EK, Schneider CL, Williams ZR, Sahin B, Mahon BZ. Spontaneous in-flight accommodation of hand orientation to unseen grasp targets: A case of action blindsight. Cogn Neuropsychol 2018; 35:343-351. [PMID: 29544406 PMCID: PMC6193269 DOI: 10.1080/02643294.2018.1432584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The division of labour between the dorsal and ventral visual pathways is well established. The ventral stream supports object identification, while the dorsal stream supports online processing of visual information in the service of visually guided actions. Here, we report a case of an individual with a right inferior quadrantanopia who exhibited accurate spontaneous rotation of his wrist when grasping a target object in his blind visual field. His accurate wrist orientation was observed despite the fact that he exhibited no sensitivity to the orientation of the handle in a perceptual matching task. These findings indicate that non-geniculostriate visual pathways process basic volumetric information relevant to grasping, and reinforce the observation that phenomenal awareness is not necessary for an object's volumetric properties to influence visuomotor performance.
Collapse
Affiliation(s)
- Emily K. Prentiss
- Department of Brain & Cognitive Sciences, University of Rochester, Rochester, NY, USA
| | - Colleen L. Schneider
- Department of Brain & Cognitive Sciences, University of Rochester, Rochester, NY, USA
- Medical Scientist Training Program, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - Zoë R. Williams
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, USA
| | - Bogachan Sahin
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Bradford Z. Mahon
- Department of Brain & Cognitive Sciences, University of Rochester, Rochester, NY, USA
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, USA
- Center for Visual Science, University of Rochester, Rochester, NY, USA
- Center for Language Science, University of Rochester, Rochester, NY, USA
| |
Collapse
|
33
|
Chronic amphetamine enhances visual input to and suppresses visual output from the superior colliculus in withdrawal. Neuropharmacology 2018; 138:118-129. [DOI: 10.1016/j.neuropharm.2018.05.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/01/2018] [Accepted: 05/30/2018] [Indexed: 11/23/2022]
|
34
|
Pérez-Fernández J, Kardamakis AA, Suzuki DG, Robertson B, Grillner S. Direct Dopaminergic Projections from the SNc Modulate Visuomotor Transformation in the Lamprey Tectum. Neuron 2017; 96:910-924.e5. [DOI: 10.1016/j.neuron.2017.09.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/05/2017] [Accepted: 09/27/2017] [Indexed: 10/18/2022]
|