1
|
Westmann CA, Goldbach L, Wagner A. The highly rugged yet navigable regulatory landscape of the bacterial transcription factor TetR. Nat Commun 2024; 15:10745. [PMID: 39737967 DOI: 10.1038/s41467-024-54723-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/19/2024] [Indexed: 01/01/2025] Open
Abstract
Transcription factor binding sites (TFBSs) are important sources of evolutionary innovations. Understanding how evolution navigates the sequence space of such sites can be achieved by mapping TFBS adaptive landscapes. In such a landscape, an individual location corresponds to a TFBS bound by a transcription factor. The elevation at that location corresponds to the strength of transcriptional regulation conveyed by the sequence. Here, we develop an in vivo massively parallel reporter assay to map the landscape of bacterial TFBSs. We apply this assay to the TetR repressor, for which few TFBSs are known. We quantify the strength of transcriptional repression for 17,765 TFBSs and show that the resulting landscape is highly rugged, with 2092 peaks. Only a few peaks convey stronger repression than the wild type. Non-additive (epistatic) interactions between mutations are frequent. Despite these hallmarks of ruggedness, most high peaks are evolutionarily accessible. They have large basins of attraction and are reached by around 20% of populations evolving on the landscape. Which high peak is reached during evolution is unpredictable and contingent on the mutational path taken. This in-depth analysis of a prokaryotic gene regulator reveals a landscape that is navigable but much more rugged than the landscapes of eukaryotic regulators.
Collapse
Affiliation(s)
- Cauã Antunes Westmann
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, 1015, Lausanne, Switzerland
| | - Leander Goldbach
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, 1015, Lausanne, Switzerland
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland.
- Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, 1015, Lausanne, Switzerland.
- The Santa Fe Institute, Santa Fe, NM, 87501, USA.
| |
Collapse
|
2
|
Baier F, Gauye F, Perez-Carrasco R, Payne JL, Schaerli Y. Environment-dependent epistasis increases phenotypic diversity in gene regulatory networks. SCIENCE ADVANCES 2023; 9:eadf1773. [PMID: 37224262 DOI: 10.1126/sciadv.adf1773] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 04/17/2023] [Indexed: 05/26/2023]
Abstract
Mutations to gene regulatory networks can be maladaptive or a source of evolutionary novelty. Epistasis confounds our understanding of how mutations affect the expression patterns of gene regulatory networks, a challenge exacerbated by the dependence of epistasis on the environment. We used the toolkit of synthetic biology to systematically assay the effects of pairwise and triplet combinations of mutant genotypes on the expression pattern of a gene regulatory network expressed in Escherichia coli that interprets an inducer gradient across a spatial domain. We uncovered a preponderance of epistasis that can switch in magnitude and sign across the inducer gradient to produce a greater diversity of expression pattern phenotypes than would be possible in the absence of such environment-dependent epistasis. We discuss our findings in the context of the evolution of hybrid incompatibilities and evolutionary novelties.
Collapse
Affiliation(s)
- Florian Baier
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Florence Gauye
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | | | - Joshua L Payne
- Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Yolanda Schaerli
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Srivastava M, Payne JL. On the incongruence of genotype-phenotype and fitness landscapes. PLoS Comput Biol 2022; 18:e1010524. [PMID: 36121840 PMCID: PMC9521842 DOI: 10.1371/journal.pcbi.1010524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/29/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022] Open
Abstract
The mapping from genotype to phenotype to fitness typically involves multiple nonlinearities that can transform the effects of mutations. For example, mutations may contribute additively to a phenotype, but their effects on fitness may combine non-additively because selection favors a low or intermediate value of that phenotype. This can cause incongruence between the topographical properties of a fitness landscape and its underlying genotype-phenotype landscape. Yet, genotype-phenotype landscapes are often used as a proxy for fitness landscapes to study the dynamics and predictability of evolution. Here, we use theoretical models and empirical data on transcription factor-DNA interactions to systematically study the incongruence of genotype-phenotype and fitness landscapes when selection favors a low or intermediate phenotypic value. Using the theoretical models, we prove a number of fundamental results. For example, selection for low or intermediate phenotypic values does not change simple sign epistasis into reciprocal sign epistasis, implying that genotype-phenotype landscapes with only simple sign epistasis motifs will always give rise to single-peaked fitness landscapes under such selection. More broadly, we show that such selection tends to create fitness landscapes that are more rugged than the underlying genotype-phenotype landscape, but this increased ruggedness typically does not frustrate adaptive evolution because the local adaptive peaks in the fitness landscape tend to be nearly as tall as the global peak. Many of these results carry forward to the empirical genotype-phenotype landscapes, which may help to explain why low- and intermediate-affinity transcription factor-DNA interactions are so prevalent in eukaryotic gene regulation.
Collapse
Affiliation(s)
- Malvika Srivastava
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Joshua L. Payne
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
4
|
Waters CT, Gisselbrecht SS, Sytnikova YA, Cafarelli TM, Hill DE, Bulyk ML. Quantitative-enhancer-FACS-seq (QeFS) reveals epistatic interactions among motifs within transcriptional enhancers in developing Drosophila tissue. Genome Biol 2021; 22:348. [PMID: 34930411 PMCID: PMC8686523 DOI: 10.1186/s13059-021-02574-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Understanding the contributions of transcription factor DNA binding sites to transcriptional enhancers is a significant challenge. We developed Quantitative enhancer-FACS-Seq for highly parallel quantification of enhancer activities from a genomically integrated reporter in Drosophila melanogaster embryos. We investigate the contributions of the DNA binding motifs of four poorly characterized TFs to the activities of twelve embryonic mesodermal enhancers. We measure quantitative changes in enhancer activity and discover a range of epistatic interactions among the motifs, both synergistic and alleviating. We find that understanding the regulatory consequences of TF binding motifs requires that they be investigated in combination across enhancer contexts.
Collapse
Affiliation(s)
- Colin T Waters
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Stephen S Gisselbrecht
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Yuliya A Sytnikova
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Tiziana M Cafarelli
- Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - David E Hill
- Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA, 02138, USA.
- Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Li X, Lehner B. Biophysical ambiguities prevent accurate genetic prediction. Nat Commun 2020; 11:4923. [PMID: 33004824 PMCID: PMC7529754 DOI: 10.1038/s41467-020-18694-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/04/2020] [Indexed: 12/27/2022] Open
Abstract
A goal of biology is to predict how mutations combine to alter phenotypes, fitness and disease. It is often assumed that mutations combine additively or with interactions that can be predicted. Here, we show using simulations that, even for the simple example of the lambda phage transcription factor CI repressing a gene, this assumption is incorrect and that perfect measurements of the effects of mutations on a trait and mechanistic understanding can be insufficient to predict what happens when two mutations are combined. This apparent paradox arises because mutations can have different biophysical effects to cause the same change in a phenotype and the outcome in a double mutant depends upon what these hidden biophysical changes actually are. Pleiotropy and non-monotonic functions further confound prediction of how mutations interact. Accurate prediction of phenotypes and disease will sometimes not be possible unless these biophysical ambiguities can be resolved using additional measurements.
Collapse
Affiliation(s)
- Xianghua Li
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Ben Lehner
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,ICREA, Pg. Luis Companys 23, Barcelona, 08010, Spain.
| |
Collapse
|
6
|
Kemble H, Eisenhauer C, Couce A, Chapron A, Magnan M, Gautier G, Le Nagard H, Nghe P, Tenaillon O. Flux, toxicity, and expression costs generate complex genetic interactions in a metabolic pathway. SCIENCE ADVANCES 2020; 6:eabb2236. [PMID: 32537514 PMCID: PMC7269641 DOI: 10.1126/sciadv.abb2236] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/31/2020] [Indexed: 05/31/2023]
Abstract
Our ability to predict the impact of mutations on traits relevant for disease and evolution remains severely limited by the dependence of their effects on the genetic background and environment. Even when molecular interactions between genes are known, it is unclear how these translate to organism-level interactions between alleles. We therefore characterized the interplay of genetic and environmental dependencies in determining fitness by quantifying ~4000 fitness interactions between expression variants of two metabolic genes, starting from various environmentally modulated expression levels. We detect a remarkable variety of interactions dependent on initial expression levels and demonstrate that they can be quantitatively explained by a mechanistic model accounting for catabolic flux, metabolite toxicity, and expression costs. Complex fitness interactions between mutations can therefore be predicted simply from their simultaneous impact on a few connected molecular phenotypes.
Collapse
Affiliation(s)
- Harry Kemble
- IAME, INSERM, Université de Paris, Université Paris Nord, 75018 Paris, France
- Laboratory of Biochemistry (LBC), Chimie Biologie et Innovation, ESPCI Paris, PSL University, CNRS, 75005 Paris, France
| | | | - Alejandro Couce
- IAME, INSERM, Université de Paris, Université Paris Nord, 75018 Paris, France
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Audrey Chapron
- IAME, INSERM, Université de Paris, Université Paris Nord, 75018 Paris, France
| | - Mélanie Magnan
- IAME, INSERM, Université de Paris, Université Paris Nord, 75018 Paris, France
| | - Gregory Gautier
- Centre de Recherche sur l'Inflammation, INSERM, UMRS 1149, 75018 Paris, France
- Laboratoire d’Excellence INFLAMEX, Université de Paris, Sorbonne Paris Cité, 75018 Paris, France
| | - Hervé Le Nagard
- IAME, INSERM, Université de Paris, Université Paris Nord, 75018 Paris, France
| | - Philippe Nghe
- Laboratory of Biochemistry (LBC), Chimie Biologie et Innovation, ESPCI Paris, PSL University, CNRS, 75005 Paris, France
| | - Olivier Tenaillon
- IAME, INSERM, Université de Paris, Université Paris Nord, 75018 Paris, France
| |
Collapse
|
7
|
Nghe P, de Vos MGJ, Kingma E, Kogenaru M, Poelwijk FJ, Laan L, Tans SJ. Predicting Evolution Using Regulatory Architecture. Annu Rev Biophys 2020; 49:181-197. [PMID: 32040932 DOI: 10.1146/annurev-biophys-070317-032939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The limits of evolution have long fascinated biologists. However, the causes of evolutionary constraint have remained elusive due to a poor mechanistic understanding of studied phenotypes. Recently, a range of innovative approaches have leveraged mechanistic information on regulatory networks and cellular biology. These methods combine systems biology models with population and single-cell quantification and with new genetic tools, and they have been applied to a range of complex cellular functions and engineered networks. In this article, we review these developments, which are revealing the mechanistic causes of epistasis at different levels of biological organization-in molecular recognition, within a single regulatory network, and between different networks-providing first indications of predictable features of evolutionary constraint.
Collapse
Affiliation(s)
- Philippe Nghe
- Laboratoire de Biochimie, UMR CBI 8231, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Marjon G J de Vos
- University of Groningen, GELIFES, 9747 AG Groningen, The Netherlands
| | - Enzo Kingma
- Bionanoscience Department, Delft University of Technology, 2629HZ Delft, The Netherlands
| | - Manjunatha Kogenaru
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Frank J Poelwijk
- cBio Center, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Liedewij Laan
- Bionanoscience Department, Delft University of Technology, 2629HZ Delft, The Netherlands
| | - Sander J Tans
- Bionanoscience Department, Delft University of Technology, 2629HZ Delft, The Netherlands.,AMOLF, 1098 XG Amsterdam, The Netherlands;
| |
Collapse
|
8
|
Jacobsen A, Ivanova O, Amini S, Heringa J, Kemmeren P, Feenstra KA. A framework for exhaustive modelling of genetic interaction patterns using Petri nets. Bioinformatics 2020; 36:2142-2149. [PMID: 31845959 DOI: 10.1093/bioinformatics/btz917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 07/09/2019] [Accepted: 12/13/2019] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Genetic interaction (GI) patterns are characterized by the phenotypes of interacting single and double mutated gene pairs. Uncovering the regulatory mechanisms of GIs would provide a better understanding of their role in biological processes, diseases and drug response. Computational analyses can provide insights into the underpinning mechanisms of GIs. RESULTS In this study, we present a framework for exhaustive modelling of GI patterns using Petri nets (PN). Four-node models were defined and generated on three levels with restrictions, to enable an exhaustive approach. Simulations suggest ∼5 million models of GIs. Generalizing these we propose putative mechanisms for the GI patterns, inversion and suppression. We demonstrate that exhaustive PN modelling enables reasoning about mechanisms of GIs when only the phenotypes of gene pairs are known. The framework can be applied to other GI or genetic regulatory datasets. AVAILABILITY AND IMPLEMENTATION The framework is available at http://www.ibi.vu.nl/programs/ExhMod. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Annika Jacobsen
- Department of Computer Science, Centre for Integrative Bioinformatics (IBIVU), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
| | - Olga Ivanova
- Department of Computer Science, Centre for Integrative Bioinformatics (IBIVU), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
| | - Saman Amini
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, Netherlands.,Divison of Biomedical Genetics, Center for Molecular Medicine, University Medical Centre Utrecht, 3584 CX Utrecht, Netherlands
| | - Jaap Heringa
- Department of Computer Science, Centre for Integrative Bioinformatics (IBIVU), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
| | - Patrick Kemmeren
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, Netherlands.,Divison of Biomedical Genetics, Center for Molecular Medicine, University Medical Centre Utrecht, 3584 CX Utrecht, Netherlands
| | - K Anton Feenstra
- Department of Computer Science, Centre for Integrative Bioinformatics (IBIVU), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
| |
Collapse
|
9
|
Kemble H, Nghe P, Tenaillon O. Recent insights into the genotype-phenotype relationship from massively parallel genetic assays. Evol Appl 2019; 12:1721-1742. [PMID: 31548853 PMCID: PMC6752143 DOI: 10.1111/eva.12846] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 12/20/2022] Open
Abstract
With the molecular revolution in Biology, a mechanistic understanding of the genotype-phenotype relationship became possible. Recently, advances in DNA synthesis and sequencing have enabled the development of deep mutational scanning assays, capable of scoring comprehensive libraries of genotypes for fitness and a variety of phenotypes in massively parallel fashion. The resulting empirical genotype-fitness maps pave the way to predictive models, potentially accelerating our ability to anticipate the behaviour of pathogen and cancerous cell populations from sequencing data. Besides from cellular fitness, phenotypes of direct application in industry (e.g. enzyme activity) and medicine (e.g. antibody binding) can be quantified and even selected directly by these assays. This review discusses the technological basis of and recent developments in massively parallel genetics, along with the trends it is uncovering in the genotype-phenotype relationship (distribution of mutation effects, epistasis), their possible mechanistic bases and future directions for advancing towards the goal of predictive genetics.
Collapse
Affiliation(s)
- Harry Kemble
- Infection, Antimicrobials, Modelling, Evolution, INSERM, Unité Mixte de Recherche 1137Université Paris Diderot, Université Paris NordParisFrance
- École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), UMR CNRS‐ESPCI CBI 8231PSL Research UniversityParis Cedex 05France
| | - Philippe Nghe
- École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), UMR CNRS‐ESPCI CBI 8231PSL Research UniversityParis Cedex 05France
| | - Olivier Tenaillon
- Infection, Antimicrobials, Modelling, Evolution, INSERM, Unité Mixte de Recherche 1137Université Paris Diderot, Université Paris NordParisFrance
| |
Collapse
|
10
|
Li X, Lalić J, Baeza-Centurion P, Dhar R, Lehner B. Changes in gene expression predictably shift and switch genetic interactions. Nat Commun 2019; 10:3886. [PMID: 31467279 PMCID: PMC6715729 DOI: 10.1038/s41467-019-11735-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/29/2019] [Indexed: 11/18/2022] Open
Abstract
Non-additive interactions between mutations occur extensively and also change across conditions, making genetic prediction a difficult challenge. To better understand the plasticity of genetic interactions (epistasis), we combine mutations in a single protein performing a single function (a transcriptional repressor inhibiting a target gene). Even in this minimal system, genetic interactions switch from positive (suppressive) to negative (enhancing) as the expression of the gene changes. These seemingly complicated changes can be predicted using a mathematical model that propagates the effects of mutations on protein folding to the cellular phenotype. More generally, changes in gene expression should be expected to alter the effects of mutations and how they interact whenever the relationship between expression and a phenotype is nonlinear, which is the case for most genes. These results have important implications for understanding genotype-phenotype maps and illustrate how changes in genetic interactions can often—but not always—be predicted by hierarchical mechanistic models. Non-additive genetic interactions are plastic and can complicate genetic prediction. Here, using deep mutagenesis of the lambda repressor, Li et al. reveal that changes in gene expression can alter the strength and direction of genetic interactions between mutations in many genes and develop mathematical models for predicting them.
Collapse
Affiliation(s)
- Xianghua Li
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Jasna Lalić
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Pablo Baeza-Centurion
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Riddhiman Dhar
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Ben Lehner
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,ICREA, Pg. Luis Companys 23, Barcelona, 08010, Spain.
| |
Collapse
|
11
|
Abstract
For nearly a century adaptive landscapes have provided overviews of the evolutionary process and yet they remain metaphors. We redefine adaptive landscapes in terms of biological processes rather than descriptive phenomenology. We focus on the underlying mechanisms that generate emergent properties such as epistasis, dominance, trade-offs and adaptive peaks. We illustrate the utility of landscapes in predicting the course of adaptation and the distribution of fitness effects. We abandon aged arguments concerning landscape ruggedness in favor of empirically determining landscape architecture. In so doing, we transform the landscape metaphor into a scientific framework within which causal hypotheses can be tested.
Collapse
Affiliation(s)
- Xiao Yi
- BioTechnology Institute, University of Minnesota, St. Paul, MN
| | - Antony M Dean
- BioTechnology Institute, University of Minnesota, St. Paul, MN
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN
| |
Collapse
|
12
|
Otwinowski J. Biophysical Inference of Epistasis and the Effects of Mutations on Protein Stability and Function. Mol Biol Evol 2018; 35:2345-2354. [PMID: 30085303 PMCID: PMC6188545 DOI: 10.1093/molbev/msy141] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Understanding the relationship between protein sequence, function, and stability is a fundamental problem in biology. The essential function of many proteins that fold into a specific structure is their ability to bind to a ligand, which can be assayed for thousands of mutated variants. However, binding assays do not distinguish whether mutations affect the stability of the binding interface or the overall fold. Here, we introduce a statistical method to infer a detailed energy landscape of how a protein folds and binds to a ligand by combining information from many mutated variants. We fit a thermodynamic model describing the bound, unbound, and unfolded states to high quality data of protein G domain B1 binding to IgG-Fc. We infer distinct folding and binding energies for each mutation providing a detailed view of how mutations affect binding and stability across the protein. We accurately infer the folding energy of each variant in physical units, validated by independent data, whereas previous high-throughput methods could only measure indirect changes in stability. While we assume an additive sequence-energy relationship, the binding fraction is epistatic due its nonlinear relation to energy. Despite having no epistasis in energy, our model explains much of the observed epistasis in binding fraction, with the remaining epistasis identifying conformationally dynamic regions.
Collapse
Affiliation(s)
- Jakub Otwinowski
- Biology Department, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
13
|
Schaerli Y, Jiménez A, Duarte JM, Mihajlovic L, Renggli J, Isalan M, Sharpe J, Wagner A. Synthetic circuits reveal how mechanisms of gene regulatory networks constrain evolution. Mol Syst Biol 2018; 14:e8102. [PMID: 30201776 PMCID: PMC6129954 DOI: 10.15252/msb.20178102] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 12/22/2022] Open
Abstract
Phenotypic variation is the raw material of adaptive Darwinian evolution. The phenotypic variation found in organismal development is biased towards certain phenotypes, but the molecular mechanisms behind such biases are still poorly understood. Gene regulatory networks have been proposed as one cause of constrained phenotypic variation. However, most pertinent evidence is theoretical rather than experimental. Here, we study evolutionary biases in two synthetic gene regulatory circuits expressed in Escherichia coli that produce a gene expression stripe-a pivotal pattern in embryonic development. The two parental circuits produce the same phenotype, but create it through different regulatory mechanisms. We show that mutations cause distinct novel phenotypes in the two networks and use a combination of experimental measurements, mathematical modelling and DNA sequencing to understand why mutations bring forth only some but not other novel gene expression phenotypes. Our results reveal that the regulatory mechanisms of networks restrict the possible phenotypic variation upon mutation. Consequently, seemingly equivalent networks can indeed be distinct in how they constrain the outcome of further evolution.
Collapse
Affiliation(s)
- Yolanda Schaerli
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Alba Jiménez
- Systems Biology Program, Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra, Barcelona, Spain
| | - José M Duarte
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Ljiljana Mihajlovic
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | | | - Mark Isalan
- Department of Life Sciences, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - James Sharpe
- Systems Biology Program, Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra, Barcelona, Spain
- Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona, Spain
- EMBL Barcelona European Molecular Biology Laboratory, Barcelona, Spain
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
- The Swiss Institute of Bioinformatics, Lausanne, Switzerland
- The Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
14
|
Lagator M, Sarikas S, Acar H, Bollback JP, Guet CC. Regulatory network structure determines patterns of intermolecular epistasis. eLife 2017; 6:28921. [PMID: 29130883 PMCID: PMC5699867 DOI: 10.7554/elife.28921] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/10/2017] [Indexed: 12/29/2022] Open
Abstract
Most phenotypes are determined by molecular systems composed of specifically interacting molecules. However, unlike for individual components, little is known about the distributions of mutational effects of molecular systems as a whole. We ask how the distribution of mutational effects of a transcriptional regulatory system differs from the distributions of its components, by first independently, and then simultaneously, mutating a transcription factor and the associated promoter it represses. We find that the system distribution exhibits increased phenotypic variation compared to individual component distributions - an effect arising from intermolecular epistasis between the transcription factor and its DNA-binding site. In large part, this epistasis can be qualitatively attributed to the structure of the transcriptional regulatory system and could therefore be a common feature in prokaryotes. Counter-intuitively, intermolecular epistasis can alleviate the constraints of individual components, thereby increasing phenotypic variation that selection could act on and facilitating adaptive evolution.
Collapse
Affiliation(s)
- Mato Lagator
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Srdjan Sarikas
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Hande Acar
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Jonathan P Bollback
- Institute of Science and Technology Austria, Klosterneuburg, Austria.,Institute of Integrative Biology, University of Liverpool, Merseyside, United Kingdom
| | - Călin C Guet
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|