1
|
Armstrong MC, Weiß YR, Hoachlander-Hobby LE, Roy AA, Visco I, Moe A, Golding AE, Hansen SD, Bement WM, Bieling P. The biochemical mechanism of Rho GTPase membrane binding, activation and retention in activity patterning. EMBO J 2025; 44:2620-2657. [PMID: 40164947 PMCID: PMC12048676 DOI: 10.1038/s44318-025-00418-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 04/02/2025] Open
Abstract
Rho GTPases form plasma membrane-associated patterns that control the cytoskeleton during cell division, morphogenesis, migration, and wound repair. Their patterning involves transitions between inactive cytosolic and active membrane-bound states, regulated by guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and guanine nucleotide dissociation inhibitors (GDIs). However, the relationships between these transitions and role of different regulators remain unclear. We developed a novel reconstitution approach to study Rho GTPase patterning with all major GTPase regulators in a biochemically defined system. We show that Rho GTPase dissociation from RhoGDI is rate-limiting for its membrane association. Rho GTPase activation occurs after membrane insertion, which is unaffected by GEF activity. Once activated, Rho GTPases are retained at the membrane through effector interactions, essential for their enrichment at activation sites. Thus, high cytosolic levels of RhoGDI-bound GTPases ensure a constant supply of inactive GTPases for the membrane, where GEF-mediated activation and effector binding stabilize them. These results delineate the route by which Rho GTPase patterns are established and define stage-dependent roles of its regulators.
Collapse
Affiliation(s)
- Michael C Armstrong
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Yannic R Weiß
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Lila E Hoachlander-Hobby
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA
| | - Ankit A Roy
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Ilaria Visco
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Alison Moe
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Adriana E Golding
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Scott D Hansen
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| | - William M Bement
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA.
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA.
| | - Peter Bieling
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| |
Collapse
|
2
|
Harrell MA, Liu Z, Campbell BF, Chinsen O, Hong T, Das M. Arp2/3-dependent endocytosis ensures Cdc42 oscillations by removing Pak1-mediated negative feedback. J Cell Biol 2024; 223:e202311139. [PMID: 39012625 PMCID: PMC11259211 DOI: 10.1083/jcb.202311139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/10/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024] Open
Abstract
The GTPase Cdc42 regulates polarized growth in most eukaryotes. In the bipolar yeast Schizosaccharomyces pombe, Cdc42 activation cycles periodically at sites of polarized growth. These periodic cycles are caused by alternating positive feedback and time-delayed negative feedback loops. At each polarized end, negative feedback is established when active Cdc42 recruits the Pak1 kinase to prevent further Cdc42 activation. It is unclear how Cdc42 activation returns to each end after Pak1-dependent negative feedback. We find that disrupting branched actin-mediated endocytosis disables Cdc42 reactivation at the cell ends. Using experimental and mathematical approaches, we show that endocytosis-dependent Pak1 removal from the cell ends allows the Cdc42 activator Scd1 to return to that end to enable reactivation of Cdc42. Moreover, we show that Pak1 elicits its own removal via activation of endocytosis. These findings provide a deeper insight into the self-organization of Cdc42 regulation and reveal previously unknown feedback with endocytosis in the establishment of cell polarity.
Collapse
Affiliation(s)
| | - Ziyi Liu
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | | | - Olivia Chinsen
- Biology Department, Boston College, Chestnut Hill, MA, USA
| | - Tian Hong
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Maitreyi Das
- Biology Department, Boston College, Chestnut Hill, MA, USA
| |
Collapse
|
3
|
Harrell M, Liu Z, Campbell BF, Chinsen O, Hong T, Das M. The Arp2/3 complex promotes periodic removal of Pak1-mediated negative feedback to facilitate anticorrelated Cdc42 oscillations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566261. [PMID: 38106068 PMCID: PMC10723479 DOI: 10.1101/2023.11.08.566261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The conserved GTPase Cdc42 is a major regulator of polarized growth in most eukaryotes. Cdc42 periodically cycles between active and inactive states at sites of polarized growth. These periodic cycles are caused by positive feedback and time-delayed negative feedback loops. In the bipolar yeast S. pombe, both growing ends must regulate Cdc42 activity. At each cell end, Cdc42 activity recruits the Pak1 kinase which prevents further Cdc42 activation thus establishing negative feedback. It is unclear how Cdc42 activation returns to the end after Pak1-dependent negative feedback. Using genetic and chemical perturbations, we find that disrupting branched actin-mediated endocytosis disables Cdc42 reactivation at the cell ends. With our experimental data and mathematical models, we show that endocytosis-dependent Pak1 removal from the cell ends allows the Cdc42 activator Scd1 to return to that end to enable reactivation of Cdc42. Moreover, we show that Pak1 elicits its own removal via activation of endocytosis. In agreement with these observations, our model and experimental data show that in each oscillatory cycle, Cdc42 activation increases followed by an increase in Pak1 recruitment at that end. These findings provide a deeper insight into the self-organization of Cdc42 regulation and reveal previously unknown feedback with endocytosis in the establishment of cell polarity.
Collapse
Affiliation(s)
- Marcus Harrell
- Biology Department, Boston College, Chestnut Hill, MA, 02467
| | - Ziyi Liu
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, TN, 37916
| | | | - Olivia Chinsen
- Biology Department, Boston College, Chestnut Hill, MA, 02467
| | - Tian Hong
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, TN, 37916
| | - Maitreyi Das
- Biology Department, Boston College, Chestnut Hill, MA, 02467
| |
Collapse
|
4
|
Wang X, Jiang Y, Liu H, Yuan H, Huang D, Wang T. Research progress of multi-enzyme complexes based on the design of scaffold protein. BIORESOUR BIOPROCESS 2023; 10:72. [PMID: 38647916 PMCID: PMC10992622 DOI: 10.1186/s40643-023-00695-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/04/2023] [Indexed: 04/25/2024] Open
Abstract
Multi-enzyme complexes designed based on scaffold proteins are a current topic in molecular enzyme engineering. They have been gradually applied to increase the production of enzyme cascades, thereby achieving effective biosynthetic pathways. This paper reviews the recent progress in the design strategy and application of multi-enzyme complexes. First, the metabolic channels in the multi-enzyme complex have been introduced, and the construction strategies of the multi-enzyme complex emerging in recent years have been summarized. Then, the discovered enzyme cascades related to scaffold proteins are discussed, emphasizing on the influence of the linker on the fusion enzyme (fusion protein) and its possible mechanism. This review is expected to provide a more theoretical basis for the modification of multi-enzyme complexes and broaden their applications in synthetic biology.
Collapse
Affiliation(s)
- Xiangyi Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Yi Jiang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Hongling Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Haibo Yuan
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Di Huang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Tengfei Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China.
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China.
| |
Collapse
|
5
|
Brauns F, Iñigo de la Cruz L, Daalman WKG, de Bruin I, Halatek J, Laan L, Frey E. Redundancy and the role of protein copy numbers in the cell polarization machinery of budding yeast. Nat Commun 2023; 14:6504. [PMID: 37845215 PMCID: PMC10579396 DOI: 10.1038/s41467-023-42100-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 09/26/2023] [Indexed: 10/18/2023] Open
Abstract
How can a self-organized cellular function evolve, adapt to perturbations, and acquire new sub-functions? To make progress in answering these basic questions of evolutionary cell biology, we analyze, as a concrete example, the cell polarity machinery of Saccharomyces cerevisiae. This cellular module exhibits an intriguing resilience: it remains operational under genetic perturbations and recovers quickly and reproducibly from the deletion of one of its key components. Using a combination of modeling, conceptual theory, and experiments, we propose that multiple, redundant self-organization mechanisms coexist within the protein network underlying cell polarization and are responsible for the module's resilience and adaptability. Based on our mechanistic understanding of polarity establishment, we hypothesize that scaffold proteins, by introducing new connections in the existing network, can increase the redundancy of mechanisms and thus increase the evolvability of other network components. Moreover, our work gives a perspective on how a complex, redundant cellular module might have evolved from a more rudimental ancestral form.
Collapse
Affiliation(s)
- Fridtjof Brauns
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
- Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Leila Iñigo de la Cruz
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Werner K-G Daalman
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Ilse de Bruin
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Jacob Halatek
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Liedewij Laan
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands.
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany.
- Max Planck School Matter to Life, Hofgartenstraße 8, D-80539, Munich, Germany.
| |
Collapse
|
6
|
Salat-Canela C, Pérez P, Ayté J, Hidalgo E. Stress-induced cell depolarization through the MAP kinase-Cdc42 axis. Trends Cell Biol 2023; 33:124-137. [PMID: 35773059 DOI: 10.1016/j.tcb.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 01/25/2023]
Abstract
General stress responses, which sense environmental or endogenous signals, aim at promoting cell survival and fitness during adverse conditions. In eukaryotes, mitogen-activated protein (MAP) kinase-driven cascades trigger a shift in the cell's gene expression program as a cellular adaptation to stress. Here, we review another aspect of activated MAP kinase cascades reported in fission yeast: the transient inhibition of cell polarity in response to oxidative stress. The phosphorylation by a stress-activated MAP kinase of regulators of the GTPase cell division cycle 42 (Cdc42) causes a transient inhibition of polarized cell growth. The formation of growth sites depends on limiting and essential polarity components. We summarize here some processes in which inhibition of Cdc42 may be a general mechanism to regulate polarized growth also under physiological conditions.
Collapse
Affiliation(s)
- Clàudia Salat-Canela
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Pilar Pérez
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, 37007 Salamanca, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader 88, 08003, Barcelona, Spain.
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader 88, 08003, Barcelona, Spain.
| |
Collapse
|
7
|
Laquel P, Testet E, Tuphile K, Cullin C, Fouillen L, Bessoule JJ, Doignon F. Phosphoinositides containing stearic acid are required for interaction between Rho GTPases and the exocyst to control the late steps of polarised exocytosis. Traffic 2021; 23:120-136. [PMID: 34908215 DOI: 10.1111/tra.12829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 11/18/2021] [Accepted: 12/07/2021] [Indexed: 11/27/2022]
Abstract
Cell polarity is achieved by regulators such as small G proteins, exocyst members and phosphoinositides, with the latter playing a key role when bound to the exocyst proteins Sec3p and Exo70p, and Rho GTPases. This ensures asymmetric growth via the routing of proteins and lipids to the cell surface using actin cables. Previously, using a yeast mutant for a lysophosphatidylinositol acyl transferase encoded by the PSI1 gene, we demonstrated the role of stearic acid in the acyl chain of phosphoinositides in cytoskeletal organisation and secretion. Here, we use a genetic approach to characterise the effect on late steps of the secretory pathway. The constitutive overexpression of PSI1 in mutants affecting kinases involved in the phosphoinositide pathway demonstrated the role of molecular species containing stearic acid in bypassing a lack of phosphatidylinositol-4-phosphate PI(4)P at the plasma membrane, which is essential for the function of the Cdc42p module. Decreasing the levels of stearic acid-containing phosphoinositides modifies the environment of the actors involved in the control of late steps in the secretory pathway. This leads to decreased interactions between Exo70p and Sec3p, with Cdc42p, Rho1p and Rho3p, due to disruption of the GTP/GDP ratio of at least Rho1p and Rho3p GTPases, thereby preventing activation of the exocyst.
Collapse
Affiliation(s)
- P Laquel
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - E Testet
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - K Tuphile
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - C Cullin
- Univ. Bordeaux, CNRS, Laboratoire de Chimie Biologie des Membranes & des Nano-objets, UMR 5248, Pessac, France
| | - L Fouillen
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France.,Metabolome Facility of Bordeaux, Functional Genomics Centre, F-33883 Villenave d'Ornon, France
| | - J J Bessoule
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - F Doignon
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| |
Collapse
|
8
|
Gad S, Ayakar S. Protein scaffolds: A tool for multi-enzyme assembly. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 32:e00670. [PMID: 34824995 PMCID: PMC8605239 DOI: 10.1016/j.btre.2021.e00670] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/13/2021] [Accepted: 09/03/2021] [Indexed: 12/31/2022]
Abstract
The synthesis of complex molecules using multiple enzymes simultaneously in one reaction vessel has rapidly emerged as a new frontier in the field of bioprocess technology. However, operating different enzymes together in a single vessel limits their operational performance which needs to be addressed. With this respect, scaffolding proteins play an immense role in bringing different enzymes together in a specific manner. The scaffolding improves the catalytic performance, enzyme stability and provides an optimal micro-environment for biochemical reactions. This review describes the components of protein scaffolds, different ways of constructing a protein scaffold-based multi-enzyme complex, and their effects on enzyme kinetics. Moreover, different conjugation strategies viz; dockerin-cohesin interaction, SpyTag-SpyCatcher system, peptide linker-based ligation, affibody, and sortase-mediated ligation are discussed in detail. Various analytical and characterization tools that have enabled the development of these scaffolding strategies are also reviewed. Such mega-enzyme complexes promise wider applications in the field of biotechnology and bioengineering.
Collapse
Affiliation(s)
- Shubhada Gad
- Department of Biotechnology, Institute of Chemical Technology - IndianOil Odisha Campus Bhubaneswar, Odisha 751013, India
| | - Sonal Ayakar
- Department of Biotechnology, Institute of Chemical Technology - IndianOil Odisha Campus Bhubaneswar, Odisha 751013, India
| |
Collapse
|
9
|
Salat-Canela C, Carmona M, Martín-García R, Pérez P, Ayté J, Hidalgo E. Stress-dependent inhibition of polarized cell growth through unbalancing the GEF/GAP regulation of Cdc42. Cell Rep 2021; 37:109951. [PMID: 34731607 DOI: 10.1016/j.celrep.2021.109951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/20/2021] [Accepted: 10/14/2021] [Indexed: 10/19/2022] Open
Abstract
Cdc42 GTPase rules cell polarity and growth in fission yeast. It is negatively and positively regulated by GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs), respectively. Active Cdc42-GTP localizes to the poles, where it associates with numerous proteins constituting the polarity module. However, little is known about its downregulation. We describe here that oxidative stress causes Sty1-kinase-dependent Cdc42 inactivation at cell poles. Both the amount of active Cdc42 at tips and cell length inversely correlate with Sty1 activity, explaining the elongated morphology of Δsty1 cells. We have created stress-blinded cell poles either by eliminating two Cdc42 GAPs or through the constitutive tethering of Gef1 to cell tips, and we biochemically demonstrate that the GAPs Rga3/6 and the GEF Gef1 are direct substrates of Sty1. We propose that phosphorylation of Rga3/6 and Gef1 mediates the Sty1-dependent inhibition of Cdc42 at cell tips, halting polarized growth during stress adaptation.
Collapse
Affiliation(s)
- Clàudia Salat-Canela
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Mercè Carmona
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Rebeca Martín-García
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Pilar Pérez
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, 37007 Salamanca, Spain.
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain.
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain.
| |
Collapse
|
10
|
Vicente-Soler J, Soto T, Franco A, Cansado J, Madrid M. The Multiple Functions of Rho GTPases in Fission Yeasts. Cells 2021; 10:1422. [PMID: 34200466 PMCID: PMC8228308 DOI: 10.3390/cells10061422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/20/2023] Open
Abstract
The Rho family of GTPases represents highly conserved molecular switches involved in a plethora of physiological processes. Fission yeast Schizosaccharomyces pombe has become a fundamental model organism to study the functions of Rho GTPases over the past few decades. In recent years, another fission yeast species, Schizosaccharomyces japonicus, has come into focus offering insight into evolutionary changes within the genus. Both fission yeasts contain only six Rho-type GTPases that are spatiotemporally controlled by multiple guanine-nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), and whose intricate regulation in response to external cues is starting to be uncovered. In the present review, we will outline and discuss the current knowledge and recent advances on how the fission yeasts Rho family GTPases regulate essential physiological processes such as morphogenesis and polarity, cellular integrity, cytokinesis and cellular differentiation.
Collapse
Affiliation(s)
| | | | | | - José Cansado
- Yeast Physiology Group, Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (J.V.-S.); (T.S.); (A.F.)
| | - Marisa Madrid
- Yeast Physiology Group, Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (J.V.-S.); (T.S.); (A.F.)
| |
Collapse
|
11
|
Chiou JG, Moran KD, Lew DJ. How cells determine the number of polarity sites. eLife 2021; 10:e58768. [PMID: 33899733 PMCID: PMC8116050 DOI: 10.7554/elife.58768] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 04/23/2021] [Indexed: 12/15/2022] Open
Abstract
The diversity of cell morphologies arises, in part, through regulation of cell polarity by Rho-family GTPases. A poorly understood but fundamental question concerns the regulatory mechanisms by which different cells generate different numbers of polarity sites. Mass-conserved activator-substrate (MCAS) models that describe polarity circuits develop multiple initial polarity sites, but then those sites engage in competition, leaving a single winner. Theoretical analyses predicted that competition would slow dramatically as GTPase concentrations at different polarity sites increase toward a 'saturation point', allowing polarity sites to coexist. Here, we test this prediction using budding yeast cells, and confirm that increasing the amount of key polarity proteins results in multiple polarity sites and simultaneous budding. Further, we elucidate a novel design principle whereby cells can switch from competition to equalization among polarity sites. These findings provide insight into how cells with diverse morphologies may determine the number of polarity sites.
Collapse
Affiliation(s)
- Jian-geng Chiou
- Department of Pharmacology and Cancer Biology, Duke University Medical CenterDurhamUnited States
| | - Kyle D Moran
- Department of Pharmacology and Cancer Biology, Duke University Medical CenterDurhamUnited States
| | - Daniel J Lew
- Department of Pharmacology and Cancer Biology, Duke University Medical CenterDurhamUnited States
| |
Collapse
|
12
|
Quadri R, Sertic S, Muzi-Falconi M. gRASping Depolarization: Contribution of RAS GTPases to Mitotic Polarity Clusters Resolution. Front Cell Dev Biol 2020; 8:589993. [PMID: 33178703 PMCID: PMC7593642 DOI: 10.3389/fcell.2020.589993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/31/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Roberto Quadri
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Sarah Sertic
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Marco Muzi-Falconi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
13
|
Abstract
While the organization of inanimate systems such as gases or liquids is predominantly thermodynamically driven—a mixture of two gases will tend to mix until they reach equilibrium—biological systems frequently exhibit organization that is far from a well-mixed equilibrium. The anisotropies displayed by cells are evident in some of the dynamic processes that constitute life including cell development, movement, and division. These anisotropies operate at different length-scales, from the meso- to the nanoscale, and are proposed to reflect self-organization, a characteristic of living systems that is becoming accessible to reconstitution from purified components, and thus a more thorough understanding. Here, some examples of self-organization underlying cellular anisotropies at the cellular level are reviewed, with an emphasis on Rho-family GTPases operating at the plasma membrane. Given the technical challenges of studying these dynamic proteins, some of the successful approaches that are being employed to study their self-organization will also be considered.
Collapse
Affiliation(s)
- Derek McCusker
- Dynamics of Cell Growth and Division, European Institute of Chemistry and Biology, F-33607 Bordeaux, France; Institute of Biochemistry and Cellular Genetics, UMR 5095, University of Bordeaux and Centre National de la Recherche Scientifique, F-33000 Bordeaux, France
| |
Collapse
|
14
|
Grinhagens S, Dünkler A, Wu Y, Rieger L, Brenner P, Gronemeyer T, Mulaw MA, Johnsson N. A time-resolved interaction analysis of Bem1 reconstructs the flow of Cdc42 during polar growth. Life Sci Alliance 2020; 3:e202000813. [PMID: 32737079 PMCID: PMC7409549 DOI: 10.26508/lsa.202000813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022] Open
Abstract
Cdc42 organizes cellular polarity and directs the formation of cellular structures in many organisms. By locating Cdc24, the source of active Cdc42, to the growing front of the yeast cell, the scaffold protein Bem1, is instrumental in shaping the cellular gradient of Cdc42. This gradient instructs bud formation, bud growth, or cytokinesis through the actions of a diverse set of effector proteins. To address how Bem1 participates in these transformations, we systematically tracked its protein interactions during one cell cycle to define the ensemble of Bem1 interaction states for each cell cycle stage. Mutants of Bem1 that interact with only a discrete subset of the interaction partners allowed to assign specific functions to different interaction states and identified the determinants for their cellular distributions. The analysis characterizes Bem1 as a cell cycle-specific shuttle that distributes active Cdc42 from its source to its effectors. It further suggests that Bem1 might convert the PAKs Cla4 and Ste20 into their active conformations.
Collapse
Affiliation(s)
- Sören Grinhagens
- Department of Biology, Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - Alexander Dünkler
- Department of Biology, Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - Yehui Wu
- Department of Biology, Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - Lucia Rieger
- Department of Biology, Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - Philipp Brenner
- Department of Biology, Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - Thomas Gronemeyer
- Department of Biology, Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - Medhanie A Mulaw
- Comprehensive Cancer Center Ulm, Institute of Experimental Cancer Research, Ulm University, Ulm, Germany
| | - Nils Johnsson
- Department of Biology, Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| |
Collapse
|
15
|
Khalili B, Lovelace HD, Rutkowski DM, Holz D, Vavylonis D. Fission Yeast Polarization: Modeling Cdc42 Oscillations, Symmetry Breaking, and Zones of Activation and Inhibition. Cells 2020; 9:E1769. [PMID: 32722101 PMCID: PMC7464287 DOI: 10.3390/cells9081769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022] Open
Abstract
Cells polarize for growth, motion, or mating through regulation of membrane-bound small GTPases between active GTP-bound and inactive GDP-bound forms. Activators (GEFs, GTP exchange factors) and inhibitors (GAPs, GTPase activating proteins) provide positive and negative feedbacks. We show that a reaction-diffusion model on a curved surface accounts for key features of polarization of model organism fission yeast. The model implements Cdc42 membrane diffusion using measured values for diffusion coefficients and dissociation rates and assumes a limiting GEF pool (proteins Gef1 and Scd1), as in prior models for budding yeast. The model includes two types of GAPs, one representing tip-localized GAPs, such as Rga3; and one representing side-localized GAPs, such as Rga4 and Rga6, that we assume switch between fast and slow diffusing states. After adjustment of unknown rate constants, the model reproduces active Cdc42 zones at cell tips and the pattern of GEF and GAP localization at cell tips and sides. The model reproduces observed tip-to-tip oscillations with periods of the order of several minutes, as well as asymmetric to symmetric oscillations transitions (corresponding to NETO "new end take off"), assuming the limiting GEF amount increases with cell size.
Collapse
Affiliation(s)
- Bita Khalili
- Department of Physics, Lehigh University, Bethlehem, PA 18015, USA; (B.K.); (H.D.L.); (D.M.R.); (D.H.)
| | - Hailey D. Lovelace
- Department of Physics, Lehigh University, Bethlehem, PA 18015, USA; (B.K.); (H.D.L.); (D.M.R.); (D.H.)
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29631, USA
| | - David M. Rutkowski
- Department of Physics, Lehigh University, Bethlehem, PA 18015, USA; (B.K.); (H.D.L.); (D.M.R.); (D.H.)
| | - Danielle Holz
- Department of Physics, Lehigh University, Bethlehem, PA 18015, USA; (B.K.); (H.D.L.); (D.M.R.); (D.H.)
| | - Dimitrios Vavylonis
- Department of Physics, Lehigh University, Bethlehem, PA 18015, USA; (B.K.); (H.D.L.); (D.M.R.); (D.H.)
| |
Collapse
|
16
|
Quadri R, Galli M, Galati E, Rotondo G, Gallo GR, Panigada D, Plevani P, Muzi-Falconi M. Haspin regulates Ras localization to promote Cdc24-driven mitotic depolarization. Cell Discov 2020; 6:42. [PMID: 32595981 PMCID: PMC7308332 DOI: 10.1038/s41421-020-0170-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 04/10/2020] [Indexed: 11/08/2022] Open
Abstract
Cell polarization is of paramount importance for proliferation, differentiation, development, and it is altered during carcinogenesis. Polarization is a reversible process controlled by positive and negative feedback loops. How polarized factors are redistributed is not fully understood and is the focus of this work. In Saccharomyces cerevisiae, mutants defective in haspin kinase exhibit stably polarized landmarks and are sensitive to mitotic delays. Here, we report a new critical role for haspin in polarisome dispersion; failure to redistribute polarity factors, in turn, leads to nuclear segregation defects and cell lethality. We identified a mitotic role for GTP-Ras in regulating the local activation of the Cdc42 GTPase, resulting in its dispersal from the bud tip to a homogeneous distribution over the plasma membrane. GTP-Ras2 physically interacts with Cdc24 regulateing its mitotic distribution. Haspin is shown to promote a mitotic shift from a bud tip-favored to a homogenous PM fusion of Ras-containing vesicles. In absence of haspin, active Ras is not redistributed from the bud tip; Cdc24 remains hyperpolarized promoting the activity of Cdc42 at the bud tip, and the polarisome fails to disperse leading to erroneously positioned mitotic spindle, defective nuclear segregation, and cell death after mitotic delays. These findings describe new functions for key factors that modulate cell polarization and mitotic events, critical processes involved in development and tumorigenesis.
Collapse
Affiliation(s)
- Roberto Quadri
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Martina Galli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
- Present Address: IFOM, Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milano, Italy
| | - Elena Galati
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Giuseppe Rotondo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Guido Roberto Gallo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Davide Panigada
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Paolo Plevani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Marco Muzi-Falconi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| |
Collapse
|
17
|
Chollet J, Dünkler A, Bäuerle A, Vivero-Pol L, Mulaw MA, Gronemeyer T, Johnsson N. Cdc24 interacts with septins to create a positive feedback loop during bud site assembly in yeast. J Cell Sci 2020; 133:jcs240283. [PMID: 32327559 DOI: 10.1242/jcs.240283] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/08/2020] [Indexed: 01/04/2023] Open
Abstract
Yeast cells select the position of their new bud at the beginning of each cell cycle. The recruitment of septins to this prospective bud site is one of the critical events in a complex assembly pathway that culminates in the outgrowth of a new daughter cell. During recruitment, septin rods follow the high concentration of Cdc42GTP that is generated by the focused localization of the Cdc42 guanine-nucleotide-exchange factor Cdc24. We show that, shortly before budding, Cdc24 not only activates Cdc42 but also transiently interacts with Cdc11, the septin subunit that caps both ends of the septin rods. Mutations in Cdc24 that reduce affinity to Cdc11 impair septin recruitment and decrease the stability of the polarity patch. The interaction between septins and Cdc24 thus reinforces bud assembly at sites where septin structures are formed. Once the septins polymerize to form the septin ring, Cdc24 is found at the cortex of the bud and directs further outgrowth from this position.
Collapse
Affiliation(s)
- Julian Chollet
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | - Alexander Dünkler
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | - Anne Bäuerle
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | - Laura Vivero-Pol
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | - Medhanie A Mulaw
- Comprehensive Cancer Center Ulm, Institute of Experimental Cancer Research, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | - Thomas Gronemeyer
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | - Nils Johnsson
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| |
Collapse
|
18
|
Abstract
The Rho GTPase Cdc42 is a central regulator of cell polarity in diverse cell types. The activity of Cdc42 is dynamically controlled in time and space to enable distinct polarization events, which generally occur along a single axis in response to spatial cues. Our understanding of the mechanisms underlying Cdc42 polarization has benefited largely from studies of the budding yeast Saccharomyces cerevisiae, a genetically tractable model organism. In budding yeast, Cdc42 activation occurs in two temporal steps in the G1 phase of the cell cycle to establish a proper growth site. Here, we review findings in budding yeast that reveal an intricate crosstalk among polarity proteins for biphasic Cdc42 regulation. The first step of Cdc42 activation may determine the axis of cell polarity, while the second step ensures robust Cdc42 polarization for growth. Biphasic Cdc42 polarization is likely to ensure the proper timing of events including the assembly and recognition of spatial landmarks and stepwise assembly of a new ring of septins, cytoskeletal GTP-binding proteins, at the incipient bud site. Biphasic activation of GTPases has also been observed in mammalian cells, suggesting that biphasic activation could be a general mechanism for signal-responsive cell polarization. Cdc42 activity is necessary for polarity establishment during normal cell division and development, but its activity has also been implicated in the promotion of aging. We also discuss negative polarity signaling and emerging concepts of Cdc42 signaling in cellular aging.
Collapse
Affiliation(s)
- Kristi E Miller
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210.,Present address: Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Pil Jung Kang
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Hay-Oak Park
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
19
|
Optogenetics reveals Cdc42 local activation by scaffold-mediated positive feedback and Ras GTPase. PLoS Biol 2020; 18:e3000600. [PMID: 31978045 PMCID: PMC7002011 DOI: 10.1371/journal.pbio.3000600] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 02/05/2020] [Accepted: 01/02/2020] [Indexed: 12/31/2022] Open
Abstract
Local activity of the small GTPase Cdc42 is critical for cell polarization. Whereas scaffold-mediated positive feedback was proposed to break symmetry of budding yeast cells and produce a single zone of Cdc42 activity, the existence of similar regulation has not been probed in other organisms. Here, we address this problem using rod-shaped cells of fission yeast Schizosaccharomyces pombe, which exhibit zones of active Cdc42-GTP at both cell poles. We implemented the CRY2-CIB1 optogenetic system for acute light-dependent protein recruitment to the plasma membrane, which allowed to directly demonstrate positive feedback. Indeed, optogenetic recruitment of constitutively active Cdc42 leads to co-recruitment of the guanine nucleotide exchange factor (GEF) Scd1 and endogenous Cdc42, in a manner dependent on the scaffold protein Scd2. We show that Scd2 function is dispensable when the positive feedback operates through an engineered interaction between the GEF and a Cdc42 effector, the p21-activated kinase 1 (Pak1). Remarkably, this rewired positive feedback confers viability and allows cells to form 2 zones of active Cdc42 even when otherwise essential Cdc42 activators are lacking. These cells further revealed that the small GTPase Ras1 plays a role in both localizing the GEF Scd1 and promoting its activity, which potentiates the positive feedback. We conclude that scaffold-mediated positive feedback, gated by Ras activity, confers robust polarization for rod-shape formation. The small GTPase Cdc42 is a key regulator of cell polarization. This study uses optogenetic and genetic strategies to show that Cdc42 is under positive feedback regulation potentiated by Ras GTPase activity.
Collapse
|
20
|
External signal-mediated polarized growth in fungi. Curr Opin Cell Biol 2019; 62:150-158. [PMID: 31875532 DOI: 10.1016/j.ceb.2019.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022]
Abstract
As the majority of fungi are nonmotile, polarized growth in response to an external signal enables them to search for nutrients and mating partners, and hence is crucial for survival and proliferation. Although the mechanisms underlying polarization in response to external signals has commonalities with polarization during mitotic division, during budding, and fission growth, the importance of diverse feedback loops regulating external signal-mediated polarized growth is likely to be distinct and uniquely adapted to a dynamic environment. Here, we highlight recent advances in our understanding of the mechanisms that are crucial for polarity in response to external signals in fungi, with particular focus on the roles of membrane traffic, small GTPases, and lipids, as well as the interplay between cell shape and cell growth.
Collapse
|
21
|
Hercyk BS, Rich-Robinson J, Mitoubsi AS, Harrell MA, Das ME. A novel interplay between GEFs orchestrates Cdc42 activity during cell polarity and cytokinesis in fission yeast. J Cell Sci 2019; 132:jcs.236018. [PMID: 31719163 DOI: 10.1242/jcs.229252/video-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/04/2019] [Indexed: 05/23/2023] Open
Abstract
Cdc42, a conserved regulator of cell polarity, is activated by two GEFs, Gef1 and Scd1, in fission yeast. Why the cell needs two GEFs is unclear, given that they are partially redundant and activate the same GTPase. Using the GEF localization pattern during cytokinesis as a paradigm, we report a novel interplay between Gef1 and Scd1 that spatially modulates Cdc42. We find that Gef1 promotes Scd1 localization to the division site during cytokinesis through recruitment of the scaffold protein Scd2, via a Cdc42 feedforward pathway. Similarly, during interphase Gef1 promotes Scd1 recruitment at the new end to enable the transition from monopolar to bipolar growth. Reciprocally, Scd1 restricts Gef1 localization to prevent ectopic Cdc42 activation during cytokinesis to promote cell separation, and to maintain cell shape during interphase. Our findings reveal an elegant regulatory pattern in which Gef1 primes Cdc42 activation at new sites to initiate Scd1-dependent polarized growth, while Scd1 restricts Gef1 to sites of polarization. We propose that crosstalk between GEFs is a conserved mechanism that orchestrates Cdc42 activation during complex cellular processes.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Brian S Hercyk
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 7996-1939, USA
| | - Julie Rich-Robinson
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 7996-1939, USA
| | - Ahmad S Mitoubsi
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 7996-1939, USA
| | - Marcus A Harrell
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 7996-1939, USA
| | - Maitreyi E Das
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 7996-1939, USA
| |
Collapse
|
22
|
Hercyk BS, Rich-Robinson J, Mitoubsi AS, Harrell MA, Das ME. A novel interplay between GEFs orchestrates Cdc42 activity during cell polarity and cytokinesis in fission yeast. J Cell Sci 2019; 132:jcs.236018. [PMID: 31719163 DOI: 10.1242/jcs.236018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Cdc42, a conserved regulator of cell polarity, is activated by two GEFs, Gef1 and Scd1, in fission yeast. Why the cell needs two GEFs is unclear, given that they are partially redundant and activate the same GTPase. Using the GEF localization pattern during cytokinesis as a paradigm, we report a novel interplay between Gef1 and Scd1 that spatially modulates Cdc42. We find that Gef1 promotes Scd1 localization to the division site during cytokinesis through recruitment of the scaffold protein Scd2, via a Cdc42 feedforward pathway. Similarly, during interphase Gef1 promotes Scd1 recruitment at the new end to enable the transition from monopolar to bipolar growth. Reciprocally, Scd1 restricts Gef1 localization to prevent ectopic Cdc42 activation during cytokinesis to promote cell separation, and to maintain cell shape during interphase. Our findings reveal an elegant regulatory pattern in which Gef1 primes Cdc42 activation at new sites to initiate Scd1-dependent polarized growth, while Scd1 restricts Gef1 to sites of polarization. We propose that crosstalk between GEFs is a conserved mechanism that orchestrates Cdc42 activation during complex cellular processes.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Brian S Hercyk
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 7996-1939, USA
| | - Julie Rich-Robinson
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 7996-1939, USA
| | - Ahmad S Mitoubsi
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 7996-1939, USA
| | - Marcus A Harrell
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 7996-1939, USA
| | - Maitreyi E Das
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 7996-1939, USA
| |
Collapse
|
23
|
Miller KE, Lo WC, Chou CS, Park HO. Temporal regulation of cell polarity via the interaction of the Ras GTPase Rsr1 and the scaffold protein Bem1. Mol Biol Cell 2019; 30:2543-2557. [PMID: 31411940 PMCID: PMC6740199 DOI: 10.1091/mbc.e19-02-0106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The Cdc42 guanosine triphosphatase (GTPase) plays a central role in polarity development in species ranging from yeast to humans. In budding yeast, a specific growth site is selected in the G1 phase. Rsr1, a Ras GTPase, interacts with Cdc42 and its associated proteins to promote polarized growth at the proper bud site. Yet how Rsr1 regulates cell polarization is not fully understood. Here, we show that Rsr1-GDP interacts with the scaffold protein Bem1 in early G1, likely hindering the role of Bem1 in Cdc42 polarization and polarized secretion. Consistent with these in vivo observations, mathematical modeling predicts that Bem1 is unable to promote Cdc42 polarization in early G1 in the presence of Rsr1-GDP. We find that a part of the Bem1 Phox homology domain, which overlaps with a region interacting with the exocyst component Exo70, is necessary for the association of Bem1 with Rsr1-GDP. Overexpression of the GDP-locked Rsr1 interferes with Bem1-dependent Exo70 polarization. We thus propose that Rsr1 functions in spatial and temporal regulation of polarity establishment by associating with distinct polarity factors in its GTP- and GDP-bound states.
Collapse
Affiliation(s)
- Kristi E Miller
- Molecular Cellular Developmental Biology Program, The Ohio State University, Columbus, OH 43210
| | - Wing-Cheong Lo
- Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong
| | - Ching-Shan Chou
- Department of Mathematics, The Ohio State University, Columbus, OH 43210
| | - Hay-Oak Park
- Molecular Cellular Developmental Biology Program, The Ohio State University, Columbus, OH 43210.,Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
24
|
Zhou YJ, Yan GX, Liu CW, Zhang X, Hu Y, Hao XQ, Zhao H, Shi C, Sun HC. [Polarity of ameloblasts and odontoblasts and their related regulators]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 37:309-313. [PMID: 31218868 DOI: 10.7518/hxkq.2019.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The polarity of ameloblasts and odontoblasts is crucial for their differentiation and function. Polarity-related molecules play an important role in this process. This review summarizes the process of polarity formation of ameloblasts and odontoblasts and their related regulators.
Collapse
Affiliation(s)
- Yi-Jun Zhou
- Dept. of Oral Pathology, School and Hospital of Stomatology, Jilin University, Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, Changchun 130021, China
| | - Guang-Xing Yan
- Dept. of Oral Pathology, School and Hospital of Stomatology, Jilin University, Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, Changchun 130021, China
| | - Cang-Wei Liu
- Dept. of Oral Pathology, School and Hospital of Stomatology, Jilin University, Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, Changchun 130021, China
| | - Xue Zhang
- Dept. of Oral Pathology, School and Hospital of Stomatology, Jilin University, Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, Changchun 130021, China
| | - Yue Hu
- Dept. of Oral Pathology, School and Hospital of Stomatology, Jilin University, Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, Changchun 130021, China
| | - Xin-Qing Hao
- Dept. of Oral Pathology, School and Hospital of Stomatology, Jilin University, Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, Changchun 130021, China
| | - Huan Zhao
- Dept. of Oral Pathology, School and Hospital of Stomatology, Jilin University, Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, Changchun 130021, China
| | - Ce Shi
- Dept. of Oral Pathology, School and Hospital of Stomatology, Jilin University, Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, Changchun 130021, China
| | - Hong-Chen Sun
- Dept. of Oral Pathology, School and Hospital of Stomatology, Jilin University, Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, Changchun 130021, China
| |
Collapse
|
25
|
Halatek J, Brauns F, Frey E. Self-organization principles of intracellular pattern formation. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0107. [PMID: 29632261 PMCID: PMC5904295 DOI: 10.1098/rstb.2017.0107] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2018] [Indexed: 11/13/2022] Open
Abstract
Dynamic patterning of specific proteins is essential for the spatio-temporal regulation of many important intracellular processes in prokaryotes, eukaryotes and multicellular organisms. The emergence of patterns generated by interactions of diffusing proteins is a paradigmatic example for self-organization. In this article, we review quantitative models for intracellular Min protein patterns in Escherichia coli, Cdc42 polarization in Saccharomyces cerevisiae and the bipolar PAR protein patterns found in Caenorhabditis elegans. By analysing the molecular processes driving these systems we derive a theoretical perspective on general principles underlying self-organized pattern formation. We argue that intracellular pattern formation is not captured by concepts such as ‘activators’, ‘inhibitors’ or ‘substrate depletion’. Instead, intracellular pattern formation is based on the redistribution of proteins by cytosolic diffusion, and the cycling of proteins between distinct conformational states. Therefore, mass-conserving reaction–diffusion equations provide the most appropriate framework to study intracellular pattern formation. We conclude that directed transport, e.g. cytosolic diffusion along an actively maintained cytosolic gradient, is the key process underlying pattern formation. Thus the basic principle of self-organization is the establishment and maintenance of directed transport by intracellular protein dynamics. This article is part of the theme issue ‘Self-organization in cell biology’.
Collapse
Affiliation(s)
- J Halatek
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 München, Germany
| | - F Brauns
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 München, Germany
| | - E Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 München, Germany
| |
Collapse
|
26
|
Vendel KJA, Tschirpke S, Shamsi F, Dogterom M, Laan L. Minimal in vitro systems shed light on cell polarity. J Cell Sci 2019; 132:132/4/jcs217554. [PMID: 30700498 DOI: 10.1242/jcs.217554] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cell polarity - the morphological and functional differentiation of cellular compartments in a directional manner - is required for processes such as orientation of cell division, directed cellular growth and motility. How the interplay of components within the complexity of a cell leads to cell polarity is still heavily debated. In this Review, we focus on one specific aspect of cell polarity: the non-uniform accumulation of proteins on the cell membrane. In cells, this is achieved through reaction-diffusion and/or cytoskeleton-based mechanisms. In reaction-diffusion systems, components are transformed into each other by chemical reactions and are moving through space by diffusion. In cytoskeleton-based processes, cellular components (i.e. proteins) are actively transported by microtubules (MTs) and actin filaments to specific locations in the cell. We examine how minimal systems - in vitro reconstitutions of a particular cellular function with a minimal number of components - are designed, how they contribute to our understanding of cell polarity (i.e. protein accumulation), and how they complement in vivo investigations. We start by discussing the Min protein system from Escherichia coli, which represents a reaction-diffusion system with a well-established minimal system. This is followed by a discussion of MT-based directed transport for cell polarity markers as an example of a cytoskeleton-based mechanism. To conclude, we discuss, as an example, the interplay of reaction-diffusion and cytoskeleton-based mechanisms during polarity establishment in budding yeast.
Collapse
Affiliation(s)
- Kim J A Vendel
- Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2600 GA, The Netherlands
| | - Sophie Tschirpke
- Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2600 GA, The Netherlands
| | - Fayezeh Shamsi
- Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2600 GA, The Netherlands
| | - Marileen Dogterom
- Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2600 GA, The Netherlands
| | - Liedewij Laan
- Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2600 GA, The Netherlands
| |
Collapse
|
27
|
Daniels CN, Zyla TR, Lew DJ. A role for Gic1 and Gic2 in Cdc42 polarization at elevated temperature. PLoS One 2018; 13:e0200863. [PMID: 30566437 PMCID: PMC6300207 DOI: 10.1371/journal.pone.0200863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/09/2018] [Indexed: 12/27/2022] Open
Abstract
The conserved Rho-family GTPase Cdc42 is a master regulator of polarity establishment in many cell types. Cdc42 becomes activated and concentrated in a region of the cell cortex, and recruits a variety of effector proteins to that site. In turn, many effectors participate in regulation of cytoskeletal elements in order to remodel the cytoskeleton in a polarized manner. The budding yeast Saccharomyces cerevisiae has served as a tractable model system for studies of cell polarity. In yeast cells, Cdc42 polarization involves a positive feedback loop in which effectors called p21-activated kinases (PAKs) act to recruit a Cdc42-directed guanine nucleotide exchange factor (GEF), generating more GTP-Cdc42 in areas that already have GTP-Cdc42. The GTPase-interacting components (GICs) Gic1 and Gic2 are also Cdc42 effectors, and have been implicated in regulation of the actin and septin cytoskeleton. However, we report that cells lacking GICs are primarily defective in polarizing Cdc42 itself, suggesting that they act upstream as well as downstream of Cdc42 in yeast. Our findings suggest that feedback pathways involving GTPase effectors may be more prevalent than had been appreciated.
Collapse
Affiliation(s)
- Christine N. Daniels
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, United States of America
| | - Trevin R. Zyla
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, United States of America
| | - Daniel J. Lew
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
28
|
Meca J, Massoni-Laporte A, Martinez D, Sartorel E, Loquet A, Habenstein B, McCusker D. Avidity-driven polarity establishment via multivalent lipid-GTPase module interactions. EMBO J 2018; 38:embj.201899652. [PMID: 30559330 DOI: 10.15252/embj.201899652] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 12/17/2022] Open
Abstract
While Rho GTPases are indispensible regulators of cellular polarity, the mechanisms underlying their anisotropic activation at membranes have been elusive. Using the budding yeast Cdc42 GTPase module, which includes a guanine nucleotide exchange factor (GEF) Cdc24 and the scaffold Bem1, we find that avidity generated via multivalent anionic lipid interactions is a critical mechanistic constituent of polarity establishment. We identify basic cluster (BC) motifs in Bem1 that drive the interaction of the scaffold-GEF complex with anionic lipids at the cell pole. This interaction appears to influence lipid acyl chain ordering, thus regulating membrane rigidity and feedback between Cdc42 and the membrane environment. Sequential mutation of the Bem1 BC motifs, PX domain, and the PH domain of Cdc24 lead to a progressive loss of cellular polarity stemming from defective Cdc42 nanoclustering on the plasma membrane and perturbed signaling. Our work demonstrates the importance of avidity via multivalent anionic lipid interactions in the spatial control of GTPase activation.
Collapse
Affiliation(s)
- Julien Meca
- CNRS, UMR 5095, European Institute of Chemistry and Biology, University of Bordeaux, Pessac, France
| | - Aurélie Massoni-Laporte
- CNRS, UMR 5095, European Institute of Chemistry and Biology, University of Bordeaux, Pessac, France
| | - Denis Martinez
- CNRS, UMR 5248, European Institute of Chemistry and Biology, University of Bordeaux, Pessac, France
| | - Elodie Sartorel
- CNRS, UMR 5095, European Institute of Chemistry and Biology, University of Bordeaux, Pessac, France
| | - Antoine Loquet
- CNRS, UMR 5248, European Institute of Chemistry and Biology, University of Bordeaux, Pessac, France
| | - Birgit Habenstein
- CNRS, UMR 5248, European Institute of Chemistry and Biology, University of Bordeaux, Pessac, France
| | - Derek McCusker
- CNRS, UMR 5095, European Institute of Chemistry and Biology, University of Bordeaux, Pessac, France
| |
Collapse
|
29
|
Gallo Castro D, Martin SG. Differential GAP requirement for Cdc42-GTP polarization during proliferation and sexual reproduction. J Cell Biol 2018; 217:4215-4229. [PMID: 30279276 PMCID: PMC6279383 DOI: 10.1083/jcb.201806016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/06/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022] Open
Abstract
The formation of a local zone of Cdc42 GTPase activity, which governs cell polarization in many cell types, requires not only local activation but also switch-off mechanisms. In this study, we identify Rga3, a paralog of Rga4, as a novel Cdc42 GTPase-activating protein (GAP) in the fission yeast Schizosaccharomyces pombe Contrary to Rga4, Rga3 localizes with Cdc42-GTP to sites of polarity. Rga3 is dispensable for cell polarization during mitotic growth, but it limits the lifetime of unstable Cdc42-GTP patches that underlie cell pairing during sexual reproduction, masking a partly compensatory patch-wandering motion. In consequence, cells lacking rga3 hyperpolarize and lose out in mating competition. Rga3 synergizes with the Cdc42 GAPs Rga4 and Rga6 to restrict Cdc42-GTP zone sizes during mitotic growth. Surprisingly, triple-mutant cells, which are almost fully round, retain pheromone-dependent dynamic polarization of Cdc42-GTP, extend a polarized projection, and mate. Thus, the requirement for Cdc42-GTP hydrolysis by GAPs is distinct during polarization by intrinsic or extrinsic cues.
Collapse
Affiliation(s)
- Daniela Gallo Castro
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Sophie G Martin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
30
|
Kang PJ, Miller KE, Guegueniat J, Beven L, Park HO. The shared role of the Rsr1 GTPase and Gic1/Gic2 in Cdc42 polarization. Mol Biol Cell 2018; 29:2359-2369. [PMID: 30091649 PMCID: PMC6233053 DOI: 10.1091/mbc.e18-02-0145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Cdc42 GTPase plays a central role in polarity development in many species. In budding yeast, Cdc42 is essential for polarized growth at the proper site and also for spontaneous cell polarization in the absence of spatial cues. Cdc42 polarization is critical for multiple events in the G1 phase prior to bud emergence, including bud-site assembly, polarization of the actin cytoskeleton, and septin filament assembly to form a ring at the new bud site. Yet the mechanism by which Cdc42 polarizes is not fully understood. Here we report that biphasic Cdc42 polarization in the G1 phase is coupled to stepwise assembly of the septin ring for bud emergence. We show that the Rsr1 GTPase shares a partially redundant role with Gic1 and Gic2, two related Cdc42 effectors, in the first phase of Cdc42 polarization in haploid cells. We propose that the first phase of Cdc42 polarization is mediated by positive feedback loops that function in parallel-one involving Rsr1 via local activation of Cdc42 in response to spatial cues and another involving Gic1 or Gic2 via reduction of diffusion of active Cdc42.
Collapse
Affiliation(s)
- Pil Jung Kang
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Kristi E Miller
- Molecular Cellular Developmental Biology Program, The Ohio State University, Columbus, OH 43210
| | - Julia Guegueniat
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Laure Beven
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Hay-Oak Park
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210.,Molecular Cellular Developmental Biology Program, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
31
|
Sartorel E, Ünlü C, Jose M, Massoni-Laporte A, Meca J, Sibarita JB, McCusker D. Phosphatidylserine and GTPase activation control Cdc42 nanoclustering to counter dissipative diffusion. Mol Biol Cell 2018; 29:1299-1310. [PMID: 29668348 PMCID: PMC5994902 DOI: 10.1091/mbc.e18-01-0051] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The anisotropic organization of plasma membrane constituents is indicative of mechanisms that drive the membrane away from equilibrium. However, defining these mechanisms is challenging due to the short spatiotemporal scales at which diffusion operates. Here, we use high-density single protein tracking combined with photoactivation localization microscopy (sptPALM) to monitor Cdc42 in budding yeast, a system in which Cdc42 exhibits anisotropic organization. Cdc42 exhibited reduced mobility at the cell pole, where it was organized in nanoclusters. The Cdc42 nanoclusters were larger at the cell pole than those observed elsewhere in the cell. These features were exacerbated in cells expressing Cdc42-GTP, and were dependent on the scaffold Bem1, which contributed to the range of mobility and nanocluster size exhibited by Cdc42. The lipid environment, in particular phosphatidylserine levels, also played a role in regulating Cdc42 nanoclustering. These studies reveal how the mobility of a Rho GTPase is controlled to counter the depletive effects of diffusion, thus stabilizing Cdc42 on the plasma membrane and sustaining cell polarity.
Collapse
Affiliation(s)
- Elodie Sartorel
- Université Bordeaux, CNRS, UMR 5095, European Institute of Chemistry and Biology, Pessac 33607, France
| | - Caner Ünlü
- Université Bordeaux, CNRS, UMR 5095, European Institute of Chemistry and Biology, Pessac 33607, France
| | - Mini Jose
- Université Bordeaux, CNRS, UMR 5095, European Institute of Chemistry and Biology, Pessac 33607, France
| | - Aurélie Massoni-Laporte
- Université Bordeaux, CNRS, UMR 5095, European Institute of Chemistry and Biology, Pessac 33607, France
| | - Julien Meca
- Université Bordeaux, CNRS, UMR 5095, European Institute of Chemistry and Biology, Pessac 33607, France
| | - Jean-Baptiste Sibarita
- Université Bordeaux, Institut Interdisciplinaire de Neurosciences, Bordeaux 33077, France.,CNRS UMR 5297, Institut Interdisciplinaire de Neurosciences, Bordeaux 33077, France
| | - Derek McCusker
- Université Bordeaux, CNRS, UMR 5095, European Institute of Chemistry and Biology, Pessac 33607, France
| |
Collapse
|
32
|
St Johnston D. Establishing and transducing cell polarity: common themes and variations. Curr Opin Cell Biol 2018; 51:33-41. [PMID: 29153703 DOI: 10.1016/j.ceb.2017.10.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/10/2017] [Indexed: 12/17/2022]
Abstract
All cells in vivo have a primary axis of polarity that controls many aspects of their behaviour, such as the direction of protein secretion and signalling, the orientation of cell division and directed cell movement and morphogenesis. Cell polarise in response to extracellular cues or intracellular landmarks that initiate a signal transduction process that establishes complementary cortical domains of conserved polarity factors. These cortical domains then transmit this polarity to the rest of the cell by regulating the organisation of the cytoskeleton and membrane trafficking systems. Here I review work over the past couple of years that has elucidated many key features of how polarity is established and transduced in different systems, but has also revealed unexpected variations in polarity mechanisms depending on context.
Collapse
Affiliation(s)
- Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Rd, Cambridge CB2 1QN, UK.
| |
Collapse
|