1
|
Yoshino J, Mali SS, Williams CR, Morita T, Emerson CE, Arp CJ, Miller SE, Yin C, Thé L, Hemmi C, Motoyoshi M, Ishii K, Emoto K, Bautista DM, Parrish JZ. Drosophila epidermal cells are intrinsically mechanosensitive and modulate nociceptive behavioral outputs. eLife 2025; 13:RP95379. [PMID: 40353351 PMCID: PMC12068870 DOI: 10.7554/elife.95379] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
Abstract
Somatosensory neurons (SSNs) that detect and transduce mechanical, thermal, and chemical stimuli densely innervate an animal's skin. However, although epidermal cells provide the first point of contact for sensory stimuli, our understanding of roles that epidermal cells play in SSN function, particularly nociception, remains limited. Here, we show that stimulating Drosophila epidermal cells elicits activation of SSNs including nociceptors and triggers a variety of behavior outputs, including avoidance and escape. Further, we find that epidermal cells are intrinsically mechanosensitive and that epidermal mechanically evoked calcium responses require the store-operated calcium channel Orai. Epidermal cell stimulation augments larval responses to acute nociceptive stimuli and promotes prolonged hypersensitivity to subsequent mechanical stimuli. Hence, epidermal cells are key determinants of nociceptive sensitivity and sensitization, acting as primary sensors of noxious stimuli that tune nociceptor output and drive protective behaviors.
Collapse
Affiliation(s)
- Jiro Yoshino
- Department of Biology, University of WashingtonSeattleUnited States
- Department of Biological Sciences, Graduate School of Science, The University of TokyoTokyoJapan
- Division of Education, Marine Biological LaboratoryWoods HoleUnited States
| | - Sonali S Mali
- Division of Education, Marine Biological LaboratoryWoods HoleUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Claire R Williams
- Department of Biology, University of WashingtonSeattleUnited States
- Division of Education, Marine Biological LaboratoryWoods HoleUnited States
| | - Takeshi Morita
- Division of Education, Marine Biological LaboratoryWoods HoleUnited States
- Laboratory of Neurogenetics and Behavior, The Rockefeller UniversityNew YorkUnited States
| | - Chloe E Emerson
- Division of Education, Marine Biological LaboratoryWoods HoleUnited States
| | - Christopher J Arp
- Division of Education, Marine Biological LaboratoryWoods HoleUnited States
| | - Sophie E Miller
- Division of Education, Marine Biological LaboratoryWoods HoleUnited States
| | - Chang Yin
- Department of Biology, University of WashingtonSeattleUnited States
| | - Lydia Thé
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Chikayo Hemmi
- Department of Biological Sciences, Graduate School of Science, The University of TokyoTokyoJapan
| | - Mana Motoyoshi
- Department of Biological Sciences, Graduate School of Science, The University of TokyoTokyoJapan
| | - Kenichi Ishii
- Department of Biological Sciences, Graduate School of Science, The University of TokyoTokyoJapan
| | - Kazuo Emoto
- Department of Biological Sciences, Graduate School of Science, The University of TokyoTokyoJapan
- International Research Center for Neurointelligence (WPI-IRCN), The University of TokyoTokyoJapan
| | - Diana M Bautista
- Division of Education, Marine Biological LaboratoryWoods HoleUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California at BerkeleyBerkeleyUnited States
| | - Jay Z Parrish
- Department of Biology, University of WashingtonSeattleUnited States
- Division of Education, Marine Biological LaboratoryWoods HoleUnited States
| |
Collapse
|
2
|
Mauthner SE, Tracey WD. Optogenetic Stimulation of Nociceptive Escape Behaviors in Drosophila Larvae. Cold Spring Harb Protoc 2025; 2025:pdb.prot108128. [PMID: 39095077 PMCID: PMC11787400 DOI: 10.1101/pdb.prot108128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
In animals, noxious stimuli activate a neural process called nociception. Drosophila larvae perform a rolling escape locomotion behavior in response to nociceptive sensory stimuli. Noxious mechanical, thermal, and chemical stimuli each trigger this same escape response in larvae. The polymodal sensory neurons that initiate the rolling response have been identified based on the expression patterns of genes that are known to be required for nociception responses. The synaptic output of these neurons, known as class IV multidendritic sensory neurons, is required for behavioral responses to thermal, mechanical, and chemical triggers of the rolling escape locomotion. Importantly, optogenetic stimulation of the class IV multidendritic neurons has also shown that the activation of those cells is sufficient to trigger nociceptive rolling. Optogenetics uses light-activated ion channels expressed in neurons of interest to bypass the normal physiological transduction machinery so that the cell may be activated in response to light that is applied by the investigator. This protocol describes an optogenetic technique that uses channelrhodopsin-2 (ChR2) to activate larval nociceptors and trigger nociceptive rolling. First, we explain how to set up the necessary genetic crosses and culture the larval progeny. Next, we describe how to perform the optogenetic nociception assay on third-instar larvae.
Collapse
Affiliation(s)
- Stephanie E Mauthner
- Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana 47405, USA
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - W Daniel Tracey
- Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana 47405, USA
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| |
Collapse
|
3
|
Francis J, Gibeily CR, Smith WV, Petropoulos IS, Anderson M, Heitler WJ, Prinz AA, Pulver SR. Inhibitory circuit motifs in Drosophila larvae generate motor program diversity and variability. PLoS Biol 2025; 23:e3003094. [PMID: 40258087 PMCID: PMC12088524 DOI: 10.1371/journal.pbio.3003094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 05/19/2025] [Accepted: 03/03/2025] [Indexed: 04/23/2025] Open
Abstract
How do neural networks generate and regulate diversity and variability in motor outputs with finite cellular components? Here we examine this problem by exploring the role that inhibitory neuron motifs play in generating mixtures of motor programs in the segmentally organised Drosophila larval locomotor system. We developed a computational model that is constrained by experimental calcium imaging data. The model comprises single-compartment cells with a single voltage-gated calcium current, which are interconnected by graded excitatory and inhibitory synapses. Local excitatory and inhibitory neurons form conditional oscillators in each hemisegment. Surrounding architecture reflects key aspects of inter- and intrasegmental connectivity motifs identified in the literature. The model generates metachronal waves of activity that recapitulate key features of fictive forwards and backwards locomotion, as well as bilaterally asymmetric activity in anterior regions that represents fictive head sweeps. The statistics of inputs to competing command-like motifs, coupled with inhibitory motifs that detect activity across multiple segments generate network states that promote diversity in motor outputs, while at the same time preventing maladaptive overlap in motor programs. Overall, the model generates testable predictions for connectomics and physiological studies while providing a platform for uncovering how inhibitory circuit motifs underpin generation of diversity and variability in motor systems.
Collapse
Affiliation(s)
- Jacob Francis
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| | - Caius R. Gibeily
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| | - William V. Smith
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| | - Isabel S. Petropoulos
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| | - Michael Anderson
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| | - William J. Heitler
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| | - Astrid A. Prinz
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Stefan R. Pulver
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
- Institute for Behavioural and Neural Sciences, Centre of Biophotonics, and Centre for Biological Diversity, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
4
|
Borjon LJ, Mauthner SE, Tracey WD. Nociception in Drosophila Larvae. Cold Spring Harb Protoc 2025; 2025:pdb.top108172. [PMID: 39095078 PMCID: PMC11787404 DOI: 10.1101/pdb.top108172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Nociception is the sensory modality by which animals sense stimuli associated with injury or potential tissue damage. When Drosophila larvae encounter a noxious thermal, chemical, or mechanical stimulus, they perform a stereotyped rolling behavior. These noxious stimuli are detected by polymodal nociceptor neurons that tile the larval epidermis. Although several types of sensory neurons feed into the nociceptive behavioral output, the highly branched class IV multidendritic arborization neurons are the most critical. At the molecular level, Drosophila nociception shares many conserved features with vertebrate nociception, making it a useful organism for medically relevant research in this area. Here, we review three larval assays for nociceptive behavior using mechanical stimuli, optogenetic activation, and the naturalistic stimuli of parasitoid wasp attacks. Together, the assays described have been successfully used by many laboratories in studies of the molecular, cellular, and circuit mechanisms of nociception. In addition, the simple nature of the assays we describe can be useful in teaching laboratories for undergraduate students.
Collapse
Affiliation(s)
- Lydia J Borjon
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
- Gill Center for Biomolecular Sciences, Bloomington, Indiana 47405, USA
| | - Stephanie E Mauthner
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
- Gill Center for Biomolecular Sciences, Bloomington, Indiana 47405, USA
| | - W Daniel Tracey
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
- Gill Center for Biomolecular Sciences, Bloomington, Indiana 47405, USA
| |
Collapse
|
5
|
Ai W, Wu J, Long Y, Song K. A Rolling Light-Driven Pneumatic Soft Actuator Based on Liquid-Gas Phase Change. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418218. [PMID: 39924788 DOI: 10.1002/adma.202418218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Indexed: 02/11/2025]
Abstract
Light-driven wireless actuators provide obvious advantages for remote control. However, traditional double-layer actuators are restricted to the thin film deformation mode when undertaking complex tasks. Here, an actuator is proposed that employs thermal strain and local photothermal effects induced by low boiling point liquids to generate asymmetry along the fiber axis, thereby causing elastic deformation of the fiber. Under continuous irradiation, the sustained elastic deformation results in dynamic frustration within the fiber, creating torque around its axis. Based on this principle, the fiber actuator fabricated in this study enables rolling translation, while the ring actuator achieves simultaneous rolling and lifting motion for object manipulation. Continuous rolling under light eliminates the need for complex light manipulation. This new movement method offers an insight for various application scenarios.
Collapse
Affiliation(s)
- Wenfei Ai
- CAS Key Laboratory of Bio-inspired Materials and Interfaces Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiaxin Wu
- CAS Key Laboratory of Bio-inspired Materials and Interfaces Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yue Long
- CAS Key Laboratory of Bio-inspired Materials and Interfaces Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City, Shandong Province, 256606, China
| | - Kai Song
- CAS Key Laboratory of Bio-inspired Materials and Interfaces Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City, Shandong Province, 256606, China
| |
Collapse
|
6
|
Lehman M, Barré C, Hasan MA, Flament B, Autran S, Dhiman N, Soba P, Masson JB, Jovanic T. Neural circuits underlying context-dependent competition between defensive actions in Drosophila larvae. Nat Commun 2025; 16:1120. [PMID: 39875414 PMCID: PMC11775277 DOI: 10.1038/s41467-025-56185-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
To ensure their survival, animals must be able to respond adaptively to threats within their environment. However, the precise neural circuit mechanisms that underlie flexible defensive behaviors remain poorly understood. Using neuronal manipulations, machine learning-based behavioral detection, electron microscopy (EM) connectomics and calcium imaging in Drosophila larvae, we map second-order interneurons that are differentially involved in the competition between defensive actions in response to competing aversive cues. We find that mechanosensory stimulation inhibits escape behaviors in favor of startle behaviors by influencing the activity of escape-promoting second-order interneurons. Stronger activation of those neurons inhibits startle-like behaviors. This suggests that competition between startle and escape behaviors occurs at the level of second-order interneurons. Finally, we identify a pair of descending neurons that promote startle behaviors and could modulate the escape sequence. Taken together, these results characterize the pathways involved in startle and escape competition, which is modulated by the sensory context.
Collapse
Affiliation(s)
- Maxime Lehman
- Université Paris-Saclay, CNRS, Institut des neurosciences Paris-Saclay, 91400, Saclay, France
| | - Chloé Barré
- Institut Pasteur, Université Paris Cité, IHU reConnect, IHU ICE, CNRS UMR 3571, Decision and Bayesian Computation, 75015, Paris, France
- Epiméthée, INRIA, 75013, Paris, France
| | - Md Amit Hasan
- Université Paris-Saclay, CNRS, Institut des neurosciences Paris-Saclay, 91400, Saclay, France
| | - Benjamin Flament
- Université Paris-Saclay, CNRS, Institut des neurosciences Paris-Saclay, 91400, Saclay, France
| | - Sandra Autran
- Université Paris-Saclay, CNRS, Institut des neurosciences Paris-Saclay, 91400, Saclay, France
| | - Neena Dhiman
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115, Bonn, Germany
| | - Peter Soba
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115, Bonn, Germany
| | - Jean-Baptiste Masson
- Institut Pasteur, Université Paris Cité, IHU reConnect, IHU ICE, CNRS UMR 3571, Decision and Bayesian Computation, 75015, Paris, France
- Epiméthée, INRIA, 75013, Paris, France
| | - Tihana Jovanic
- Université Paris-Saclay, CNRS, Institut des neurosciences Paris-Saclay, 91400, Saclay, France.
| |
Collapse
|
7
|
Patel AA, Cardona A, Cox DN. Neural substrates of cold nociception in Drosophila larva. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.07.31.551339. [PMID: 37577520 PMCID: PMC10418107 DOI: 10.1101/2023.07.31.551339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Metazoans detect and differentiate between innocuous (non-painful) and/or noxious (harmful) environmental cues using primary sensory neurons, which serve as the first node in a neural network that computes stimulus specific behaviors to either navigate away from injury-causing conditions or to perform protective behaviors that mitigate extensive injury. The ability of an animal to detect and respond to various sensory stimuli depends upon molecular diversity in the primary sensors and the underlying neural circuitry responsible for the relevant behavioral action selection. Recent studies in Drosophila larvae have revealed that somatosensory class III multidendritic (CIII md) neurons function as multimodal sensors regulating distinct behavioral responses to innocuous mechanical and nociceptive thermal stimuli. Recent advances in circuit bases of behavior have identified and functionally validated Drosophila larval somatosensory circuitry involved in innocuous (mechanical) and noxious (heat and mechanical) cues. However, central processing of cold nociceptive cues remained unexplored. We implicate multisensory integrators (Basins), premotor (Down-and-Back) and projection (A09e and TePns) neurons as neural substrates required for cold-evoked behavioral and calcium responses. Neural silencing of cell types downstream of CIII md neurons led to significant reductions in cold-evoked behaviors and neural co-activation of CIII md neurons plus additional cell types facilitated larval contraction (CT) responses. Further, we demonstrate that optogenetic activation of CIII md neurons evokes calcium increases in these neurons. Finally, we characterize the premotor to motor neuron network underlying cold-evoked CT and delineate the muscular basis of CT response. Collectively, we demonstrate how Drosophila larvae process cold stimuli through functionally diverse somatosensory circuitry responsible for generating stimulus-specific behaviors.
Collapse
Affiliation(s)
- Atit A. Patel
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Albert Cardona
- HHMI Janelia Research Campus, Ashburn, VA, USA
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Physiology, Development, and Neuroscience, University of Cambridge, UK
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
8
|
Gualtieri C, Vonhoff FJ. Visualization of Synapses in Larval Stages of Drosophila melanogaster Using the GRASP Technique. Methods Mol Biol 2025; 2910:253-262. [PMID: 40220104 DOI: 10.1007/978-1-0716-4446-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
The flow of information within the nervous system occurs via precise connections between synaptic partners. In recent years, the development of various methods to visualize synaptic contacts has helped elucidate the connectivity within complex neuronal networks. One such method is the GRASP (GFP Reconstitution Across Synaptic Partners) technique that consists of the expression of a portion of the green fluorescent protein (GFP) at each side of the synapse, allowing the reconstitution of green fluorescence depending on the proximity of the cells expressing such tools. In Drosophila, various studies have shown the successful application of GRASP in adult flies to identify synaptic partners, whereas its use at earlier stages such as in first instar larval stages remains less common. Therefore, we provide here a detailed protocol for the visualization of GRASP-based neuronal contacts within previously established synaptic partners in first and third instar larvae.
Collapse
Affiliation(s)
- Claudia Gualtieri
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), Baltimore, MD, USA
| | - Fernando J Vonhoff
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), Baltimore, MD, USA.
| |
Collapse
|
9
|
Sitaula A, Huang Y, Zarin A. Application of a Dual Optogenetic Silencing-Activation Protocol to Map Motor Neurons Driving Rolling Escape Behavior in Drosophila Larvae. Bio Protoc 2024; 14:e5131. [PMID: 39711882 PMCID: PMC11659774 DOI: 10.21769/bioprotoc.5131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 12/24/2024] Open
Abstract
Drosophila larvae exhibit rolling motor behavior as an escape response to avoid predators and painful stimuli. We introduce an accessible method for applying optogenetics to study the motor circuits driving rolling behavior. For this, we simultaneously implement the Gal4-UAS and LexA-Aop binary systems to express two distinct optogenetic channels, GtACR and Chrimson, in motor neuron (MN) subsets and rolling command neurons (Goro), respectively. Upon exposure to white LED light, Chrimson permits the influx of positive ions into Goro neurons, leading to depolarization, whereas GtACR mediates chloride influx into MNs, resulting in hyperpolarization. This method allows researchers to selectively activate certain neurons while simultaneously inhibiting others within a circuit of interest, offering a unique advantage over current optogenetic approaches, which often utilize a single type of optogenetic actuator. Here, we provide a detailed protocol for the dual silencing-activation approach using GtACR and Chrimson optogenetic channels and present a robust methodological framework for investigating the neuromuscular basis of rolling in larvae. Our cost-effective and scalable approach utilizes readily accessible equipment and can be applied to study other locomotor behaviors in Drosophila larvae, thereby enhancing our understanding of the neural circuit mechanisms underlying sensorimotor transformation. Key features • Enables real-time manipulation of neural activity, providing insights into the immediate effects of neuronal activation and silencing on larval behavior. • The protocol is adaptable to different experimental setups, allowing researchers to extend its application to other sensory modalities or behavioral assays. • Offers a standardized approach to studying nociceptive behaviors.
Collapse
Affiliation(s)
- Ankura Sitaula
- Biology Graduate Program, Texas A&M University, College Station, TX, USA
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Yuhan Huang
- Biology Graduate Program, Texas A&M University, College Station, TX, USA
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Aref Zarin
- Department of Biology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
10
|
Zhu J, Boivin JC, Garner A, Ning J, Zhao YQ, Ohyama T. Feedback inhibition by a descending GABAergic neuron regulates timing of escape behavior in Drosophila larvae. eLife 2024; 13:RP93978. [PMID: 39196635 DOI: 10.7554/elife.93978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
Escape behaviors help animals avoid harm from predators and other threats in the environment. Successful escape relies on integrating information from multiple stimulus modalities (of external or internal origin) to compute trajectories toward safe locations, choose between actions that satisfy competing motivations, and execute other strategies that ensure survival. To this end, escape behaviors must be adaptive. When a Drosophila melanogaster larva encounters a noxious stimulus, such as the focal pressure a parasitic wasp applies to the larval cuticle via its ovipositor, it initiates a characteristic escape response. The escape sequence consists of an initial abrupt bending, lateral rolling, and finally rapid crawling. Previous work has shown that the detection of noxious stimuli primarily relies on class IV multi-dendritic arborization neurons (Class IV neurons) located beneath the body wall, and more recent studies have identified several important components in the nociceptive neural circuitry involved in rolling. However, the neural mechanisms that underlie the rolling-escape sequence remain unclear. Here, we present both functional and anatomical evidence suggesting that bilateral descending neurons within the subesophageal zone of D. melanogaster larva play a crucial role in regulating the termination of rolling and subsequent transition to escape crawling. We demonstrate that these descending neurons (designated SeIN128) are inhibitory and receive inputs from a second-order interneuron upstream (Basin-2) and an ascending neuron downstream of Basin-2 (A00c). Together with optogenetic experiments showing that co-activation of SeIN128 neurons and Basin-2 influence the temporal dynamics of rolling, our findings collectively suggest that the ensemble of SeIN128, Basin-2, and A00c neurons forms a GABAergic feedback loop onto Basin-2, which inhibits rolling and thereby facilitates the shift to escape crawling.
Collapse
Affiliation(s)
- Jiayi Zhu
- Department of Biology, McGill University, Montreal, Canada
- Integrated Program of Neuroscience, McGill University, Montreal, Canada
| | - Jean-Christophe Boivin
- Department of Biology, McGill University, Montreal, Canada
- Integrated Program of Neuroscience, McGill University, Montreal, Canada
| | - Alastair Garner
- Department of Biology, McGill University, Montreal, Canada
- Integrated Program of Neuroscience, McGill University, Montreal, Canada
| | - Jing Ning
- Department of Biology, McGill University, Montreal, Canada
| | - Yi Q Zhao
- Department of Biology, McGill University, Montreal, Canada
| | - Tomoko Ohyama
- Department of Biology, McGill University, Montreal, Canada
- Alan Edwards Center for Research on Pain, McGill University, Montreal, Canada
| |
Collapse
|
11
|
Kaneko T, Li R, He Q, Yang L, Ye B. Transsynaptic BMP Signaling Regulates Fine-Scale Topography between Adjacent Sensory Neurons. eNeuro 2024; 11:ENEURO.0322-24.2024. [PMID: 39137988 PMCID: PMC11360983 DOI: 10.1523/eneuro.0322-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
Sensory axons projecting to the central nervous system are organized into topographic maps that represent the locations of sensory stimuli. In some sensory systems, even adjacent sensory axons are arranged topographically, forming "fine-scale" topographic maps. Although several broad molecular gradients are known to instruct coarse topography, we know little about the molecular signaling that regulates fine-scale topography at the level of two adjacent axons. Here, we provide evidence that transsynaptic bone morphogenetic protein (BMP) signaling mediates local interneuronal communication to regulate fine-scale topography in the nociceptive system of Drosophila larvae. We first show that the topographic separation of the axon terminals of adjacent nociceptors requires their common postsynaptic target, the A08n neurons. This phenotype is recapitulated by knockdown of the BMP ligand, Decapentaplegic (Dpp), in these neurons. In addition, removing the Type 2 BMP receptors or their effector (Mad transcription factor) in single nociceptors impairs the fine-scale topography, suggesting the contribution of BMP signaling originated from A08n. This signaling is likely mediated by phospho-Mad in the presynaptic terminals of nociceptors to ensure local interneuronal communication. Finally, reducing Dpp levels in A08n reduces the nociceptor-A08n synaptic contacts. Our data support that transsynaptic BMP signaling establishes the fine-scale topography by facilitating the formation of topographically correct synapses. Local BMP signaling for synapse formation may be a developmental strategy that independently regulates neighboring axon terminals for fine-scale topography.
Collapse
Affiliation(s)
- Takuya Kaneko
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Ruonan Li
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
- School of Medicine, Dalian University, Dalian 116622, China
| | - Qun He
- School of Medicine, Dalian University, Dalian 116622, China
| | - Limin Yang
- School of Medicine, Dalian University, Dalian 116622, China
| | - Bing Ye
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
12
|
Cooney PC, Huang Y, Li W, Perera DM, Hormigo R, Tabachnik T, Godage IS, Hillman EMC, Grueber WB, Zarin AA. Neuromuscular basis of Drosophila larval rolling escape behavior. Proc Natl Acad Sci U S A 2023; 120:e2303641120. [PMID: 38096410 PMCID: PMC10743538 DOI: 10.1073/pnas.2303641120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 10/06/2023] [Indexed: 12/18/2023] Open
Abstract
When threatened by dangerous or harmful stimuli, animals engage in diverse forms of rapid escape behaviors. In Drosophila larvae, one type of escape response involves C-shaped bending and lateral rolling followed by rapid forward crawling. The sensory circuitry that promotes larval escape has been extensively characterized; however, the motor programs underlying rolling are unknown. Here, we characterize the neuromuscular basis of rolling escape behavior. We used high-speed, volumetric, Swept Confocally Aligned Planar Excitation (SCAPE) microscopy to image muscle activity during larval rolling. Unlike sequential peristaltic muscle contractions that progress from segment to segment during forward and backward crawling, muscle activity progresses circumferentially during bending and rolling escape behavior. We propose that progression of muscular contraction around the larva's circumference results in a transient misalignment between weight and the ground support forces, which generates a torque that induces stabilizing body rotation. Therefore, successive cycles of slight misalignment followed by reactive aligning rotation lead to continuous rolling motion. Supporting our biomechanical model, we found that disrupting the activity of muscle groups undergoing circumferential contraction progression leads to rolling defects. We use EM connectome data to identify premotor to motor connectivity patterns that could drive rolling behavior and perform neural silencing approaches to demonstrate the crucial role of a group of glutamatergic premotor neurons in rolling. Our data reveal body-wide muscle activity patterns and putative premotor circuit organization for execution of the rolling escape response.
Collapse
Affiliation(s)
- Patricia C. Cooney
- Grueber Laboratory, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY10027
- Department of Neuroscience, Columbia University, New York, NY10027
| | - Yuhan Huang
- Department of Biology, Texas A&M University, College Station, TX77843
- Zarin Laboratory, Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX77843
| | - Wenze Li
- Laboratory for Functional Optical Imaging, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY10027
- Department of Electrical Engineering, Columbia University, New York, NY10027
| | - Dulanjana M. Perera
- Department of Multidisciplinary Engineering, Texas A&M University, College Station, TX77843
| | - Richard Hormigo
- Grueber Laboratory, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY10027
| | - Tanya Tabachnik
- Grueber Laboratory, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY10027
| | - Isuru S. Godage
- Department of Multidisciplinary Engineering, Texas A&M University, College Station, TX77843
- Department of Engineering Technology and Industrial Distribution, Texas A&M University, College Station, TX77843
- J. Mike Walker ‘66 Department of Mechanical Engineering, Texas A&M University, College Station, TX77843
| | - Elizabeth M. C. Hillman
- Laboratory for Functional Optical Imaging, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY10027
- Department of Biomedical Engineering, Columbia University, New York, NY10027
- Laboratory for Functional Optical Imaging, Kavli Institute for Brain Science, Columbia University, New York, NY10032
| | - Wesley B. Grueber
- Grueber Laboratory, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY10027
- Department of Neuroscience, Columbia University, New York, NY10027
- Department of Physiology and Cellular Biophysics, Jerome L. Greene Science Center, New York, NY10027
| | - Aref A. Zarin
- Department of Biology, Texas A&M University, College Station, TX77843
- Zarin Laboratory, Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX77843
| |
Collapse
|
13
|
Cooney PC, Huang Y, Li W, Perera DM, Hormigo R, Tabachnik T, Godage I, Hillman EMC, Grueber WB, Zarin AA. Neuromuscular Basis of Drosophila larval rolling escape behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526733. [PMID: 36778508 PMCID: PMC9915593 DOI: 10.1101/2023.02.01.526733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
When threatened by dangerous or harmful stimuli, animals engage in diverse forms of rapid escape behaviors. In Drosophila larvae, one type of escape response involves C-shaped bending and lateral rolling followed by rapid forward crawling. The sensory circuitry that promotes larval escape has been extensively characterized; however, the motor programs underlying rolling are unknown. Here, we characterize the neuromuscular basis of rolling escape behavior. We used high-speed, volumetric, Swept Confocally-Aligned Planar Excitation (SCAPE) microscopy to image muscle activity during larval rolling. Unlike sequential peristaltic muscle contractions that progress from segment to segment during forward and backward crawling, the muscle activity progresses circumferentially during bending and rolling escape behavior. We propose that progression of muscular contraction around the larval circumference results in a transient misalignment between weight and the ground support forces, which generates a torque that induces stabilizing body rotation. Therefore, successive cycles of slight misalignment followed by reactive aligning rotation lead to continuous rolling motion. Supporting our biomechanical model, we found that disrupting the activity of muscle groups undergoing circumferential contraction progression lead to rolling defects. We use EM connectome data to identify premotor to motor connectivity patterns that could drive rolling behavior, and perform neural silencing approaches to demonstrate the crucial role of a group of glutamatergic premotor neurons in rolling. Our data reveal body-wide muscle activity patterns and putative premotor circuit organization for execution of the rolling escape response.
Collapse
|
14
|
Kohsaka H. Linking neural circuits to the mechanics of animal behavior in Drosophila larval locomotion. Front Neural Circuits 2023; 17:1175899. [PMID: 37711343 PMCID: PMC10499525 DOI: 10.3389/fncir.2023.1175899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/13/2023] [Indexed: 09/16/2023] Open
Abstract
The motions that make up animal behavior arise from the interplay between neural circuits and the mechanical parts of the body. Therefore, in order to comprehend the operational mechanisms governing behavior, it is essential to examine not only the underlying neural network but also the mechanical characteristics of the animal's body. The locomotor system of fly larvae serves as an ideal model for pursuing this integrative approach. By virtue of diverse investigation methods encompassing connectomics analysis and quantification of locomotion kinematics, research on larval locomotion has shed light on the underlying mechanisms of animal behavior. These studies have elucidated the roles of interneurons in coordinating muscle activities within and between segments, as well as the neural circuits responsible for exploration. This review aims to provide an overview of recent research on the neuromechanics of animal locomotion in fly larvae. We also briefly review interspecific diversity in fly larval locomotion and explore the latest advancements in soft robots inspired by larval locomotion. The integrative analysis of animal behavior using fly larvae could establish a practical framework for scrutinizing the behavior of other animal species.
Collapse
Affiliation(s)
- Hiroshi Kohsaka
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo, Japan
- Department of Complexity Science and Engineering, Graduate School of Frontier Science, The University of Tokyo, Chiba, Japan
| |
Collapse
|
15
|
Pedigo BD, Winding M, Priebe CE, Vogelstein JT. Bisected graph matching improves automated pairing of bilaterally homologous neurons from connectomes. Netw Neurosci 2023; 7:522-538. [PMID: 37409218 PMCID: PMC10319359 DOI: 10.1162/netn_a_00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/13/2022] [Indexed: 09/19/2024] Open
Abstract
Graph matching algorithms attempt to find the best correspondence between the nodes of two networks. These techniques have been used to match individual neurons in nanoscale connectomes-in particular, to find pairings of neurons across hemispheres. However, since graph matching techniques deal with two isolated networks, they have only utilized the ipsilateral (same hemisphere) subgraphs when performing the matching. Here, we present a modification to a state-of-the-art graph matching algorithm that allows it to solve what we call the bisected graph matching problem. This modification allows us to leverage the connections between the brain hemispheres when predicting neuron pairs. Via simulations and experiments on real connectome datasets, we show that this approach improves matching accuracy when sufficient edge correlation is present between the contralateral (between hemisphere) subgraphs. We also show how matching accuracy can be further improved by combining our approach with previously proposed extensions to graph matching, which utilize edge types and previously known neuron pairings. We expect that our proposed method will improve future endeavors to accurately match neurons across hemispheres in connectomes, and be useful in other applications where the bisected graph matching problem arises.
Collapse
|
16
|
Li K, Tsukasa Y, Kurio M, Maeta K, Tsumadori A, Baba S, Nishimura R, Murakami A, Onodera K, Morimoto T, Uemura T, Usui T. Belly roll, a GPI-anchored Ly6 protein, regulates Drosophila melanogaster escape behaviors by modulating the excitability of nociceptive peptidergic interneurons. eLife 2023; 12:83856. [PMID: 37309249 DOI: 10.7554/elife.83856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 05/13/2023] [Indexed: 06/14/2023] Open
Abstract
Appropriate modulation of escape behaviors in response to potentially damaging stimuli is essential for survival. Although nociceptive circuitry has been studied, it is poorly understood how genetic contexts affect relevant escape responses. Using an unbiased genome-wide association analysis, we identified an Ly6/α-neurotoxin family protein, Belly roll (Bero), which negatively regulates Drosophila nociceptive escape behavior. We show that Bero is expressed in abdominal leucokinin-producing neurons (ABLK neurons) and bero knockdown in ABLK neurons resulted in enhanced escape behavior. Furthermore, we demonstrated that ABLK neurons responded to activation of nociceptors and initiated the behavior. Notably, bero knockdown reduced persistent neuronal activity and increased evoked nociceptive responses in ABLK neurons. Our findings reveal that Bero modulates an escape response by regulating distinct neuronal activities in ABLK neurons.
Collapse
Affiliation(s)
- Kai Li
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yuma Tsukasa
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Misato Kurio
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kaho Maeta
- Faculty of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Shumpei Baba
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Risa Nishimura
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | - Koun Onodera
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takako Morimoto
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Kyoto, Japan
| | - Tadashi Uemura
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Research Center for Dynamic Living Systems, Kyoto University, Kyoto, Japan
| | - Tadao Usui
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
17
|
Oikawa I, Kondo S, Hashimoto K, Yoshida A, Hamajima M, Tanimoto H, Furukubo-Tokunaga K, Honjo K. A descending inhibitory mechanism of nociception mediated by an evolutionarily conserved neuropeptide system in Drosophila. eLife 2023; 12:RP85760. [PMID: 37310871 DOI: 10.7554/elife.85760] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023] Open
Abstract
Nociception is a neural process that animals have developed to avoid potentially tissue-damaging stimuli. While nociception is triggered in the peripheral nervous system, its modulation by the central nervous system is a critical process in mammals, whose dysfunction has been extensively implicated in chronic pain pathogenesis. The peripheral mechanisms of nociception are largely conserved across the animal kingdom. However, it is unclear whether the brain-mediated modulation is also conserved in non-mammalian species. Here, we show that Drosophila has a descending inhibitory mechanism of nociception from the brain, mediated by the neuropeptide Drosulfakinin (DSK), a homolog of cholecystokinin (CCK) that plays an important role in the descending control of nociception in mammals. We found that mutants lacking dsk or its receptors are hypersensitive to noxious heat. Through a combination of genetic, behavioral, histological, and Ca2+ imaging analyses, we subsequently revealed neurons involved in DSK-mediated nociceptive regulation at a single-cell resolution and identified a DSKergic descending neuronal pathway that inhibits nociception. This study provides the first evidence for a descending modulatory mechanism of nociception from the brain in a non-mammalian species that is mediated by the evolutionarily conserved CCK system, raising the possibility that the descending inhibition is an ancient mechanism to regulate nociception.
Collapse
Affiliation(s)
- Izumi Oikawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Shu Kondo
- Faculty of Advanced Engineering, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Kao Hashimoto
- College of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Akiho Yoshida
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Megumi Hamajima
- Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | - Ken Honjo
- Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
18
|
Zhu J, Boivin JC, Pang S, Xu CS, Lu Z, Saalfeld S, Hess HF, Ohyama T. Comparative connectomics and escape behavior in larvae of closely related Drosophila species. Curr Biol 2023:S0960-9822(23)00675-9. [PMID: 37285846 DOI: 10.1016/j.cub.2023.05.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 05/02/2023] [Accepted: 05/17/2023] [Indexed: 06/09/2023]
Abstract
Evolution has generated an enormous variety of morphological, physiological, and behavioral traits in animals. How do behaviors evolve in different directions in species equipped with similar neurons and molecular components? Here we adopted a comparative approach to investigate the similarities and differences of escape behaviors in response to noxious stimuli and their underlying neural circuits between closely related drosophilid species. Drosophilids show a wide range of escape behaviors in response to noxious cues, including escape crawling, stopping, head casting, and rolling. Here we find that D. santomea, compared with its close relative D. melanogaster, shows a higher probability of rolling in response to noxious stimulation. To assess whether this behavioral difference could be attributed to differences in neural circuitry, we generated focused ion beam-scanning electron microscope volumes of the ventral nerve cord of D. santomea to reconstruct the downstream partners of mdIV, a nociceptive sensory neuron in D. melanogaster. Along with partner interneurons of mdVI (including Basin-2, a multisensory integration neuron necessary for rolling) previously identified in D. melanogaster, we identified two additional partners of mdVI in D. santomea. Finally, we showed that joint activation of one of the partners (Basin-1) and a common partner (Basin-2) in D. melanogaster increased rolling probability, suggesting that the high rolling probability in D. santomea is mediated by the additional activation of Basin-1 by mdIV. These results provide a plausible mechanistic explanation for how closely related species exhibit quantitative differences in the likelihood of expressing the same behavior.
Collapse
Affiliation(s)
- Jiayi Zhu
- Department of Biology, McGill University, Docteur Penfield, Montreal, QC H3A 1B1, Canada; Integrated Program of Neuroscience, McGill University, Pine Avenue W., Montreal, QC H3A 1A1, Canada
| | - Jean-Christophe Boivin
- Department of Biology, McGill University, Docteur Penfield, Montreal, QC H3A 1B1, Canada; Integrated Program of Neuroscience, McGill University, Pine Avenue W., Montreal, QC H3A 1A1, Canada
| | - Song Pang
- Janelia Research Campus, Howard Hughes Medical Institute, Helix Drive, Ashburn, VA 20147, USA
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Helix Drive, Ashburn, VA 20147, USA
| | - Zhiyuan Lu
- Janelia Research Campus, Howard Hughes Medical Institute, Helix Drive, Ashburn, VA 20147, USA
| | - Stephan Saalfeld
- Janelia Research Campus, Howard Hughes Medical Institute, Helix Drive, Ashburn, VA 20147, USA
| | - Harald F Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Helix Drive, Ashburn, VA 20147, USA
| | - Tomoko Ohyama
- Department of Biology, McGill University, Docteur Penfield, Montreal, QC H3A 1B1, Canada; Alan Edwards Center for Research on Pain, McGill University, University Street, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
19
|
Hertzler JI, Bernard AR, Rolls MM. Dendrite regeneration mediates functional recovery after complete dendrite removal. Dev Biol 2023; 497:18-25. [PMID: 36870669 PMCID: PMC10073339 DOI: 10.1016/j.ydbio.2023.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
Unlike many cell types, neurons are not typically replaced if damaged. Therefore, regeneration of damaged cellular domains is critical for maintenance of neuronal function. While axon regeneration has been documented for several hundred years, it has only recently become possible to determine whether neurons respond to dendrite removal with regeneration. Regrowth of dendrite arbors has been documented in invertebrate and vertebrate model systems, but whether it leads to functional restoration of a circuit remains unknown. To test whether dendrite regeneration restores function, we used larval Drosophila nociceptive neurons. Their dendrites detect noxious stimuli to initiate escape behavior. Previous studies of Drosophila sensory neurons have shown that dendrites of single neurons regrow after laser severing. We removed dendrites from 16 neurons per animal to clear most of the dorsal surface of nociceptive innervation. As expected, this reduced aversive responses to noxious touch. Surprisingly, behavior was completely restored 24 h after injury, at the stage when dendrite regeneration has begun, but the new arbor has only covered a small portion of its former territory. This behavioral recovery required regenerative outgrowth as it was eliminated in a genetic background in which new growth is blocked. We conclude that dendrite regeneration can restore behavior.
Collapse
Affiliation(s)
- J Ian Hertzler
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, University Park, PA, 16802, USA
| | - Annabelle R Bernard
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, University Park, PA, 16802, USA
| | - Melissa M Rolls
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, University Park, PA, 16802, USA.
| |
Collapse
|
20
|
Pan G, Li R, Xu G, Weng S, Yang XL, Yang L, Ye B. Cross-modal modulation gates nociceptive inputs in Drosophila. Curr Biol 2023; 33:1372-1380.e4. [PMID: 36893758 PMCID: PMC10089977 DOI: 10.1016/j.cub.2023.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/24/2022] [Accepted: 02/09/2023] [Indexed: 03/10/2023]
Abstract
Animals' response to a stimulus in one sensory modality is usually influenced by other modalities.1 One important type of multisensory integration is the cross-modal modulation, in which one sensory modality modulates (typically inhibits) another. Identification of the mechanisms underlying cross-modal modulations is crucial for understanding how sensory inputs shape animals' perception and for understanding sensory processing disorders.2,3,4 However, the synaptic and circuit mechanisms that underlie cross-modal modulation are poorly understood. This is due to the difficulty of separating cross-modal modulation from multisensory integrations in neurons that receive excitatory inputs from two or more sensory modalities5-in which case it is unclear what the modulating or modulated modality is. In this study, we report a unique system for studying cross-modal modulation by taking advantage of the genetic resources in Drosophila. We show that gentle mechanical stimuli inhibit nociceptive responses in Drosophila larvae. Low-threshold mechanosensory neurons inhibit a key second-order neuron in the nociceptive pathway through metabotropic GABA receptors on nociceptor synaptic terminals. Strikingly, this cross-modal inhibition is only effective when nociceptor inputs are weak, thus serving as a gating mechanism for filtering out weak nociceptive inputs. Our findings unveil a novel cross-modal gating mechanism for sensory pathways.
Collapse
Affiliation(s)
- Geng Pan
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ruonan Li
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; School of Medicine, Dalian University, Dalian, Liaoning 116622, China
| | - Guozhong Xu
- Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Shijun Weng
- Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Xiong-Li Yang
- Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Limin Yang
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; School of Medicine, Dalian University, Dalian, Liaoning 116622, China.
| | - Bing Ye
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
21
|
Boivin JC, Zhu J, Ohyama T. Nociception in fruit fly larvae. FRONTIERS IN PAIN RESEARCH 2023; 4:1076017. [PMID: 37006412 PMCID: PMC10063880 DOI: 10.3389/fpain.2023.1076017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
Nociception, the process of encoding and processing noxious or painful stimuli, allows animals to detect and avoid or escape from potentially life-threatening stimuli. Here, we provide a brief overview of recent technical developments and studies that have advanced our understanding of the Drosophila larval nociceptive circuit and demonstrated its potential as a model system to elucidate the mechanistic basis of nociception. The nervous system of a Drosophila larva contains roughly 15,000 neurons, which allows for reconstructing the connectivity among them directly by transmission electron microscopy. In addition, the availability of genetic tools for manipulating the activity of individual neurons and recent advances in computational and high-throughput behavior analysis methods have facilitated the identification of a neural circuit underlying a characteristic nocifensive behavior. We also discuss how neuromodulators may play a key role in modulating the nociceptive circuit and behavioral output. A detailed understanding of the structure and function of Drosophila larval nociceptive neural circuit could provide insights into the organization and operation of pain circuits in mammals and generate new knowledge to advance the development of treatment options for pain in humans.
Collapse
Affiliation(s)
- Jean-Christophe Boivin
- Department of Biology, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Jiayi Zhu
- Department of Biology, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Tomoko Ohyama
- Department of Biology, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| |
Collapse
|
22
|
Winding M, Pedigo BD, Barnes CL, Patsolic HG, Park Y, Kazimiers T, Fushiki A, Andrade IV, Khandelwal A, Valdes-Aleman J, Li F, Randel N, Barsotti E, Correia A, Fetter RD, Hartenstein V, Priebe CE, Vogelstein JT, Cardona A, Zlatic M. The connectome of an insect brain. Science 2023; 379:eadd9330. [PMID: 36893230 PMCID: PMC7614541 DOI: 10.1126/science.add9330] [Citation(s) in RCA: 153] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 02/07/2023] [Indexed: 03/11/2023]
Abstract
Brains contain networks of interconnected neurons and so knowing the network architecture is essential for understanding brain function. We therefore mapped the synaptic-resolution connectome of an entire insect brain (Drosophila larva) with rich behavior, including learning, value computation, and action selection, comprising 3016 neurons and 548,000 synapses. We characterized neuron types, hubs, feedforward and feedback pathways, as well as cross-hemisphere and brain-nerve cord interactions. We found pervasive multisensory and interhemispheric integration, highly recurrent architecture, abundant feedback from descending neurons, and multiple novel circuit motifs. The brain's most recurrent circuits comprised the input and output neurons of the learning center. Some structural features, including multilayer shortcuts and nested recurrent loops, resembled state-of-the-art deep learning architectures. The identified brain architecture provides a basis for future experimental and theoretical studies of neural circuits.
Collapse
Affiliation(s)
- Michael Winding
- University of Cambridge, Department of Zoology, Cambridge, UK
- MRC Laboratory of Molecular Biology, Neurobiology Division, Cambridge, UK
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Benjamin D. Pedigo
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, MD, USA
| | - Christopher L. Barnes
- MRC Laboratory of Molecular Biology, Neurobiology Division, Cambridge, UK
- University of Cambridge, Department of Physiology, Development, and Neuroscience, Cambridge, UK
| | - Heather G. Patsolic
- Johns Hopkins University, Department of Applied Mathematics and Statistics, Baltimore, MD, USA
- Accenture, Arlington, VA, USA
| | - Youngser Park
- Johns Hopkins University, Center for Imaging Science, Baltimore, MD, USA
| | - Tom Kazimiers
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- kazmos GmbH, Dresden, Germany
| | - Akira Fushiki
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Ingrid V. Andrade
- University of California Los Angeles, Department of Molecular, Cell and Developmental Biology, Los Angeles, CA, USA
| | - Avinash Khandelwal
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Javier Valdes-Aleman
- University of Cambridge, Department of Zoology, Cambridge, UK
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Feng Li
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Nadine Randel
- University of Cambridge, Department of Zoology, Cambridge, UK
- MRC Laboratory of Molecular Biology, Neurobiology Division, Cambridge, UK
| | - Elizabeth Barsotti
- MRC Laboratory of Molecular Biology, Neurobiology Division, Cambridge, UK
- University of Cambridge, Department of Physiology, Development, and Neuroscience, Cambridge, UK
| | - Ana Correia
- MRC Laboratory of Molecular Biology, Neurobiology Division, Cambridge, UK
- University of Cambridge, Department of Physiology, Development, and Neuroscience, Cambridge, UK
| | - Richard D. Fetter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Stanford University, Stanford, CA, USA
| | - Volker Hartenstein
- University of California Los Angeles, Department of Molecular, Cell and Developmental Biology, Los Angeles, CA, USA
| | - Carey E. Priebe
- Johns Hopkins University, Department of Applied Mathematics and Statistics, Baltimore, MD, USA
- Johns Hopkins University, Center for Imaging Science, Baltimore, MD, USA
| | - Joshua T. Vogelstein
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, MD, USA
- Johns Hopkins University, Center for Imaging Science, Baltimore, MD, USA
| | - Albert Cardona
- MRC Laboratory of Molecular Biology, Neurobiology Division, Cambridge, UK
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- University of Cambridge, Department of Physiology, Development, and Neuroscience, Cambridge, UK
| | - Marta Zlatic
- University of Cambridge, Department of Zoology, Cambridge, UK
- MRC Laboratory of Molecular Biology, Neurobiology Division, Cambridge, UK
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| |
Collapse
|
23
|
Galindo SE, Wood AJ, Cooney PC, Hammond LA, Grueber WB. Axon-axon interactions determine modality-specific wiring and subcellular synaptic specificity in a somatosensory circuit. Development 2023; 150:dev199832. [PMID: 36920224 PMCID: PMC10112896 DOI: 10.1242/dev.199832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 02/09/2023] [Indexed: 03/16/2023]
Abstract
Synaptic connections between neurons are often formed in precise subcellular regions of dendritic arbors with implications for information processing within neurons. Cell-cell interactions are widely important for circuit wiring; however, their role in subcellular specificity is not well understood. We studied the role of axon-axon interactions in precise targeting and subcellular wiring of Drosophila somatosensory circuitry. Axons of nociceptive and gentle touch neurons terminate in adjacent, non-overlapping layers in the central nervous system (CNS). Nociceptor and touch receptor axons synapse onto distinct dendritic regions of a second-order interneuron, the dendrites of which span these layers, forming touch-specific and nociceptive-specific connectivity. We found that nociceptor ablation elicited extension of touch receptor axons and presynapses into the nociceptor recipient region, supporting a role for axon-axon interactions in somatosensory wiring. Conversely, touch receptor ablation did not lead to expansion of nociceptor axons, consistent with unidirectional axon-axon interactions. Live imaging provided evidence for sequential arborization of nociceptive and touch neuron axons in the CNS. We propose that axon-axon interactions and modality-specific timing of axon targeting play key roles in subcellular connection specificity of somatosensory circuitry.
Collapse
Affiliation(s)
- Samantha E. Galindo
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Abby J. Wood
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10027, USA
| | - Patricia C. Cooney
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10027, USA
| | - Luke A. Hammond
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Wesley B. Grueber
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10027, USA
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
24
|
Galindo SE, Shin GJE, Millard SS, Grueber WB. Regulated alternative splicing of Dscam2 is required for somatosensory circuit wiring. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530539. [PMID: 36909552 PMCID: PMC10002739 DOI: 10.1101/2023.03.01.530539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Axon and dendrite placement and connectivity is guided by a wide range of secreted and surface molecules in the developing nervous system. Nevertheless, the extraordinary complexity of connections in the brain requires that this repertoire be further diversified to precisely and uniquely regulate cell-cell interactions. One important mechanism for molecular diversification is alternative splicing. Drosophila Down syndrome cell adhesion molecule (Dscam2) undergoes cell type-specific alternative splicing to produce two isoform-specific homophilic binding proteins. Regulated alternative splicing of Dscam2 is important for dendrite and axon patterning, but how this translates to circuit wiring and animal behavior is not well understood. Here, we examined the role of cell-type specific expression of Dscam2 isoforms in regulating synaptic partner selection in the larval somatosensory system. We found that synaptic partners in the nociceptive circuit express different Dscam2 isoforms. Forcing synaptic partners to express a common isoform resulted in nociceptive axon patterning defects and attenuated nocifensive behaviors, indicating that a role for Dscam2 alternative splicing is to ensure that synaptic partners do not express matching isoforms. These results point to a model in which regulated alternative splicing of Dscam2 across populations of neurons restricts connectivity to specific partners and prevents inappropriate synaptic connections.
Collapse
Affiliation(s)
- Samantha E. Galindo
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Grace Ji-eun Shin
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - S. Sean Millard
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Wesley B. Grueber
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Department of Neuroscience, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10027, USA
| |
Collapse
|
25
|
Santos-Silva T, Lopes CFB, Guimarães JDS, Valer FB, Kuhn GCSE, Romero TRL, Naves LA, Duarte IDG. Classical analgesic drugs modulate nociceptive-like escape behavior in Drosophila melanogaster larvae. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.91390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introduction: Nociceptive stimulus triggers escape responses in Drosophila melanogaster larvae, characterized by 360° rolling behavior along its own body axis. Therefore, it is possible to study analgesic drugs based on this stereotypical nociceptive-like escape behavior. Here, we aimed to develop an analgesic predictive validity test of thermal nociception through D. melanogaster larvae.
Materials and methods: We evaluated the effect of classical analgesics (morphine, dipyrone, acetylsalicylic acid (ASA) and dexamethasone (DXM)) in the rolling behavior latency of D. melanogaster larvae exposed to thermal-acute noxious stimulus and nociceptive sensitization paradigm. Drugs were injected into hemocoel (100 nL) before nociceptive measurement.
Results and discussion: Rolling behavior latency was increased by morphine (2, 4, 8 and 16 ng) in dose-dependent manner. Naloxone (4 ng) fully reversed maximum effect of morphine. Dipyrone (32, 64 and 128 ng) and DXM (8 and 16 ng) elicited dose-dependent antinociceptive effects. Exposure of larvae to 97% of maximal infrared intensity induced nociceptive sensitization, i.e., latency changed from 12 to 7.5 seconds. ASA (25, 50 and 100 ng) and DXM (4, 8 and 16 ng) were administered 150 min after nociceptive sensitization and displayed reverse sensitization in rapid onset (30 min after injection). DXM (16 ng), injected prior to nociceptive sensitization, displayed a delay in the onset of action (150 min after injection). Locomotor behaviors were not affected by analgesic substances.
Conclusion: Our findings open perspectives for evaluation and discovery of antinociceptive drugs using D. melanogaster larvae model.
Graphical abstract
Collapse
|
26
|
Patel AA, Sakurai A, Himmel NJ, Cox DN. Modality specific roles for metabotropic GABAergic signaling and calcium induced calcium release mechanisms in regulating cold nociception. Front Mol Neurosci 2022; 15:942548. [PMID: 36157080 PMCID: PMC9502035 DOI: 10.3389/fnmol.2022.942548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Calcium (Ca2+) plays a pivotal role in modulating neuronal-mediated responses to modality-specific sensory stimuli. Recent studies in Drosophila reveal class III (CIII) multidendritic (md) sensory neurons function as multimodal sensors regulating distinct behavioral responses to innocuous mechanical and nociceptive thermal stimuli. Functional analyses revealed CIII-mediated multimodal behavioral output is dependent upon activation levels with stimulus-evoked Ca2+ displaying relatively low vs. high intracellular levels in response to gentle touch vs. noxious cold, respectively. However, the mechanistic bases underlying modality-specific differential Ca2+ responses in CIII neurons remain incompletely understood. We hypothesized that noxious cold-evoked high intracellular Ca2+ responses in CIII neurons may rely upon Ca2+ induced Ca2+ release (CICR) mechanisms involving transient receptor potential (TRP) channels and/or metabotropic G protein coupled receptor (GPCR) activation to promote cold nociceptive behaviors. Mutant and/or CIII-specific knockdown of GPCR and CICR signaling molecules [GABA B -R2, Gαq, phospholipase C, ryanodine receptor (RyR) and Inositol trisphosphate receptor (IP3R)] led to impaired cold-evoked nociceptive behavior. GPCR mediated signaling, through GABA B -R2 and IP3R, is not required in CIII neurons for innocuous touch evoked behaviors. However, CICR via RyR is required for innocuous touch-evoked behaviors. Disruptions in GABA B -R2, IP3R, and RyR in CIII neurons leads to significantly lower levels of cold-evoked Ca2+ responses indicating GPCR and CICR signaling mechanisms function in regulating Ca2+ release. CIII neurons exhibit bipartite cold-evoked firing patterns, where CIII neurons burst during rapid temperature change and tonically fire during steady state cold temperatures. GABA B -R2 knockdown in CIII neurons resulted in disorganized firing patterns during cold exposure. We further demonstrate that application of GABA or the GABA B specific agonist baclofen potentiates cold-evoked CIII neuron activity. Upon ryanodine application, CIII neurons exhibit increased bursting activity and with CIII-specific RyR knockdown, there is an increase in cold-evoked tonic firing and decrease in bursting. Lastly, our previous studies implicated the TRPP channel Pkd2 in cold nociception, and here, we show that Pkd2 and IP3R genetically interact to specifically regulate cold-evoked behavior, but not innocuous mechanosensation. Collectively, these analyses support novel, modality-specific roles for metabotropic GABAergic signaling and CICR mechanisms in regulating intracellular Ca2+ levels and cold-evoked behavioral output from multimodal CIII neurons.
Collapse
Affiliation(s)
| | | | | | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
27
|
Giachello CNG, Hunter I, Pettini T, Coulson B, Knüfer A, Cachero S, Winding M, Arzan Zarin A, Kohsaka H, Fan YN, Nose A, Landgraf M, Baines RA. Electrophysiological Validation of Monosynaptic Connectivity between Premotor Interneurons and the aCC Motoneuron in the Drosophila Larval CNS. J Neurosci 2022; 42:6724-6738. [PMID: 35868863 PMCID: PMC9435966 DOI: 10.1523/jneurosci.2463-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/28/2022] [Accepted: 05/31/2022] [Indexed: 11/21/2022] Open
Abstract
The Drosophila connectome project aims to map the synaptic connectivity of entire larval and adult fly neural networks, which is essential for understanding nervous system development and function. So far, the project has produced an impressive amount of electron microscopy data that has facilitated reconstructions of specific synapses, including many in the larval locomotor circuit. While this breakthrough represents a technical tour de force, the data remain underutilized, partly because of a lack of functional validation of reconstructions. Attempts to validate connectivity posited by the connectome project, have mostly relied on behavioral assays and/or GFP reconstitution across synaptic partners (GRASP) or GCaMP imaging. While these techniques are useful, they have limited spatial or temporal resolution. Electrophysiological assays of synaptic connectivity overcome these limitations. Here, we combine patch-clamp recordings with optogenetic stimulation in male and female larvae, to test synaptic connectivity proposed by connectome reconstructions. Specifically, we use multiple driver lines to confirm that several connections between premotor interneurons and the anterior corner cell motoneuron are, as the connectome project suggests, monosynaptic. In contrast, our results also show that conclusions based on GRASP imaging may provide false-positive results regarding connectivity between cells. We also present a novel imaging tool, based on the same technology as our electrophysiology, as a favorable alternative to GRASP imaging. Finally, of eight Gal4 lines tested, five are reliably expressed in the premotor interneurons they are targeted to. Thus, our work highlights the need to confirm functional synaptic connectivity, driver line specificity, and use of appropriate genetic tools to support connectome projects.SIGNIFICANCE STATEMENT The Drosophila connectome project aims to provide a complete description of connectivity between neurons in an organism that presents experimental advantages over other models. It has reconstructed hundreds of thousands of synaptic connections of the fly larva by manual identification of anatomic landmarks present in serial section transmission electron microscopy (ssTEM) volumes of the larval CNS. We use a highly reliable electrophysiological approach to verify these connections, providing useful insight into the accuracy of work based on ssTEM. We also present a novel imaging tool for validating excitatory monosynaptic connections between cells and show that several genetic driver lines designed to target neurons of the larval connectome exhibit nonspecific and/or unreliable expression.
Collapse
Affiliation(s)
- Carlo N G Giachello
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
- Manchester Academic Health Science Centre, Manchester M13 9NQ, United Kingdom
| | - Iain Hunter
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
- Manchester Academic Health Science Centre, Manchester M13 9NQ, United Kingdom
| | - Tom Pettini
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - Bramwell Coulson
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
- Manchester Academic Health Science Centre, Manchester M13 9NQ, United Kingdom
| | - Athene Knüfer
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - Sebastian Cachero
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Michael Winding
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - Aref Arzan Zarin
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| | - Hiroshi Kohsaka
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Yuen Ngan Fan
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
- Manchester Academic Health Science Centre, Manchester M13 9NQ, United Kingdom
| | - Akinao Nose
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8561, Japan
| | - Matthias Landgraf
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - Richard A Baines
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
- Manchester Academic Health Science Centre, Manchester M13 9NQ, United Kingdom
| |
Collapse
|
28
|
Wertheim B. Adaptations and counter-adaptations in Drosophila host-parasitoid interactions: advances in the molecular mechanisms. CURRENT OPINION IN INSECT SCIENCE 2022; 51:100896. [PMID: 35240335 DOI: 10.1016/j.cois.2022.100896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Both hosts and parasitoids evolved a diverse array of traits and strategies for their antagonistic interactions, affecting their chances of encounter, attack and survival after parasitoid attack. This review summarizes the recent progress that has been made in elucidating the molecular mechanisms of these adaptations and counter-adaptations in various Drosophila host-parasitoid interactions. For the hosts, it focuses on the neurobiological and genetic control of strategies in Drosophila adults and larvae of avoidance or escape behaviours upon sensing the parasitoids, and the immunological defences involving diverse classes of haemocytes. For the parasitoids, it highlights their behavioural strategies in host finding, as well as the rich variety of venom components that evolved and were partially acquired through horizontal gene transfer. Recent studies revealed the mechanisms by which these venom components manipulate their parasitized hosts in exhibiting escape behaviour to avoid superparasitism, and their counter-strategies to evade or obstruct the hosts' immunological defences.
Collapse
Affiliation(s)
- Bregje Wertheim
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
29
|
He J, Li B, Han S, Zhang Y, Liu K, Yi S, Liu Y, Xiu M. Drosophila as a Model to Study the Mechanism of Nociception. Front Physiol 2022; 13:854124. [PMID: 35418874 PMCID: PMC8996152 DOI: 10.3389/fphys.2022.854124] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
Nociception refers to the process of encoding and processing noxious stimuli, which allow animals to detect and avoid potentially harmful stimuli. Several types of stimuli can trigger nociceptive sensory transduction, including thermal, noxious chemicals, and harsh mechanical stimulation that depend on the corresponding nociceptors. In view of the high evolutionary conservation of the mechanisms that govern nociception from Drosophila melanogaster to mammals, investigation in the fruit fly Drosophila help us understand how the sensory nervous system works and what happen in nociception. Here, we present an overview of currently identified conserved genetics of nociception, the nociceptive sensory neurons responsible for detecting noxious stimuli, and various assays for evaluating different nociception. Finally, we cover development of anti-pain drug using fly model. These comparisons illustrate the value of using Drosophila as model for uncovering nociception mechanisms, which are essential for identifying new treatment goals and developing novel analgesics that are applicable to human health.
Collapse
Affiliation(s)
- Jianzheng He
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China
| | - Botong Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shuzhen Han
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yuan Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Kai Liu
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Simeng Yi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China
- *Correspondence: Yongqi Liu,
| | - Minghui Xiu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
- Minghui Xiu,
| |
Collapse
|
30
|
Scibelli AE, Donatelli CM, Tidswell BK, Payton MR, Tytell ED, Trimmer BA. MONOLITh: a soft non-pneumatic foam robot with a functional mesh skin for use in delicate environments. Adv Robot 2022. [DOI: 10.1080/01691864.2022.2029764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
31
|
Imambocus BN, Zhou F, Formozov A, Wittich A, Tenedini FM, Hu C, Sauter K, Macarenhas Varela E, Herédia F, Casimiro AP, Macedo A, Schlegel P, Yang CH, Miguel-Aliaga I, Wiegert JS, Pankratz MJ, Gontijo AM, Cardona A, Soba P. A neuropeptidergic circuit gates selective escape behavior of Drosophila larvae. Curr Biol 2021; 32:149-163.e8. [PMID: 34798050 DOI: 10.1016/j.cub.2021.10.069] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 10/05/2021] [Accepted: 10/29/2021] [Indexed: 12/26/2022]
Abstract
Animals display selective escape behaviors when faced with environmental threats. Selection of the appropriate response by the underlying neuronal network is key to maximizing chances of survival, yet the underlying network mechanisms are so far not fully understood. Using synapse-level reconstruction of the Drosophila larval network paired with physiological and behavioral readouts, we uncovered a circuit that gates selective escape behavior for noxious light through acute and input-specific neuropeptide action. Sensory neurons required for avoidance of noxious light and escape in response to harsh touch, each converge on discrete domains of neuromodulatory hub neurons. We show that acute release of hub neuron-derived insulin-like peptide 7 (Ilp7) and cognate relaxin family receptor (Lgr4) signaling in downstream neurons are required for noxious light avoidance, but not harsh touch responses. Our work highlights a role for compartmentalized circuit organization and neuropeptide release from regulatory hubs, acting as central circuit elements gating escape responses.
Collapse
Affiliation(s)
- Bibi Nusreen Imambocus
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany; Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Fangmin Zhou
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany; Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Andrey Formozov
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Annika Wittich
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Federico M Tenedini
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Chun Hu
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Kathrin Sauter
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Ednilson Macarenhas Varela
- Integrative Biomedicine Laboratory, CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua do Instituto Bacteriológico 5, 1150-082 Lisbon, Portugal
| | - Fabiana Herédia
- Integrative Biomedicine Laboratory, CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua do Instituto Bacteriológico 5, 1150-082 Lisbon, Portugal
| | - Andreia P Casimiro
- Integrative Biomedicine Laboratory, CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua do Instituto Bacteriológico 5, 1150-082 Lisbon, Portugal
| | - André Macedo
- Integrative Biomedicine Laboratory, CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua do Instituto Bacteriológico 5, 1150-082 Lisbon, Portugal
| | - Philipp Schlegel
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Chung-Hui Yang
- Department of Neurobiology, Duke University Medical School, 427E Bryan Research, Durham, NC 27710, USA
| | - Irene Miguel-Aliaga
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - J Simon Wiegert
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Michael J Pankratz
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Alisson M Gontijo
- Integrative Biomedicine Laboratory, CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua do Instituto Bacteriológico 5, 1150-082 Lisbon, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Albert Cardona
- HHMI Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Department of Physiology, Development, and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Peter Soba
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany; Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany.
| |
Collapse
|
32
|
Hunter I, Coulson B, Zarin AA, Baines RA. The Drosophila Larval Locomotor Circuit Provides a Model to Understand Neural Circuit Development and Function. Front Neural Circuits 2021; 15:684969. [PMID: 34276315 PMCID: PMC8282269 DOI: 10.3389/fncir.2021.684969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
It is difficult to answer important questions in neuroscience, such as: "how do neural circuits generate behaviour?," because research is limited by the complexity and inaccessibility of the mammalian nervous system. Invertebrate model organisms offer simpler networks that are easier to manipulate. As a result, much of what we know about the development of neural circuits is derived from work in crustaceans, nematode worms and arguably most of all, the fruit fly, Drosophila melanogaster. This review aims to demonstrate the utility of the Drosophila larval locomotor network as a model circuit, to those who do not usually use the fly in their work. This utility is explored first by discussion of the relatively complete connectome associated with one identified interneuron of the locomotor circuit, A27h, and relating it to similar circuits in mammals. Next, it is developed by examining its application to study two important areas of neuroscience research: critical periods of development and interindividual variability in neural circuits. In summary, this article highlights the potential to use the larval locomotor network as a "generic" model circuit, to provide insight into mammalian circuit development and function.
Collapse
Affiliation(s)
- Iain Hunter
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Bramwell Coulson
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Aref Arzan Zarin
- Department of Biology, The Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Richard A Baines
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
33
|
Key B, Zalucki O, Brown DJ. Neural Design Principles for Subjective Experience: Implications for Insects. Front Behav Neurosci 2021; 15:658037. [PMID: 34025371 PMCID: PMC8131515 DOI: 10.3389/fnbeh.2021.658037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/07/2021] [Indexed: 02/04/2023] Open
Abstract
How subjective experience is realized in nervous systems remains one of the great challenges in the natural sciences. An answer to this question should resolve debate about which animals are capable of subjective experience. We contend that subjective experience of sensory stimuli is dependent on the brain's awareness of its internal neural processing of these stimuli. This premise is supported by empirical evidence demonstrating that disruption to either processing streams or awareness states perturb subjective experience. Given that the brain must predict the nature of sensory stimuli, we reason that conscious awareness is itself dependent on predictions generated by hierarchically organized forward models of the organism's internal sensory processing. The operation of these forward models requires a specialized neural architecture and hence any nervous system lacking this architecture is unable to subjectively experience sensory stimuli. This approach removes difficulties associated with extrapolations from behavioral and brain homologies typically employed in addressing whether an animal can feel. Using nociception as a model sensation, we show here that the Drosophila brain lacks the required internal neural connectivity to implement the computations required of hierarchical forward models. Consequently, we conclude that Drosophila, and those insects with similar neuroanatomy, do not subjectively experience noxious stimuli and therefore cannot feel pain.
Collapse
Affiliation(s)
- Brian Key
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Oressia Zalucki
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Deborah J. Brown
- School of Historical and Philosophical Inquiry, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
34
|
Integrins protect sensory neurons in models of paclitaxel-induced peripheral sensory neuropathy. Proc Natl Acad Sci U S A 2021; 118:2006050118. [PMID: 33876743 DOI: 10.1073/pnas.2006050118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major side effect from cancer treatment with no known method for prevention or cure in clinics. CIPN often affects unmyelinated nociceptive sensory terminals. Despite the high prevalence, molecular and cellular mechanisms that lead to CIPN are still poorly understood. Here, we used a genetically tractable Drosophila model and primary sensory neurons isolated from adult mouse to examine the mechanisms underlying CIPN and identify protective pathways. We found that chronic treatment of Drosophila larvae with paclitaxel caused degeneration and altered the branching pattern of nociceptive neurons, and reduced thermal nociceptive responses. We further found that nociceptive neuron-specific overexpression of integrins, which are known to support neuronal maintenance in several systems, conferred protection from paclitaxel-induced cellular and behavioral phenotypes. Live imaging and superresolution approaches provide evidence that paclitaxel treatment causes cellular changes that are consistent with alterations in endosome-mediated trafficking of integrins. Paclitaxel-induced changes in recycling endosomes precede morphological degeneration of nociceptive neuron arbors, which could be prevented by integrin overexpression. We used primary dorsal root ganglia (DRG) neuron cultures to test conservation of integrin-mediated protection. We show that transduction of a human integrin β-subunit 1 also prevented degeneration following paclitaxel treatment. Furthermore, endogenous levels of surface integrins were decreased in paclitaxel-treated mouse DRG neurons, suggesting that paclitaxel disrupts recycling in vertebrate sensory neurons. Altogether, our study supports conserved mechanisms of paclitaxel-induced perturbation of integrin trafficking and a therapeutic potential of restoring neuronal interactions with the extracellular environment to antagonize paclitaxel-induced toxicity in sensory neurons.
Collapse
|
35
|
Gowda SBM, Salim S, Mohammad F. Anatomy and Neural Pathways Modulating Distinct Locomotor Behaviors in Drosophila Larva. BIOLOGY 2021; 10:90. [PMID: 33504061 PMCID: PMC7910854 DOI: 10.3390/biology10020090] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/07/2020] [Accepted: 12/30/2020] [Indexed: 11/17/2022]
Abstract
The control of movements is a fundamental feature shared by all animals. At the most basic level, simple movements are generated by coordinated neural activity and muscle contraction patterns that are controlled by the central nervous system. How behavioral responses to various sensory inputs are processed and integrated by the downstream neural network to produce flexible and adaptive behaviors remains an intense area of investigation in many laboratories. Due to recent advances in experimental techniques, many fundamental neural pathways underlying animal movements have now been elucidated. For example, while the role of motor neurons in locomotion has been studied in great detail, the roles of interneurons in animal movements in both basic and noxious environments have only recently been realized. However, the genetic and transmitter identities of many of these interneurons remains unclear. In this review, we provide an overview of the underlying circuitry and neural pathways required by Drosophila larvae to produce successful movements. By improving our understanding of locomotor circuitry in model systems such as Drosophila, we will have a better understanding of how neural circuits in organisms with different bodies and brains lead to distinct locomotion types at the organism level. The understanding of genetic and physiological components of these movements types also provides directions to understand movements in higher organisms.
Collapse
Affiliation(s)
| | | | - Farhan Mohammad
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha 34110, Qatar; (S.B.M.G.); (S.S.)
| |
Collapse
|
36
|
Development of motor circuits: From neuronal stem cells and neuronal diversity to motor circuit assembly. Curr Top Dev Biol 2020; 142:409-442. [PMID: 33706923 DOI: 10.1016/bs.ctdb.2020.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this review, we discuss motor circuit assembly starting from neuronal stem cells. Until recently, studies of neuronal stem cells focused on how a relatively small pool of stem cells could give rise to a large diversity of different neuronal identities. Historically, neuronal identity has been assayed in embryos by gene expression, gross anatomical features, neurotransmitter expression, and physiological properties. However, these definitions of identity are largely unlinked to mature functional neuronal features relevant to motor circuits. Such mature neuronal features include presynaptic and postsynaptic partnerships, dendrite morphologies, as well as neuronal firing patterns and roles in behavior. This review focuses on recent work that links the specification of neuronal molecular identity in neuronal stem cells to mature, circuit-relevant identity specification. Specifically, these studies begin to address the question: to what extent are the decisions that occur during motor circuit assembly controlled by the same genetic information that generates diverse embryonic neuronal diversity? Much of the research addressing this question has been conducted using the Drosophila larval motor system. Here, we focus largely on Drosophila motor circuits and we point out parallels to other systems. And we highlight outstanding questions in the field. The main concepts addressed in this review are: (1) the description of temporal cohorts-novel units of developmental organization that link neuronal stem cell lineages to motor circuit configuration and (2) the discovery that temporal transcription factors expressed in neuronal stem cells control aspects of circuit assembly by controlling the size of temporal cohorts and influencing synaptic partner choice.
Collapse
|
37
|
Loss of Pseudouridine Synthases in the RluA Family Causes Hypersensitive Nociception in Drosophila. G3-GENES GENOMES GENETICS 2020; 10:4425-4438. [PMID: 33028630 PMCID: PMC7718762 DOI: 10.1534/g3.120.401767] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Nociceptive neurons of Drosophila melanogaster larvae are characterized by highly branched dendritic processes whose proper morphogenesis relies on a large number of RNA-binding proteins. Post-transcriptional regulation of RNA in these dendrites has been found to play an important role in their function. Here, we investigate the neuronal functions of two putative RNA modification genes, RluA-1 and RluA-2, which are predicted to encode pseudouridine synthases. RluA-1 is specifically expressed in larval sensory neurons while RluA-2 expression is ubiquitous. Nociceptor-specific RNAi knockdown of RluA-1 caused hypersensitive nociception phenotypes, which were recapitulated with genetic null alleles. These were rescued with genomic duplication and nociceptor-specific expression of UAS- RluA-1 -cDNA As with RluA-1, RluA-2 loss of function mutants also displayed hyperalgesia. Interestingly, nociceptor neuron dendrites showed a hyperbranched morphology in the RluA-1 mutants. The latter may be a cause or a consequence of heightened sensitivity in mutant nociception behaviors.
Collapse
|
38
|
Eschbach C, Zlatic M. Useful road maps: studying Drosophila larva's central nervous system with the help of connectomics. Curr Opin Neurobiol 2020; 65:129-137. [PMID: 33242722 PMCID: PMC7773133 DOI: 10.1016/j.conb.2020.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022]
Abstract
The larva of Drosophila melanogaster is emerging as a powerful model system for comprehensive brain-wide understanding of the circuit implementation of neural computations. With an unprecedented amount of tools in hand, including synaptic-resolution connectomics, whole-brain imaging, and genetic tools for selective targeting of single neuron types, it is possible to dissect which circuits and computations are at work behind behaviors that have an interesting level of complexity. Here we present some of the recent advances regarding multisensory integration, learning, and action selection in Drosophila larva.
Collapse
Affiliation(s)
- Claire Eschbach
- Department of Zoology, University of Cambridge, United Kingdom.
| | - Marta Zlatic
- Department of Zoology, University of Cambridge, United Kingdom; MRC Laboratory of Molecular Biology, United Kingdom.
| |
Collapse
|
39
|
Omamiuda-Ishikawa N, Sakai M, Emoto K. A pair of ascending neurons in the subesophageal zone mediates aversive sensory inputs-evoked backward locomotion in Drosophila larvae. PLoS Genet 2020; 16:e1009120. [PMID: 33137117 PMCID: PMC7605633 DOI: 10.1371/journal.pgen.1009120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
Animals typically avoid unwanted situations with stereotyped escape behavior. For instance, Drosophila larvae often escape from aversive stimuli to the head, such as mechanical stimuli and blue light irradiation, by backward locomotion. Responses to these aversive stimuli are mediated by a variety of sensory neurons including mechanosensory class III da (C3da) sensory neurons and blue-light responsive class IV da (C4da) sensory neurons and Bolwig's organ (BO). How these distinct sensory pathways evoke backward locomotion at the circuit level is still incompletely understood. Here we show that a pair of cholinergic neurons in the subesophageal zone, designated AMBs, evoke robust backward locomotion upon optogenetic activation. Anatomical and functional analysis shows that AMBs act upstream of MDNs, the command-like neurons for backward locomotion. Further functional analysis indicates that AMBs preferentially convey aversive blue light information from C4da neurons to MDNs to elicit backward locomotion, whereas aversive information from BO converges on MDNs through AMB-independent pathways. We also found that, unlike in adult flies, MDNs are dispensable for the dead end-evoked backward locomotion in larvae. Our findings thus reveal the neural circuits by which two distinct blue light-sensing pathways converge on the command-like neurons to evoke robust backward locomotion, and suggest that distinct but partially redundant neural circuits including the command-like neurons might be utilized to drive backward locomotion in response to different sensory stimuli as well as in adults and larvae.
Collapse
Affiliation(s)
| | - Moeka Sakai
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| | - Kazuo Emoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo
- * E-mail:
| |
Collapse
|
40
|
Hu Y, Wang C, Yang L, Pan G, Liu H, Yu G, Ye B. A Neural Basis for Categorizing Sensory Stimuli to Enhance Decision Accuracy. Curr Biol 2020; 30:4896-4909.e6. [PMID: 33065003 DOI: 10.1016/j.cub.2020.09.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 08/08/2020] [Accepted: 09/14/2020] [Indexed: 11/15/2022]
Abstract
Sensory stimuli with graded intensities often lead to yes-or-no decisions on whether to respond to the stimuli. How this graded-to-binary conversion is implemented in the central nervous system (CNS) remains poorly understood. Here, we show that graded encodings of noxious stimuli are categorized in a decision-associated CNS region in Drosophila larvae, and then decoded by a group of peptidergic neurons for executing binary escape decisions. GABAergic inhibition gates weak nociceptive encodings from being decoded, whereas escalated amplification through the recruitment of second-order neurons boosts nociceptive encodings at intermediate intensities. These two modulations increase the detection accuracy by reducing responses to negligible stimuli whereas enhancing responses to intense stimuli. Our findings thus unravel a circuit mechanism that underlies accurate detection of harmful stimuli.
Collapse
Affiliation(s)
- Yujia Hu
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Congchao Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Limin Yang
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; School of Medicine, Dalian University, Dalian, Liaoning 116622, China
| | - Geng Pan
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hao Liu
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Guoqiang Yu
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA.
| | - Bing Ye
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
41
|
Jovanic T. Studying neural circuits of decision-making in Drosophila larva. J Neurogenet 2020; 34:162-170. [PMID: 32054384 DOI: 10.1080/01677063.2020.1719407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
To study neural circuits underlying decisions, the model organism used for that purpose has to be simple enough to be able to dissect the circuitry neuron by neuron across the nervous system and in the same time complex enough to be able to perform different types of decisions. Here, I lay out the case: (1) that Drosophila larva is an advantageous model system that balances well these two requirements and (2) the insights gained from this model, assuming that circuit principles may be shared across species, can be used to advance our knowledge of neural circuit implementation of decision-making in general, including in more complex brains.
Collapse
Affiliation(s)
- Tihana Jovanic
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris Saclay, Gif-sur-Yvette, France.,Decision and Bayesian Computation, UMR 3571 Neuroscience Department & USR 3756 (C3BI/DBC), Institut Pasteur & CNRS, Paris, France
| |
Collapse
|
42
|
Masson JB, Laurent F, Cardona A, Barré C, Skatchkovsky N, Zlatic M, Jovanic T. Identifying neural substrates of competitive interactions and sequence transitions during mechanosensory responses in Drosophila. PLoS Genet 2020; 16:e1008589. [PMID: 32059010 PMCID: PMC7173939 DOI: 10.1371/journal.pgen.1008589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 04/21/2020] [Accepted: 12/30/2019] [Indexed: 11/21/2022] Open
Abstract
Nervous systems have the ability to select appropriate actions and action sequences in response to sensory cues. The circuit mechanisms by which nervous systems achieve choice, stability and transitions between behaviors are still incompletely understood. To identify neurons and brain areas involved in controlling these processes, we combined a large-scale neuronal inactivation screen with automated action detection in response to a mechanosensory cue in Drosophila larva. We analyzed behaviors from 2.9x105 larvae and identified 66 candidate lines for mechanosensory responses out of which 25 for competitive interactions between actions. We further characterize in detail the neurons in these lines and analyzed their connectivity using electron microscopy. We found the neurons in the mechanosensory network are located in different regions of the nervous system consistent with a distributed model of sensorimotor decision-making. These findings provide the basis for understanding how selection and transition between behaviors are controlled by the nervous system.
Collapse
Affiliation(s)
- Jean-Baptiste Masson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
- Decision and Bayesian Computation, USR 3756 (C3BI/DBC) & Neuroscience Department, Institut Pasteur & CNRS, Paris, France
| | - François Laurent
- Decision and Bayesian Computation, USR 3756 (C3BI/DBC) & Neuroscience Department, Institut Pasteur & CNRS, Paris, France
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
- Department of Physiology, Development, and Neuroscience, Cambridge University, Cambridge, United Kingdom
- MRC Laboratory of Molecular Biology, Trumpington, Cambridge, United Kingdom
| | - Chloé Barré
- Decision and Bayesian Computation, USR 3756 (C3BI/DBC) & Neuroscience Department, Institut Pasteur & CNRS, Paris, France
| | - Nicolas Skatchkovsky
- Decision and Bayesian Computation, USR 3756 (C3BI/DBC) & Neuroscience Department, Institut Pasteur & CNRS, Paris, France
| | - Marta Zlatic
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
- MRC Laboratory of Molecular Biology, Trumpington, Cambridge, United Kingdom
- Department of Zoology, Cambridge University, Cambridge, United Kingdom
| | - Tihana Jovanic
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
- Decision and Bayesian Computation, USR 3756 (C3BI/DBC) & Neuroscience Department, Institut Pasteur & CNRS, Paris, France
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris Saclay, Gif-sur-Yvette, France
| |
Collapse
|
43
|
Caron DP, Rimniceanu M, Scibelli AE, Trimmer BA. Nociceptive neurons respond to multimodal stimuli in Manduca sexta. J Exp Biol 2020; 223:jeb218859. [PMID: 31932302 DOI: 10.1242/jeb.218859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/06/2020] [Indexed: 12/14/2022]
Abstract
The caterpillar Manduca sexta produces a highly stereotyped strike behavior in response to noxious thermal or mechanical stimuli to the abdomen. This rapid movement is targeted to the site of the stimulus, but the identity of the nociceptive sensory neurons are currently unknown. It is also not known whether both mechanical and thermal stimuli are detected by the same neurons. Here, we show that the likelihood of a strike increases with the strength of the stimulus and that activity in nerves innervating the body wall increases rapidly in response to noxious stimuli. Mechanical and thermal stimuli to the dorsal body wall activate the same sensory unit, suggesting it represents a multimodal neuron. This is further supported by the effects of rapidly repeated thermal or mechanical stimuli, which cause a depression of neuronal responsiveness that is generalized across modalities. Mapping the receptive fields of neurons responding to strong thermal stimuli indicates that these multimodal, nociceptive units are produced by class γ multidendritic neurons in the body wall.
Collapse
Affiliation(s)
- Daniel P Caron
- Tufts University, Department of Biology, 200 Boston Avenue, Suite 2600, Medford, MA 02155, USA
| | - Martha Rimniceanu
- Tufts University, Department of Biology, 200 Boston Avenue, Suite 2600, Medford, MA 02155, USA
| | - Anthony E Scibelli
- Tufts University, Department of Biology, 200 Boston Avenue, Suite 2600, Medford, MA 02155, USA
| | - Barry A Trimmer
- Tufts University, Department of Biology, 200 Boston Avenue, Suite 2600, Medford, MA 02155, USA
| |
Collapse
|
44
|
Hernandez E, MacNamee SE, Kaplan LR, Lance K, Garcia-Verdugo HD, Farhadi DS, Deer C, Lee SW, Oland LA. The astrocyte network in the ventral nerve cord neuropil of the Drosophila third-instar larva. J Comp Neurol 2020; 528:1683-1703. [PMID: 31909826 DOI: 10.1002/cne.24852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 11/10/2022]
Abstract
Understanding neuronal function at the local and circuit level requires understanding astrocyte function. We have provided a detailed analysis of astrocyte morphology and territory in the Drosophila third-instar ventral nerve cord where there already exists considerable understanding of the neuronal network. Astrocyte shape varies more than previously reported; many have bilaterally symmetrical partners, many have a high percentage of their arborization in adjacent segments, and many have branches that follow structural features. Taken together, our data are consistent with, but not fully explained by, a model of a developmental growth process dominated by competitive or repulsive interactions between astrocytes. Our data suggest that the model should also include cell-autonomous aspects, as well as the use of structural features for growth. Variation in location of arborization territory for identified astrocytes was great enough that a standardized scheme of neuropil division among the six astrocytes that populate each hemi-segment is not possible at the third instar. The arborizations of the astrocytes can extend across neuronal functional domains. The ventral astrocyte in particular, whose territory can extend well into the proprioceptive region of the neuropil, has no obvious branching pattern that correlates with domains of particular sensory modalities, suggesting that the astrocyte would respond to neuronal activity in any of the sensory modalities, perhaps integrating across them. This study sets the stage for future studies that will generate a robust, functionally oriented connectome that includes both partners in neuronal circuits-the neurons and the glial cells, providing the foundation necessary for studies to elucidate neuron-glia interactions in this neuropil.
Collapse
Key Words
- RRID:Abcam Cat# ab6953, RRID:AB_955010
- RRID:BDSC Cat# 30125, RRID:BDSC_30125
- RRID:BDSC Cat# 38760, RRID:BDSC_38760
- RRID:BDSC Cat# 4775, RRID:BDSC_4775
- RRID:BDSC Cat# 5692, RRID:BDSC_5692
- RRID:BDSC Cat# 64085, RRID:BDSC_64085
- RRID:BDSC Cat# 6938, RRID:BDSC_6938
- RRID:Bio-rad Cat # MCA1360, RRID:AB_322378
- RRID:Cell Signaling Technology Cat # 3724, RRID:AB_1549585
- RRID:DSHB Cat# 1D4, RRID:AB_528235
- RRID:DSHB Cat# nc82, RRID:AB_2314866
- RRID:Jackson ImmunoResearch Labs Cat# 115-167-003, RRID:AB_2338709
- RRID:Molecular Probes Cat# 6455, RRID:AB_2314543
- RRID:Molecular Probes Cat# A-21236, RRID:AB_141725
- RRID:Novus Cat # NBP1-06712, RRID:AB_1625981
- RRID:Thermo Fisher Scientific Cat# A-11034, RRID:AB_2576217.
- glial cells
- neuron-glia interaction
Collapse
Affiliation(s)
- Ernesto Hernandez
- Department of Neuroscience, University of Arizona, Tucson, Arizona.,University of Illinois at Chicago School of Medicine, Rockford, Illinois
| | - Sarah E MacNamee
- Department of Neuroscience, University of Arizona, Tucson, Arizona.,Inscopix, Palo Alto, California
| | - Leah R Kaplan
- Department of Neuroscience, University of Arizona, Tucson, Arizona.,Consortium for Science, Policy & Outcomes, Arizona State University, Washington, DC, Washington
| | - Kim Lance
- Department of Neuroscience, University of Arizona, Tucson, Arizona
| | | | - Dara S Farhadi
- Department of Neuroscience, University of Arizona, Tucson, Arizona.,College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona
| | - Christine Deer
- Department of Neuroscience, University of Arizona, Tucson, Arizona.,Research Technologies Group, Data Visualization Team, University of Arizona, University Information Technology Service, Tucson, Arizona
| | - Si W Lee
- Department of Neuroscience, University of Arizona, Tucson, Arizona
| | - Lynne A Oland
- Department of Neuroscience, University of Arizona, Tucson, Arizona
| |
Collapse
|
45
|
Zarin AA, Mark B, Cardona A, Litwin-Kumar A, Doe CQ. A multilayer circuit architecture for the generation of distinct locomotor behaviors in Drosophila. eLife 2019; 8:e51781. [PMID: 31868582 PMCID: PMC6994239 DOI: 10.7554/elife.51781] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/22/2019] [Indexed: 12/22/2022] Open
Abstract
Animals generate diverse motor behaviors, yet how the same motor neurons (MNs) generate two distinct or antagonistic behaviors remains an open question. Here, we characterize Drosophila larval muscle activity patterns and premotor/motor circuits to understand how they generate forward and backward locomotion. We show that all body wall MNs are activated during both behaviors, but a subset of MNs change recruitment timing for each behavior. We used TEM to reconstruct a full segment of all 60 MNs and 236 premotor neurons (PMNs), including differentially-recruited MNs. Analysis of this comprehensive connectome identified PMN-MN 'labeled line' connectivity; PMN-MN combinatorial connectivity; asymmetric neuronal morphology; and PMN-MN circuit motifs that could all contribute to generating distinct behaviors. We generated a recurrent network model that reproduced the observed behaviors, and used functional optogenetics to validate selected model predictions. This PMN-MN connectome will provide a foundation for analyzing the full suite of larval behaviors.
Collapse
Affiliation(s)
- Aref Arzan Zarin
- Institute of NeuroscienceHoward Hughes Medical Institute, University of OregonEugeneUnited States
| | - Brandon Mark
- Institute of NeuroscienceHoward Hughes Medical Institute, University of OregonEugeneUnited States
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ashok Litwin-Kumar
- Mortimer B Zuckerman Mind Brain Behavior Institute, Department of NeuroscienceColumbia UniversityNew YorkUnited States
| | - Chris Q Doe
- Institute of NeuroscienceHoward Hughes Medical Institute, University of OregonEugeneUnited States
| |
Collapse
|
46
|
Howard CE, Chen CL, Tabachnik T, Hormigo R, Ramdya P, Mann RS. Serotonergic Modulation of Walking in Drosophila. Curr Biol 2019; 29:4218-4230.e8. [PMID: 31786064 PMCID: PMC6935052 DOI: 10.1016/j.cub.2019.10.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/29/2019] [Accepted: 10/21/2019] [Indexed: 01/05/2023]
Abstract
To navigate complex environments, animals must generate highly robust, yet flexible, locomotor behaviors. For example, walking speed must be tailored to the needs of a particular environment. Not only must animals choose the correct speed and gait, they must also adapt to changing conditions and quickly respond to sudden and surprising new stimuli. Neuromodulators, particularly the small biogenic amine neurotransmitters, have the ability to rapidly alter the functional outputs of motor circuits. Here, we show that the serotonergic system in the vinegar fly, Drosophila melanogaster, can modulate walking speed in a variety of contexts and also change how flies respond to sudden changes in the environment. These multifaceted roles of serotonin in locomotion are differentially mediated by a family of serotonergic receptors with distinct activities and expression patterns.
Collapse
Affiliation(s)
- Clare E Howard
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Medical Scientist Training Program, Columbia University, New York, NY 10027, USA
| | - Chin-Lin Chen
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Tanya Tabachnik
- Advanced Instrumentation Group, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Rick Hormigo
- Advanced Instrumentation Group, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Pavan Ramdya
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Richard S Mann
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Departments of Biochemistry and Molecular Biophysics and Neuroscience, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
47
|
Lopez-Bellido R, Himmel NJ, Gutstein HB, Cox DN, Galko MJ. An assay for chemical nociception in Drosophila larvae. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190282. [PMID: 31544619 PMCID: PMC6790381 DOI: 10.1098/rstb.2019.0282] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2019] [Indexed: 12/14/2022] Open
Abstract
Chemically induced nociception has not yet been studied intensively in genetically tractable models. Hence, our goal was to establish a Drosophila assay that can be used to study the cellular and molecular/genetic bases of chemically induced nociception. Drosophila larvae exposed to increasing concentrations of hydrochloric acid (HCl) produced an increasingly intense aversive rolling response. HCl (0.5%) was subthreshold and provoked no response. All classes of peripheral multidendritic (md) sensory neurons (classes I-IV) are required for full responsiveness to acid, with class IV making the largest contribution. At the cellular level, classes IV, III and I showed increases in calcium following acid exposure. In the central nervous system, Basin-4 second-order neurons are the key regulators of chemically induced nociception, with a slight contribution from other types. Finally, chemical nociception can be sensitized by tissue damage. Subthreshold HCl provoked chemical allodynia in larvae 4 h after physical puncture wounding. Pinch wounding and UV irradiation, which do not compromise the cuticle, did not cause chemical allodynia. In sum, we developed a novel assay to study chemically induced nociception in Drosophila larvae. This assay, combined with the high genetic resolving power of Drosophila, should improve our basic understanding of fundamental mechanisms of chemical nociception. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.
Collapse
Affiliation(s)
- Roger Lopez-Bellido
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nathaniel J. Himmel
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA 30303, USA
| | - Howard B. Gutstein
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA 30303, USA
| | - Michael J. Galko
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Neuroscience Graduate Program, The MD Anderson UT Health Graduate School of Biomedical Sciences, TX 77030, USA
- Genetics and Epigenetics Graduate Program, The MD Anderson UT Health Graduate School of Biomedical Sciences, TX 77030, USA
| |
Collapse
|
48
|
Mukherjee R, Trimmer BA. Local and generalized sensitization of thermally evoked defensive behavior in caterpillars. J Comp Neurol 2019; 528:805-815. [DOI: 10.1002/cne.24797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022]
|
49
|
A GABAergic Maf-expressing interneuron subset regulates the speed of locomotion in Drosophila. Nat Commun 2019; 10:4796. [PMID: 31641138 PMCID: PMC6805931 DOI: 10.1038/s41467-019-12693-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 09/23/2019] [Indexed: 12/19/2022] Open
Abstract
Interneurons (INs) coordinate motoneuron activity to generate appropriate patterns of muscle contractions, providing animals with the ability to adjust their body posture and to move over a range of speeds. In Drosophila larvae several IN subtypes have been morphologically described and their function well documented. However, the general lack of molecular characterization of those INs prevents the identification of evolutionary counterparts in other animals, limiting our understanding of the principles underlying neuronal circuit organization and function. Here we characterize a restricted subset of neurons in the nerve cord expressing the Maf transcription factor Traffic Jam (TJ). We found that TJ+ neurons are highly diverse and selective activation of these different subtypes disrupts larval body posture and induces specific locomotor behaviors. Finally, we show that a small subset of TJ+ GABAergic INs, singled out by the expression of a unique transcription factors code, controls larval crawling speed. Spinal interneurons (IN) coordinate motoneuron activity to modulate locomotion behavior. Here, the authors characterize a subset of IN subtypes expressing the Maf transcription factor Traffic Jam (TJ) and report the distinct effects of their activation on body posture and locomotion in Drosophila larvae.
Collapse
|
50
|
Tenedini FM, Sáez González M, Hu C, Pedersen LH, Petruzzi MM, Spitzweck B, Wang D, Richter M, Petersen M, Szpotowicz E, Schweizer M, Sigrist SJ, Calderon de Anda F, Soba P. Maintenance of cell type-specific connectivity and circuit function requires Tao kinase. Nat Commun 2019; 10:3506. [PMID: 31383864 PMCID: PMC6683158 DOI: 10.1038/s41467-019-11408-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/13/2019] [Indexed: 01/05/2023] Open
Abstract
Sensory circuits are typically established during early development, yet how circuit specificity and function are maintained during organismal growth has not been elucidated. To gain insight we quantitatively investigated synaptic growth and connectivity in the Drosophila nociceptive network during larval development. We show that connectivity between primary nociceptors and their downstream neurons scales with animal size. We further identified the conserved Ste20-like kinase Tao as a negative regulator of synaptic growth required for maintenance of circuit specificity and connectivity. Loss of Tao kinase resulted in exuberant postsynaptic specializations and aberrant connectivity during larval growth. Using functional imaging and behavioral analysis we show that loss of Tao-induced ectopic synapses with inappropriate partner neurons are functional and alter behavioral responses in a connection-specific manner. Our data show that fine-tuning of synaptic growth by Tao kinase is required for maintaining specificity and behavioral output of the neuronal network during animal growth.
Collapse
Affiliation(s)
- Federico Marcello Tenedini
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Maria Sáez González
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Chun Hu
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Lisa Hedegaard Pedersen
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Mabel Matamala Petruzzi
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Bettina Spitzweck
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Denan Wang
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Melanie Richter
- Neuronal Development laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Meike Petersen
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Emanuela Szpotowicz
- Electron microscopy unit, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Michaela Schweizer
- Electron microscopy unit, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Stephan J Sigrist
- Institute of Biology, Free University Berlin, Takustr. 6, 14195, Berlin, Germany
| | - Froylan Calderon de Anda
- Neuronal Development laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Peter Soba
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany.
| |
Collapse
|