1
|
Li H, Li R, Yu H, Zhang Y, Feng H. Evolution and classification of Ser/Thr phosphatase PP2C family in bacteria: Sequence conservation, structures, domain distribution. PLoS One 2025; 20:e0322880. [PMID: 40388423 DOI: 10.1371/journal.pone.0322880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/28/2025] [Indexed: 05/21/2025] Open
Abstract
Serine/threonine kinases (STKs) and serine/threonine phosphatases (STPs) are widely present across various organisms and play crucial roles in regulating cellular processes such as growth, proliferation, signal transduction, and other physiological functions. Recent research has increasingly focused on the regulation of STKs and STPs in bacteria. STKs have been well studied, identified and characterized in a variety of bacterial species. However, the role of STPs in bacteria remains less understood, and the number of proteins characterized is limited. It has been found that most of the STPs characterized in bacteria were Mg2+/Mn2+ dependent 2C protein phosphatases (PP2Cs), but the evolutionary relationship and taxonomic distribution of bacterial PP2C phosphatases were still not fully elucidated. In this study, we utilized bacterial PP2C phosphatase sequences from the InterPro database to perform a phylogenetic analysis, categorizing the family into five groups. Based on this classification, we examined the evolutionary relationships, species distribution, sequence and structural variations, and domain distribution characteristics of bacterial PP2C phosphatases. Our analysis uncovered evidence of a common evolutionary origin for bacterial PP2C phosphatases. These findings advance the understanding of PP2C phosphatases, offering valuable insights for future functional studies of bacterial serine/threonine phosphatases and aiding in the design of targeted therapeutics for pathogenic bacteria.
Collapse
Affiliation(s)
- Hang Li
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, Chengdu, China
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Rui Li
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, Chengdu, China
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Haoyue Yu
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, Chengdu, China
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Youhuan Zhang
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, Chengdu, China
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Hong Feng
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, Chengdu, China
- College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Baral R, Ho K, Kumar RP, Hopkins JB, Watkins MB, LaRussa S, Caban-Penix S, Calderone LA, Bradshaw N. A General Mechanism for Initiating the General Stress Response in Bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.16.580724. [PMID: 38405867 PMCID: PMC10889023 DOI: 10.1101/2024.02.16.580724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The General Stress Response promotes survival of bacteria in adverse conditions, but how sensor proteins transduce species-specific signals to initiate the response is not known. The serine/threonine phosphatase RsbU initiates the General Stress Response in B. subtilis upon binding a partner protein (RsbT) that is released from sequestration by environmental stresses. We report that RsbT activates RsbU by inducing otherwise flexible linkers of RsbU to form a short coiled-coil that dimerizes and activates the phosphatase domains. Importantly, we present evidence that related coiled-coil linkers and phosphatase dimers transduce signals from diverse sensor domains to control the General Stress Response and other signaling across bacterial phyla. This coiled-coil linker transduction mechanism additionally suggests a resolution to the mystery of how shared sensory domains control serine/threonine phosphatases, diguanylate cyclases and histidine kinases. We propose that this provides bacteria with a modularly exchangeable toolkit for the evolution of diverse signaling pathways.
Collapse
Affiliation(s)
- Rishika Baral
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
- Graduate program in Biochemistry and Biophysics, Brandeis University, Waltham, Massachusetts, USA
| | - Kristin Ho
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Ramasamy P. Kumar
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Jesse B. Hopkins
- Biophysics Collaborative Access Team (BioCAT), Department of Physics, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Maxwell B. Watkins
- Biophysics Collaborative Access Team (BioCAT), Department of Biology, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Salvatore LaRussa
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
- Graduate program in Biochemistry and Biophysics, Brandeis University, Waltham, Massachusetts, USA
| | - Suhaily Caban-Penix
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
- Graduate program in Molecular and Cell Biology, Brandeis University, Waltham, Massachusetts, USA
| | - Logan A. Calderone
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
- Graduate program in Biochemistry and Biophysics, Brandeis University, Waltham, Massachusetts, USA
| | - Niels Bradshaw
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| |
Collapse
|
3
|
Caban-Penix S, Ho K, Yang Z, Baral R, Bradshaw N. Docking interactions determine substrate specificity of members of a widespread family of protein phosphatases. J Biol Chem 2024; 300:107700. [PMID: 39173947 PMCID: PMC11418112 DOI: 10.1016/j.jbc.2024.107700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
How protein phosphatases achieve specificity for their substrates is a major outstanding question. PPM family serine/threonine phosphatases are widespread in bacteria and eukaryotes, where they dephosphorylate target proteins with a high degree of specificity. In bacteria, PPM phosphatases control diverse transcriptional responses by dephosphorylating anti-anti-sigma factors of the STAS domain family, exemplified by Bacillus subtilis phosphatases SpoIIE, which controls cell-fate during endospore formation, and RsbU, which initiates the general stress response. Using a combination of forward genetics, biochemical reconstitution, and AlphaFold2 structure prediction, we identified a conserved, tripartite substrate docking interface comprised of three variable loops on the surface of the PPM phosphatase domains of SpoIIE and RsbU that recognize the three-dimensional structure of the substrate protein. Nonconserved amino acids in these loops facilitate the accommodation of the cognate substrate and prevent dephosphorylation of the noncognate substrate. Together, single-amino acid substitutions in these three elements cause an over 500-fold change in specificity. Our data additionally suggest that substrate-docking interactions regulate phosphatase specificity through a conserved allosteric switch element that controls the catalytic efficiency of the phosphatase by positioning the metal cofactor and substrate. We hypothesize that this is a generalizable mechanistic model for PPM family phosphatase substrate specificity. Importantly, the substrate docking interface with the phosphatase is only partially overlapping with the much more extensive interface with the upstream kinase, suggesting the possibility that kinase and phosphatase specificity evolved independently.
Collapse
Affiliation(s)
- Suhaily Caban-Penix
- Molecular and Cell Biology Program, Brandeis University, Waltham, Massachusetts, USA; Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Kristin Ho
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Zhewen Yang
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Rishika Baral
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA; Biochemistry and Biophysics Program, Brandeis University, Waltham, Massachusetts, USA
| | - Niels Bradshaw
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA.
| |
Collapse
|
4
|
Kumar JP, Kosek D, Durell SR, Miller Jenkins LM, Debnath S, Coussens NP, Hall MD, Appella DH, Dyda F, Mazur SJ, Appella E. Crystal structure and mechanistic studies of the PPM1D serine/threonine phosphatase catalytic domain. J Biol Chem 2024; 300:107561. [PMID: 39002674 PMCID: PMC11342775 DOI: 10.1016/j.jbc.2024.107561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024] Open
Abstract
Protein phosphatase 1D (PPM1D, Wip1) is induced by the tumor suppressor p53 during DNA damage response signaling and acts as an oncoprotein in several human cancers. Although PPM1D is a potential therapeutic target, insights into its atomic structure were challenging due to flexible regions unique to this family member. Here, we report the first crystal structure of the PPM1D catalytic domain to 1.8 Å resolution. The structure reveals the active site with two Mg2+ ions bound, similar to other structures. The flap subdomain and B-loop, which are crucial for substrate recognition and catalysis, were also resolved, with the flap forming two short helices and three short β-strands that are followed by an irregular loop. Unexpectedly, a nitrogen-oxygen-sulfur bridge was identified in the catalytic domain. Molecular dynamics simulations and kinetic studies provided further mechanistic insights into the regulation of PPM1D catalytic activity. In particular, the kinetic experiments demonstrated a magnesium concentration-dependent lag in PPM1D attaining steady-state velocity, a feature of hysteretic enzymes that show slow transitions compared with catalytic turnover. All combined, these results advance the understanding of PPM1D function and will support the development of PPM1D-targeted therapeutics.
Collapse
Affiliation(s)
- Jay Prakash Kumar
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland, United States
| | - Dalibor Kosek
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland, United States
| | - Stewart R Durell
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland, United States
| | - Lisa M Miller Jenkins
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland, United States
| | - Subrata Debnath
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland, United States
| | - Nathan P Coussens
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States
| | - Daniel H Appella
- Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland, United States
| | - Fred Dyda
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland, United States
| | - Sharlyn J Mazur
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland, United States
| | - Ettore Appella
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland, United States.
| |
Collapse
|
5
|
Chareyre S, Li X, Anjuwon-Foster BR, Updegrove TB, Clifford S, Brogan AP, Su Y, Zhang L, Chen J, Shroff H, Ramamurthi KS. Cell division machinery drives cell-specific gene activation during differentiation in Bacillus subtilis. Proc Natl Acad Sci U S A 2024; 121:e2400584121. [PMID: 38502707 PMCID: PMC10990147 DOI: 10.1073/pnas.2400584121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/22/2024] [Indexed: 03/21/2024] Open
Abstract
When faced with starvation, the bacterium Bacillus subtilis transforms itself into a dormant cell type called a "spore". Sporulation initiates with an asymmetric division event, which requires the relocation of the core divisome components FtsA and FtsZ, after which the sigma factor σF is exclusively activated in the smaller daughter cell. Compartment-specific activation of σF requires the SpoIIE phosphatase, which displays a biased localization on one side of the asymmetric division septum and associates with the structural protein DivIVA, but the mechanism by which this preferential localization is achieved is unclear. Here, we isolated a variant of DivIVA that indiscriminately activates σF in both daughter cells due to promiscuous localization of SpoIIE, which was corrected by overproduction of FtsA and FtsZ. We propose that the core components of the redeployed cell division machinery drive the asymmetric localization of DivIVA and SpoIIE to trigger the initiation of the sporulation program.
Collapse
Affiliation(s)
- Sylvia Chareyre
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, MD20892
| | - Xuesong Li
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD20892
- HHMI, Ashburn, VA20147
| | | | - Taylor B. Updegrove
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, MD20892
| | - Sarah Clifford
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, MD20892
| | - Anna P. Brogan
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, MD20892
| | - Yijun Su
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD20892
- HHMI, Ashburn, VA20147
| | - Lixia Zhang
- Advanced Imaging and Microscopy Resource, NIH, Bethesda, MD20892
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, NIH, Bethesda, MD20892
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD20892
- HHMI, Ashburn, VA20147
| | | |
Collapse
|
6
|
Zhao L, Yao T, Zhao Y, Sun S, Lyu C, Zhao W. Reduction strategies of polycyclic aromatic hydrocarbons in farmland soils: Microbial degradation, plant transport inhibition, and their mechanistic analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133397. [PMID: 38198863 DOI: 10.1016/j.jhazmat.2023.133397] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/04/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024]
Abstract
This study focuses on the abatement of polycyclic aromatic hydrocarbons (PAHs), a global pollutant, in farmland soils. Seven controlled PAHs in China were used as the target ligands, and four key target receptors degradable PAHs and two key target receptors transport PAHs were used as the target receptors. Firstly, the degradation abilities of the four key target receptors on PAHs were quantified, and the dominant target receptors that could efficiently degrade PAHs were screened out. Then, the co-degradation abilities of PAHs under the coexistence of the dominant target receptors (microbial diversity) were assessed, and 30 external condition-adding schemes to promote the microbial (co-)degradation of PAHs were designed. In addition, the microbial dominant target receptor mutants and the plant key target receptor mutants were obtained, the degradation and transportation of PAHs were improved by 8.06%∼22.27% and 39.86%∼45.43%. Finally, the mechanism analysis of PAHs biodegradation and transportation found that the Van der Waals interactions dominated the enhancement of PAHs' degradation in soil, and the solvation capacity dominated the decrease of PAHs' transportation in plant. This study aims to provide theoretical support for the prevention and control of PAHs residue pollution in farmland soil, as well as the protection of human dietary health.
Collapse
Affiliation(s)
- Lei Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Tianfu Yao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Yuanyuan Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Shuhai Sun
- School of Hydraulic and Environmental Engineering, Changchun Institute of Technology, Changchun 130012, China.
| | - Cong Lyu
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Wenjin Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|
7
|
Qiu M, Sun Y, Tu S, Li H, Yang X, Zhao H, Yin M, Li Y, Ye W, Wang M, Wang Y. Mining oomycete proteomes for phosphatome leads to the identification of specific expanded phosphatases in oomycetes. MOLECULAR PLANT PATHOLOGY 2024; 25:e13425. [PMID: 38462784 PMCID: PMC10925823 DOI: 10.1111/mpp.13425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/23/2023] [Accepted: 01/11/2024] [Indexed: 03/12/2024]
Abstract
Phosphatases are important regulators of protein phosphorylation and various cellular processes, and they serve as counterparts to kinases. In this study, our comprehensive analysis of oomycete complete proteomes unveiled the presence of approximately 3833 phosphatases, with most species estimated to have between 100 and 300 putative phosphatases. Further investigation of these phosphatases revealed a significant increase in protein serine/threonine phosphatases (PSP) within oomycetes. In particular, we extensively studied the metallo-dependent protein phosphatase (PPM) within the PSP family in the model oomycete Phytophthora sojae. Our results showed notable differences in the expression patterns of PPMs throughout 10 life stages of P. sojae, indicating their vital roles in various stages of oomycete pathogens. Moreover, we identified 29 PPMs in P. sojae, and eight of them possessed accessory domains in addition to phosphate domains. We investigated the biological function of one PPM protein with an extra PH domain (PPM1); this protein exhibited high expression levels in both asexual developmental and infectious stages. Our analysis confirmed that PPM1 is indeed an active protein phosphatase, and its accessory domain does not affect its phosphatase activity. To delve further into its function, we generated knockout mutants of PPM1 and validated its essential roles in mycelial growth, sporangia and oospore production, as well as infectious stages. To the best of our knowledge, this study provides the first comprehensive inventory of phosphatases in oomycetes and identifies an important phosphatase within the expanded serine/threonine phosphatase group in oomycetes.
Collapse
Affiliation(s)
- Min Qiu
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Yaru Sun
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
| | - Siqun Tu
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
| | - Huaibo Li
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
| | - Xin Yang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
| | - Haiyang Zhao
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
| | - Maozhu Yin
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
| | - Yaning Li
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
| | - Wenwu Ye
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Ming Wang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Yuanchao Wang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| |
Collapse
|
8
|
Zhu Z, Yang M, Yang G, Zhang B, Cao X, Yuan J, Ge F, Wang S. PP2C phosphatases Ptc1 and Ptc2 dephosphorylate PGK1 to regulate autophagy and aflatoxin synthesis in the pathogenic fungus Aspergillus flavus. mBio 2023; 14:e0097723. [PMID: 37754565 PMCID: PMC10653812 DOI: 10.1128/mbio.00977-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/08/2023] [Indexed: 09/28/2023] Open
Abstract
IMPORTANCE Aspergillus flavus is a model filamentous fungus that can produce aflatoxins when it infects agricultural crops. This study evaluated the protein phosphatase 2C (PP2C) family as a potential drug target with important physiological functions and pathological significance in A. flavus. We found that two redundant PP2C phosphatases, Ptc1 and Ptc2, regulate conidia development, aflatoxin synthesis, autophagic vesicle formation, and seed infection. The target protein phosphoglycerate kinase 1 (PGK1) that interacts with Ptc1 and Ptc2 is essential to regulate metabolism and the autophagy process. Furthermore, Ptc1 and Ptc2 regulate the phosphorylation level of PGK1 S203, which is important for influencing aflatoxin synthesis. Our results provide a potential target for interdicting the toxicity of A. flavus.
Collapse
Affiliation(s)
- Zhuo Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Key Laboratory of Pathogenic Fungi, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingkun Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Guang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Key Laboratory of Pathogenic Fungi, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bei Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Key Laboratory of Pathogenic Fungi, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaohong Cao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Key Laboratory of Pathogenic Fungi, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jun Yuan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Key Laboratory of Pathogenic Fungi, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shihua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Key Laboratory of Pathogenic Fungi, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
9
|
Chareyre S, Li X, Anjuwon-Foster BR, Clifford S, Brogan A, Su Y, Shroff H, Ramamurthi KS. Cell division machinery drives cell-specific gene activation during bacterial differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552768. [PMID: 37790399 PMCID: PMC10542145 DOI: 10.1101/2023.08.10.552768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
When faced with starvation, the bacterium Bacillus subtilis transforms itself into a dormant cell type called a "spore". Sporulation initiates with an asymmetric division event, which requires the relocation of the core divisome components FtsA and FtsZ, after which the sigma factor σF is exclusively activated in the smaller daughter cell. Compartment specific activation of σF requires the SpoIIE phosphatase, which displays a biased localization on one side of the asymmetric division septum and associates with the structural protein DivIVA, but the mechanism by which this preferential localization is achieved is unclear. Here, we isolated a variant of DivIVA that indiscriminately activates σF in both daughter cells due to promiscuous localization of SpoIIE, which was corrected by overproduction of FtsA and FtsZ. We propose that a unique feature of the sporulation septum, defined by the cell division machinery, drives the asymmetric localization of DivIVA and SpoIIE to trigger the initiation of the sporulation program.
Collapse
Affiliation(s)
- Sylvia Chareyre
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xuesong Li
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Brandon R Anjuwon-Foster
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sarah Clifford
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anna Brogan
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yijun Su
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Kuwabara S, Landers ER, Fisher DJ. Impact of nutrients on the function of the chlamydial Rsb partner switching mechanism. Pathog Dis 2022; 80:6831632. [PMID: 36385643 DOI: 10.1093/femspd/ftac044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/27/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
The obligate intracellular bacterial pathogen Chlamydia trachomatis is a leading cause of sexually transmitted infections and infectious blindness. Chlamydia undergo a biphasic developmental cycle alternating between the infectious elementary body (EB) and the replicative reticulate body (RB). The molecular mechanisms governing RB growth and RB-EB differentiation are unclear. We hypothesize that the bacterium senses host cell and bacterial energy levels and metabolites to ensure that development and growth coincide with nutrient availability. We predict that a partner switching mechanism (PSM) plays a key role in the sensing and response process acting as a molecular throttle sensitive to metabolite levels. Using purified wild type and mutant PSM proteins, we discovered that metal type impacts enzyme activity and the substrate specificity of RsbU and that RsbW prefers ATP over GTP as a phosphate donor. Immunoblotting analysis of RsbV1/V2 demonstrated the presence of both proteins beyond 20 hours post infection and we observed that an RsbV1-null strain has a developmental delay and exhibits differential growth attenuation in response to glucose levels. Collectively, our data support that the PSM regulates growth in response to metabolites and further defines biochemical features governing PSM-component interactions which could help in the development of novel PSM-targeted therapeutics.
Collapse
Affiliation(s)
- Shiomi Kuwabara
- Molecular Biology, Microbiology and Biochemistry Graduate Program, Southern Illinois University, Carbondale, IL 62901, United States
| | - Evan R Landers
- Molecular Biology, Microbiology and Biochemistry Graduate Program, Southern Illinois University, Carbondale, IL 62901, United States
| | - Derek J Fisher
- Molecular Biology, Microbiology and Biochemistry Graduate Program, Southern Illinois University, Carbondale, IL 62901, United States.,School of Biological Sciences, Southern Illinois University, Carbondale, IL 62901, United States
| |
Collapse
|
11
|
Ventroux M, Noirot-Gros MF. Prophage-encoded small protein YqaH counteracts the activities of the replication initiator DnaA in Bacillus subtilis. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36748575 DOI: 10.1099/mic.0.001268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Bacterial genomes harbour cryptic prophages that are mostly transcriptionally silent with many unannotated genes. Still, cryptic prophages may contribute to their host fitness and phenotypes. In Bacillus subtilis, the yqaF-yqaN operon belongs to the prophage element skin, and is tightly repressed by the Xre-like repressor SknR. This operon contains several small ORFs (smORFs) potentially encoding small-sized proteins. The smORF-encoded peptide YqaH was previously reported to bind to the replication initiator DnaA. Here, using a yeast two-hybrid assay, we found that YqaH binds to the DNA binding domain IV of DnaA and interacts with Spo0A, a master regulator of sporulation. We isolated single amino acid substitutions in YqaH that abolished the interaction with DnaA but not with Spo0A. Then, using a plasmid-based inducible system to overexpress yqaH WT and mutant derivatives, we studied in B. subtilis the phenotypes associated with the specific loss-of-interaction with DnaA (DnaA_LOI). We found that expression of yqaH carrying DnaA_LOI mutations abolished the deleterious effects of yqaH WT expression on chromosome segregation, replication initiation and DnaA-regulated transcription. When YqaH was induced after vegetative growth, DnaA_LOI mutations abolished the drastic effects of YqaH WT on sporulation and biofilm formation. Thus, YqaH inhibits replication, sporulation and biofilm formation mainly by antagonizing DnaA in a manner that is independent of the cell cycle checkpoint Sda.
Collapse
Affiliation(s)
- Magali Ventroux
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | | |
Collapse
|
12
|
Shamma F, Rego EH, Boutte CC. Mycobacterial serine/threonine phosphatase PstP is phosphoregulated and localized to mediate control of cell wall metabolism. Mol Microbiol 2022; 118:47-60. [PMID: 35670057 PMCID: PMC10070032 DOI: 10.1111/mmi.14951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/12/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022]
Abstract
The mycobacterial cell wall is profoundly regulated in response to environmental stresses, and this regulation contributes to antibiotic tolerance. The reversible phosphorylation of different cell wall regulatory proteins is a major mechanism of cell wall regulation. Eleven serine/threonine protein kinases phosphorylate many critical cell wall-related proteins in mycobacteria. PstP is the sole serine/ threonine phosphatase, but few proteins have been verified as PstP substrates. PstP is itself phosphorylated, but the role of its phosphorylation in regulating its activity has been unclear. In this study, we aim to discover novel substrates of PstP in Mycobacterium tuberculosis (Mtb). We show in vitro that PstP dephosphorylates two regulators of peptidoglycan in Mtb, FhaA, and Wag31. We also show that a phosphomimetic mutation of T137 on PstP negatively regulates its catalytic activity against the cell wall regulators FhaA, Wag31, CwlM, PknB, and PknA, and that the corresponding mutation in Mycobacterium smegmatis causes misregulation of peptidoglycan in vivo. We show that PstP is localized to the septum, which likely restricts its access to certain substrates. These findings on the regulation of PstP provide insight into the control of cell wall metabolism in mycobacteria.
Collapse
Affiliation(s)
- Farah Shamma
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| | - E Hesper Rego
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Cara C Boutte
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
13
|
A Ubiquitously Conserved Cyanobacterial Protein Phosphatase Essential for High Light Tolerance in a Fast-Growing Cyanobacterium. Microbiol Spectr 2022; 10:e0100822. [PMID: 35727069 PMCID: PMC9430166 DOI: 10.1128/spectrum.01008-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synechococcus elongatus UTEX 2973, the fastest-growing cyanobacterial strain known, optimally grows under extreme high light (HL) intensities of 1,500-2,500 μmol photons m-2 s-1, which is lethal to most other photosynthetic microbes. We leveraged the few genetic differences between Synechococcus 2973 and the HL sensitive strain Synechococcus elongatus PCC 7942 to unravel factors essential for the high light tolerance. We identified a novel protein in Synechococcus 2973 that we have termed HltA for High light tolerance protein A. Using bioinformatic tools, we determined that HltA contains a functional PP2C-type protein phosphatase domain. Phylogenetic analysis showed that the PP2C domain belongs to the bacterial-specific Group II family and is closely related to the environmental stress response phosphatase RsbU. Additionally, we showed that unlike any previously described phosphatases, HltA contains a single N-terminal regulatory GAF domain. We found hltA to be ubiquitous throughout cyanobacteria, indicative of its potentially important role in the photosynthetic lifestyle of these oxygenic phototrophs. Mutations in the hltA gene resulted in severe defects specific to high light growth. These results provide evidence that hltA is a key factor in the tolerance of Synechococcus 2973 to high light and will open new insights into the mechanisms of cyanobacterial light stress response. IMPORTANCE Cyanobacteria are a diverse group of photosynthetic prokaryotes. The cyanobacterium Synechococcus 2973 is a high light tolerant strain with industrial promise due to its fast growth under high light conditions and the availability of genetic modification tools. Currently, little is known about the high light tolerance mechanisms of Synechococcus 2973, and there are many unknowns overall regarding high light tolerance of cyanobacteria. In this study, a comparative genomic analysis of Synechococcus 2973 identified a single nucleotide polymorphism in a locus encoding a serine phosphatase as a key factor for high light tolerance. This novel GAF-containing phosphatase was found to be the sole Group II metal-dependent protein phosphatase that is evolutionarily conserved throughout cyanobacteria. These results shed new light on the light response mechanisms of Synechococcus 2973, improving our understanding of environmental stress response. Additionally, this work will help facilitate the development of Synechococcus 2973 as an industrially useful organism.
Collapse
|
14
|
Waschbüsch D, Berndsen K, Lis P, Knebel A, Lam YPY, Alessi DR, Khan AR. Structural basis for the specificity of PPM1H phosphatase for Rab GTPases. EMBO Rep 2021; 22:e52675. [PMID: 34580980 PMCID: PMC8567228 DOI: 10.15252/embr.202152675] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/16/2021] [Accepted: 08/27/2021] [Indexed: 12/17/2022] Open
Abstract
LRRK2 serine/threonine kinase is associated with inherited Parkinson's disease. LRRK2 phosphorylates a subset of Rab GTPases within their switch 2 motif to control their interactions with effectors. Recent work has shown that the metal-dependent protein phosphatase PPM1H counteracts LRRK2 by dephosphorylating Rabs. PPM1H is highly selective for LRRK2 phosphorylated Rabs, and closely related PPM1J exhibits no activity towards substrates such as Rab8a phosphorylated at Thr72 (pThr72). Here, we have identified the molecular determinant of PPM1H specificity for Rabs. The crystal structure of PPM1H reveals a structurally conserved phosphatase fold that strikingly has evolved a 110-residue flap domain adjacent to the active site. The flap domain distantly resembles tudor domains that interact with histones in the context of epigenetics. Cellular assays, crosslinking and 3-D modelling suggest that the flap domain encodes the docking motif for phosphorylated Rabs. Consistent with this hypothesis, a PPM1J chimaera with the PPM1H flap domain dephosphorylates pThr72 of Rab8a both in vitro and in cellular assays. Therefore, PPM1H has acquired a Rab-specific interaction domain within a conserved phosphatase fold.
Collapse
Affiliation(s)
- Dieter Waschbüsch
- School of Biochemistry and ImmunologyTrinity College DublinDublin 2Ireland
| | - Kerryn Berndsen
- MRC Protein Phosphorylation and Ubiquitylation UnitSchool of Life SciencesUniversity of DundeeDundeeUK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
| | - Pawel Lis
- MRC Protein Phosphorylation and Ubiquitylation UnitSchool of Life SciencesUniversity of DundeeDundeeUK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
| | - Axel Knebel
- MRC Protein Phosphorylation and Ubiquitylation UnitSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Yuko PY Lam
- MRC Protein Phosphorylation and Ubiquitylation UnitSchool of Life SciencesUniversity of DundeeDundeeUK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
| | - Dario R Alessi
- MRC Protein Phosphorylation and Ubiquitylation UnitSchool of Life SciencesUniversity of DundeeDundeeUK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
| | - Amir R Khan
- School of Biochemistry and ImmunologyTrinity College DublinDublin 2Ireland
- Division of Newborn MedicineBoston Children's HospitalBostonMAUSA
| |
Collapse
|
15
|
A conserved allosteric element controls specificity and activity of functionally divergent PP2C phosphatases from Bacillus subtilis. J Biol Chem 2021; 296:100518. [PMID: 33684446 PMCID: PMC8080068 DOI: 10.1016/j.jbc.2021.100518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 01/08/2023] Open
Abstract
Reversible phosphorylation relies on highly regulated kinases and phosphatases that target specific substrates to control diverse cellular processes. Here, we address how protein phosphatase activity is directed to the correct substrates under the correct conditions. The serine/threonine phosphatase SpoIIE from Bacillus subtilis, a member of the widespread protein phosphatase 2C (PP2C) family of phosphatases, is activated by movement of a conserved α-helical element in the phosphatase domain to create the binding site for the metal cofactor. We hypothesized that this conformational switch could provide a general mechanism for control of diverse members of the PP2C family of phosphatases. The B. subtilis phosphatase RsbU responds to different signals, acts on a different substrates, and produces a more graded response than SpoIIE. Using an unbiased genetic screen, we isolated mutants in the α-helical switch region of RsbU that are constitutively active, indicating conservation of the switch mechanism. Using phosphatase activity assays with phosphoprotein substrates, we found that both phosphatases integrate substrate recognition with activating signals to control metal-cofactor binding and substrate dephosphorylation. This integrated control provides a mechanism for PP2C family of phosphatases to produce specific responses by acting on the correct substrates, under the appropriate conditions.
Collapse
|
16
|
Phosphorylation on PstP Regulates Cell Wall Metabolism and Antibiotic Tolerance in Mycobacterium smegmatis. J Bacteriol 2021; 203:JB.00563-20. [PMID: 33257524 DOI: 10.1128/jb.00563-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/18/2020] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium tuberculosis and its relatives, like many bacteria, have dynamic cell walls that respond to environmental stresses. Modulation of cell wall metabolism in stress is thought to be responsible for decreased permeability and increased tolerance to antibiotics. The signaling systems that control cell wall metabolism under stress, however, are poorly understood. Here, we examine the cell wall regulatory function of a key cell wall regulator, the serine/threonine phosphatase PstP, in the model organism Mycobacterium smegmatis We show that the peptidoglycan regulator CwlM is a substrate of PstP. We find that a phosphomimetic mutation, pstP T171E, slows growth, misregulates both mycolic acid and peptidoglycan metabolism in different conditions, and interferes with antibiotic tolerance. These data suggest that phosphorylation on PstP affects its activity against various substrates and is important in the transition between growth and stasis.IMPORTANCE Regulation of cell wall assembly is essential for bacterial survival and contributes to pathogenesis and antibiotic tolerance in mycobacteria, including pathogens such as Mycobacterium tuberculosis However, little is known about how the cell wall is regulated in stress. We describe a pathway of cell wall modulation in Mycobacterium smegmatis through the only essential Ser/Thr phosphatase, PstP. We showed that phosphorylation on PstP is important in regulating peptidoglycan metabolism in the transition to stasis and mycolic acid metabolism in growth. This regulation also affects antibiotic tolerance in growth and stasis. This work helps us to better understand the phosphorylation-mediated cell wall regulation circuitry in Mycobacteria.
Collapse
|
17
|
Qureshi R, Alaparthi MD, Eligati PS, Hasan Razvi SR, Walvekar KP, Afraa M, Sagurthi SR. Molecular docking analysis of an isoflavone derivative with the protein phosphatase 1 from Leishmania donovani. Bioinformation 2020; 16:942-948. [PMID: 34803271 PMCID: PMC8573454 DOI: 10.6026/97320630016942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/24/2020] [Accepted: 10/24/2020] [Indexed: 12/16/2022] Open
Abstract
Leishmaniasis is one of the most neglected diseases with high morbidity and mortality rate. Severe side effects with existing drug and lack of proper vaccine encouraged us to design alternative models to combat the disease. We showed that PP1 of Leishmania donovani mediates immunomodulation in host macrophages needed for parasite survival. Therefore, it is of interest to report the molecular docking analysis of 512 isoflavone derivatives with the phosphatase 1 protein from Leishmania donovani to highlight compound 362 (5-hydroxy-5-{9-[2-methoxy-2-(2-methylfuran-3-yl) ethyl]-1H, 3H, 4H, 10bH-pyrano[4,3-c]chromen-3-yl}pentanoic acid) having good binding features and acceptable ADMET properties for further consideration.
Collapse
Affiliation(s)
- Rahila Qureshi
- Drug Design & Molecular Medicine Laboratory, Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana-500007, India
| | - Malini Devi Alaparthi
- Drug Design & Molecular Medicine Laboratory, Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana-500007, India
| | - Prathyusha Sai Eligati
- Drug Design & Molecular Medicine Laboratory, Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana-500007, India
| | - Syed Rizwan Hasan Razvi
- Drug Design & Molecular Medicine Laboratory, Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana-500007, India
| | - Komal Paresh Walvekar
- Drug Design & Molecular Medicine Laboratory, Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana-500007, India
| | - Mohammad Afraa
- Drug Design & Molecular Medicine Laboratory, Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana-500007, India
| | - Someswar Rao Sagurthi
- Drug Design & Molecular Medicine Laboratory, Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana-500007, India
| |
Collapse
|
18
|
Poh WH, Lin J, Colley B, Müller N, Goh BC, Schleheck D, El Sahili A, Marquardt A, Liang Y, Kjelleberg S, Lescar J, Rice SA, Klebensberger J. The SiaABC threonine phosphorylation pathway controls biofilm formation in response to carbon availability in Pseudomonas aeruginosa. PLoS One 2020; 15:e0241019. [PMID: 33156827 PMCID: PMC7647112 DOI: 10.1371/journal.pone.0241019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/06/2020] [Indexed: 12/17/2022] Open
Abstract
The critical role of bacterial biofilms in chronic human infections calls for novel anti-biofilm strategies targeting the regulation of biofilm development. However, the regulation of biofilm development is very complex and can include multiple, highly interconnected signal transduction/response pathways, which are incompletely understood. We demonstrated previously that in the opportunistic, human pathogen P. aeruginosa, the PP2C-like protein phosphatase SiaA and the di-guanylate cyclase SiaD control the formation of macroscopic cellular aggregates, a type of suspended biofilms, in response to surfactant stress. In this study, we demonstrate that the SiaABC proteins represent a signal response pathway that functions through a partner switch mechanism to control biofilm formation. We also demonstrate that SiaABCD functionality is dependent on carbon substrate availability for a variety of substrates, and that upon carbon starvation, SiaB mutants show impaired dispersal, in particular with the primary fermentation product ethanol. This suggests that carbon availability is at least one of the key environmental cues integrated by the SiaABCD system. Further, our biochemical, physiological and crystallographic data reveals that the phosphatase SiaA and its kinase counterpart SiaB balance the phosphorylation status of their target protein SiaC at threonine 68 (T68). Crystallographic analysis of the SiaA-PP2C domain shows that SiaA is present as a dimer. Dynamic modelling of SiaA with SiaC suggested that SiaA interacts strongly with phosphorylated SiaC and dissociates rapidly upon dephosphorylation of SiaC. Further, we show that the known phosphatase inhibitor fumonisin inhibits SiaA mediated phosphatase activity in vitro. In conclusion, the present work improves our understanding of how P. aeuruginosa integrates specific environmental conditions, such as carbon availability and surfactant stress, to regulate cellular aggregation and biofilm formation. With the biochemical and structural characterization of SiaA, initial data on the catalytic inhibition of SiaA, and the interaction between SiaA and SiaC, our study identifies promising targets for the development of biofilm-interference drugs to combat infections of this aggressive opportunistic pathogen.
Collapse
Affiliation(s)
- Wee-Han Poh
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jianqing Lin
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Brendan Colley
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Nicolai Müller
- Konstanz Research School Chemical Biology, Departments of Chemistry and Biology, University of Konstanz, Konstanz, Germany
| | - Boon Chong Goh
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - David Schleheck
- Konstanz Research School Chemical Biology, Departments of Chemistry and Biology, University of Konstanz, Konstanz, Germany
| | - Abbas El Sahili
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
- The School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Andreas Marquardt
- Konstanz Research School Chemical Biology, Departments of Chemistry and Biology, University of Konstanz, Konstanz, Germany
| | - Yang Liang
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- The School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Staffan Kjelleberg
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
- The School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Julien Lescar
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
- The School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Scott A. Rice
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- The School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- The ithree Institute, The University of Technology Sydney, Sydney, Australia
| | - Janosch Klebensberger
- University of Stuttgart, Institute of Biochemistry and Technical Biochemistry, Stuttgart, Germany
| |
Collapse
|
19
|
Wollman AJ, Muchová K, Chromiková Z, Wilkinson AJ, Barák I, Leake MC. Single-molecule optical microscopy of protein dynamics and computational analysis of images to determine cell structure development in differentiating Bacillus subtilis. Comput Struct Biotechnol J 2020; 18:1474-1486. [PMID: 32637045 PMCID: PMC7327415 DOI: 10.1016/j.csbj.2020.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Here we use singe-molecule optical proteomics and computational analysis of live cell bacterial images, using millisecond super-resolved tracking and quantification of fluorescently labelled protein SpoIIE in single live Bacillus subtilis bacteria to understand its crucial role in cell development. Asymmetric cell division during sporulation in Bacillus subtilis presents a model system for studying cell development. SpoIIE is a key integral membrane protein phosphatase that couples morphological development to differential gene expression. However, the basic mechanisms behind its operation remain unclear due to limitations of traditional tools and technologies. We instead used advanced single-molecule imaging of fluorescently tagged SpoIIE in real time on living cells to reveal vital changes to the patterns of expression, localization, mobility and stoichiometry as cells undergo asymmetric cell division then engulfment of the smaller forespore by the larger mother cell. We find, unexpectedly, that SpoIIE forms tetramers capable of cell- and stage-dependent clustering, its copy number rising to ~ 700 molecules as sporulation progresses. We observed that slow moving SpoIIE clusters initially located at septa are released as mobile clusters at the forespore pole as phosphatase activity is manifested and compartment-specific RNA polymerase sigma factor, σF, becomes active. Our findings reveal that information captured in its quaternary organization enables one protein to perform multiple functions, extending an important paradigm for regulatory proteins in cells. Our findings more generally demonstrate the utility of rapid live cell single-molecule optical proteomics for enabling mechanistic insight into the complex processes of cell development during the cell cycle.
Collapse
Affiliation(s)
- Adam J.M. Wollman
- Departments of Physics and Biology, University of York, York YO10 5DD, United Kingdom
| | - Katarína Muchová
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Chromiková
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Anthony J. Wilkinson
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Imrich Barák
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mark C. Leake
- Departments of Physics and Biology, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
20
|
Dorich V, Brugger C, Tripathi A, Hoskins JR, Tong S, Suhanovsky MM, Sastry A, Wickner S, Gottesman S, Deaconescu AM. Structural basis for inhibition of a response regulator of σ S stability by a ClpXP antiadaptor. Genes Dev 2019; 33:718-732. [PMID: 30975721 PMCID: PMC6546054 DOI: 10.1101/gad.320168.118] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 03/19/2019] [Indexed: 11/25/2022]
Abstract
Dorich et al. present the first crystal structure of RssB bound to an antiadaptor, the DNA damage-inducible IraD. The structural data, together with mechanistic studies, suggest that RssB plasticity is critical for regulation of σS degradation. The stationary phase promoter specificity subunit σS (RpoS) is delivered to the ClpXP machinery for degradation dependent on the adaptor RssB. This adaptor-specific degradation of σS provides a major point for regulation and transcriptional reprogramming during the general stress response. RssB is an atypical response regulator and the only known ClpXP adaptor that is inhibited by multiple but dissimilar antiadaptors (IraD, IraP, and IraM). These are induced by distinct stress signals and bind to RssB in poorly understood manners to achieve stress-specific inhibition of σS turnover. Here we present the first crystal structure of RssB bound to an antiadaptor, the DNA damage-inducible IraD. The structure reveals that RssB adopts a compact closed architecture with extensive interactions between its N-terminal and C-terminal domains. The structural data, together with mechanistic studies, suggest that RssB plasticity, conferred by an interdomain glutamate-rich flexible linker, is critical for regulation of σS degradation. Structural modulation of interdomain linkers may thus constitute a general strategy for tuning response regulators.
Collapse
Affiliation(s)
- Victoria Dorich
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02903, USA
| | - Christiane Brugger
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02903, USA
| | - Arti Tripathi
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Joel R Hoskins
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Song Tong
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Margaret M Suhanovsky
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02903, USA
| | - Amita Sastry
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02903, USA
| | - Sue Wickner
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Alexandra M Deaconescu
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02903, USA
| |
Collapse
|
21
|
Barák I, Muchová K, Labajová N. Asymmetric cell division during Bacillus subtilis sporulation. Future Microbiol 2019; 14:353-363. [PMID: 30855188 DOI: 10.2217/fmb-2018-0338] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacillus subtilis is a rod-shaped bacterium which divides precisely at mid-cell during vegetative growth. Unlike Escherichia coli, another model organism used for studying cell division, B. subtilis can also divide asymmetrically during sporulation, the simplest cell differentiation process. The asymmetrically positioned sporulation septum serves as a morphological foundation for establishing differential gene expression in the smaller forespore and larger mother cell. Both vegetative and sporulation septation events are fine-tuned with cell cycle, and placement of both septa are highly precise. We understand in some detail how this is achieved during vegetative growth but have limited information about how the asymmetric septation site is determined during sporulation.
Collapse
Affiliation(s)
- Imrich Barák
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarína Muchová
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Naďa Labajová
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
22
|
Identification and Biochemical Characterization of a Novel Protein Phosphatase 2C-Like Ser/Thr Phosphatase in Escherichia coli. J Bacteriol 2018; 200:JB.00225-18. [PMID: 29967116 DOI: 10.1128/jb.00225-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/21/2018] [Indexed: 02/02/2023] Open
Abstract
In bacteria, signaling phosphorylation is thought to occur primarily on His and Asp residues. However, phosphoproteomic surveys over the past decade in phylogenetically diverse bacteria have identified numerous proteins that are phosphorylated on Ser and/or Thr residues. Consistently, genes encoding Ser/Thr kinases are present in many bacterial genomes, such as that of Escherichia coli, which encodes at least three Ser/Thr kinases. Since Ser/Thr phosphorylation is a stable modification, a dedicated phosphatase is necessary to allow reversible regulation. Ser/Thr phosphatases belonging to several conserved families are found in bacteria. One family of particular interest are Ser/Thr phosphatases, which have extensive sequence and structural homology to eukaryotic Ser/Thr protein phosphatase 2C (PP2C) phosphatases. These proteins, called eukaryote-like Ser/Thr phosphatases (eSTPs), have been identified in a number of bacteria but not in E. coli Here, we describe a previously unknown eSTP encoded by an E. coli open reading frame (ORF), yegK, and characterize its biochemical properties, including its kinetics, substrate specificity, and sensitivity to known phosphatase inhibitors. We investigate differences in the activity of this protein in closely related E. coli strains. Finally, we demonstrate that this eSTP acts to dephosphorylate a novel Ser/Thr kinase that is encoded in the same operon.IMPORTANCE Regulatory protein phosphorylation is a conserved mechanism of signaling in all biological systems. Recent phosphoproteomic analyses of phylogenetically diverse bacteria, including the model Gram-negative bacterium Escherichia coli, demonstrate that many proteins are phosphorylated on serine or threonine residues. In contrast to phosphorylation on histidine or aspartate residues, phosphorylation of serine and threonine residues is stable and requires the action of a partner Ser/Thr phosphatase to remove the modification. Although a number of Ser/Thr kinases have been reported in E. coli, no partner Ser/Thr phosphatases have been identified. Here, we biochemically characterize a novel Ser/Thr phosphatase that acts to dephosphorylate a Ser/Thr kinase that is encoded in the same operon.
Collapse
|
23
|
Bouillet S, Arabet D, Jourlin-Castelli C, Méjean V, Iobbi-Nivol C. Regulation of σ factors by conserved partner switches controlled by divergent signalling systems. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:127-139. [PMID: 29393573 DOI: 10.1111/1758-2229.12620] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 06/07/2023]
Abstract
Partner-Switching Systems (PSS) are widespread regulatory systems, each comprising a kinase-anti-σ, a phosphorylatable anti-σ antagonist and a phosphatase module. The anti-σ domain quickly sequesters or delivers the target σ factor according to the phosphorylation state of the anti-σ antagonist induced by environmental signals. The PSS components are proteins alone or merged to other domains probably to adapt to the input signals. PSS are involved in major cellular processes including stress response, sporulation, biofilm formation and pathogenesis. Surprisingly, the target σ factors are often unknown and the sensing modules acting upstream from the PSS diverge according to the bacterial species. Indeed, they belong to either two-component systems or complex pathways as the stressosome or Chemosensory Systems (CS). Based on a phylogenetic analysis, we propose that the sensing module in Gram-negative bacteria is often a CS.
Collapse
Affiliation(s)
- Sophie Bouillet
- Aix-Marseille University, CNRS, BIP UMR7281, 13402 Marseille, France
| | - Dallel Arabet
- Université des Frères Mentouri Constantine 1, Constantine, Algeria
| | | | - Vincent Méjean
- Aix-Marseille University, CNRS, BIP UMR7281, 13402 Marseille, France
| | | |
Collapse
|
24
|
Debnath S, Kosek D, Tagad HD, Durell SR, Appella DH, Acevedo R, Grishaev A, Dyda F, Appella E, Mazur SJ. A trapped human PPM1A-phosphopeptide complex reveals structural features critical for regulation of PPM protein phosphatase activity. J Biol Chem 2018; 293:7993-8008. [PMID: 29602904 DOI: 10.1074/jbc.ra117.001213] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/29/2018] [Indexed: 01/09/2023] Open
Abstract
Metal-dependent protein phosphatases (PPM) are evolutionarily unrelated to other serine/threonine protein phosphatases and are characterized by their requirement for supplementation with millimolar concentrations of Mg2+ or Mn2+ ions for activity in vitro The crystal structure of human PPM1A (also known as PP2Cα), the first PPM structure determined, displays two tightly bound Mn2+ ions in the active site and a small subdomain, termed the Flap, located adjacent to the active site. Some recent crystal structures of bacterial or plant PPM phosphatases have disclosed two tightly bound metal ions and an additional third metal ion in the active site. Here, the crystal structure of the catalytic domain of human PPM1A, PPM1Acat, complexed with a cyclic phosphopeptide, c(MpSIpYVA), a cyclized variant of the activation loop of p38 MAPK (a physiological substrate of PPM1A), revealed three metal ions in the active site. The PPM1Acat D146E-c(MpSIpYVA) complex confirmed the presence of the anticipated third metal ion in the active site of metazoan PPM phosphatases. Biophysical and computational methods suggested that complex formation results in a slightly more compact solution conformation through reduced conformational flexibility of the Flap subdomain. We also observed that the position of the substrate in the active site allows solvent access to the labile third metal-binding site. Enzyme kinetics of PPM1Acat toward a phosphopeptide substrate supported a random-order, bi-substrate mechanism, with substantial interaction between the bound substrate and the labile metal ion. This work illuminates the structural and thermodynamic basis of an innate mechanism regulating the activity of PPM phosphatases.
Collapse
Affiliation(s)
- Subrata Debnath
- Laboratory of Cell Biology, Center for Cancer Research, NCI, Bethesda, Maryland 20892
| | - Dalibor Kosek
- Laboratories of Molecular Biology, Bethesda, Maryland 20892
| | - Harichandra D Tagad
- Laboratory of Cell Biology, Center for Cancer Research, NCI, Bethesda, Maryland 20892
| | - Stewart R Durell
- Laboratory of Cell Biology, Center for Cancer Research, NCI, Bethesda, Maryland 20892
| | - Daniel H Appella
- Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Roderico Acevedo
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Alexander Grishaev
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850; National Institute of Standards and Technology, Gaithersburg, Maryland 20899
| | - Fred Dyda
- Laboratories of Molecular Biology, Bethesda, Maryland 20892
| | - Ettore Appella
- Laboratory of Cell Biology, Center for Cancer Research, NCI, Bethesda, Maryland 20892
| | - Sharlyn J Mazur
- Laboratory of Cell Biology, Center for Cancer Research, NCI, Bethesda, Maryland 20892.
| |
Collapse
|