1
|
Hu H, Huang Y, Yang F, Ma L, Zhang J, Deng X, Ma N, Wang K, Tao Y, Lin Q, Li Y, Bai X, Pan H. Metagenome-assembled microbial genomes (n = 3,448) of the oral microbiomes of Tibetan and Duroc pigs. Sci Data 2025; 12:141. [PMID: 39856057 PMCID: PMC11759675 DOI: 10.1038/s41597-025-04413-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
Compared with leaner breeds, local Chinese pig breeds have distinct intestinal microbial, as determined by metagenomic techniques, and the interactions between oral microorganisms and their hosts are also gradually being clarified. However, the high host genome content means that few metagenome-based oral microbiomes have been reported. Here, we combined dilution-based metagenomic sequencing and binning approaches to extract the microbial genomes from the oral microbiomes of Tibetan and Duroc pigs. The host contamination rates were reduced to 13.64%, a quarter of the normal metagenomic level (65.25% on average). Medium-high-quality metagenome-assembled genomes (MAGs; n = 3,448) spanning nine phyla were retrieved and 70.79% were novel species. Of the nonredundant MAGs, only 13.37% were shared, revealing the strong disparities between Tibetan and Duroc pigs. The oral microbial diversity of the Duroc pig was greater than that of the Tibetan pig. We present the first large-scale dilute-based metagenomic data on the pig oral microbiome, which should facilitate further investigation of the functions of oral microorganisms in pigs.
Collapse
Affiliation(s)
- Hong Hu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Ying Huang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Fuyan Yang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Liangru Ma
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Junjie Zhang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Xu Deng
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Nan Ma
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Kunping Wang
- College of Animal Science, Anhui Science and Technology University, Bengbu, 233000, China
| | - Ye Tao
- Shanghai BIOZERON Biotechnology Company Ltd, Shanghai, 201800, China
| | - Qin Lin
- Shanghai BIOZERON Biotechnology Company Ltd, Shanghai, 201800, China
| | - Yanfei Li
- Shanghai BIOZERON Biotechnology Company Ltd, Shanghai, 201800, China
| | - Xi Bai
- College of Animal Science, Anhui Science and Technology University, Bengbu, 233000, China.
| | - Hongbin Pan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
2
|
Schulz F, Yan Y, Weiner AK, Ahsan R, Katz LA, Woyke T. Protists as mediators of complex microbial and viral associations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.29.630703. [PMID: 39803511 PMCID: PMC11722414 DOI: 10.1101/2024.12.29.630703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Microbial eukaryotes (aka protists) are known for their important roles in nutrient cycling across different ecosystems. However, the composition and function of protist-associated microbiomes remains largely elusive. Here, we employ cultivation-independent single-cell isolation and genome-resolved metagenomics to provide detailed insights into underexplored microbiomes and viromes of over 100 currently uncultivable ciliates and amoebae isolated from diverse environments. Our findings reveal unique microbiome compositions and hint at an intricate network of complex interactions and associations with bacterial symbionts and viruses. We observed stark differences between ciliates and amoebae in terms of microbiome and virome compositions, highlighting the specificity of protist-microbe interactions. Over 115 of the recovered microbial genomes were affiliated with known endosymbionts of eukaryotes, including diverse members of the Holosporales, Rickettsiales, Legionellales, Chlamydiae, Dependentiae , and more than 250 were affiliated with possible host-associated bacteria of the phylum Patescibacteria. We also identified more than 80 giant viruses belonging to diverse viral lineages, of which some were actively expressing genes in single cell transcriptomes, suggesting a possible association with the sampled protists. We also revealed a wide range of other viruses that were predicted to infect eukaryotes or host-associated bacteria. Our results provide further evidence that protists serve as mediators of complex microbial and viral associations, playing a critical role in ecological networks. The frequent co-occurrence of giant viruses and diverse microbial symbionts in our samples suggests multipartite associations, particularly among amoebae. Our study provides a preliminary assessment of the microbial diversity associated with lesser-known protist lineages and paves the way for a deeper understanding of protist ecology and their roles in environmental and human health.
Collapse
Affiliation(s)
| | - Ying Yan
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
| | - Agnes K.M. Weiner
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
| | - Ragib Ahsan
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
- University of Massachusetts Amherst, Program in Organismic and Evolutionary Biology, Amherst, Massachusetts, USA
| | - Laura A. Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
- University of Massachusetts Amherst, Program in Organismic and Evolutionary Biology, Amherst, Massachusetts, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Berkeley, California, USA
- University of California Merced, Life and Environmental Sciences, Merced, California, USA
| |
Collapse
|
3
|
Podosokorskaya OA, Petrova NF, Tikhonova EN, Klyukina AA, Elcheninov AG. Rosettibacter primus gen. nov., sp. nov., and Rosettibacter firmus sp. nov., facultatively anaerobic moderately thermophilic bacteria of the class Ignavibacteria from hot springs of North Ossetia. Syst Appl Microbiol 2024; 47:126528. [PMID: 38959749 DOI: 10.1016/j.syapm.2024.126528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
A novel facultatively anaerobic moderately thermophilic bacteria, strains 4137-MeT and 4148-MeT, were isolated from hot springs of Karmadon and Ursdon, respectively (North Ossetia, Russian Federation). Gram-negative, motile rods were present singly, in pairs, rosettes, and aggregates, or formed biofilms. Both strains grew optimally at 50-55 °C, pH 7.0 and did not require sodium chloride or yeast extract for growth. They were chemoorganoheterotrophs, growing on mono-, di- and polysaccharides (cellulose, starch, xylan, lichenan, galactan, xyloglucan, mannan, xanthan gum, guar gum) as well as proteinaceous substrates (gelatin, peptone, beef and yeast extract). Growth under anaerobic conditions was observed in presence and absence of external electron acceptors. Sulfur, thiosulfate, arsenate, Fe-citrate, and ferrihydrite were reduced with acetate, starch, or yeast extract as electron donors. The respiratory quinone was MK-7. Major cellular fatty acids of both strains were iso-C15:0, anteiso-C17:0, C15:0, iso-C16:0 and additionally iso-C17:0 for strain 4137-MeT. The size of the genome and genomic DNA G + C content of strain 4137-MeT were 3.24 Mb. and 29.9 %, respectively; for strain 4148-MeT - 3.33 Mb and 30.7 %. According to the 16S rRNA gene sequence and conserved protein sequences phylogenies, strains 4137-MeT and 4148-MeT represented a distinct lineage of the family Melioribacteraceae within the class Ignavibacteria. Based on phylogenetic analysis and phenotypic features, the novel isolates were assigned to a novel genus, for which the name Rosettibacter gen. nov. is proposed. Strain 4148-MeT represents its type species Rosettibacter primus sp. nov., while strain 4137-MeT represents a new species Rosettibacter firmus sp. nov.
Collapse
Affiliation(s)
- Olga A Podosokorskaya
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia.
| | - Nika F Petrova
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia
| | - Ekaterina N Tikhonova
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia
| | - Alexandra A Klyukina
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia
| | - Alexander G Elcheninov
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia
| |
Collapse
|
4
|
Zhao Q, Song D, Ju H, Xing W, Ma J, Xiao P. Mass spectrometry in measurement of thyroid biomarkers. Clin Chim Acta 2024; 562:119872. [PMID: 39013525 DOI: 10.1016/j.cca.2024.119872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
In 2022, the number of patients with thyroid disease in China exceeded 200 million (10 million with hyperthyroidism, 90 million with hypothyroidism, and 100 million with other thyroid disease such as goiter, thyroid nodules, and thyroid cancer). Well-established markers include FT3, FT4, TT3, TT4, and TSH tested by a number of immunoassay methods. This approach is based on the primary binding of antigen with antibody and a subsequent secondary chemical reaction that provides an indirect measure. The use of traceable standards for quantitation remains an important factor to ensure inter-assay reliability and precision. Recently, mass spectrometry (MS) has received considerable attention as an analytic tool due to high resolution and quantitative accuracy. In addition, MS allows for sensitive determination of low-abundance markers making it ideal for development of traceable standards. Furthermore, this technology will allow for the development of highly accurate thyroid biomarker assays to facilitate diagnosis, enable early treatment and improve outcomes. Herein, we provide a systematic review and summary of MS in enhancing the analysis of thyroid biomarkers.
Collapse
Affiliation(s)
- Qiang Zhao
- National Institute of Metrology, Beijing 100029, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing 100029, China; Department of Immunology, Harbin Medical University, Harbin 150081, China
| | - Dan Song
- National Institute of Metrology, Beijing 100029, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing 100029, China
| | - Huanyu Ju
- Department of Immunology, Harbin Medical University, Harbin 150081, China
| | - Wenjing Xing
- Department of Immunology, Harbin Medical University, Harbin 150081, China
| | - Jian Ma
- Department of Immunology, Harbin Medical University, Harbin 150081, China.
| | - Peng Xiao
- National Institute of Metrology, Beijing 100029, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing 100029, China.
| |
Collapse
|
5
|
Liang JL, Feng SW, Jia P, Lu JL, Yi X, Gao SM, Wu ZH, Liao B, Shu WS, Li JT. Unraveling the habitat preferences, ecological drivers, potential hosts, and auxiliary metabolism of soil giant viruses across China. MICROBIOME 2024; 12:136. [PMID: 39039586 PMCID: PMC11265010 DOI: 10.1186/s40168-024-01851-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 05/30/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Soil giant viruses are increasingly believed to have profound effects on ecological functioning by infecting diverse eukaryotes. However, their biogeography and ecology remain poorly understood. RESULTS In this study, we analyzed 333 soil metagenomes from 5 habitat types (farmland, forest, grassland, Gobi desert, and mine wasteland) across China and identified 533 distinct giant virus phylotypes affiliated with nine families, thereby greatly expanding the diversity of soil giant viruses. Among the nine families, Pithoviridae were the most diverse. The majority of phylotypes exhibited a heterogeneous distribution among habitat types, with a remarkably high proportion of unique phylotypes in mine wasteland. The abundances of phylotypes were negatively correlated with their environmental ranges. A total of 76 phylotypes recovered in this study were detectable in a published global topsoil metagenome dataset. Among climatic, geographical, edaphic, and biotic characteristics, soil eukaryotes were identified as the most important driver of beta-diversity of giant viral communities across habitat types. Moreover, co-occurrence network analysis revealed some pairings between giant viral phylotypes and eukaryotes (protozoa, fungi, and algae). Analysis of 44 medium- to high-quality giant virus genomes recovered from our metagenomes uncovered not only their highly shared functions but also their novel auxiliary metabolic genes related to carbon, sulfur, and phosphorus cycling. CONCLUSIONS These findings extend our knowledge of diversity, habitat preferences, ecological drivers, potential hosts, and auxiliary metabolism of soil giant viruses. Video Abstract.
Collapse
Affiliation(s)
- Jie-Liang Liang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Shi-Wei Feng
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Pu Jia
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Jing-Li Lu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Xinzhu Yi
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Shao-Ming Gao
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zhuo-Hui Wu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Bin Liao
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Wen-Sheng Shu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Jin-Tian Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China.
| |
Collapse
|
6
|
Wu Y, Zhuang J, Song Y, Gao X, Chu J, Han S. Advances in single-cell sequencing technology in microbiome research. Genes Dis 2024; 11:101129. [PMID: 38545125 PMCID: PMC10965480 DOI: 10.1016/j.gendis.2023.101129] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 11/11/2024] Open
Abstract
With the rapid development of histological techniques and the widespread application of single-cell sequencing in eukaryotes, researchers desire to explore individual microbial genotypes and functional expression, which deepens our understanding of microorganisms. In this review, the history of the development of microbial detection technologies was revealed and the difficulties in the application of single-cell sequencing in microorganisms were dissected as well. Moreover, the characteristics of the currently emerging microbial single-cell sequencing (Microbe-seq) technology were summarized, and the prospects of the application of Microbe-seq in microorganisms were distilled based on the current development status. Despite its mature development, the Microbe-seq technology was still in the optimization stage. A retrospective study was conducted, aiming to promote the widespread application of single-cell sequencing in microorganisms and facilitate further improvement in the technology.
Collapse
Affiliation(s)
- Yinhang Wu
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang 313000, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, Zhejiang 313000, China
- The Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 313000, China
| | - Jing Zhuang
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang 313000, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, Zhejiang 313000, China
- The Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 313000, China
| | - Yifei Song
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang 313000, China
| | - Xinyi Gao
- Zhejiang Provincial People's Hospital and Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, China
| | - Jian Chu
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang 313000, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, Zhejiang 313000, China
- The Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 313000, China
| | - Shuwen Han
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang 313000, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, Zhejiang 313000, China
- The Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 313000, China
| |
Collapse
|
7
|
Ma J, Sun H, Li B, Wu B, Zhang X, Ye L. Horizontal transfer potential of antibiotic resistance genes in wastewater treatment plants unraveled by microfluidic-based mini-metagenomics. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133493. [PMID: 38228000 DOI: 10.1016/j.jhazmat.2024.133493] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/30/2023] [Accepted: 01/08/2024] [Indexed: 01/18/2024]
Abstract
Wastewater treatment plants (WWTPs) are known to harbor antibiotic resistance genes (ARGs), which can potentially spread to the environment and human populations. However, the extent and mechanisms of ARG transfer in WWTPs are not well understood due to the high microbial diversity and limitations of molecular techniques. In this study, we used a microfluidic-based mini-metagenomics approach to investigate the transfer potential and mechanisms of ARGs in activated sludge from WWTPs. Our results show that while diverse ARGs are present in activated sludge, only a few highly similar ARGs are observed across different taxa, indicating limited transfer potential. We identified two ARGs, ermF and tla-1, which occur in a variety of bacterial taxa and may have high transfer potential facilitated by mobile genetic elements. Interestingly, genes that are highly similar to the sequences of these two ARGs, as identified in this study, display varying patterns of abundance across geographic regions. Genes similar to ermF found are widely found in Asia and the Americas, while genes resembling tla-1 are primarily detected in Asia. Genes similar to both genes are barely detected in European WWTPs. These findings shed light on the limited horizontal transfer potential of ARGs in WWTPs and highlight the importance of monitoring specific ARGs in different regions to mitigate the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Jiachen Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Haohao Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China; School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Bing Li
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
8
|
Jiménez DJ, Rosado AS. SeqCode in the golden age of prokaryotic systematics. THE ISME JOURNAL 2024; 18:wrae109. [PMID: 38896025 PMCID: PMC11384910 DOI: 10.1093/ismejo/wrae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/08/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024]
Abstract
The SeqCode is a new code of prokaryotic nomenclature that was developed to validate taxon names using genome sequences as the type material. The present article provides an independent view about the SeqCode, highlighting its history, current status, basic features, pros and cons, and use to date. We also discuss important topics to consider for validation of novel prokaryotic taxon names using genomes as the type material. Owing to significant advances in metagenomics and cultivation methods, hundreds of novel prokaryotic species are expected to be discovered in the coming years. This manuscript aims to stimulate and enrich the debate around the use of the SeqCode in the upcoming golden age of prokaryotic taxon discovery and systematics.
Collapse
Affiliation(s)
- Diego Javier Jiménez
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Alexandre Soares Rosado
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Wang D, Li J, Su L, Shen W, Feng K, Peng X, Wang Z, Zhao B, Zhang Z, Zhang Z, Yergeau É, Deng Y. Phylogenetic diversity of functional genes in deep-sea cold seeps: a novel perspective on metagenomics. MICROBIOME 2023; 11:276. [PMID: 38102689 PMCID: PMC10722806 DOI: 10.1186/s40168-023-01723-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Leakages of cold, methane-rich fluids from subsurface reservoirs to the sea floor are termed cold seeps. Recent exploration of the deep sea has shed new light on the microbial communities in cold seeps. However, conventional metagenomic methods largely rely on reference databases and neglect the phylogeny of functional genes. RESULTS In this study, we developed the REMIRGE program to retrieve the full-length functional genes from shotgun metagenomic reads and fully explored the phylogenetic diversity in cold seep sediments. The abundance and diversity of functional genes involved in the methane, sulfur, and nitrogen cycles differed in the non-seep site and five cold seep sites. In one Haima cold seep site, the divergence of functional groups was observed at the centimeter scale of sediment depths, with the surface layer potentially acting as a reservoir of microbial species and functions. Additionally, positive correlations were found between specific gene sequence clusters of relevant genes, indicating coupling occurred within specific functional groups. CONCLUSION REMIRGE revealed divergent phylogenetic diversity of functional groups and functional pathway preferences in a deep-sea cold seep at finer scales, which could not be detected by conventional methods. Our work highlights that phylogenetic information is conducive to more comprehensive functional profiles, and REMIRGE has the potential to uncover more new insights from shotgun metagenomic data. Video Abstract.
Collapse
Affiliation(s)
- Danrui Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiangtao Li
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
| | - Lei Su
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
| | - Wenli Shen
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Kai Feng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi Peng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhujun Wang
- College of Tropical Crops, Hainan University, Haikou, 572000, China
| | - Bo Zhao
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheng Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Zhaojing Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Étienne Yergeau
- Institut National de La Recherche Scientique, Centre Armand-Frappier Santé Biotechnologie, Laval, H7V 1B7, QC, China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
10
|
Zhang T, Zhou K, Wang Y, Xu J, Zheng Q, Luo T, Jiao N. Genomic insights into the adaptation of Synechococcus to the coastal environment on Xiamen. Front Microbiol 2023; 14:1292150. [PMID: 38059125 PMCID: PMC10696648 DOI: 10.3389/fmicb.2023.1292150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/01/2023] [Indexed: 12/08/2023] Open
Abstract
Synechococcus are widely distributed in the global ocean, from the pelagic zone to coastal waters. However, little is known about Synechococcus in coastal seawater due to limitations in isolation and culture conditions. In this study, a combination of metagenomic sequencing technology, flow cytometry sorting, and multiple displacement amplification was used to investigate Synechococcus in the coastal seawater of Xiamen Island. The results revealed 18 clades of Synechococcus and diverse metabolic genes that appear to contribute to their adaptation to the coastal environment. Intriguingly, some metabolic genes related to the metabolism of carbohydrates, energy, nucleotides, and amino acids were found in 89 prophage regions that were detected in 16,258 Synechococcus sequences. The detected metabolic genes can enable prophages to contribute to the adaptation of Synechococcus hosts to the coastal marine environment. The detection of prophages also suggests that the cyanophages have infected Synechococcus. On the other hand, the identification of 773 genes associated with antiviral defense systems indicates that Synechococcus in Xiamen have evolved genetic traits in response to cyanophage infection. Studying the community diversity and functional genes of Synechococcus provides insights into their role in environmental adaptation and marine ecosystems.
Collapse
Affiliation(s)
- Ting Zhang
- Fujian Key Laboratory of Marine Carbon Sequestration, Carbon Neutral Innovation Research Center, Xiamen University, Xiamen, Fujian, China
| | - Kun Zhou
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States
| | - Yanhui Wang
- Fujian Key Laboratory of Marine Carbon Sequestration, Carbon Neutral Innovation Research Center, Xiamen University, Xiamen, Fujian, China
| | - Jinxin Xu
- Fujian Key Laboratory of Marine Carbon Sequestration, Carbon Neutral Innovation Research Center, Xiamen University, Xiamen, Fujian, China
| | - Qiang Zheng
- Fujian Key Laboratory of Marine Carbon Sequestration, Carbon Neutral Innovation Research Center, Xiamen University, Xiamen, Fujian, China
| | - Tingwei Luo
- Fujian Key Laboratory of Marine Carbon Sequestration, Carbon Neutral Innovation Research Center, Xiamen University, Xiamen, Fujian, China
| | - Nianzhi Jiao
- Fujian Key Laboratory of Marine Carbon Sequestration, Carbon Neutral Innovation Research Center, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
11
|
Džunková M, La Clair JJ, Tyml T, Doud D, Schulz F, Piquer-Esteban S, Porcel Sanchis D, Osborn A, Robinson D, Louie KB, Bowen BP, Bowers RM, Lee J, Arnau V, Díaz-Villanueva W, Stepanauskas R, Gosliner T, Date SV, Northen TR, Cheng JF, Burkart MD, Woyke T. Synthase-selected sorting approach identifies a beta-lactone synthase in a nudibranch symbiotic bacterium. MICROBIOME 2023; 11:130. [PMID: 37312139 DOI: 10.1186/s40168-023-01560-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/27/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND Nudibranchs comprise a group of > 6000 marine soft-bodied mollusk species known to use secondary metabolites (natural products) for chemical defense. The full diversity of these metabolites and whether symbiotic microbes are responsible for their synthesis remains unexplored. Another issue in searching for undiscovered natural products is that computational analysis of genomes of uncultured microbes can result in detection of novel biosynthetic gene clusters; however, their in vivo functionality is not guaranteed which limits further exploration of their pharmaceutical or industrial potential. To overcome these challenges, we used a fluorescent pantetheine probe, which produces a fluorescent CoA-analog employed in biosynthesis of secondary metabolites, to label and capture bacterial symbionts actively producing these compounds in the mantle of the nudibranch Doriopsilla fulva. RESULTS We recovered the genome of Candidatus Doriopsillibacter californiensis from the Ca. Tethybacterales order, an uncultured lineage of sponge symbionts not found in nudibranchs previously. It forms part of the core skin microbiome of D. fulva and is nearly absent in its internal organs. We showed that crude extracts of D. fulva contained secondary metabolites that were consistent with the presence of a beta-lactone encoded in Ca. D. californiensis genome. Beta-lactones represent an underexplored group of secondary metabolites with pharmaceutical potential that have not been reported in nudibranchs previously. CONCLUSIONS Altogether, this study shows how probe-based, targeted sorting approaches can capture bacterial symbionts producing secondary metabolites in vivo. Video Abstract.
Collapse
Affiliation(s)
- Mária Džunková
- Department of Energy Joint Genome Institute, Berkeley, CA, USA.
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain.
| | - James J La Clair
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Tomáš Tyml
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Laboratory for Research in Complex Systems, Menlo Park, CA, USA
| | - Devin Doud
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Frederik Schulz
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Samuel Piquer-Esteban
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Dafne Porcel Sanchis
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Andrew Osborn
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David Robinson
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Katherine B Louie
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ben P Bowen
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Robert M Bowers
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Janey Lee
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Vicente Arnau
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
- Foundation for the Promotion of Sanitary and Biomedical Research of the Valencian Community (FISABIO), Valencia, Spain
| | - Wladimiro Díaz-Villanueva
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
- Foundation for the Promotion of Sanitary and Biomedical Research of the Valencian Community (FISABIO), Valencia, Spain
| | | | | | - Shailesh V Date
- Laboratory for Research in Complex Systems, Menlo Park, CA, USA
- University of California San Francisco, San Francisco, CA, USA
- San Francisco State University, San Francisco, CA, USA
| | - Trent R Northen
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jan-Fang Cheng
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA.
| | - Tanja Woyke
- Department of Energy Joint Genome Institute, Berkeley, CA, USA.
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- University of California Merced, Life and Environmental Sciences, Merced, CA, USA.
| |
Collapse
|
12
|
Shan Y, Guo Y, Jiao W, Zeng P. Single-Cell Techniques in Environmental Microbiology. Processes (Basel) 2023. [DOI: 10.3390/pr11041109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Environmental microbiology has been an essential part of environmental research because it provides effective solutions to most pollutants. Hence, there is an interest in investigating microorganism behavior, such as observation, identification, isolation of pollutant degraders, and interactions between microbial species. To comprehensively understand cell heterogeneity, diverse approaches at the single-cell level are demanded. Thus far, the traditional bulk biological tools such as petri dishes are technically challenging for single cells, which could mask the heterogeneity. Single-cell technologies can reveal complex and rare cell populations by detecting heterogeneity among individual cells, which offers advantages of higher resolution, higher throughput, more accurate analysis, etc. Here, we overviewed several single-cell techniques on observation, isolation, and identification from aspects of methods and applications. Microscopic observation, sequencing identification, flow cytometric identification and isolation, Raman spectroscopy-based identification and isolation, and their applications are mainly discussed. Further development on multi-technique integrations at the single-cell level may highly advance the research progress of environmental microbiology, thereby giving more indication in the environmental microbial ecology.
Collapse
Affiliation(s)
- Yongping Shan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuting Guo
- Flow Cytometry Center, National Institute of Biological Sciences, Beijing 102206, China
| | - Wentao Jiao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ping Zeng
- Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
13
|
Schulz F, Abergel C, Woyke T. Giant virus biology and diversity in the era of genome-resolved metagenomics. Nat Rev Microbiol 2022; 20:721-736. [PMID: 35902763 DOI: 10.1038/s41579-022-00754-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 11/09/2022]
Abstract
The discovery of giant viruses, with capsids as large as some bacteria, megabase-range genomes and a variety of traits typically found only in cellular organisms, was one of the most remarkable breakthroughs in biology. Until recently, most of our knowledge of giant viruses came from ~100 species-level isolates for which genome sequences were available. However, these isolates were primarily derived from laboratory-based co-cultivation with few cultured protists and algae and, thus, did not reflect the true diversity of giant viruses. Although virus co-cultures enabled valuable insights into giant virus biology, many questions regarding their origin, evolution and ecological importance remain unanswered. With advances in sequencing technologies and bioinformatics, our understanding of giant viruses has drastically expanded. In this Review, we summarize our understanding of giant virus diversity and biology based on viral isolates as laboratory cultivation has enabled extensive insights into viral morphology and infection strategies. We then explore how cultivation-independent approaches have heightened our understanding of the coding potential and diversity of the Nucleocytoviricota. We discuss how metagenomics has revolutionized our perspective of giant viruses by revealing their distribution across our planet's biomes, where they impact the biology and ecology of a wide range of eukaryotic hosts and ultimately affect global nutrient cycles.
Collapse
Affiliation(s)
- Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Chantal Abergel
- Aix Marseille University, CNRS, IGS UMR7256, IMM FR3479, IM2B, IO, Marseille, France
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,University of California Merced, Merced, CA, USA.
| |
Collapse
|
14
|
Volland JM, Gonzalez-Rizzo S, Gros O, Tyml T, Ivanova N, Schulz F, Goudeau D, Elisabeth NH, Nath N, Udwary D, Malmstrom RR, Guidi-Rontani C, Bolte-Kluge S, Davies KM, Jean MR, Mansot JL, Mouncey NJ, Angert ER, Woyke T, Date SV. A centimeter-long bacterium with DNA contained in metabolically active, membrane-bound organelles. Science 2022; 376:1453-1458. [PMID: 35737788 DOI: 10.1126/science.abb3634] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cells of most bacterial species are around 2 micrometers in length, with some of the largest specimens reaching 750 micrometers. Using fluorescence, x-ray, and electron microscopy in conjunction with genome sequencing, we characterized Candidatus (Ca.) Thiomargarita magnifica, a bacterium that has an average cell length greater than 9000 micrometers and is visible to the naked eye. These cells grow orders of magnitude over theoretical limits for bacterial cell size, display unprecedented polyploidy of more than half a million copies of a very large genome, and undergo a dimorphic life cycle with asymmetric segregation of chromosomes into daughter cells. These features, along with compartmentalization of genomic material and ribosomes in translationally active organelles bound by bioenergetic membranes, indicate gain of complexity in the Thiomargarita lineage and challenge traditional concepts of bacterial cells.
Collapse
Affiliation(s)
- Jean-Marie Volland
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Laboratory for Research in Complex Systems, Menlo Park, CA, USA
| | - Silvina Gonzalez-Rizzo
- Institut de Systématique, Evolution, Biodiversité, Université des Antilles, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Campus de Fouillole, Pointe-à-Pitre, France
| | - Olivier Gros
- Institut de Systématique, Evolution, Biodiversité, Université des Antilles, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Campus de Fouillole, Pointe-à-Pitre, France.,Centre Commun de Caractérisation des Matériaux des Antilles et de la Guyane, Université des Antilles, UFR des Sciences Exactes et Naturelles, Pointe-à-Pitre, Guadeloupe, France
| | - Tomáš Tyml
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Laboratory for Research in Complex Systems, Menlo Park, CA, USA
| | - Natalia Ivanova
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Frederik Schulz
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Danielle Goudeau
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nathalie H Elisabeth
- Department of Energy Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nandita Nath
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Daniel Udwary
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Rex R Malmstrom
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chantal Guidi-Rontani
- Institut de Systématique, Evolution, Biodiversité CNRS UMR 7205, Museum National d'Histoire Naturelle, Paris, France
| | - Susanne Bolte-Kluge
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS FRE3631, Institut de Biologie Paris Seine, Paris, France
| | - Karen M Davies
- Department of Energy Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, USA
| | - Maïtena R Jean
- Institut de Systématique, Evolution, Biodiversité, Université des Antilles, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Campus de Fouillole, Pointe-à-Pitre, France
| | - Jean-Louis Mansot
- Centre Commun de Caractérisation des Matériaux des Antilles et de la Guyane, Université des Antilles, UFR des Sciences Exactes et Naturelles, Pointe-à-Pitre, Guadeloupe, France
| | - Nigel J Mouncey
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Esther R Angert
- Cornell University, College of Agriculture and Life Sciences, Department of Microbiology, Ithaca, NY, USA
| | - Tanja Woyke
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Laboratory for Research in Complex Systems, Menlo Park, CA, USA.,University of California Merced, School of Natural Sciences, Merced, CA, USA
| | - Shailesh V Date
- Laboratory for Research in Complex Systems, Menlo Park, CA, USA.,University of California San Francisco, San Francisco, CA, USA.,San Francisco State University, San Francisco, CA, USA
| |
Collapse
|
15
|
Viviani A, Spada M, Giordani T, Fambrini M, Pugliesi C. Origin of the genome editing systems: application for crop improvement. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Zheng W, Zhao S, Yin Y, Zhang H, Needham DM, Evans ED, Dai CL, Lu PJ, Alm EJ, Weitz DA. High-throughput, single-microbe genomics with strain resolution, applied to a human gut microbiome. Science 2022; 376:eabm1483. [PMID: 35653470 DOI: 10.1126/science.abm1483] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Characterizing complex microbial communities with single-cell resolution has been a long-standing goal of microbiology. We present Microbe-seq, a high-throughput method that yields the genomes of individual microbes from complex microbial communities. We encapsulate individual microbes in droplets with microfluidics and liberate their DNA, which we then amplify, tag with droplet-specific barcodes, and sequence. We explore the human gut microbiome, sequencing more than 20,000 microbial single-amplified genomes (SAGs) from a single human donor and coassembling genomes of almost 100 bacterial species, including several with multiple subspecies strains. We use these genomes to probe microbial interactions, reconstructing the horizontal gene transfer (HGT) network and observing HGT between 92 species pairs; we also identify a significant in vivo host-phage association between crAssphage and one strain of Bacteroides vulgatus. Microbe-seq contributes high-throughput culture-free capabilities to investigate genomic blueprints of complex microbial communities with single-microbe resolution.
Collapse
Affiliation(s)
- Wenshan Zheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shijie Zhao
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yehang Yin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huidan Zhang
- School of Engineering and Applied Sciences (SEAS), Harvard University, Cambridge, MA, USA
| | - David M Needham
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Ocean Ecosystems Biology, GEOMAR, Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Ethan D Evans
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chengzhen L Dai
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peter J Lu
- School of Engineering and Applied Sciences (SEAS), Harvard University, Cambridge, MA, USA.,Department of Physics, Harvard University, Cambridge, MA, USA
| | - Eric J Alm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David A Weitz
- School of Engineering and Applied Sciences (SEAS), Harvard University, Cambridge, MA, USA.,Department of Physics, Harvard University, Cambridge, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
17
|
Kminek G, Benardini JN, Brenker FE, Brooks T, Burton AS, Dhaniyala S, Dworkin JP, Fortman JL, Glamoclija M, Grady MM, Graham HV, Haruyama J, Kieft TL, Koopmans M, McCubbin FM, Meyer MA, Mustin C, Onstott TC, Pearce N, Pratt LM, Sephton MA, Siljeström S, Sugahara H, Suzuki S, Suzuki Y, van Zuilen M, Viso M. COSPAR Sample Safety Assessment Framework (SSAF). ASTROBIOLOGY 2022; 22:S186-S216. [PMID: 35653292 DOI: 10.1089/ast.2022.0017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The Committee on Space Research (COSPAR) Sample Safety Assessment Framework (SSAF) has been developed by a COSPAR appointed Working Group. The objective of the sample safety assessment would be to evaluate whether samples returned from Mars could be harmful for Earth's systems (e.g., environment, biosphere, geochemical cycles). During the Working Group's deliberations, it became clear that a comprehensive assessment to predict the effects of introducing life in new environments or ecologies is difficult and practically impossible, even for terrestrial life and certainly more so for unknown extraterrestrial life. To manage expectations, the scope of the SSAF was adjusted to evaluate only whether the presence of martian life can be excluded in samples returned from Mars. If the presence of martian life cannot be excluded, a Hold & Critical Review must be established to evaluate the risk management measures and decide on the next steps. The SSAF starts from a positive hypothesis (there is martian life in the samples), which is complementary to the null-hypothesis (there is no martian life in the samples) typically used for science. Testing the positive hypothesis includes four elements: (1) Bayesian statistics, (2) subsampling strategy, (3) test sequence, and (4) decision criteria. The test sequence capability covers self-replicating and non-self-replicating biology and biologically active molecules. Most of the investigations associated with the SSAF would need to be carried out within biological containment. The SSAF is described in sufficient detail to support planning activities for a Sample Receiving Facility (SRF) and for preparing science announcements, while at the same time acknowledging that further work is required before a detailed Sample Safety Assessment Protocol (SSAP) can be developed. The three major open issues to be addressed to optimize and implement the SSAF are (1) setting a value for the level of assurance to effectively exclude the presence of martian life in the samples, (2) carrying out an analogue test program, and (3) acquiring relevant contamination knowledge from all Mars Sample Return (MSR) flight and ground elements. Although the SSAF was developed specifically for assessing samples from Mars in the context of the currently planned NASA-ESA MSR Campaign, this framework and the basic safety approach are applicable to any other Mars sample return mission concept, with minor adjustments in the execution part related to the specific nature of the samples to be returned. The SSAF is also considered a sound basis for other COSPAR Planetary Protection Category V, restricted Earth return missions beyond Mars. It is anticipated that the SSAF will be subject to future review by the various MSR stakeholders.
Collapse
Affiliation(s)
- Gerhard Kminek
- European Space Agency, Mars Exploration Group, Noordwijk, The Netherlands
| | - James N Benardini
- NASA Headquarters, Office of Planetary Protection, Washington, DC, USA
| | - Frank E Brenker
- Goethe University, Department of Geoscience, Frankfurt, Germany
| | - Timothy Brooks
- UK Health Security Agency, Rare & Imported Pathogens Laboratory, Salisbury, UK
| | - Aaron S Burton
- NASA Johnson Space Center, Astromaterials Research and Exploration Science Division, Houston, Texas, USA
| | - Suresh Dhaniyala
- Clarkson University, Department of Mechanical and Aeronautical Engineering, Potsdam, New York, USA
| | - Jason P Dworkin
- NASA Goddard Space Flight Center, Solar System Exploration Division, Greenbelt, Maryland, USA
| | - Jeffrey L Fortman
- Security Programs, Engineering Biology Research Consortium, Emeryville, USA
| | - Mihaela Glamoclija
- Rutgers University, Department of Earth and Environmental Sciences, Newark, New Jersey, USA
| | - Monica M Grady
- The Open University, Faculty of Science, Technology, Engineering & Mathematics, Milton Keynes, UK
| | - Heather V Graham
- NASA Goddard Space Flight Center, Astrochemistry Laboratory, Greenbelt, Maryland, USA
| | - Junichi Haruyama
- Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Chofu, Tokyo, Japan
| | - Thomas L Kieft
- New Mexico Institute of Mining and Technology, Biology Department, Socorro, New Mexico, USA
| | - Marion Koopmans
- Erasmus University Medical Centre, Department of Viroscience, Rotterdam, The Netherlands
| | - Francis M McCubbin
- NASA Johnson Space Center, Astromaterials Research and Exploration Science Division, Houston, Texas, USA
| | - Michael A Meyer
- NASA Headquarters, Planetary Science Division, Washington, DC, USA
| | | | - Tullis C Onstott
- Princeton University, Department of Geosciences, Princeton, New Jersey, USA
| | - Neil Pearce
- London School of Hygiene & Tropical Medicine, Department of Medical Statistics, London, UK
| | - Lisa M Pratt
- Indiana University Bloomington, Earth and Atmospheric Sciences, Emeritus, Bloomington, Indiana, USA
| | - Mark A Sephton
- Imperial College London, Department of Earth Science & Engineering, London, UK
| | - Sandra Siljeström
- RISE, Research Institutes of Sweden, Department of Methodology, Textiles and Medical Technology, Stockholm, Sweden
| | - Haruna Sugahara
- Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science, Sagamihara Kanagawa, Japan
| | - Shino Suzuki
- Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science, Sagamihara Kanagawa, Japan
| | - Yohey Suzuki
- University of Tokyo, Graduate School of Science, Tokyo, Japan
| | - Mark van Zuilen
- Université de Paris, Institut de Physique du Globe de Paris, Paris, France
- European Institute for Marine Studies (IUEM), CNRS-UMR6538 Laboratoire Geo-Ocean, Plouzané, France
| | | |
Collapse
|
18
|
Bowers RM, Nayfach S, Schulz F, Jungbluth SP, Ruhl IA, Sheremet A, Lee J, Goudeau D, Eloe-Fadrosh EA, Stepanauskas R, Malmstrom RR, Kyrpides NC, Dunfield PF, Woyke T. Dissecting the dominant hot spring microbial populations based on community-wide sampling at single-cell genomic resolution. THE ISME JOURNAL 2022; 16:1337-1347. [PMID: 34969995 PMCID: PMC9039060 DOI: 10.1038/s41396-021-01178-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/29/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023]
Abstract
With advances in DNA sequencing and miniaturized molecular biology workflows, rapid and affordable sequencing of single-cell genomes has become a reality. Compared to 16S rRNA gene surveys and shotgun metagenomics, large-scale application of single-cell genomics to whole microbial communities provides an integrated snapshot of community composition and function, directly links mobile elements to their hosts, and enables analysis of population heterogeneity of the dominant community members. To that end, we sequenced nearly 500 single-cell genomes from a low diversity hot spring sediment sample from Dewar Creek, British Columbia, and compared this approach to 16S rRNA gene amplicon and shotgun metagenomics applied to the same sample. We found that the broad taxonomic profiles were similar across the three sequencing approaches, though several lineages were missing from the 16S rRNA gene amplicon dataset, likely the result of primer mismatches. At the functional level, we detected a large array of mobile genetic elements present in the single-cell genomes but absent from the corresponding same species metagenome-assembled genomes. Moreover, we performed a single-cell population genomic analysis of the three most abundant community members, revealing differences in population structure based on mutation and recombination profiles. While the average pairwise nucleotide identities were similar across the dominant species-level lineages, we observed differences in the extent of recombination between these dominant populations. Most intriguingly, the creek's Hydrogenobacter sp. population appeared to be so recombinogenic that it more closely resembled a sexual species than a clonally evolving microbe. Together, this work demonstrates that a randomized single-cell approach can be useful for the exploration of previously uncultivated microbes from community composition to population structure.
Collapse
Affiliation(s)
- Robert M. Bowers
- grid.451309.a0000 0004 0449 479XU.S. Department of Energy, Joint Genome Institute, Berkeley, CA USA
| | - Stephen Nayfach
- grid.451309.a0000 0004 0449 479XU.S. Department of Energy, Joint Genome Institute, Berkeley, CA USA
| | - Frederik Schulz
- grid.451309.a0000 0004 0449 479XU.S. Department of Energy, Joint Genome Institute, Berkeley, CA USA
| | - Sean P. Jungbluth
- grid.184769.50000 0001 2231 4551Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Ilona A. Ruhl
- grid.22072.350000 0004 1936 7697Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4 Canada ,grid.419357.d0000 0001 2199 3636National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO USA
| | - Andriy Sheremet
- grid.22072.350000 0004 1936 7697Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4 Canada
| | - Janey Lee
- grid.451309.a0000 0004 0449 479XU.S. Department of Energy, Joint Genome Institute, Berkeley, CA USA
| | - Danielle Goudeau
- grid.451309.a0000 0004 0449 479XU.S. Department of Energy, Joint Genome Institute, Berkeley, CA USA
| | - Emiley A. Eloe-Fadrosh
- grid.451309.a0000 0004 0449 479XU.S. Department of Energy, Joint Genome Institute, Berkeley, CA USA
| | - Ramunas Stepanauskas
- grid.296275.d0000 0000 9516 4913Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, ME USA
| | - Rex R. Malmstrom
- grid.451309.a0000 0004 0449 479XU.S. Department of Energy, Joint Genome Institute, Berkeley, CA USA
| | - Nikos C. Kyrpides
- grid.451309.a0000 0004 0449 479XU.S. Department of Energy, Joint Genome Institute, Berkeley, CA USA
| | - Peter F. Dunfield
- grid.22072.350000 0004 1936 7697Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4 Canada
| | - Tanja Woyke
- U.S. Department of Energy, Joint Genome Institute, Berkeley, CA, USA.
| |
Collapse
|
19
|
Adler A, Poirier S, Pagni M, Maillard J, Holliger C. Disentangle genus microdiversity within a complex microbial community by using a multi-distance long-read binning method: example of Candidatus Accumulibacter. Environ Microbiol 2022; 24:2136-2156. [PMID: 35315560 PMCID: PMC9311429 DOI: 10.1111/1462-2920.15947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/19/2022] [Indexed: 11/26/2022]
Abstract
Complete genomes can be recovered from metagenomes by assembling and binning DNA sequences into metagenome assembled genomes (MAGs). Yet, the presence of microdiversity can hamper the assembly and binning processes, possibly yielding chimeric, highly fragmented and incomplete genomes. Here, the metagenomes of four samples of aerobic granular sludge bioreactors containing Candidatus (Ca.) Accumulibacter, a phosphate-accumulating organism of interest for wastewater treatment, were sequenced with both PacBio and Illumina. Different strategies of genome assembly and binning were investigated, including published protocols and a binning procedure adapted to the binning of long contigs (MuLoBiSC). Multiple criteria were considered to select the best strategy for Ca. Accumulibacter, whose multiple strains in every sample represent a challenging microdiversity. In this case, the best strategy relies on long-read only assembly and a custom binning procedure including MuLoBiSC in metaWRAP. Several high-quality Ca. Accumulibacter MAGs, including a novel species, were obtained independently from different samples. Comparative genomic analysis showed that MAGs retrieved in different samples harbour genomic rearrangements in addition to accumulation of point mutations. The microdiversity of Ca. Accumulibacter, likely driven by mobile genetic elements, causes major difficulties in recovering MAGs, but it is also a hallmark of the panmictic lifestyle of these bacteria.
Collapse
Affiliation(s)
- Aline Adler
- Laboratory for Environmental Biotechnology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Simon Poirier
- Laboratory for Environmental Biotechnology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marco Pagni
- Laboratory for Environmental Biotechnology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Julien Maillard
- Laboratory for Environmental Biotechnology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,IFP Energie nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison Cedex, France
| | - Christof Holliger
- Laboratory for Environmental Biotechnology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
20
|
Microbial drivers of methane emissions from unrestored industrial salt ponds. THE ISME JOURNAL 2022; 16:284-295. [PMID: 34321618 PMCID: PMC8692437 DOI: 10.1038/s41396-021-01067-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
Wetlands are important carbon (C) sinks, yet many have been destroyed and converted to other uses over the past few centuries, including industrial salt making. A renewed focus on wetland ecosystem services (e.g., flood control, and habitat) has resulted in numerous restoration efforts whose effect on microbial communities is largely unexplored. We investigated the impact of restoration on microbial community composition, metabolic functional potential, and methane flux by analyzing sediment cores from two unrestored former industrial salt ponds, a restored former industrial salt pond, and a reference wetland. We observed elevated methane emissions from unrestored salt ponds compared to the restored and reference wetlands, which was positively correlated with salinity and sulfate across all samples. 16S rRNA gene amplicon and shotgun metagenomic data revealed that the restored salt pond harbored communities more phylogenetically and functionally similar to the reference wetland than to unrestored ponds. Archaeal methanogenesis genes were positively correlated with methane flux, as were genes encoding enzymes for bacterial methylphosphonate degradation, suggesting methane is generated both from bacterial methylphosphonate degradation and archaeal methanogenesis in these sites. These observations demonstrate that restoration effectively converted industrial salt pond microbial communities back to compositions more similar to reference wetlands and lowered salinities, sulfate concentrations, and methane emissions.
Collapse
|
21
|
McDaniel EA, Wahl SA, Ishii S, Pinto A, Ziels R, Nielsen PH, McMahon KD, Williams RBH. Prospects for multi-omics in the microbial ecology of water engineering. WATER RESEARCH 2021; 205:117608. [PMID: 34555741 DOI: 10.1016/j.watres.2021.117608] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Advances in high-throughput sequencing technologies and bioinformatics approaches over almost the last three decades have substantially increased our ability to explore microorganisms and their functions - including those that have yet to be cultivated in pure isolation. Genome-resolved metagenomic approaches have enabled linking powerful functional predictions to specific taxonomical groups with increasing fidelity. Additionally, related developments in both whole community gene expression surveys and metabolite profiling have permitted for direct surveys of community-scale functions in specific environmental settings. These advances have allowed for a shift in microbiome science away from descriptive studies and towards mechanistic and predictive frameworks for designing and harnessing microbial communities for desired beneficial outcomes. Water engineers, microbiologists, and microbial ecologists studying activated sludge, anaerobic digestion, and drinking water distribution systems have applied various (meta)omics techniques for connecting microbial community dynamics and physiologies to overall process parameters and system performance. However, the rapid pace at which new omics-based approaches are developed can appear daunting to those looking to apply these state-of-the-art practices for the first time. Here, we review how modern genome-resolved metagenomic approaches have been applied to a variety of water engineering applications from lab-scale bioreactors to full-scale systems. We describe integrated omics analysis across engineered water systems and the foundations for pairing these insights with modeling approaches. Lastly, we summarize emerging omics-based technologies that we believe will be powerful tools for water engineering applications. Overall, we provide a framework for microbial ecologists specializing in water engineering to apply cutting-edge omics approaches to their research questions to achieve novel functional insights. Successful adoption of predictive frameworks in engineered water systems could enable more economically and environmentally sustainable bioprocesses as demand for water and energy resources increases.
Collapse
Affiliation(s)
- Elizabeth A McDaniel
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA.
| | | | - Shun'ichi Ishii
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Yokosuka 237-0061, Japan
| | - Ameet Pinto
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA
| | - Ryan Ziels
- Department of Civil Engineering, The University of British Columbia, Vancouver, BC, Canada
| | | | - Katherine D McMahon
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA; Department of Civil and Environmental Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Republic of Singapore.
| |
Collapse
|
22
|
Cahn JKB, Piel J. Anwendungen von Einzelzellmethoden in der mikrobiellen Naturstoffforschung. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.201900532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jackson K. B. Cahn
- Institut für Mikrobiologie Eidgenössische Technische Hochschule Zürich (ETH) 8093 Zürich Schweiz
| | - Jörn Piel
- Institut für Mikrobiologie Eidgenössische Technische Hochschule Zürich (ETH) 8093 Zürich Schweiz
| |
Collapse
|
23
|
Abstract
The origin of eukaryotes has been defined as the major evolutionary transition since the origin of life itself. Most hallmark traits of eukaryotes, such as their intricate intracellular organization, can be traced back to a putative common ancestor that predated the broad diversity of extant eukaryotes. However, little is known about the nature and relative order of events that occurred in the path from preexisting prokaryotes to this already sophisticated ancestor. The origin of mitochondria from the endosymbiosis of an alphaproteobacterium is one of the few robustly established events to which most hypotheses on the origin of eukaryotes are anchored, but the debate is still open regarding the time of this acquisition, the nature of the host, and the ecological and metabolic interactions between the symbiotic partners. After the acquisition of mitochondria, eukaryotes underwent a fast radiation into several major clades whose phylogenetic relationships have been largely elusive. Recent progress in the comparative analyses of a growing number of genomes is shedding light on the early events of eukaryotic evolution as well as on the root and branching patterns of the tree of eukaryotes. Here I discuss current knowledge and debates on the origin and early evolution of eukaryotes. I focus particularly on how phylogenomic analyses have challenged some of the early assumptions about eukaryotic evolution, including the widespread idea that mitochondrial symbiosis in an archaeal host was the earliest event in eukaryogenesis. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Toni Gabaldón
- Barcelona Supercomputing Centre (BCS-CNS), 08034 Barcelona, Spain; .,Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
24
|
Sutter M, Melnicki MR, Schulz F, Woyke T, Kerfeld CA. A catalog of the diversity and ubiquity of bacterial microcompartments. Nat Commun 2021; 12:3809. [PMID: 34155212 PMCID: PMC8217296 DOI: 10.1038/s41467-021-24126-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022] Open
Abstract
Bacterial microcompartments (BMCs) are organelles that segregate segments of metabolic pathways which are incompatible with surrounding metabolism. BMCs consist of a selectively permeable shell, composed of three types of structurally conserved proteins, together with sequestered enzymes that vary among functionally distinct BMCs. Genes encoding shell proteins are typically clustered with those for the encapsulated enzymes. Here, we report that the number of identifiable BMC loci has increased twenty-fold since the last comprehensive census of 2014, and the number of distinct BMC types has doubled. The new BMC types expand the range of compartmentalized catalysis and suggest that there is more BMC biochemistry yet to be discovered. Our comprehensive catalog of BMCs provides a framework for their identification, correlation with bacterial niche adaptation, experimental characterization, and development of BMC-based nanoarchitectures for biomedical and bioengineering applications. Bacterial microcompartments (BMCs) are organelles consisting of a protein shell in which certain metabolic reactions take place separated from the cytoplasm. Here, Sutter et al. present a comprehensive catalog of BMC loci, substantially expanding the number of known BMCs and describing distinct types and compartmentalized reactions.
Collapse
Affiliation(s)
- Markus Sutter
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrative Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Matthew R Melnicki
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Cheryl A Kerfeld
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrative Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA. .,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
25
|
Felczak MM, Bowers RM, Woyke T, TerAvest MA. Zymomonas diversity and potential for biofuel production. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:112. [PMID: 33933155 PMCID: PMC8088579 DOI: 10.1186/s13068-021-01958-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Zymomonas mobilis is an aerotolerant α-proteobacterium, which has been genetically engineered for industrial purposes for decades. However, a comprehensive comparison of existing strains on the genomic level in conjunction with phenotype analysis has yet to be carried out. We here performed whole-genome comparison of 17 strains including nine that were sequenced in this study. We then compared 15 available Zymomonas strains for their natural abilities to perform under conditions relevant to biofuel synthesis. We tested their growth in anaerobic rich media, as well as growth, ethanol production and xylose utilization in lignocellulosic hydrolysate. We additionally compared their tolerance to isobutanol, flocculation characteristics, and ability to uptake foreign DNA by electroporation and conjugation. RESULTS Using clustering based on 99% average nucleotide identity (ANI), we classified 12 strains into four clusters based on sequence similarity, while five strains did not cluster with any other strain. Strains belonging to the same 99% ANI cluster showed similar performance while significant variation was observed between the clusters. Overall, conjugation and electroporation efficiencies were poor across all strains, which was consistent with our finding of coding potential for several DNA defense mechanisms, such as CRISPR and restriction-modification systems, across all genomes. We found that strain ATCC31821 (ZM4) had a more diverse plasmid profile than other strains, possibly leading to the unique phenotypes observed for this strain. ZM4 also showed the highest growth of any strain in both laboratory media and lignocellulosic hydrolysate and was among the top 3 strains for isobutanol tolerance and electroporation and conjugation efficiency. CONCLUSIONS Our findings suggest that strain ZM4 has a unique combination of genetic and phenotypic traits that are beneficial for biofuel production and propose investing future efforts in further engineering of ZM4 for industrial purposes rather than exploring new Zymomonas isolates.
Collapse
Affiliation(s)
- Magdalena M Felczak
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Robert M Bowers
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Tanja Woyke
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Michaela A TerAvest
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
26
|
Abstract
In recent years, the tree of life has expanded substantially. Despite this, many abundant yet uncultivated microbial groups remain to be explored. Sumerlaeota is a mysterious, putative phylum-level lineage distributed globally but rarely reported. As such, their physiology, ecology, and evolutionary history remain unknown. The 16S rRNA gene survey reveals that Sumerlaeota is frequently detected in diverse environments globally, especially cold arid desert soils and deep-sea basin surface sediments, where it is one dominant microbial group. Here, we retrieved four Sumerlaeota metagenome-assembled genomes (MAGs) from two hot springs and one saline lake. Including another 12 publicly available MAGs, they represent six of the nine putative Sumerlaeota subgroups/orders, as indicated by 16S rRNA gene-based phylogeny. These elusive organisms likely obtain carbon mainly through utilization of refractory organics (e.g., chitin and cellulose) and proteinaceous compounds, suggesting that Sumerlaeota act as scavengers in nature. The presence of key bidirectional enzymes involved in acetate and hydrogen metabolisms in these MAGs suggests that they are acetogenic bacteria capable of both the production and consumption of hydrogen. The capabilities of dissimilatory nitrate and sulfate reduction, nitrogen fixation, phosphate solubilization, and organic phosphorus mineralization may confer these heterotrophs great advantages to thrive under diverse harsh conditions. Ancestral state reconstruction indicated that Sumerlaeota originated from chemotrophic and facultatively anaerobic ancestors, and their smaller and variably sized genomes evolved along dynamic pathways from a sizeable common ancestor (2,342 genes), leading to their physiological divergence. Notably, large gene gain and larger loss events occurred at the branch to the last common ancestor of the order subgroup 1, likely due to niche expansion and population size effects.
Collapse
|
27
|
Cahn JKB, Piel J. Opening up the Single-Cell Toolbox for Microbial Natural Products Research. Angew Chem Int Ed Engl 2021; 60:18412-18428. [PMID: 30748086 DOI: 10.1002/anie.201900532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Indexed: 02/06/2023]
Abstract
The diverse microbes that produce natural products represent an important source of novel therapeutics, drug leads, and scientific tools. However, the vast majority have not been grown in axenic culture and are members of complex communities. While meta-'omic methods such as metagenomics, -transcriptomics, and -proteomics reveal collective molecular features of this "microbial dark matter", the study of individual microbiome members can be challenging. To address these limits, a number of techniques with single-bacterial resolution have been developed in the last decade and a half. While several of these are embraced by microbial ecologists, there has been less use by researchers interested in mining microbes for natural products. In this review, we discuss the available and emerging techniques for targeted single-cell analysis with a particular focus on applications to the discovery and study of natural products.
Collapse
Affiliation(s)
- Jackson K B Cahn
- Instit. of Microbiol., Eidgenössische Technische Hochschule Zürich (ETH), 8093, Zurich, Switzerland
| | - Jörn Piel
- Instit. of Microbiol., Eidgenössische Technische Hochschule Zürich (ETH), 8093, Zurich, Switzerland
| |
Collapse
|
28
|
Optofluidic Raman-activated cell sorting for targeted genome retrieval or cultivation of microbial cells with specific functions. Nat Protoc 2020; 16:634-676. [PMID: 33311714 DOI: 10.1038/s41596-020-00427-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/25/2020] [Indexed: 12/22/2022]
Abstract
Stable isotope labeling of microbial taxa of interest and their sorting provide an efficient and direct way to answer the question "who does what?" in complex microbial communities when coupled with fluorescence in situ hybridization or downstream 'omics' analyses. We have developed a platform for automated Raman-based sorting in which optical tweezers and microfluidics are used to sort individual cells of interest from microbial communities on the basis of their Raman spectra. This sorting of cells and their downstream DNA analysis, such as by mini-metagenomics or single-cell genomics, or cultivation permits a direct link to be made between the metabolic roles and the genomes of microbial cells within complex microbial communities, as well as targeted isolation of novel microbes with a specific physiology of interest. We describe a protocol from sample preparation through Raman-activated live cell sorting. Subsequent cultivation of sorted cells is described, whereas downstream DNA analysis involves well-established approaches with abundant methods available in the literature. Compared with manual sorting, this technique provides a substantially higher throughput (up to 500 cells per h). Furthermore, the platform has very high sorting accuracy (98.3 ± 1.7%) and is fully automated, thus avoiding user biases that might accompany manual sorting. We anticipate that this protocol will empower in particular environmental and host-associated microbiome research with a versatile tool to elucidate the metabolic contributions of microbial taxa within their complex communities. After a 1-d preparation of cells, sorting takes on the order of 4 h, depending on the number of cells required.
Collapse
|
29
|
Tan JY, Wang S, Dick GJ, Young VB, Sherman DH, Burns MA, Lin XN. Co-cultivation of microbial sub-communities in microfluidic droplets facilitates high-resolution genomic dissection of microbial 'dark matter'. Integr Biol (Camb) 2020; 12:263-274. [PMID: 33089329 PMCID: PMC7671993 DOI: 10.1093/intbio/zyaa021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/05/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022]
Abstract
While the 'unculturable' majority of the bacterial world is accessible with culture-independent tools, the inability to study these bacteria using culture-dependent approaches has severely limited our understanding of their ecological roles and interactions. To circumvent cultivation barriers, we utilize microfluidic droplets as localized, nanoliter-size bioreactors to co-cultivate subsets of microbial communities. This co-localization can support ecological interactions between a reduced number of encapsulated cells. We demonstrated the utility of this approach in the encapsulation and co-cultivation of droplet sub-communities from a fecal sample collected from a healthy human subject. With the whole genome amplification and metagenomic shotgun sequencing of co-cultivated sub-communities from 22 droplets, we observed that this approach provides accessibility to uncharacterized gut commensals for study. The recovery of metagenome-assembled genomes from one droplet sub-community demonstrated the capability to dissect the sub-communities with high-genomic resolution. In particular, genomic characterization of one novel member of the family Neisseriaceae revealed implications regarding its participation in fatty acid degradation and production of atherogenic intermediates in the human gut. The demonstrated genomic resolution and accessibility to the microbial 'dark matter' with this methodology can be applied to study the interactions of rare or previously uncultivated members of microbial communities.
Collapse
Affiliation(s)
- James Y Tan
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sida Wang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Vincent B Young
- Deparment of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
- Infectious Diseases Division, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - David H Sherman
- Deparment of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Mark A Burns
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoxia N Lin
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
30
|
Kimkes TEP, Heinemann M. How bacteria recognise and respond to surface contact. FEMS Microbiol Rev 2020; 44:106-122. [PMID: 31769807 PMCID: PMC7053574 DOI: 10.1093/femsre/fuz029] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/23/2019] [Indexed: 12/27/2022] Open
Abstract
Bacterial biofilms can cause medical problems and issues in technical systems. While a large body of knowledge exists on the phenotypes of planktonic and of sessile cells in mature biofilms, our understanding of what happens when bacteria change from the planktonic to the sessile state is still very incomplete. Fundamental questions are unanswered: for instance, how do bacteria sense that they are in contact with a surface, and what are the very initial cellular responses to surface contact. Here, we review the current knowledge on the signals that bacteria could perceive once they attach to a surface, the signal transduction systems that could be involved in sensing the surface contact and the cellular responses that are triggered as a consequence to surface contact ultimately leading to biofilm formation. Finally, as the main obstacle in investigating the initial responses to surface contact has been the difficulty to experimentally study the dynamic response of single cells upon surface attachment, we also review recent experimental approaches that could be employed to study bacterial surface sensing, which ultimately could lead to an improved understanding of how biofilm formation could be prevented.
Collapse
Affiliation(s)
- Tom E P Kimkes
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| |
Collapse
|
31
|
Van Rossum T, Ferretti P, Maistrenko OM, Bork P. Diversity within species: interpreting strains in microbiomes. Nat Rev Microbiol 2020; 18:491-506. [PMID: 32499497 PMCID: PMC7610499 DOI: 10.1038/s41579-020-0368-1] [Citation(s) in RCA: 234] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2020] [Indexed: 02/06/2023]
Abstract
Studying within-species variation has traditionally been limited to culturable bacterial isolates and low-resolution microbial community fingerprinting. Metagenomic sequencing and technical advances have enabled culture-free, high-resolution strain and subspecies analyses at high throughput and in complex environments. This holds great scientific promise but has also led to an overwhelming number of methods and terms to describe infraspecific variation. This Review aims to clarify these advances by focusing on the diversity within bacterial and archaeal species in the context of microbiomics. We cover foundational microevolutionary concepts relevant to population genetics and summarize how within-species variation can be studied and stratified directly within microbial communities with a focus on metagenomics. Finally, we describe how common applications of within-species variation can be achieved using metagenomic data. We aim to guide the selection of appropriate terms and analytical approaches to facilitate researchers in benefiting from the increasing availability of large, high-resolution microbiome genetic sequencing data.
Collapse
Affiliation(s)
- Thea Van Rossum
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Pamela Ferretti
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Oleksandr M Maistrenko
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Peer Bork
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany.
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany.
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany.
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
32
|
Beam JP, Becraft ED, Brown JM, Schulz F, Jarett JK, Bezuidt O, Poulton NJ, Clark K, Dunfield PF, Ravin NV, Spear JR, Hedlund BP, Kormas KA, Sievert SM, Elshahed MS, Barton HA, Stott MB, Eisen JA, Moser DP, Onstott TC, Woyke T, Stepanauskas R. Ancestral Absence of Electron Transport Chains in Patescibacteria and DPANN. Front Microbiol 2020; 11:1848. [PMID: 33013724 PMCID: PMC7507113 DOI: 10.3389/fmicb.2020.01848] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022] Open
Abstract
Recent discoveries suggest that the candidate superphyla Patescibacteria and DPANN constitute a large fraction of the phylogenetic diversity of Bacteria and Archaea. Their small genomes and limited coding potential have been hypothesized to be ancestral adaptations to obligate symbiotic lifestyles. To test this hypothesis, we performed cell-cell association, genomic, and phylogenetic analyses on 4,829 individual cells of Bacteria and Archaea from 46 globally distributed surface and subsurface field samples. This confirmed the ubiquity and abundance of Patescibacteria and DPANN in subsurface environments, the small size of their genomes and cells, and the divergence of their gene content from other Bacteria and Archaea. Our analyses suggest that most Patescibacteria and DPANN in the studied subsurface environments do not form specific physical associations with other microorganisms. These data also suggest that their unusual genomic features and prevalent auxotrophies may be a result of ancestral, minimal cellular energy transduction mechanisms that lack respiration, thus relying solely on fermentation for energy conservation.
Collapse
Affiliation(s)
- Jacob P Beam
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| | - Eric D Becraft
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| | - Julia M Brown
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| | - Frederik Schulz
- Department of Energy Joint Genome Institute, Berkeley, CA, United States
| | - Jessica K Jarett
- Department of Energy Joint Genome Institute, Berkeley, CA, United States
| | - Oliver Bezuidt
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| | - Nicole J Poulton
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| | - Kayla Clark
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| | - Peter F Dunfield
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - John R Spear
- Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | - Brian P Hedlund
- School of Life Sciences - Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Konstantinos A Kormas
- Department of Ichthyology and Aquatic Environment, University of Thessaly, Volos, Greece
| | - Stefan M Sievert
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Hazel A Barton
- Department of Biology, University of Akron, Akron, OH, United States
| | - Matthew B Stott
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Jonathan A Eisen
- Department of Evolution and Ecology, Department of Medical Microbiology and Immunology, Genome Center, University of California, Davis, Davis, CA, United States
| | - Duane P Moser
- Desert Research Institute, Las Vegas, NV, United States
| | - Tullis C Onstott
- Department of Geosciences, Princeton University, Princeton, NJ, United States
| | - Tanja Woyke
- Department of Energy Joint Genome Institute, Berkeley, CA, United States
| | | |
Collapse
|
33
|
Bae J, Ju J, Kim D, Kim T. Double-Sided Microwells with a Stepped Through-Hole Membrane for High-Throughput Microbial Assays. Anal Chem 2020; 92:9501-9510. [PMID: 32571023 DOI: 10.1021/acs.analchem.0c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To improve the throughput of microwell arrays for identifying immense cellular diversities even at a single-bacteria level, further miniaturization or densification of the microwells has been an obvious breakthrough. However, controlling millions of nanoliter samples or more at the microscale remains technologically difficult and has been spatially restricted to a single open side of the microwells. Here we employed a stepped through-hole membrane to utilize the bottom as well as top side of a high-density nanoliter microwell array, thus improving spatial efficiency. The stepped structure shows additional effectiveness for handling several millions of nanoliter bacterial samples in the overall perspectives of controllability, throughput, simplicity, versatility, and automation by using novel methods for three representative procedures in bacterial assays: partitioning cells, manipulating the chemical environment, and extracting selected cells. As a potential application, we show proof-of-concept isolation of rare cells in a mixed ratio of 1 to around 106 using a single chip. Our device can be further applied to various biological studies pertaining to synthetic biology, drug screening, mutagenesis, and single-cell heterogeneity.
Collapse
Affiliation(s)
- Juyeol Bae
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Janghyun Ju
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Dahyun Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Taesung Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.,Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| |
Collapse
|
34
|
Jarett JK, Džunková M, Schulz F, Roux S, Paez-Espino D, Eloe-Fadrosh E, Jungbluth SP, Ivanova N, Spear JR, Carr SA, Trivedi CB, Corsetti FA, Johnson HA, Becraft E, Kyrpides N, Stepanauskas R, Woyke T. Insights into the dynamics between viruses and their hosts in a hot spring microbial mat. ISME JOURNAL 2020; 14:2527-2541. [PMID: 32661357 PMCID: PMC7490370 DOI: 10.1038/s41396-020-0705-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/03/2020] [Accepted: 06/11/2020] [Indexed: 12/28/2022]
Abstract
Our current knowledge of host-virus interactions in biofilms is limited to computational predictions based on laboratory experiments with a small number of cultured bacteria. However, natural biofilms are diverse and chiefly composed of uncultured bacteria and archaea with no viral infection patterns and lifestyle predictions described to date. Herein, we predict the first DNA sequence-based host-virus interactions in a natural biofilm. Using single-cell genomics and metagenomics applied to a hot spring mat of the Cone Pool in Mono County, California, we provide insights into virus-host range, lifestyle and distribution across different mat layers. Thirty-four out of 130 single cells contained at least one viral contig (26%), which, together with the metagenome-assembled genomes, resulted in detection of 59 viruses linked to 34 host species. Analysis of single-cell amplification kinetics revealed a lack of active viral replication on the single-cell level. These findings were further supported by mapping metagenomic reads from different mat layers to the obtained host-virus pairs, which indicated a low copy number of viral genomes compared to their hosts. Lastly, the metagenomic data revealed high layer specificity of viruses, suggesting limited diffusion to other mat layers. Taken together, these observations indicate that in low mobility environments with high microbial abundance, lysogeny is the predominant viral lifestyle, in line with the previously proposed "Piggyback-the-Winner" theory.
Collapse
Affiliation(s)
- Jessica K Jarett
- Department of Energy Joint Genome Institute, Berkeley, CA, USA.,Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,AnimalBiome, Oakland, CA, USA
| | - Mária Džunková
- Department of Energy Joint Genome Institute, Berkeley, CA, USA. .,Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Frederik Schulz
- Department of Energy Joint Genome Institute, Berkeley, CA, USA.,Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Simon Roux
- Department of Energy Joint Genome Institute, Berkeley, CA, USA.,Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David Paez-Espino
- Department of Energy Joint Genome Institute, Berkeley, CA, USA.,Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Emiley Eloe-Fadrosh
- Department of Energy Joint Genome Institute, Berkeley, CA, USA.,Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sean P Jungbluth
- Department of Energy Joint Genome Institute, Berkeley, CA, USA.,Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Natalia Ivanova
- Department of Energy Joint Genome Institute, Berkeley, CA, USA.,Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - John R Spear
- Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA
| | | | | | | | - Hope A Johnson
- California State University Fullerton, Fullerton, CA, USA
| | - Eric Becraft
- University of North Alabama, Florence, AL, USA.,Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | - Nikos Kyrpides
- Department of Energy Joint Genome Institute, Berkeley, CA, USA.,Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Tanja Woyke
- Department of Energy Joint Genome Institute, Berkeley, CA, USA. .,Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,University of California, Merced, CA, USA.
| |
Collapse
|
35
|
Abstract
Soil ecosystems harbor diverse microorganisms and yet remain only partially characterized as neither single-cell sequencing nor whole-community sequencing offers a complete picture of these complex communities. Thus, the genetic and metabolic potential of this "uncultivated majority" remains underexplored. To address these challenges, we applied a pooled-cell-sorting-based mini-metagenomics approach and compared the results to bulk metagenomics. Informatic binning of these data produced 200 mini-metagenome assembled genomes (sorted-MAGs) and 29 bulk metagenome assembled genomes (MAGs). The sorted and bulk MAGs increased the known phylogenetic diversity of soil taxa by 7.2% with respect to the Joint Genome Institute IMG/M database and showed clade-specific sequence recruitment patterns across diverse terrestrial soil metagenomes. Additionally, sorted-MAGs expanded the rare biosphere not captured through MAGs from bulk sequences, exemplified through phylogenetic and functional analyses of members of the phylum Bacteroidetes Analysis of 67 Bacteroidetes sorted-MAGs showed conserved patterns of carbon metabolism across four clades. These results indicate that mini-metagenomics enables genome-resolved investigation of predicted metabolism and demonstrates the utility of combining metagenomics methods to tap into the diversity of heterogeneous microbial assemblages.IMPORTANCE Microbial ecologists have historically used cultivation-based approaches as well as amplicon sequencing and shotgun metagenomics to characterize microbial diversity in soil. However, challenges persist in the study of microbial diversity, including the recalcitrance of the majority of microorganisms to laboratory cultivation and limited sequence assembly from highly complex samples. The uncultivated majority thus remains a reservoir of untapped genetic diversity. To address some of the challenges associated with bulk metagenomics as well as low throughput of single-cell genomics, we applied flow cytometry-enabled mini-metagenomics to capture expanded microbial diversity from forest soil and compare it to soil bulk metagenomics. Our resulting data from this pooled-cell sorting approach combined with bulk metagenomics revealed increased phylogenetic diversity through novel soil taxa and rare biosphere members. In-depth analysis of genomes within the highly represented Bacteroidetes phylum provided insights into conserved and clade-specific patterns of carbon metabolism.
Collapse
|
36
|
Grieb A, Bowers RM, Oggerin M, Goudeau D, Lee J, Malmstrom RR, Woyke T, Fuchs BM. A pipeline for targeted metagenomics of environmental bacteria. MICROBIOME 2020; 8:21. [PMID: 32061258 PMCID: PMC7024552 DOI: 10.1186/s40168-020-0790-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/19/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Metagenomics and single cell genomics provide a window into the genetic repertoire of yet uncultivated microorganisms, but both methods are usually taxonomically untargeted. The combination of fluorescence in situ hybridization (FISH) and fluorescence activated cell sorting (FACS) has the potential to enrich taxonomically well-defined clades for genomic analyses. METHODS Cells hybridized with a taxon-specific FISH probe are enriched based on their fluorescence signal via flow cytometric cell sorting. A recently developed FISH procedure, the hybridization chain reaction (HCR)-FISH, provides the high signal intensities required for flow cytometric sorting while maintaining the integrity of the cellular DNA for subsequent genome sequencing. Sorted cells are subjected to shotgun sequencing, resulting in targeted metagenomes of low diversity. RESULTS Pure cultures of different taxonomic groups were used to (1) adapt and optimize the HCR-FISH protocol and (2) assess the effects of various cell fixation methods on both the signal intensity for cell sorting and the quality of subsequent genome amplification and sequencing. Best results were obtained for ethanol-fixed cells in terms of both HCR-FISH signal intensity and genome assembly quality. Our newly developed pipeline was successfully applied to a marine plankton sample from the North Sea yielding good quality metagenome assembled genomes from a yet uncultivated flavobacterial clade. CONCLUSIONS With the developed pipeline, targeted metagenomes at various taxonomic levels can be efficiently retrieved from environmental samples. The resulting metagenome assembled genomes allow for the description of yet uncharacterized microbial clades. Video abstract.
Collapse
Affiliation(s)
- Anissa Grieb
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| | - Robert M Bowers
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Mail Stop: 91R183, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Monike Oggerin
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| | - Danielle Goudeau
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Mail Stop: 91R183, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Janey Lee
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Mail Stop: 91R183, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Rex R Malmstrom
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Mail Stop: 91R183, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Mail Stop: 91R183, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Bernhard M Fuchs
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany.
| |
Collapse
|
37
|
Markel U, Essani KD, Besirlioglu V, Schiffels J, Streit WR, Schwaneberg U. Advances in ultrahigh-throughput screening for directed enzyme evolution. Chem Soc Rev 2020; 49:233-262. [PMID: 31815263 DOI: 10.1039/c8cs00981c] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Enzymes are versatile catalysts and their synthetic potential has been recognized for a long time. In order to exploit their full potential, enzymes often need to be re-engineered or optimized for a given application. (Semi-) rational design has emerged as a powerful means to engineer proteins, but requires detailed knowledge about structure function relationships. In turn, directed evolution methodologies, which consist of iterative rounds of diversity generation and screening, can improve an enzyme's properties with virtually no structural knowledge. Current diversity generation methods grant us access to a vast sequence space (libraries of >1012 enzyme variants) that may hide yet unexplored catalytic activities and selectivity. However, the time investment for conventional agar plate or microtiter plate-based screening assays represents a major bottleneck in directed evolution and limits the improvements that are obtainable in reasonable time. Ultrahigh-throughput screening (uHTS) methods dramatically increase the number of screening events per time, which is crucial to speed up biocatalyst design, and to widen our knowledge about sequence function relationships. In this review, we summarize recent advances in uHTS for directed enzyme evolution. We shed light on the importance of compartmentalization to preserve the essential link between genotype and phenotype and discuss how cells and biomimetic compartments can be applied to serve this function. Finally, we discuss how uHTS can inspire novel functional metagenomics approaches to identify natural biocatalysts for novel chemical transformations.
Collapse
Affiliation(s)
- Ulrich Markel
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
38
|
Colman DR, Lindsay MR, Amenabar MJ, Boyd ES. The Intersection of Geology, Geochemistry, and Microbiology in Continental Hydrothermal Systems. ASTROBIOLOGY 2019; 19:1505-1522. [PMID: 31592688 DOI: 10.1089/ast.2018.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Decompressional boiling of ascending hydrothermal waters and separation into a vapor (gas) and a liquid phase drive extensive variation in the geochemical composition of hot spring waters. Yet little is known of how the process of phase separation influences the distribution of microbial metabolisms in springs. Here, we determined the variation in protein coding genes in 51 metagenomes from chemosynthetic hot spring communities that span geochemical gradients in Yellowstone National Park. The 51 metagenomes could be divided into 5 distinct groups that correspond to low and high temperatures and acidic and circumneutral/alkaline springs. A fifth group primarily comprised metagenomes from springs with moderate acidity and that are influenced by elevated volcanic gas input. Protein homologs putatively involved in the oxidation of sulfur compounds, a process that leads to acidification of spring waters, in addition to those involved in the reduction of sulfur compounds were enriched in metagenomes from acidic springs sourced by vapor phase gases. Metagenomes from springs with evidence for elevated volcanic gas input were enriched in protein homologs putatively involved in oxidation of those gases, including hydrogen and methane. Finally, metagenomes from circumneutral/alkaline springs sourced by liquid phase waters were enriched in protein homologs putatively involved in heterotrophy and respiration of oxidized nitrogen compounds and oxygen. These results indicate that the geological process of phase separation shapes the ecology of thermophilic communities through its influence on the availability of nutrients in the form of gases, solutes, and minerals. Microbial acidification of hot spring waters further influences the kinetic and thermodynamic stabilities of nutrients and their bioavailability. These data therefore provide an important framework to understand how geological processes have shaped the evolutionary history of chemosynthetic thermophiles and how these organisms, in turn, have shaped their geochemical environments.
Collapse
Affiliation(s)
- Daniel R Colman
- Department of Microbiology & Immunology, Montana State University, Bozeman, Montana
| | - Melody R Lindsay
- Department of Microbiology & Immunology, Montana State University, Bozeman, Montana
| | | | - Eric S Boyd
- Department of Microbiology & Immunology, Montana State University, Bozeman, Montana
| |
Collapse
|
39
|
Doud DFR, Bowers RM, Schulz F, De Raad M, Deng K, Tarver A, Glasgow E, Vander Meulen K, Fox B, Deutsch S, Yoshikuni Y, Northen T, Hedlund BP, Singer SW, Ivanova N, Woyke T. Function-driven single-cell genomics uncovers cellulose-degrading bacteria from the rare biosphere. ISME JOURNAL 2019; 14:659-675. [PMID: 31754206 PMCID: PMC7031533 DOI: 10.1038/s41396-019-0557-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/04/2019] [Accepted: 11/08/2019] [Indexed: 11/09/2022]
Abstract
Assigning a functional role to a microorganism has historically relied on cultivation of isolates or detection of environmental genome-based biomarkers using a posteriori knowledge of function. However, the emerging field of function-driven single-cell genomics aims to expand this paradigm by identifying and capturing individual microbes based on their in situ functions or traits. To identify and characterize yet uncultivated microbial taxa involved in cellulose degradation, we developed and benchmarked a function-driven single-cell screen, which we applied to a microbial community inhabiting the Great Boiling Spring (GBS) Geothermal Field, northwest Nevada. Our approach involved recruiting microbes to fluorescently labeled cellulose particles, and then isolating single microbe-bound particles via fluorescence-activated cell sorting. The microbial community profiles prior to sorting were determined via bulk sample 16S rRNA gene amplicon sequencing. The flow-sorted cellulose-bound microbes were subjected to whole genome amplification and shotgun sequencing, followed by phylogenetic placement. Next, putative cellulase genes were identified, expressed and tested for activity against derivatives of cellulose and xylose. Alongside typical cellulose degraders, including members of the Actinobacteria, Bacteroidetes, and Chloroflexi, we found divergent cellulases encoded in the genome of a recently described candidate phylum from the rare biosphere, Goldbacteria, and validated their cellulase activity. As this genome represents a species-level organism with novel and phylogenetically distinct cellulolytic activity, we propose the name Candidatus ‘Cellulosimonas argentiregionis’. We expect that this function-driven single-cell approach can be extended to a broad range of substrates, linking microbial taxonomy directly to in situ function.
Collapse
Affiliation(s)
- Devin F R Doud
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Robert M Bowers
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Frederik Schulz
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Markus De Raad
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kai Deng
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA.,Department of Biotechnology and Bioengineering, Sandia National Laboratories, Livermore, CA, 94551, USA
| | - Angela Tarver
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Evan Glasgow
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Kirk Vander Meulen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Brian Fox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Sam Deutsch
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Yasuo Yoshikuni
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Trent Northen
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| | - Steven W Singer
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Natalia Ivanova
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Tanja Woyke
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA. .,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. .,School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA.
| |
Collapse
|
40
|
Sanders JG, Nurk S, Salido RA, Minich J, Xu ZZ, Zhu Q, Martino C, Fedarko M, Arthur TD, Chen F, Boland BS, Humphrey GC, Brennan C, Sanders K, Gaffney J, Jepsen K, Khosroheidari M, Green C, Liyanage M, Dang JW, Phelan VV, Quinn RA, Bankevich A, Chang JT, Rana TM, Conrad DJ, Sandborn WJ, Smarr L, Dorrestein PC, Pevzner PA, Knight R. Optimizing sequencing protocols for leaderboard metagenomics by combining long and short reads. Genome Biol 2019; 20:226. [PMID: 31672156 PMCID: PMC6822431 DOI: 10.1186/s13059-019-1834-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/23/2019] [Indexed: 01/05/2023] Open
Abstract
As metagenomic studies move to increasing numbers of samples, communities like the human gut may benefit more from the assembly of abundant microbes in many samples, rather than the exhaustive assembly of fewer samples. We term this approach leaderboard metagenome sequencing. To explore protocol optimization for leaderboard metagenomics in real samples, we introduce a benchmark of library prep and sequencing using internal references generated by synthetic long-read technology, allowing us to evaluate high-throughput library preparation methods against gold-standard reference genomes derived from the samples themselves. We introduce a low-cost protocol for high-throughput library preparation and sequencing.
Collapse
Affiliation(s)
- Jon G Sanders
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Sergey Nurk
- Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Rodolfo A Salido
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Jeremiah Minich
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Zhenjiang Z Xu
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Qiyun Zhu
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Cameron Martino
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Marcus Fedarko
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Timothy D Arthur
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | | | - Brigid S Boland
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Inflammatory Bowel Disease Center, University of California San Diego, La Jolla, CA, USA
| | - Greg C Humphrey
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Caitriona Brennan
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Karenina Sanders
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - James Gaffney
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Kristen Jepsen
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Mahdieh Khosroheidari
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Cliff Green
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Marlon Liyanage
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Jason W Dang
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Vanessa V Phelan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Robert A Quinn
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Anton Bankevich
- Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - John T Chang
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Inflammatory Bowel Disease Center, University of California San Diego, La Jolla, CA, USA
| | - Tariq M Rana
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Douglas J Conrad
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - William J Sandborn
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Inflammatory Bowel Disease Center, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Larry Smarr
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
- California Institute for Telecommunications and Information Technology, University of California San Diego, La Jolla, CA, USA
| | - Pieter C Dorrestein
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Pavel A Pevzner
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA.
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA.
- California Institute for Telecommunications and Information Technology, University of California San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
41
|
Nucleic acid cleavage with a hyperthermophilic Cas9 from an uncultured Ignavibacterium. Proc Natl Acad Sci U S A 2019; 116:23100-23105. [PMID: 31659048 PMCID: PMC6859307 DOI: 10.1073/pnas.1904273116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cas9 proteins have revolutionized biotechnology by enabling flexible and facile targeted cleavage of nucleic acids. Nearly all of these proteins are active only at moderate, near-physiological temperatures. Through mini-metagenomic sequencing of hot spring samples from Yellowstone National Park, we discovered and characterized a novel hyperthermophilic Cas9 protein from an unculturable Ignavibacterium. This Cas9 protein, IgnaviCas9, expands the temperature range at which targeted nucleic acid cleavage is possible, thus speeding the development of new biotechnological techniques. We demonstrated one such application by using IgnaviCas9 to deplete undesired amplicons during the amplification step of library preparation in sequencing workflows. This Cas9 protein underscores the exciting applications that can be made possible by exploring nature’s diversity. Clustered regularly interspaced short palindromic repeats (CRISPR)-associated 9 (Cas9) systems have been effectively harnessed to engineer the genomes of organisms from across the tree of life. Nearly all currently characterized Cas9 proteins are derived from mesophilic bacteria, and canonical Cas9 systems are challenged by applications requiring enhanced stability or elevated temperatures. We discovered IgnaviCas9, a Cas9 protein from a hyperthermophilic Ignavibacterium identified through mini-metagenomic sequencing of samples from a hot spring. IgnaviCas9 is active at temperatures up to 100 °C in vitro, which enables DNA cleavage beyond the 44 °C limit of Streptococcus pyogenes Cas9 (SpyCas9) and the 70 °C limit of both Geobacillus stearothermophilus Cas9 (GeoCas9) and Geobacillus thermodenitrificans T12 Cas9 (ThermoCas9). As a potential application of this enzyme, we demonstrate that IgnaviCas9 can be used in bacterial RNA-seq library preparation to remove unwanted cDNA from 16s ribosomal rRNA without increasing the number of steps, thus underscoring the benefits provided by its exceptional thermostability in improving molecular biology and genomic workflows. IgnaviCas9 is an exciting addition to the CRISPR-Cas9 toolbox and expands its temperature range.
Collapse
|
42
|
Goh KM, Shahar S, Chan KG, Chong CS, Amran SI, Sani MH, Zakaria II, Kahar UM. Current Status and Potential Applications of Underexplored Prokaryotes. Microorganisms 2019; 7:E468. [PMID: 31635256 PMCID: PMC6843859 DOI: 10.3390/microorganisms7100468] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022] Open
Abstract
Thousands of prokaryotic genera have been published, but methodological bias in the study of prokaryotes is noted. Prokaryotes that are relatively easy to isolate have been well-studied from multiple aspects. Massive quantities of experimental findings and knowledge generated from the well-known prokaryotic strains are inundating scientific publications. However, researchers may neglect or pay little attention to the uncommon prokaryotes and hard-to-cultivate microorganisms. In this review, we provide a systematic update on the discovery of underexplored culturable and unculturable prokaryotes and discuss the insights accumulated from various research efforts. Examining these neglected prokaryotes may elucidate their novelties and functions and pave the way for their industrial applications. In addition, we hope that this review will prompt the scientific community to reconsider these untapped pragmatic resources.
Collapse
Affiliation(s)
- Kian Mau Goh
- Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.
| | - Saleha Shahar
- Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Science, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
- International Genome Centre, Jiangsu University, ZhenJiang 212013, China.
| | - Chun Shiong Chong
- Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.
| | - Syazwani Itri Amran
- Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.
| | - Mohd Helmi Sani
- Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.
| | - Iffah Izzati Zakaria
- Malaysia Genome Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, Kajang 43000, Selangor, Malaysia.
| | - Ummirul Mukminin Kahar
- Malaysia Genome Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, Kajang 43000, Selangor, Malaysia.
| |
Collapse
|
43
|
Abstract
Cells are the building blocks of life, from single-celled microbes through to multi-cellular organisms. To understand a multitude of biological processes we need to understand how cells behave, how they interact with each other and how they respond to their environment. The use of new methodologies is changing the way we study cells allowing us to study them on minute scales and in unprecedented detail. These same methods are allowing researchers to begin to sample the vast diversity of microbes that dominate natural environments. The aim of this special issue is to bring together research and perspectives on the application of new approaches to understand the biological properties of cells, including how they interact with other biological entities. This article is part of a discussion meeting issue 'Single cell ecology'.
Collapse
Affiliation(s)
- Thomas A Richards
- Biosciences and Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Ramon Massana
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), 08003 Barcelona, Spain
| | - Stefano Pagliara
- Biosciences and Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK.,School of Biological Sciences, University of East Anglia, Norwich, NR4 7TU, UK
| |
Collapse
|
44
|
Douglas GM, Langille MGI. Current and Promising Approaches to Identify Horizontal Gene Transfer Events in Metagenomes. Genome Biol Evol 2019; 11:2750-2766. [PMID: 31504488 PMCID: PMC6777429 DOI: 10.1093/gbe/evz184] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
High-throughput shotgun metagenomics sequencing has enabled the profiling of myriad natural communities. These data are commonly used to identify gene families and pathways that were potentially gained or lost in an environment and which may be involved in microbial adaptation. Despite the widespread interest in these events, there are no established best practices for identifying gene gain and loss in metagenomics data. Horizontal gene transfer (HGT) represents several mechanisms of gene gain that are especially of interest in clinical microbiology due to the rapid spread of antibiotic resistance genes in natural communities. Several additional mechanisms of gene gain and loss, including gene duplication, gene loss-of-function events, and de novo gene birth are also important to consider in the context of metagenomes but have been less studied. This review is largely focused on detecting HGT in prokaryotic metagenomes, but methods for detecting these other mechanisms are first discussed. For this article to be self-contained, we provide a general background on HGT and the different possible signatures of this process. Lastly, we discuss how improved assembly of genomes from metagenomes would be the most straight-forward approach for improving the inference of gene gain and loss events. Several recent technological advances could help improve metagenome assemblies: long-read sequencing, determining the physical proximity of contigs, optical mapping of short sequences along chromosomes, and single-cell metagenomics. The benefits and limitations of these advances are discussed and open questions in this area are highlighted.
Collapse
Affiliation(s)
- Gavin M Douglas
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Morgan G I Langille
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
45
|
Roux S, Krupovic M, Daly RA, Borges AL, Nayfach S, Schulz F, Sharrar A, Matheus Carnevali PB, Cheng JF, Ivanova NN, Bondy-Denomy J, Wrighton KC, Woyke T, Visel A, Kyrpides NC, Eloe-Fadrosh EA. Cryptic inoviruses revealed as pervasive in bacteria and archaea across Earth's biomes. Nat Microbiol 2019; 4:1895-1906. [PMID: 31332386 PMCID: PMC6813254 DOI: 10.1038/s41564-019-0510-x] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/05/2019] [Indexed: 01/02/2023]
Abstract
Bacteriophages from the Inoviridae family (inoviruses) are characterized by their unique morphology, genome content and infection cycle. One of the most striking features of inoviruses is their ability to establish a chronic infection whereby the viral genome resides within the cell in either an exclusively episomal state or integrated into the host chromosome and virions are continuously released without killing the host. To date, a relatively small number of inovirus isolates have been extensively studied, either for biotechnological applications, such as phage display, or because of their effect on the toxicity of known bacterial pathogens including Vibrio cholerae and Neisseria meningitidis. Here, we show that the current 56 members of the Inoviridae family represent a minute fraction of a highly diverse group of inoviruses. Using a machine learning approach leveraging a combination of marker gene and genome features, we identified 10,295 inovirus-like sequences from microbial genomes and metagenomes. Collectively, our results call for reclassification of the current Inoviridae family into a viral order including six distinct proposed families associated with nearly all bacterial phyla across virtually every ecosystem. Putative inoviruses were also detected in several archaeal genomes, suggesting that, collectively, members of this supergroup infect hosts across the domains Bacteria and Archaea. Finally, we identified an expansive diversity of inovirus-encoded toxin–antitoxin and gene expression modulation systems, alongside evidence of both synergistic (CRISPR evasion) and antagonistic (superinfection exclusion) interactions with co-infecting viruses, which we experimentally validated in a Pseudomonas model. Capturing this previously obscured component of the global virosphere may spark new avenues for microbial manipulation approaches and innovative biotechnological applications. A machine learning approach was used to recover over 10,000 inovirus-like sequences from existing microbial genomes and metagenomes, consequently proposing the reclassification of the Inoviridae family to a viral order, and uncover the previously unrecognized diversity of these viruses across hosts and environments.
Collapse
Affiliation(s)
- Simon Roux
- DOE Joint Genome Institute, Walnut Creek, CA, USA.
| | - Mart Krupovic
- Department of Microbiology, Institut Pasteur, Paris, France
| | - Rebecca A Daly
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Adair L Borges
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | | | | | - Allison Sharrar
- Department of Earth & Planetary Sciences, University of California, Berkeley, Berkeley, CA, USA
| | | | | | | | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Kelly C Wrighton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, CA, USA
| | - Axel Visel
- DOE Joint Genome Institute, Walnut Creek, CA, USA
| | | | | |
Collapse
|
46
|
Abstract
Exploration of environmental microbiomes has shed light on the ecological and evolutionary principles at play in natural ecosystems and has been further accelerated through the reconstruction of population genomes to provide genome-centric context. Yet technical challenges with traditional shotgun metagenomics remain for computationally intense short-read assembly, strain heterogeneity within communities, and depth of coverage required for low-abundance microbes. Exploration of environmental microbiomes has shed light on the ecological and evolutionary principles at play in natural ecosystems and has been further accelerated through the reconstruction of population genomes to provide genome-centric context. Yet technical challenges with traditional shotgun metagenomics remain for computationally intense short-read assembly, strain heterogeneity within communities, and depth of coverage required for low-abundance microbes. In this Perspective, we highlight three main avenues for promising future developments, including coupling stable isotope probing and genome-resolved metagenomics, applying fluorescence-activated cell sorting approaches to target mini-metagenomes within a larger community, and utilizing single-molecule long-read and synthetic long-read technology to link mobile elements to host microbial cells. These developments on the horizon will undoubtedly advance genome-resolved metagenomic approaches and enable a better understanding of uncultivated microbes in their natural environments.
Collapse
|
47
|
Nowinski B, Motard-Côté J, Landa M, Preston CM, Scholin CA, Birch JM, Kiene RP, Moran MA. Microdiversity and temporal dynamics of marine bacterial dimethylsulfoniopropionate genes. Environ Microbiol 2019; 21:1687-1701. [PMID: 30761723 DOI: 10.1111/1462-2920.14560] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 02/09/2019] [Indexed: 11/30/2022]
Abstract
Dimethylsulfoniopropionate (DMSP) is an abundant organic sulfur metabolite produced by many phytoplankton species and degraded by bacteria via two distinct pathways with climate-relevant implications. We assessed the diversity and abundance of bacteria possessing these pathways in the context of phytoplankton community composition over a 3-week time period spanning September-October, 2014 in Monterey Bay, CA. The dmdA gene from the DMSP demethylation pathway dominated the DMSP gene pool and was harboured mostly by members of the alphaproteobacterial SAR11 clade and secondarily by the Roseobacter group, particularly during the second half of the study. Novel members of the DMSP-degrading community emerged from dmdA sequences recovered from metagenome assemblies and single-cell sequencing, including largely uncharacterized gammaproteobacteria and alphaproteobacteria taxa. In the DMSP cleavage pathway, the SAR11 gene dddK was the most abundant early in the study, but was supplanted by dddP over time. SAR11 members, especially those harbouring genes for both DMSP degradation pathways, had a strong positive relationship with the abundance of dinoflagellates, and DMSP-degrading gammaproteobacteria co-occurred with haptophytes. This in situ study of the drivers of DMSP fate in a coastal ecosystem demonstrates for the first time correlations between specific groups of bacterial DMSP degraders and phytoplankton taxa.
Collapse
Affiliation(s)
- Brent Nowinski
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Jessie Motard-Côté
- Department of Marine Sciences, University of South Alabama, Mobile, AL, 36688, USA.,Dauphin Island Sea Lab, Dauphin Island, AL, 36528, USA
| | - Marine Landa
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | | | | | - James M Birch
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, 95039, USA
| | - Ronald P Kiene
- Department of Marine Sciences, University of South Alabama, Mobile, AL, 36688, USA.,Dauphin Island Sea Lab, Dauphin Island, AL, 36528, USA
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
48
|
Hydrogenotrophic methanogenesis in archaeal phylum Verstraetearchaeota reveals the shared ancestry of all methanogens. Proc Natl Acad Sci U S A 2019; 116:5037-5044. [PMID: 30814220 PMCID: PMC6421429 DOI: 10.1073/pnas.1815631116] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Methane-producing microorganisms are thought to be among the earliest cellular life forms colonizing our planet, and are major contributors to the past and present global carbon cycle. Currently, all methanogens belong to the archaeal domain of life, and there is compounding evidence for a variety of methanogenic metabolisms among a wide distribution of archaeal phyla. However, the predominantly hydrogenotrophic (CO2-fixing) Euryarchaeota are distinct from the recently discovered methylotrophic (biomass-degrading) noneuryarchaea, making the shared ancestry and origins of all methanogens unclear. We discovered hydrogenotrophic methanogenesis in a thermophilic order of the Verstraetearchaeota, a noneuryarchaeote. The Verstraetearchaeota, hitherto known as methylotrophs, unify the origins of methanogenesis and shed light on how organisms can evolve to adapt from hydrogenotrophic to methylotrophic methane metabolism. Methanogenic archaea are major contributors to the global carbon cycle and were long thought to belong exclusively to the euryarchaeal phylum. Discovery of the methanogenesis gene cluster methyl-coenzyme M reductase (Mcr) in the Bathyarchaeota, and thereafter the Verstraetearchaeota, led to a paradigm shift, pushing back the evolutionary origin of methanogenesis to predate that of the Euryarchaeota. The methylotrophic methanogenesis found in the non-Euryarchaota distinguished itself from the predominantly hydrogenotrophic methanogens found in euryarchaeal orders as the former do not couple methanogenesis to carbon fixation through the reductive acetyl-CoA [Wood–Ljungdahl pathway (WLP)], which was interpreted as evidence for independent evolution of the two methanogenesis pathways. Here, we report the discovery of a complete and divergent hydrogenotrophic methanogenesis pathway in a thermophilic order of the Verstraetearchaeota, which we have named Candidatus Methanohydrogenales, as well as the presence of the WLP in the crenarchaeal order Desulfurococcales. Our findings support the ancient origin of hydrogenotrophic methanogenesis, suggest that methylotrophic methanogenesis might be a later adaptation of specific orders, and provide insight into how the transition from hydrogenotrophic to methylotrophic methanogenesis might have occurred.
Collapse
|
49
|
Hydrogen-based metabolism as an ancestral trait in lineages sibling to the Cyanobacteria. Nat Commun 2019; 10:463. [PMID: 30692531 PMCID: PMC6349859 DOI: 10.1038/s41467-018-08246-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 12/18/2018] [Indexed: 01/06/2023] Open
Abstract
The evolution of aerobic respiration was likely linked to the origins of oxygenic Cyanobacteria. Close phylogenetic neighbors to Cyanobacteria, such as Margulisbacteria (RBX-1 and ZB3), Saganbacteria (WOR-1), Melainabacteria and Sericytochromatia, may constrain the metabolic platform in which aerobic respiration arose. Here, we analyze genomic sequences and predict that sediment-associated Margulisbacteria have a fermentation-based metabolism featuring a variety of hydrogenases, a streamlined nitrogenase, and electron bifurcating complexes involved in cycling of reducing equivalents. The genomes of ocean-associated Margulisbacteria encode an electron transport chain that may support aerobic growth. Some Saganbacteria genomes encode various hydrogenases, and others may be able to use O2 under certain conditions via a putative novel type of heme copper O2 reductase. Similarly, Melainabacteria have diverse energy metabolisms and are capable of fermentation and aerobic or anaerobic respiration. The ancestor of all these groups may have been an anaerobe in which fermentation and H2 metabolism were central metabolic features. The ability to use O2 as a terminal electron acceptor must have been subsequently acquired by these lineages. Most cyanobacteria are oxygenic photoautotrophs, and fermenters under dark anoxic conditions. Here, the authors analyse genomic sequences of related uncultivated bacteria, inferring their metabolic potential, and supporting that their common ancestor was an anaerobe capable of fermentation and H2 metabolism.
Collapse
|
50
|
Schulz F, Alteio L, Goudeau D, Ryan EM, Yu FB, Malmstrom RR, Blanchard J, Woyke T. Hidden diversity of soil giant viruses. Nat Commun 2018; 9:4881. [PMID: 30451857 PMCID: PMC6243002 DOI: 10.1038/s41467-018-07335-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/30/2018] [Indexed: 01/23/2023] Open
Abstract
Known giant virus diversity is currently skewed towards viruses isolated from aquatic environments and cultivated in the laboratory. Here, we employ cultivation-independent metagenomics and mini-metagenomics on soils from the Harvard Forest, leading to the discovery of 16 novel giant viruses, chiefly recovered by mini-metagenomics. The candidate viruses greatly expand phylogenetic diversity of known giant viruses and either represented novel lineages or are affiliated with klosneuviruses, Cafeteria roenbergensis virus or tupanviruses. One assembled genome with a size of 2.4 Mb represents the largest currently known viral genome in the Mimiviridae, and others encode up to 80% orphan genes. In addition, we find more than 240 major capsid proteins encoded on unbinned metagenome fragments, further indicating that giant viruses are underexplored in soil ecosystems. The fact that most of these novel viruses evaded detection in bulk metagenomes suggests that mini-metagenomics could be a valuable approach to unearth viral giants.
Collapse
Affiliation(s)
- Frederik Schulz
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA.
| | - Lauren Alteio
- Department of Biology, University of Massachusetts, Amherst, MA, USA
| | - Danielle Goudeau
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Elizabeth M Ryan
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Feiqiao B Yu
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Rex R Malmstrom
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Jeffrey Blanchard
- Department of Biology, University of Massachusetts, Amherst, MA, USA.
| | - Tanja Woyke
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA.
| |
Collapse
|