1
|
Liu LH, Lei W, Zhang Z, Lai S, Xu B, Ge Q, Luo J, Yang M, Zhang Y, Chen J, Zhong Q, Wu YR, Jiang A. OMEGA-guided DNA polymerases enable random mutagenesis in a tunable window. Trends Biotechnol 2025:S0167-7799(25)00048-4. [PMID: 40074636 DOI: 10.1016/j.tibtech.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 03/14/2025]
Abstract
Targeted random mutagenesis is crucial for breeding, directed evolution, and gene function studies, yet efficient tools remain scarce. Here, we present obligate mobile element guided activity (OMEGA)-R, an innovative targeted random mutagenesis system that integrates SpyCatcher-enIscB and PolI3M-TBD-SpyTag, outperforming existing state-of-the-art technologies in key metrics, such as protein size, mutagenesis efficiency, window length, and continuity. OMEGA-R achieves a dramatic enhancement of on-target mutagenesis, reaching a rate of 1.4 × 10-5 base pairs (bp) per generation (bpg), with minimal off-target effects, in both Escherichia coli and Bacillus subtilis. The system also demonstrates exceptional compatibility with high-throughput screening (HTS) technologies, including fluorescence-activated droplet sorting (FADS) and phage-assisted continuous evolution (PACE). Utilizing OMEGA-R, we successfully identified a series of effective mutations within the T7 promoter (pT7), ribosome-binding site (RBS), superfolder GFP (sfGFP), and autocyclizing ribozyme (AR), which are invaluable for the development of high-performance biotechnology tools. These findings underscore the high efficiency and broad application potential of OMEGA-R.
Collapse
Affiliation(s)
- Li-Hua Liu
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd, Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong 510000, PR China; Biology Department and Institute of Marine Sciences, College of Science, Shantou University, Shantou 515063, PR China
| | - Wei Lei
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd, Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong 510000, PR China
| | - Zhiqian Zhang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd, Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong 510000, PR China
| | - Shijing Lai
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd, Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong 510000, PR China
| | - Bo Xu
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Qijun Ge
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd, Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong 510000, PR China
| | - Jiawen Luo
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd, Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong 510000, PR China
| | - Min Yang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd, Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong 510000, PR China
| | - Yang Zhang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd, Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong 510000, PR China
| | - Jinde Chen
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd, Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong 510000, PR China
| | - Qiuru Zhong
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd, Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong 510000, PR China
| | - Yi-Rui Wu
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd, Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong 510000, PR China
| | - Ao Jiang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd, Guangzhou Qianxiang Bioworks Co., Ltd, Guangzhou, Guangdong 510000, PR China.
| |
Collapse
|
2
|
Kufner C, Krebs S, Fischaleck M, Philippou-Massier J, Blum H, Bucher DB, Braun D, Zinth W, Mast CB. Selection of Early Life Codons by Ultraviolet Light. ACS CENTRAL SCIENCE 2025; 11:147-156. [PMID: 39866696 PMCID: PMC11758376 DOI: 10.1021/acscentsci.4c01623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025]
Abstract
How life developed in its earliest stages is a central but notoriously difficult question in science. The earliest lifeforms likely used a reduced set of codon sequences that were progressively completed over time, driven by chemical, physical, and combinatorial constraints. However, despite its importance for prebiotic chemistry, UV radiation has not been considered a selection pressure for the evolution of early codon sequences. In this proof-of-principle study, we quantified the UV susceptibility of large pools of DNA protogenomes and tested the timing of evolutionary incorporation of codon sequences using a Monte Carlo method utilizing sequence-context-dependent damage rates previously determined by high throughput sequencing experiments. We traced the UV-radiation selection pressure on early protogenomes comprising a limited number of codon sequences to late protogenomes with access to all codons. The modeling showed that in just minutes under early sunlight, the choice of the first codons determined whether most of the protogenomes remained intact or became damaged entirely. The results correlated with earlier chemical models of the evolution of the genetic code. Our results show how UV could have played a crucial role in the evolution of the early genetic code for a DNA-based genome and provide the concept for future RNA-based studies.
Collapse
Affiliation(s)
- Corinna
L. Kufner
- Harvard-Smithsonian
Center for Astrophysics, Department of Astronomy,
Harvard University, 60
Garden Street, Cambridge, Massachusetts 02138, United States
| | - Stefan Krebs
- Laboratory
for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-University Munich, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Marlis Fischaleck
- Laboratory
for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-University Munich, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Julia Philippou-Massier
- Laboratory
for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-University Munich, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Helmut Blum
- Laboratory
for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-University Munich, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Dominik B. Bucher
- Department
of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Dieter Braun
- Systems
Biophysics, Ludwig-Maximilians-University
Munich, Amalienstr. 54, 80799 Munich, Germany
| | - Wolfgang Zinth
- Biomolecular
Optics and Center for Integrated Protein Science, Ludwig-Maximilians-University Munich, Öttingenstrasse 67, 80538 Munich, Germany
| | - Christof B. Mast
- Systems
Biophysics, Ludwig-Maximilians-University
Munich, Amalienstr. 54, 80799 Munich, Germany
| |
Collapse
|
3
|
Liu LH, Chen J, Lai S, Zhao X, Yang M, Wu YR, Zhang Z, Jiang A. Functional RNA mining using random high-throughput screening. Nucleic Acids Res 2025; 53:gkae1173. [PMID: 39673274 PMCID: PMC11754670 DOI: 10.1093/nar/gkae1173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/23/2024] [Accepted: 11/11/2024] [Indexed: 12/16/2024] Open
Abstract
Functional RNA participates in various life processes in cells. However, there is currently a lack of effective methods to screen for functional RNA. Here, we developed a technology named random high-throughput screening (rHTS). rHTS uses a random library of ∼250-nt synthesized RNA fragments, with high uniformity and abundance. These fragments are circularized into circular RNA by an auto-cyclizing ribozyme to improve their stability. Using rHTS, we successfully screened and identified three RNA fragments contributing significantly to the growth of Escherichia coli, one of which possesses coding potential. Moreover, we found that two noncoding RNAs (ncRNAs) effectively inhibited the growth of E. coli, in vivo rather than in vitro. Subsequently, we applied the rHTS to a coenzyme-dependent screening platform. In this context, two ncRNAs were identified that could effectively promote the conversion from NADPH to NADP+. Exogenous expression of these two ncRNAs was able to increase the conversion rate of glycerol dehydrogenase from glycerol to 1,3-dihydroxyacetone from 18.3% to 21.8% and 23.2%, respectively. These results suggest that rHTS is a powerful technology for functional RNA mining.
Collapse
Affiliation(s)
- Li-Hua Liu
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Tongchaunghui South District, No. 40, Shangchong South, Haizhu District, Guangzhou, Guangdong 510000, P.R. China
| | - Jinde Chen
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Tongchaunghui South District, No. 40, Shangchong South, Haizhu District, Guangzhou, Guangdong 510000, P.R. China
| | - Shijing Lai
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Tongchaunghui South District, No. 40, Shangchong South, Haizhu District, Guangzhou, Guangdong 510000, P.R. China
| | - Xuemei Zhao
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Tongchaunghui South District, No. 40, Shangchong South, Haizhu District, Guangzhou, Guangdong 510000, P.R. China
| | - Min Yang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Tongchaunghui South District, No. 40, Shangchong South, Haizhu District, Guangzhou, Guangdong 510000, P.R. China
| | - Yi-Rui Wu
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Tongchaunghui South District, No. 40, Shangchong South, Haizhu District, Guangzhou, Guangdong 510000, P.R. China
| | - Zhiqian Zhang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Tongchaunghui South District, No. 40, Shangchong South, Haizhu District, Guangzhou, Guangdong 510000, P.R. China
| | - Ao Jiang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Tongchaunghui South District, No. 40, Shangchong South, Haizhu District, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
4
|
Baquero F, Bever GS, de Lorenzo V, Fernández-Lanza V, Briones C. Did organs precede organisms in the origin of life? MICROLIFE 2024; 5:uqae025. [PMID: 39717754 PMCID: PMC11664216 DOI: 10.1093/femsml/uqae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 12/25/2024]
Abstract
Evolutionary processes acting on populations of organized molecules preceded the origin of living organisms. These prebiotic entities were independently and repeatedly produced [i.e. (re)-produced] by the assembly of their components, following an iterative process giving rise to nearly but not fully identical replicas, allowing for a prebiotic form of Darwinian evolution. Natural selection favored the more persistent assemblies, some possibly modifying their own internal structure, or even their environment, thereby acquiring function. We refer to these assemblies as proto-organs. In association with other assemblies (e.g. in a coacervate or encapsulated within a vesicle), such proto-organs could evolve and acquire a role within the collective when their coexistence favored the selection of the ensemble. Along millions of years, an extraordinarily small number of successful combinations of those proto-organs co-occurring in spatially individualizing compartments might have co-evolved forming a proto-metabolic and proto-genetic informative network, eventually leading to the selfreplication of a very few. Thus, interactions between encapsulated proto-organs would have had a much higher probability of evolving into proto-organisms than interactions among simpler molecules. Multimolecular forms evolve functions; thus, functional organs would have preceded organisms.
Collapse
Affiliation(s)
- Fernando Baquero
- Division of Biology and Evolution of Microorganisms, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain
- Network Medical Research Center for Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Gabriel S Bever
- Center for Functional Anatomy & Evolution, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Victor de Lorenzo
- Systems Biology Department, Centro Nacional de Biotecnologia, CSIC, 28049 Madrid-Cantoblanco, Spain
| | - Val Fernández-Lanza
- Division of Biology and Evolution of Microorganisms, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain
- Network Medical Research Center for Infectious Diseases (CIBERINFECT), 28029 Madrid, Spain
- Bioinformatics and Biostatistical Research Unit, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain
| | - Carlos Briones
- Department of Molecular Evolution, Centro de Astrobiología (CAB), CSIC-INTA, Torrejón de Ardoz,28864 Madrid, Spain
| |
Collapse
|
5
|
Liu Z. Life should be redefined: Any molecule with the ability to self-replicate should be considered life. F1000Res 2024; 13:736. [PMID: 39399163 PMCID: PMC11467646 DOI: 10.12688/f1000research.151912.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 10/15/2024] Open
Abstract
Understanding the nature of life and its propensity for reproduction has long been a question that humans aspire to answer. Reproduction, a defining characteristic of life, fundamentally involves the replication of genetic material, be it DNA or RNA. The driving force behind this replication process has always intrigued scientists. In recent years, theories involving selfish genes, the RNA world, and entropic forces have been proposed by some scholars. These theories seem to suggest that life, as we know it, exists solely in Earth's environment and is based on a single type of genetic material, either DNA or RNA. However, if we broaden our definition of life to include any replicable molecules, we might be able to transcend traditional thought. This could potentially enhance our understanding of the impetus behind DNA replication and provide deeper insights into the essence of life.
Collapse
Affiliation(s)
- Zheng Liu
- College of Laboratory Medicine, Guilin Medical University, Guilin, China
| |
Collapse
|
6
|
Piast RW. The bubble theory: exploring the transition from first replicators to cells and viruses in a landscape-based scenario. Theory Biosci 2024; 143:153-160. [PMID: 38722466 PMCID: PMC11127830 DOI: 10.1007/s12064-024-00417-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/07/2024] [Indexed: 05/27/2024]
Abstract
This study proposes a landscape-based scenario for the origin of viruses and cells, focusing on the adaptability of preexisting replicons from the RNP (ribonucleoprotein) world. The scenario postulates that life emerged in a subterranean "warm little pond" where organic matter accumulated, resulting in a prebiotic soup rich in nucleotides, amino acids, and lipids, which served as nutrients for the first self-replicating entities. Over time, the RNA world, followed by the RNP world, came into existence. Replicators/replicons, along with the nutritious soup from the pond, were washed out into the river and diluted. Lipid bubbles, enclosing organic matter, provided the last suitable environment for replicons to replicate. Two survival strategies emerged under these conditions: cell-like structures that obtained nutrients by merging with new bubbles, and virus-like entities that developed various techniques to transmit themselves to fresh bubbles. The presented hypothesis provides the possibility for the common origin of cells and viruses on rocky worlds hosting liquid water, like Earth.
Collapse
Affiliation(s)
- Radoslaw W Piast
- Chemistry Department, Warsaw University, Pasteura 1, Warsaw, Poland.
| |
Collapse
|
7
|
Roy S, Sengupta S. The RNA-DNA world and the emergence of DNA-encoded heritable traits. RNA Biol 2024; 21:1-9. [PMID: 38785360 PMCID: PMC11135857 DOI: 10.1080/15476286.2024.2355391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/09/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
The RNA world hypothesis confers a central role to RNA molecules in information encoding and catalysis. Even though evidence in support of this hypothesis has accumulated from both experiments and computational modelling, the transition from an RNA world to a world where heritable genetic information is encoded in DNA remains an open question. Recent experiments show that both RNA and DNA templates can extend complementary primers using free RNA/DNA nucleotides, either non-enzymatically or in the presence of a replicase ribozyme. Guided by these experiments, we analyse protocellular evolution with an expanded set of reaction pathways made possible through the presence of DNA nucleotides. By encapsulating these reactions inside three different types of protocellular compartments, each subject to distinct modes of selection, we show how protocells containing DNA-encoded replicases in low copy numbers and replicases in high copy numbers can dominate the population. This is facilitated by a reaction that leads to auto-catalytic synthesis of replicase ribozymes from DNA templates encoding the replicase after the chance emergence of a replicase through non-enzymatic reactions. Our work unveils a pathway for the transition from an RNA world to a mixed RNA-DNA world characterized by Darwinian evolution, where DNA sequences encode heritable phenotypes.
Collapse
Affiliation(s)
- Suvam Roy
- Department of Physical Sciences, Indian Institute of Science Education and ResearchKolkata, Mohanpur, West Bengal, India
| | - Supratim Sengupta
- Department of Physical Sciences, Indian Institute of Science Education and ResearchKolkata, Mohanpur, West Bengal, India
| |
Collapse
|
8
|
Lei L, Burton ZF. The 3 31 Nucleotide Minihelix tRNA Evolution Theorem and the Origin of Life. Life (Basel) 2023; 13:2224. [PMID: 38004364 PMCID: PMC10672568 DOI: 10.3390/life13112224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
There are no theorems (proven theories) in the biological sciences. We propose that the 3 31 nt minihelix tRNA evolution theorem be universally accepted as one. The 3 31 nt minihelix theorem completely describes the evolution of type I and type II tRNAs from ordered precursors (RNA repeats and inverted repeats). Despite the diversification of tRNAome sequences, statistical tests overwhelmingly support the theorem. Furthermore, the theorem relates the dominant pathway for the origin of life on Earth, specifically, how tRNAomes and the genetic code may have coevolved. Alternate models for tRNA evolution (i.e., 2 minihelix, convergent and accretion models) are falsified. In the context of the pre-life world, tRNA was a molecule that, via mutation, could modify anticodon sequences and teach itself to code. Based on the tRNA sequence, we relate the clearest history to date of the chemical evolution of life. From analysis of tRNA evolution, ribozyme-mediated RNA ligation was a primary driving force in the evolution of complexity during the pre-life-to-life transition. TRNA formed the core for the evolution of living systems on Earth.
Collapse
Affiliation(s)
- Lei Lei
- School of Biological Sciences, University of New England, Biddeford, ME 04005, USA;
| | - Zachary Frome Burton
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
9
|
Gulzar A, Noetzel J, Forbert H, Marx D. Elucidating the Self-cleavage Dynamics of Hairpin Ribozyme by Mode-decomposed Infrared Spectroscopy. J Phys Chem Lett 2023; 14:7940-7945. [PMID: 37646493 DOI: 10.1021/acs.jpclett.3c01724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
While catalytic reactions of biomolecular processes play an indispensable role in life, extracting the underlying molecular picture often remains challenging. Based on ab initio simulations of the self-cleavage reaction of hairpin ribozyme, mode-decomposed infrared spectra, and cosine similarity analysis to correlate the product with reactant IR spectra, we demonstrate a strategy to extract molecular details from characteristic spectral changes. Our results are in almost quantitative agreement with the experimental IR band library of nucleic acids and suggest that the spectral range of 800-1200 cm-1 is particularly valuable to monitor self-cleavage. Importantly, the cosine similarities also disclose that IR peaks subject to slight shifts due to self-cleavage might be unrelated, while strongly shifting resonances can correspond to the same structural dynamics. This framework of correlating complex IR spectra at the molecular level along biocatalytic reaction pathways is broadly applicable.
Collapse
Affiliation(s)
- Adnan Gulzar
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Jan Noetzel
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Harald Forbert
- Center for Solvation Science ZEMOS, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
10
|
Kakoti A, Joyce GF. RNA Polymerase Ribozyme That Recognizes the Template-Primer Complex through Tertiary Interactions. Biochemistry 2023. [PMID: 37256719 DOI: 10.1021/acs.biochem.3c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
RNA enzymes (ribozymes) often rely on specific base-pairing interactions to engage RNA substrates, which limits the substrate sequence generality of these enzymes. An RNA polymerase ribozyme that was previously optimized by directed evolution to operate in a more efficient and sequence-general manner can now recognize the RNA template, RNA primer, and incoming nucleoside 5'-triphosphate (NTP) entirely through tertiary interactions. As with proteinaceous polymerases, these tertiary interactions are largely agnostic to the sequence of the template, which is an essential property for the unconstrained transmission of genetic information. The polymerase ribozyme exhibits Michaelis-Menten saturation kinetics, with a catalytic rate of 0.1-1 min-1 and a Km of 0.1-1 μM. Earlier forms of the polymerase did not exhibit a saturable substrate binding site, but this property emerged over the course of directed evolution as the ribozyme underwent a structural rearrangement of its catalytic center. The optimized polymerase makes tertiary contacts with both the template and primer, including a critical interaction at the C2' position of the template nucleotide that opposes the 3'-terminal nucleotide of the primer. UV cross-linking studies paint a picture of how several portions of the ribozyme, including regions that were remodeled by directed evolution, come together to position the template, primer, and NTP within the active site for RNA polymerization.
Collapse
Affiliation(s)
- Ankana Kakoti
- The Salk Institute, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Gerald F Joyce
- The Salk Institute, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
11
|
Villarreal L, Witzany G. Self-empowerment of life through RNA networks, cells and viruses. F1000Res 2023; 12:138. [PMID: 36785664 PMCID: PMC9918806 DOI: 10.12688/f1000research.130300.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 01/05/2024] Open
Abstract
Our understanding of the key players in evolution and of the development of all organisms in all domains of life has been aided by current knowledge about RNA stem-loop groups, their proposed interaction motifs in an early RNA world and their regulative roles in all steps and substeps of nearly all cellular processes, such as replication, transcription, translation, repair, immunity and epigenetic marking. Cooperative evolution was enabled by promiscuous interactions between single-stranded regions in the loops of naturally forming stem-loop structures in RNAs. It was also shown that cooperative RNA stem-loops outcompete selfish ones and provide foundational self-constructive groups (ribosome, editosome, spliceosome, etc.). Self-empowerment from abiotic matter to biological behavior does not just occur at the beginning of biological evolution; it is also essential for all levels of socially interacting RNAs, cells and viruses.
Collapse
Affiliation(s)
- Luis Villarreal
- Center for Virus Research, University of California, Irvine, California, USA
| | - Guenther Witzany
- Telos - Philosophische Praxis, Buermoos, Salzburg, 5111, Austria
| |
Collapse
|
12
|
Abstract
Our understanding of the key players in evolution and of the development of all organisms in all domains of life has been aided by current knowledge about RNA stem-loop groups, their proposed interaction motifs in an early RNA world and their regulative roles in all steps and substeps of nearly all cellular processes, such as replication, transcription, translation, repair, immunity and epigenetic marking. Cooperative evolution was enabled by promiscuous interactions between single-stranded regions in the loops of naturally forming stem-loop structures in RNAs. It was also shown that cooperative RNA stem-loops outcompete selfish ones and provide foundational self-constructive groups (ribosome, editosome, spliceosome, etc.). Self-empowerment from abiotic matter to biological behavior does not just occur at the beginning of biological evolution; it is also essential for all levels of socially interacting RNAs, cells and viruses.
Collapse
Affiliation(s)
- Luis Villarreal
- Center for Virus Research, University of California, Irvine, California, USA
| | - Guenther Witzany
- Telos - Philosophische Praxis, Buermoos, Salzburg, 5111, Austria
| |
Collapse
|
13
|
Kondratyeva LG, Dyachkova MS, Galchenko AV. The Origin of Genetic Code and Translation in the Framework of Current Concepts on the Origin of Life. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:150-169. [PMID: 35508902 DOI: 10.1134/s0006297922020079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The origin of genetic code and translation system is probably the central and most difficult problem in the investigations on the origin of life and one of the most complex problems in the evolutionary biology in general. There are multiple hypotheses on the emergence and development of existing genetic systems that propose the mechanisms for the origin and early evolution of genetic code, as well as for the emergence of replication and translation. Here, we discuss the most well-known of these hypotheses, although none of them provides a description of the early evolution of genetic systems without gaps and assumptions. The RNA world hypothesis is a currently prevailing scientific idea on the early evolution of biological and pre-biological structures, the main advantage of which is the assumption that RNAs as the first living systems were self-sufficient, i.e., capable of functioning as both catalysts and templates. However, this hypothesis has also significant limitations. In particular, no ribozymes with processive polymerase activity have been yet discovered or synthesized. Taking into account the mutual need of proteins and nucleic acids in each other in the current world, many authors propose the early evolution scenarios based on the co-evolution of these two classes of organic molecules. They postulate that the emergence of translation was necessary for the replication of nucleic acids, in contrast to the RNA world hypothesis, according to which the emergence of translation was preceded by the era of self-replicating RNAs. Although such scenarios are less parsimonious from the evolutionary point of view, since they require simultaneous emergence and evolution of two classes of organic molecules, as well as the emergence of synchronized replication and translation, their major advantage is that they explain the development of processive and much more accurate protein-dependent replication.
Collapse
Affiliation(s)
- Liya G Kondratyeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | | | - Alexey V Galchenko
- Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russia.
| |
Collapse
|
14
|
Genome Evolution from Random Ligation of RNAs of Autocatalytic Sets. Int J Mol Sci 2021; 22:ijms222413526. [PMID: 34948321 PMCID: PMC8707343 DOI: 10.3390/ijms222413526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
The evolutionary origin of the genome remains elusive. Here, I hypothesize that its first iteration, the protogenome, was a multi-ribozyme RNA. It evolved, likely within liposomes (the protocells) forming in dry-wet cycling environments, through the random fusion of ribozymes by a ligase and was amplified by a polymerase. The protogenome thereby linked, in one molecule, the information required to seed the protometabolism (a combination of RNA-based autocatalytic sets) in newly forming protocells. If this combination of autocatalytic sets was evolutionarily advantageous, the protogenome would have amplified in a population of multiplying protocells. It likely was a quasispecies with redundant information, e.g., multiple copies of one ribozyme. As such, new functionalities could evolve, including a genetic code. Once one or more components of the protometabolism were templated by the protogenome (e.g., when a ribozyme was replaced by a protein enzyme), and/or addiction modules evolved, the protometabolism became dependent on the protogenome. Along with increasing fidelity of the RNA polymerase, the protogenome could grow, e.g., by incorporating additional ribozyme domains. Finally, the protogenome could have evolved into a DNA genome with increased stability and storage capacity. I will provide suggestions for experiments to test some aspects of this hypothesis, such as evaluating the ability of ribozyme RNA polymerases to generate random ligation products and testing the catalytic activity of linked ribozyme domains.
Collapse
|
15
|
Xu J, Green NJ, Russell DA, Liu Z, Sutherland JD. Prebiotic Photochemical Coproduction of Purine Ribo- and Deoxyribonucleosides. J Am Chem Soc 2021; 143:14482-14486. [PMID: 34469129 PMCID: PMC8607323 DOI: 10.1021/jacs.1c07403] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
The
hypothesis that life on Earth may have started with a heterogeneous
nucleic acid genetic system including both RNA and DNA has attracted
broad interest. The recent finding that two RNA subunits (cytidine,
C, and uridine, U) and two DNA subunits (deoxyadenosine, dA, and deoxyinosine,
dI) can be coproduced in the same reaction network, compatible with
a consistent geological scenario, supports this theory. However, a
prebiotically plausible synthesis of the missing units (purine ribonucleosides
and pyrimidine deoxyribonucleosides) in a unified reaction network
remains elusive. Herein, we disclose a strictly stereoselective and
furanosyl-selective synthesis of purine ribonucleosides (adenosine,
A, and inosine, I) and purine deoxynucleosides (dA and dI), alongside
one another, via a key photochemical reaction of thioanhydroadenosine
with sulfite in alkaline solution (pH 8–10). Mechanistic studies
suggest an unexpected recombination of sulfite and nucleoside alkyl
radicals underpins the formation of the ribo C2′–O bond.
The coproduction of A, I, dA, and dI from a common intermediate, and
under conditions likely to have prevailed in at least some primordial
locales, is suggestive of the potential coexistence of RNA and DNA
building blocks at the dawn of life.
Collapse
Affiliation(s)
- Jianfeng Xu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, U.K
| | - Nicholas J Green
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, U.K
| | - David A Russell
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, U.K
| | - Ziwei Liu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, U.K
| | - John D Sutherland
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, U.K
| |
Collapse
|
16
|
Mäkinen JJ, Shin Y, Vieras E, Virta P, Metsä-Ketelä M, Murakami KS, Belogurov GA. The mechanism of the nucleo-sugar selection by multi-subunit RNA polymerases. Nat Commun 2021; 12:796. [PMID: 33542236 PMCID: PMC7862312 DOI: 10.1038/s41467-021-21005-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 01/06/2021] [Indexed: 01/18/2023] Open
Abstract
RNA polymerases (RNAPs) synthesize RNA from NTPs, whereas DNA polymerases synthesize DNA from 2'dNTPs. DNA polymerases select against NTPs by using steric gates to exclude the 2'OH, but RNAPs have to employ alternative selection strategies. In single-subunit RNAPs, a conserved Tyr residue discriminates against 2'dNTPs, whereas selectivity mechanisms of multi-subunit RNAPs remain hitherto unknown. Here, we show that a conserved Arg residue uses a two-pronged strategy to select against 2'dNTPs in multi-subunit RNAPs. The conserved Arg interacts with the 2'OH group to promote NTP binding, but selectively inhibits incorporation of 2'dNTPs by interacting with their 3'OH group to favor the catalytically-inert 2'-endo conformation of the deoxyribose moiety. This deformative action is an elegant example of an active selection against a substrate that is a substructure of the correct substrate. Our findings provide important insights into the evolutionary origins of biopolymers and the design of selective inhibitors of viral RNAPs.
Collapse
Affiliation(s)
- Janne J Mäkinen
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Yeonoh Shin
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Eeva Vieras
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Pasi Virta
- Department of Chemistry, University of Turku, Turku, Finland
| | | | - Katsuhiko S Murakami
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA, USA.
| | | |
Collapse
|
17
|
Setterholm NA, Haratipour P, Kashemirov BA, McKenna CE, Joyce GF. Kinetic Effects of β,γ-Modified Deoxynucleoside 5'-Triphosphate Analogues on RNA-Catalyzed Polymerization of DNA. Biochemistry 2020; 60:1-5. [PMID: 33356161 DOI: 10.1021/acs.biochem.0c00779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A recently described DNA polymerase ribozyme, obtained by in vitro evolution, provides the opportunity to investigate mechanistic features of RNA catalysis using methods that previously had only been applied to DNA polymerase proteins. Insight can be gained into the transition state of the DNA polymerization reaction by studying the behavior of various β,γ-bridging substituted methylene (CXY; X, Y = H, halo, methyl) or imido (NH) dNTP analogues that differ with regard to the pKa4 of the bisphosphonate or imidodiphosphate leaving group. The apparent rate constant (kpol) of the polymerase ribozyme was determined for analogues of dGTP and dCTP that span a broad range of acidities for the leaving group, ranging from 7.8 for the CF2-bisphosphonate to 11.6 for the CHCH3-bisphosphonate. A Brønsted plot of log(kpol) versus pKa4 of the leaving group demonstrates linear free energy relationships (LFERs) for dihalo-, monohalo-, and non-halogen-substituted analogues of the dNTPs, with negative slopes, as has been observed for DNA polymerase proteins. The unsubstituted dNTPs have a faster catalytic rate than would be predicted from consideration of the linear free energy relationship alone, presumably due to a relatively more favorable interaction of the β,γ-bridging oxygen within the active site. Although the DNA polymerase ribozyme is considerably slower than DNA polymerase proteins, it exhibits a similar LFER fingerprint, suggesting mechanistic commonality pertaining to the buildup of negative charge in the transition state, despite the very different chemical compositions of the two catalysts.
Collapse
Affiliation(s)
- Noah A Setterholm
- The Salk Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Pouya Haratipour
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts, and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Boris A Kashemirov
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts, and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Charles E McKenna
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts, and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Gerald F Joyce
- The Salk Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
18
|
Micura R, Höbartner C. Fundamental studies of functional nucleic acids: aptamers, riboswitches, ribozymes and DNAzymes. Chem Soc Rev 2020; 49:7331-7353. [PMID: 32944725 DOI: 10.1039/d0cs00617c] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review aims at juxtaposing common versus distinct structural and functional strategies that are applied by aptamers, riboswitches, and ribozymes/DNAzymes. Focusing on recently discovered systems, we begin our analysis with small-molecule binding aptamers, with emphasis on in vitro-selected fluorogenic RNA aptamers and their different modes of ligand binding and fluorescence activation. Fundamental insights are much needed to advance RNA imaging probes for detection of exo- and endogenous RNA and for RNA process tracking. Secondly, we discuss the latest gene expression-regulating mRNA riboswitches that respond to the alarmone ppGpp, to PRPP, to NAD+, to adenosine and cytidine diphosphates, and to precursors of thiamine biosynthesis (HMP-PP), and we outline new subclasses of SAM and tetrahydrofolate-binding RNA regulators. Many riboswitches bind protein enzyme cofactors that, in principle, can catalyse a chemical reaction. For RNA, however, only one system (glmS ribozyme) has been identified in Nature thus far that utilizes a small molecule - glucosamine-6-phosphate - to participate directly in reaction catalysis (phosphodiester cleavage). We wonder why that is the case and what is to be done to reveal such likely existing cellular activities that could be more diverse than currently imagined. Thirdly, this brings us to the four latest small nucleolytic ribozymes termed twister, twister-sister, pistol, and hatchet as well as to in vitro selected DNA and RNA enzymes that promote new chemistry, mainly by exploiting their ability for RNA labelling and nucleoside modification recognition. Enormous progress in understanding the strategies of nucleic acids catalysts has been made by providing thorough structural fundaments (e.g. first structure of a DNAzyme, structures of ribozyme transition state mimics) in combination with functional assays and atomic mutagenesis.
Collapse
Affiliation(s)
- Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck CMBI, Leopold-Franzens University Innsbruck, Innsbruck, Austria.
| | | |
Collapse
|
19
|
Kovalenko SP. Physicochemical Processes That Probably Originated Life. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020040093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Selective prebiotic formation of RNA pyrimidine and DNA purine nucleosides. Nature 2020; 582:60-66. [PMID: 32494078 DOI: 10.1038/s41586-020-2330-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/16/2020] [Indexed: 11/08/2022]
Abstract
The nature of the first genetic polymer is the subject of major debate1. Although the 'RNA world' theory suggests that RNA was the first replicable information carrier of the prebiotic era-that is, prior to the dawn of life2,3-other evidence implies that life may have started with a heterogeneous nucleic acid genetic system that included both RNA and DNA4. Such a theory streamlines the eventual 'genetic takeover' of homogeneous DNA from RNA as the principal information-storage molecule, but requires a selective abiotic synthesis of both RNA and DNA building blocks in the same local primordial geochemical scenario. Here we demonstrate a high-yielding, completely stereo-, regio- and furanosyl-selective prebiotic synthesis of the purine deoxyribonucleosides: deoxyadenosine and deoxyinosine. Our synthesis uses key intermediates in the prebiotic synthesis of the canonical pyrimidine ribonucleosides (cytidine and uridine), and we show that, once generated, the pyrimidines persist throughout the synthesis of the purine deoxyribonucleosides, leading to a mixture of deoxyadenosine, deoxyinosine, cytidine and uridine. These results support the notion that purine deoxyribonucleosides and pyrimidine ribonucleosides may have coexisted before the emergence of life5.
Collapse
|
21
|
Liberles DA, Chang B, Geiler-Samerotte K, Goldman A, Hey J, Kaçar B, Meyer M, Murphy W, Posada D, Storfer A. Emerging Frontiers in the Study of Molecular Evolution. J Mol Evol 2020; 88:211-226. [PMID: 32060574 PMCID: PMC7386396 DOI: 10.1007/s00239-020-09932-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A collection of the editors of Journal of Molecular Evolution have gotten together to pose a set of key challenges and future directions for the field of molecular evolution. Topics include challenges and new directions in prebiotic chemistry and the RNA world, reconstruction of early cellular genomes and proteins, macromolecular and functional evolution, evolutionary cell biology, genome evolution, molecular evolutionary ecology, viral phylodynamics, theoretical population genomics, somatic cell molecular evolution, and directed evolution. While our effort is not meant to be exhaustive, it reflects research questions and problems in the field of molecular evolution that are exciting to our editors.
Collapse
Affiliation(s)
- David A Liberles
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, 19122, USA.
| | - Belinda Chang
- Department of Ecology and Evolutionary Biology and Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Kerry Geiler-Samerotte
- Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Aaron Goldman
- Department of Biology, Oberlin College and Conservatory, K123 Science Center, 119 Woodland Street, Oberlin, OH, 44074, USA
| | - Jody Hey
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, 19122, USA
| | - Betül Kaçar
- Department of Molecular and Cell Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Michelle Meyer
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - William Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - David Posada
- Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
22
|
Janzen E, Blanco C, Peng H, Kenchel J, Chen IA. Promiscuous Ribozymes and Their Proposed Role in Prebiotic Evolution. Chem Rev 2020; 120:4879-4897. [PMID: 32011135 PMCID: PMC7291351 DOI: 10.1021/acs.chemrev.9b00620] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
The ability of enzymes,
including ribozymes, to catalyze side reactions
is believed to be essential to the evolution of novel biochemical
activities. It has been speculated that the earliest ribozymes, whose
emergence marked the origin of life, were low in activity but high
in promiscuity, and that these early ribozymes gave rise to specialized
descendants with higher activity and specificity. Here, we review
the concepts related to promiscuity and examine several cases of highly
promiscuous ribozymes. We consider the evidence bearing on the question
of whether de novo ribozymes would be quantitatively
more promiscuous than later evolved ribozymes or protein enzymes.
We suggest that while de novo ribozymes appear to
be promiscuous in general, they are not obviously more promiscuous
than more highly evolved or active sequences. Promiscuity is a trait
whose value would depend on selective pressures, even during prebiotic
evolution.
Collapse
Affiliation(s)
- Evan Janzen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93109, United States.,Biomolecular Sciences and Engineering Program, University of California, Santa Barbara, Santa Barbara, California 93109, United States
| | - Celia Blanco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93109, United States
| | - Huan Peng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93109, United States
| | - Josh Kenchel
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93109, United States.,Biomolecular Sciences and Engineering Program, University of California, Santa Barbara, Santa Barbara, California 93109, United States
| | - Irene A Chen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93109, United States.,Biomolecular Sciences and Engineering Program, University of California, Santa Barbara, Santa Barbara, California 93109, United States.,Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
23
|
The difficult case of an RNA-only origin of life. Emerg Top Life Sci 2019; 3:469-475. [PMID: 33523163 PMCID: PMC7289000 DOI: 10.1042/etls20190024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 11/17/2022]
Abstract
The RNA world hypothesis is probably the most extensively studied model for the emergence of life on Earth. Despite a large body of evidence supporting the idea that RNA is capable of kick-starting autocatalytic self-replication and thus initiating the emergence of life, seemingly insurmountable weaknesses in the theory have also been highlighted. These problems could be overcome by novel experimental approaches, including out-of-equilibrium environments, and the exploration of an early co-evolution of RNA and other key biomolecules such as peptides and DNA, which might be necessary to mitigate the shortcomings of RNA-only systems.
Collapse
|
24
|
Mustafin RN, Khusnutdinova EK. The Role of Reverse Transcriptase in the Origin of Life. BIOCHEMISTRY (MOSCOW) 2019; 84:870-883. [DOI: 10.1134/s0006297919080030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Abstract
The search for extraterrestrial life, recently fueled by the discovery of exoplanets, requires defined biosignatures. Current biomarkers include those of extremophilic organisms, typically archaea. Yet these cellular organisms are highly complex, which makes it unlikely that similar life forms evolved on other planets. Earlier forms of life on Earth may serve as better models for extraterrestrial life. On modern Earth, the simplest and most abundant biological entities are viroids and viruses that exert many properties of life, such as the abilities to replicate and undergo Darwinian evolution. Viroids have virus-like features, and are related to ribozymes, consisting solely of non-coding RNA, and may serve as more universal models for early life than do cellular life forms. Among the various proposed concepts, such as “proteins-first” or “metabolism-first”, we think that “viruses-first” can be specified to “viroids-first” as the most likely scenario for the emergence of life on Earth, and possibly elsewhere. With this article we intend to inspire the integration of virus research and the biosignatures of viroids and viruses into the search for extraterrestrial life.
Collapse
|
26
|
Horning DP, Bala S, Chaput JC, Joyce GF. RNA-Catalyzed Polymerization of Deoxyribose, Threose, and Arabinose Nucleic Acids. ACS Synth Biol 2019; 8:955-961. [PMID: 31042360 DOI: 10.1021/acssynbio.9b00044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An RNA-dependent RNA polymerase ribozyme that was highly optimized through in vitro evolution for the ability to copy a broad range of template sequences exhibits promiscuity toward other nucleic acids and nucleic acid analogues, including DNA, threose nucleic acid (TNA), and arabinose nucleic acid (ANA). By operating on various RNA templates, the ribozyme catalyzes multiple successive additions of DNA, TNA, or ANA monomers, although with reduced efficiency compared to RNA monomers. The ribozyme can also copy DNA or TNA templates to complementary RNAs, and to a lesser extent it can operate when both the template and product strands are composed of DNA, TNA, or ANA. These results suggest that polymerase ribozymes, which are thought to have replicated RNA genomes during the early history of life, could have transferred RNA-based genetic information to and from DNA, enabling the emergence of DNA genomes prior to the emergence of proteins. In addition, genetic systems based on nucleic acid-like molecules, which have been proposed as precursors or contemporaries of RNA-based life, could have been operated upon by a promiscuous polymerase ribozyme, thus enabling the evolutionary transition between early genetic systems.
Collapse
Affiliation(s)
- David P. Horning
- The Salk Institute, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Saikat Bala
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - John C. Chaput
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Gerald F. Joyce
- The Salk Institute, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
27
|
A tRNA- and Anticodon-Centric View of the Evolution of Aminoacyl-tRNA Synthetases, tRNAomes, and the Genetic Code. Life (Basel) 2019; 9:life9020037. [PMID: 31060233 PMCID: PMC6616430 DOI: 10.3390/life9020037] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/24/2019] [Accepted: 05/01/2019] [Indexed: 11/25/2022] Open
Abstract
Pathways of standard genetic code evolution remain conserved and apparent, particularly upon analysis of aminoacyl-tRNA synthetase (aaRS) lineages. Despite having incompatible active site folds, class I and class II aaRS are homologs by sequence. Specifically, structural class IA aaRS enzymes derive from class IIA aaRS enzymes by in-frame extension of the protein N-terminus and by an alternate fold nucleated by the N-terminal extension. The divergence of aaRS enzymes in the class I and class II clades was analyzed using the Phyre2 protein fold recognition server. The class I aaRS radiated from the class IA enzymes, and the class II aaRS radiated from the class IIA enzymes. The radiations of aaRS enzymes bolster the coevolution theory for evolution of the amino acids, tRNAomes, the genetic code, and aaRS enzymes and support a tRNA anticodon-centric perspective. We posit that second- and third-position tRNA anticodon sequence preference (C>(U~G)>A) powerfully selected the sectoring pathway for the code. GlyRS-IIA appears to have been the primordial aaRS from which all aaRS enzymes evolved, and glycine appears to have been the primordial amino acid around which the genetic code evolved.
Collapse
|
28
|
Su Y, Ghodke PP, Egli M, Li L, Wang Y, Guengerich FP. Human DNA polymerase η has reverse transcriptase activity in cellular environments. J Biol Chem 2019; 294:6073-6081. [PMID: 30842261 DOI: 10.1074/jbc.ra119.007925] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/04/2019] [Indexed: 12/24/2022] Open
Abstract
Classical DNA and RNA polymerase (pol) enzymes have defined roles with their respective substrates, but several pols have been found to have multiple functions. We reported previously that purified human DNA pol η (hpol η) can incorporate both deoxyribonucleoside triphosphates (dNTPs) and ribonucleoside triphosphates (rNTPs) and can use both DNA and RNA as substrates. X-ray crystal structures revealed that two pol η residues, Phe-18 and Tyr-92, behave as steric gates to influence sugar selectivity. However, the physiological relevance of these phenomena has not been established. Here, we show that purified hpol η adds rNTPs to DNA primers at physiological rNTP concentrations and in the presence of competing dNTPs. When two rATPs were inserted opposite a cyclobutane pyrimidine dimer, the substrate was less efficiently cleaved by human RNase H2. Human XP-V fibroblast extracts, devoid of hpol η, could not add rNTPs to a DNA primer, but the expression of transfected hpol η in the cells restored this ability. XP-V cell extracts did not add dNTPs to DNA primers hybridized to RNA, but could when hpol η was expressed in the cells. HEK293T cell extracts could add dNTPs to DNA primers hybridized to RNA, but lost this ability if hpol η was deleted. Interestingly, a similar phenomenon was not observed when other translesion synthesis (TLS) DNA polymerases-hpol ι, κ, or ζ-were individually deleted. These results suggest that hpol η is one of the major reverse transcriptases involved in physiological processes in human cells.
Collapse
Affiliation(s)
- Yan Su
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Pratibha P Ghodke
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Martin Egli
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Lin Li
- Department of Chemistry, University of California, Riverside, Riverside, California 92521
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, Riverside, California 92521
| | - F Peter Guengerich
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146.
| |
Collapse
|
29
|
Samanta B, Horning DP, Joyce GF. 3'-End labeling of nucleic acids by a polymerase ribozyme. Nucleic Acids Res 2018; 46:e103. [PMID: 29901762 PMCID: PMC6158495 DOI: 10.1093/nar/gky513] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/20/2018] [Accepted: 05/23/2018] [Indexed: 01/02/2023] Open
Abstract
A polymerase ribozyme can be used to label the 3' end of RNA or DNA molecules by incorporating a variety of functionalized nucleotide analogs. Guided by a complementary template, the ribozyme adds a single nucleotide that may contain a fluorophore, biotin, azide or alkyne moiety, thus enabling the detection and/or capture of selectively labeled materials. Employing a variety of commercially available nucleotide analogs, efficient labeling was demonstrated for model RNAs and DNAs, human microRNAs and natural tRNA.
Collapse
Affiliation(s)
- Biswajit Samanta
- The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - David P Horning
- The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Gerald F Joyce
- The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
30
|
Abstract
The general notion of an "RNA world" is that, in the early development of life on the Earth, genetic continuity was assured by the replication of RNA, and RNA molecules were the chief agents of catalytic function. Assuming that all of the components of RNA were available in some prebiotic locale, these components could have assembled into activated nucleotides that condensed to form RNA polymers, setting the stage for the chemical replication of polynucleotides through RNA-templated RNA polymerization. If a sufficient diversity of RNAs could be copied with reasonable rate and fidelity, then Darwinian evolution would begin with RNAs that facilitated their own reproduction enjoying a selective advantage. The concept of a "protocell" refers to a compartment where replication of the primitive genetic material took place and where primitive catalysts gave rise to products that accumulated locally for the benefit of the replicating cellular entity. Replication of both the protocell and its encapsulated genetic material would have enabled natural selection to operate based on the differential fitness of competing cellular entities, ultimately giving rise to modern cellular life.
Collapse
Affiliation(s)
- Gerald F Joyce
- The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Jack W Szostak
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
| |
Collapse
|
31
|
Abstract
Biological systems reach hierarchical complexity that has no counterpart outside the realm of biology. Undoubtedly, biological entities obey the fundamental physical laws. Can today's physics provide an explanatory framework for understanding the evolution of biological complexity? We argue that the physical foundation for understanding the origin and evolution of complexity can be gleaned at the interface between the theory of frustrated states resulting in pattern formation in glass-like media and the theory of self-organized criticality (SOC). On the one hand, SOC has been shown to emerge in spin-glass systems of high dimensionality. On the other hand, SOC is often viewed as the most appropriate physical description of evolutionary transitions in biology. We unify these two faces of SOC by showing that emergence of complex features in biological evolution typically, if not always, is triggered by frustration that is caused by competing interactions at different organizational levels. Such competing interactions lead to SOC, which represents the optimal conditions for the emergence of complexity. Competing interactions and frustrated states permeate biology at all organizational levels and are tightly linked to the ubiquitous competition for limiting resources. This perspective extends from the comparatively simple phenomena occurring in glasses to large-scale events of biological evolution, such as major evolutionary transitions. Frustration caused by competing interactions in multidimensional systems could be the general driving force behind the emergence of complexity, within and beyond the domain of biology.
Collapse
|
32
|
|
33
|
Cojocaru R, Unrau PJ. Transitioning to DNA genomes in an RNA world. eLife 2017; 6. [PMID: 29091027 PMCID: PMC5665642 DOI: 10.7554/elife.32330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 11/25/2022] Open
Abstract
The unexpected ability of an RNA polymerase ribozyme to copy RNA into DNA has ramifications for understanding how DNA genomes evolved.
Collapse
Affiliation(s)
- Razvan Cojocaru
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Peter J Unrau
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| |
Collapse
|