1
|
Orenbuch R, Shearer CA, Kollasch AW, Spinner HD, Hopf TA, van Niekerk L, Franceschi D, Dias M, Frazer J, Marks DS. Proteome-wide model for human disease genetics. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2023.11.27.23299062. [PMID: 38076790 PMCID: PMC10705666 DOI: 10.1101/2023.11.27.23299062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Identifying variants driving disease accelerates both genetic diagnosis and therapeutic development, but missense variants still present a bottleneck as their effects are less straightforward than truncations or nonsense mutations. While computational prediction methods are sufficiently accurate to be of clinical value for variants in known disease genes, they do not generalize well to other genes as the scores are not calibrated across the proteome 1-6 . To address this, we developed a deep generative model, popEVE, that combines evolutionary information with population sequence data 7 and achieves state-of-the-art performance on a suite of proteome-wide prediction tasks, without overestimating the prevalence of deleterious variants in the population. popEVE identifies 442 genes in a developmental disorder cohort 8 , including evidence of 123 novel candidates, many without the need for cohort-wide enrichment. Candidate genes are functionally similar to known developmental disorder genes and case variants tend to fall in functionally important regions of these genes. Finally, we show that these findings can be reproduced from analysis of the patient exomes alone, demonstrating that popEVE provides a new avenue for genetic analysis in situations where traditional methods fail, including genetic diagnosis of rare-as-one diseases, even in the absence of parent sequencing.
Collapse
|
2
|
Lee YT. Nexus between RNA conformational dynamics and functional versatility. Curr Opin Struct Biol 2024; 89:102942. [PMID: 39413483 PMCID: PMC11602372 DOI: 10.1016/j.sbi.2024.102942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 10/18/2024]
Abstract
RNA conformational dynamics is pivotal for functional regulations in biology. RNA can function as versatile as protein but adopts multiple distinct structures. In this review, we provide a focused review of the recent advances in studies of RNA conformational dynamics and address some of the misconceptions about RNA structure and its conformational dynamics. We discuss why the traditional methods for structure determination come up short in describing RNA conformational space. The examples discussed provide illustrations of the structure-based mechanisms of RNAs with diverse roles, including viral, long noncoding, and catalytic RNAs, one of which focuses on the debated area of conformational heterogeneity of an RNA structural element in the HIV-1 genome.
Collapse
Affiliation(s)
- Yun-Tzai Lee
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
3
|
Francis JW, Hausmann S, Ikram S, Yin K, Mealey-Farr R, Flores NM, Trinh AT, Chasan T, Thompson J, Mazur PK, Gozani O. FAM86A methylation of eEF2 links mRNA translation elongation to tumorigenesis. Mol Cell 2024; 84:1753-1763.e7. [PMID: 38508183 PMCID: PMC11069438 DOI: 10.1016/j.molcel.2024.02.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/16/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024]
Abstract
eEF2 post-translational modifications (PTMs) can profoundly affect mRNA translation dynamics. However, the physiologic function of eEF2K525 trimethylation (eEF2K525me3), a PTM catalyzed by the enzyme FAM86A, is unknown. Here, we find that FAM86A methylation of eEF2 regulates nascent elongation to promote protein synthesis and lung adenocarcinoma (LUAD) pathogenesis. The principal physiologic substrate of FAM86A is eEF2, with K525me3 modeled to facilitate productive eEF2-ribosome engagement during translocation. FAM86A depletion in LUAD cells causes 80S monosome accumulation and mRNA translation inhibition. FAM86A is overexpressed in LUAD and eEF2K525me3 levels increase through advancing LUAD disease stages. FAM86A knockdown attenuates LUAD cell proliferation and suppression of the FAM86A-eEF2K525me3 axis inhibits cancer cell and patient-derived LUAD xenograft growth in vivo. Finally, FAM86A ablation strongly attenuates tumor growth and extends survival in KRASG12C-driven LUAD mouse models. Thus, our work uncovers an eEF2 methylation-mediated mRNA translation elongation regulatory node and nominates FAM86A as an etiologic agent in LUAD.
Collapse
Affiliation(s)
| | - Simone Hausmann
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sabeen Ikram
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Kunlun Yin
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Natasha Mahealani Flores
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Annie Truc Trinh
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Tourkian Chasan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Julia Thompson
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pawel Karol Mazur
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
Chen Y, Chapagain S, Chien J, Pereira HS, Patel TR, Inoue-Nagata AK, Jan E. Factor-Dependent Internal Ribosome Entry Site and -1 Programmed Frameshifting Signal in the Bemisia-Associated Dicistrovirus 2. Viruses 2024; 16:695. [PMID: 38793577 PMCID: PMC11125867 DOI: 10.3390/v16050695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
The dicistrovirus intergenic (IGR) IRES uses the most streamlined translation initiation mechanism: the IRES recruits ribosomes directly without using protein factors and initiates translation from a non-AUG codon. Several subtypes of dicistroviruses IRES have been identified; typically, the IRESs adopt two -to three overlapping pseudoknots with key stem-loop and unpaired regions that interact with specific domains of the ribosomal 40S and 60S subunits to direct translation. We previously predicted an atypical IGR IRES structure and a potential -1 programmed frameshift (-1 FS) signal within the genome of the whitefly Bemisia-associated dicistrovirus 2 (BaDV-2). Here, using bicistronic reporters, we demonstrate that the predicted BaDV-2 -1 FS signal can drive -1 frameshifting in vitro via a slippery sequence and a downstream stem-loop structure that would direct the translation of the viral RNA-dependent RNA polymerase. Moreover, the predicted BaDV-2 IGR can support IRES translation in vitro but does so through a mechanism that is not typical of known factorless dicistrovirus IGR IRES mechanisms. Using deletion and mutational analyses, the BaDV-2 IGR IRES is mapped within a 140-nucleotide element and initiates translation from an AUG codon. Moreover, the IRES does not bind directly to purified ribosomes and is sensitive to eIF2 and eIF4A inhibitors NSC1198983 and hippuristanol, respectively, indicating an IRES-mediated factor-dependent mechanism. Biophysical characterization suggests the BaDV-2 IGR IRES contains several stem-loops; however, mutational analysis suggests a model whereby the IRES is unstructured or adopts distinct conformations for translation initiation. In summary, we have provided evidence of the first -1 FS frameshifting signal and a novel factor-dependent IRES mechanism in this dicistrovirus family, thus highlighting the diversity of viral RNA-structure strategies to direct viral protein synthesis.
Collapse
Affiliation(s)
- Yihang Chen
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (Y.C.); (S.C.); (J.C.)
| | - Subash Chapagain
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (Y.C.); (S.C.); (J.C.)
| | - Jodi Chien
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (Y.C.); (S.C.); (J.C.)
| | - Higor Sette Pereira
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (H.S.P.); (T.R.P.)
| | - Trushar R. Patel
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (H.S.P.); (T.R.P.)
| | | | - Eric Jan
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (Y.C.); (S.C.); (J.C.)
| |
Collapse
|
5
|
Orenbuch R, Kollasch AW, Spinner HD, Shearer CA, Hopf TA, Franceschi D, Dias M, Frazer J, Marks DS. Deep generative modeling of the human proteome reveals over a hundred novel genes involved in rare genetic disorders. RESEARCH SQUARE 2024:rs.3.rs-3740259. [PMID: 38260496 PMCID: PMC10802723 DOI: 10.21203/rs.3.rs-3740259/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Identifying causal mutations accelerates genetic disease diagnosis, and therapeutic development. Missense variants present a bottleneck in genetic diagnoses as their effects are less straightforward than truncations or nonsense mutations. While computational prediction methods are increasingly successful at prediction for variants in known disease genes, they do not generalize well to other genes as the scores are not calibrated across the proteome1-6. To address this, we developed a deep generative model, popEVE, that combines evolutionary information with population sequence data7 and achieves state-of-the-art performance at ranking variants by severity to distinguish patients with severe developmental disorders8 from potentially healthy individuals9. popEVE identifies 442 genes in patients this developmental disorder cohort, including evidence of 123 novel genetic disorders, many without the need for gene-level enrichment and without overestimating the prevalence of pathogenic variants in the population. A majority of these variants are close to interacting partners in 3D complexes. Preliminary analyses on child exomes indicate that popEVE can identify candidate variants without the need for inheritance labels. By placing variants on a unified scale, our model offers a comprehensive perspective on the distribution of fitness effects across the entire proteome and the broader human population. popEVE provides compelling evidence for genetic diagnoses even in exceptionally rare single-patient disorders where conventional techniques relying on repeated observations may not be applicable.
Collapse
Affiliation(s)
- Rose Orenbuch
- Marks Group, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Aaron W. Kollasch
- Marks Group, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Hansen D. Spinner
- Marks Group, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Courtney A. Shearer
- Marks Group, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | | | - Dinko Franceschi
- Marks Group, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Mafalda Dias
- Dias & Frazer Group, Centre for Genomic Regulation (CRG),The Barcelona Institute of Science and Technology, Barcelona, Spain
- University Pompeu Fabra, Barcelona, Spain
| | - Jonathan Frazer
- Dias & Frazer Group, Centre for Genomic Regulation (CRG),The Barcelona Institute of Science and Technology, Barcelona, Spain
- University Pompeu Fabra, Barcelona, Spain
| | - Debora S. Marks
- Marks Group, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
6
|
Miścicka A, Lu K, Abaeva IS, Pestova TV, Hellen CUT. Initiation of translation on nedicistrovirus and related intergenic region IRESs by their factor-independent binding to the P site of 80S ribosomes. RNA (NEW YORK, N.Y.) 2023; 29:1051-1068. [PMID: 37041031 PMCID: PMC10275262 DOI: 10.1261/rna.079599.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/27/2023] [Indexed: 06/18/2023]
Abstract
Initiation of translation on many viral mRNAs occurs by noncanonical mechanisms that involve 5' end-independent binding of ribosomes to an internal ribosome entry site (IRES). The ∼190-nt-long intergenic region (IGR) IRES of dicistroviruses such as cricket paralysis virus (CrPV) initiates translation without Met-tRNAi Met or initiation factors. Advances in metagenomics have revealed numerous dicistrovirus-like genomes with shorter, structurally distinct IGRs, such as nedicistrovirus (NediV) and Antarctic picorna-like virus 1 (APLV1). Like canonical IGR IRESs, the ∼165-nt-long NediV-like IGRs comprise three domains, but they lack key canonical motifs, including L1.1a/L1.1b loops (which bind to the L1 stalk of the ribosomal 60S subunit) and the apex of stem-loop V (SLV) (which binds to the head of the 40S subunit). Domain 2 consists of a compact, highly conserved pseudoknot (PKIII) that contains a UACUA loop motif and a protruding CrPV-like stem--loop SLIV. In vitro reconstitution experiments showed that NediV-like IRESs initiate translation from a non-AUG codon and form elongation-competent 80S ribosomal complexes in the absence of initiation factors and Met-tRNAi Met Unlike canonical IGR IRESs, NediV-like IRESs bind directly to the peptidyl (P) site of ribosomes leaving the aminoacyl (A) site accessible for decoding. The related structures of NediV-like IRESs and their common mechanism of action indicate that they exemplify a distinct class of IGR IRES.
Collapse
Affiliation(s)
- Anna Miścicka
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, USA
| | - Kristen Lu
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, USA
| | - Irina S Abaeva
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, USA
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, USA
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, USA
| |
Collapse
|
7
|
Sabei A, Caldas Baia TG, Saffar R, Martin J, Frezza E. Internal Normal Mode Analysis Applied to RNA Flexibility and Conformational Changes. J Chem Inf Model 2023; 63:2554-2572. [PMID: 36972178 DOI: 10.1021/acs.jcim.2c01509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
We investigated the capability of internal normal modes to reproduce RNA flexibility and predict observed RNA conformational changes and, notably, those induced by the formation of RNA-protein and RNA-ligand complexes. Here, we extended our iNMA approach developed for proteins to study RNA molecules using a simplified representation of the RNA structure and its potential energy. Three data sets were also created to investigate different aspects. Despite all the approximations, our study shows that iNMA is a suitable method to take into account RNA flexibility and describe its conformational changes opening the route to its applicability in any integrative approach where these properties are crucial.
Collapse
|
8
|
Multiple Viral Protein Genome-Linked Proteins Compensate for Viral Translation in a Positive-Sense Single-Stranded RNA Virus Infection. J Virol 2022; 96:e0069922. [PMID: 35993738 PMCID: PMC9472611 DOI: 10.1128/jvi.00699-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Viral protein genome-linked (VPg) protein plays an essential role in protein-primed replication of plus-stranded RNA viruses. VPg is covalently linked to the 5' end of the viral RNA genome via a phosphodiester bond typically at a conserved amino acid. Whereas most viruses have a single VPg, some viruses have multiple VPgs that are proposed to have redundant yet undefined roles in viral replication. Here, we use cricket paralysis virus (CrPV), a dicistrovirus that has four nonidentical copies of VPg, as a model to characterize the role of VPg copies in infection. Dicistroviruses contain two main open reading frames (ORFs) that are driven by distinct internal ribosome entry sites (IRESs). We systematically generated single and combinatorial deletions and mutations of VPg1 to VPg4 within the CrPV infectious clone and monitored viral yield in Drosophila S2 cells. Deletion of one to three VPg copies progressively decreased viral yield and delayed viral replication, suggesting a threshold number of VPgs for productive infection. Mass spectrometry analysis of CrPV VPg-linked RNAs revealed viral RNA linkage to either a serine or threonine in VPg, mutations of which in all VPgs attenuated infection. Mutating serine 4 in a single VPg abolished viral infection, indicating a dominant negative effect. Using viral minigenome reporters that monitor dicistrovirus 5' untranslated (UTR) and IRES translation revealed a relationship between VPg copy number and the ratio of distinct IRES translation activities. We uncovered a novel viral strategy whereby VPg copies in dicistrovirus genomes compensate for the relative IRES translation efficiencies to promote infection. IMPORTANCE Genetic duplication is exceedingly rare in small RNA viral genomes, as there is selective pressure to prevent RNA genomes from expanding. However, some small RNA viruses encode multiple copies of a viral protein, most notably an unusual viral protein that is linked to the viral RNA genome. Here, we investigate a family of viruses that contains multiple viral protein genome-linked proteins and reveal a novel viral strategy whereby viral protein copy number counterbalances differences in viral protein synthesis mechanisms.
Collapse
|
9
|
Brown ZP, Abaeva IS, De S, Hellen CUT, Pestova TV, Frank J. Molecular architecture of 40S translation initiation complexes on the hepatitis C virus IRES. EMBO J 2022; 41:e110581. [PMID: 35822879 DOI: 10.15252/embj.2022110581] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 02/05/2023] Open
Abstract
Hepatitis C virus mRNA contains an internal ribosome entry site (IRES) that mediates end-independent translation initiation, requiring a subset of eukaryotic initiation factors (eIFs). Biochemical studies revealed that direct binding of the IRES to the 40S ribosomal subunit places the initiation codon into the P site, where it base pairs with eIF2-bound Met-tRNAiMet forming a 48S initiation complex. Subsequently, eIF5 and eIF5B mediate subunit joining, yielding an elongation-competent 80S ribosome. Initiation can also proceed without eIF2, in which case Met-tRNAiMet is recruited directly by eIF5B. However, the structures of initiation complexes assembled on the HCV IRES, the transitions between different states, and the accompanying conformational changes have remained unknown. To fill these gaps, we now obtained cryo-EM structures of IRES initiation complexes, at resolutions up to 3.5 Å, that cover all major stages from the initial ribosomal association, through eIF2-containing 48S initiation complexes, to eIF5B-containing complexes immediately prior to subunit joining. These structures provide insights into the dynamic network of 40S/IRES contacts, highlight the role of IRES domain II, and reveal conformational changes that occur during the transition from eIF2- to eIF5B-containing 48S complexes and prepare them for subunit joining.
Collapse
Affiliation(s)
- Zuben P Brown
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Irina S Abaeva
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Swastik De
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.,Department of Biological Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
10
|
The hinge region of the Israeli acute paralysis virus internal ribosome entry site directs ribosomal positioning, translational activity and virus infection. J Virol 2022; 96:e0133021. [PMID: 35019716 DOI: 10.1128/jvi.01330-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All viruses must usurp host ribosomes for viral protein synthesis. Dicistroviruses utilize an InterGenic Region Internal Ribosome Entry Site (IGR IRES) to directly recruit ribosomes and mediate translation initiation from a non-AUG start codon. The IGR IRES adopts a three-pseudoknot structure that is comprised of a ribosome binding domain of pseudoknot II and III (PKII and PKIII), and a tRNA-like anticodon domain (PKI) connected via a short, one to three nucleotide hinge region. Recent cryo-EM structural analysis of the dicistrovirus Taura syndrome virus (TSV) IGR IRES bound to the ribosome suggests that the hinge region may facilitate translocation of the IRES from the ribosomal A to P site. In this study, we provide mechanistic and functional insights into the role of the hinge region in IGR IRES translation. Using the honeybee dicistrovirus, Israeli acute paralysis virus (IAPV), as a model, we demonstrate that mutations of the hinge region resulted in decreased IRES-dependent translation in vitro. Toeprinting primer extension analysis of mutant IRESs bound to purified ribosomes and in rabbit reticulocyte lysates showed defects in the initial ribosome positioning on the IRES. Finally, using a hybrid dicistrovirus clone, mutations in the hinge region of the IAPV IRES resulted in decreased viral yield. Our work reveals an unexpected role of the hinge region of the dicistrovirus IGR IRES coordinating the two independently folded domains of the IRES to properly position the ribosome to start translation. IMPORTANCE Viruses must use the host cell machinery to direct viral protein expression for productive infection. One such mechanism is an internal ribosome entry site which can directly recruit host cell machinery. In this study, we have identified a novel sequence in an IRES that provides insight into the mechanism of viral gene expression. Specifically, this novel sequence promotes viral IRES activity by directly guiding the host cell machinery to start gene expression at a specific site.
Collapse
|
11
|
Siblings or doppelgängers? Deciphering the evolution of structured cis-regulatory RNAs beyond homology. Biochem Soc Trans 2021; 48:1941-1951. [PMID: 32869842 PMCID: PMC7609027 DOI: 10.1042/bst20191060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 11/21/2022]
Abstract
Structured cis-regulatory RNAs have evolved across all domains of life, highlighting the utility and plasticity of RNA as a regulatory molecule. Homologous RNA sequences and structures often have similar functions, but homology may also be deceiving. The challenges that derive from trying to assign function to structure and vice versa are not trivial. Bacterial riboswitches, viral and eukaryotic IRESes, CITEs, and 3′ UTR elements employ an array of mechanisms to exert their effects. Bioinformatic searches coupled with biochemical and functional validation have elucidated some shared and many unique ways cis-regulators are employed in mRNA transcripts. As cis-regulatory RNAs are resolved in greater detail, it is increasingly apparent that shared homology can mask the full spectrum of mRNA cis-regulator functional diversity. Furthermore, similar functions may be obscured by lack of obvious sequence similarity. Thus looking beyond homology is crucial for furthering our understanding of RNA-based regulation.
Collapse
|
12
|
Langeberg CJ, Sherlock ME, MacFadden A, Kieft JS. An expanded class of histidine-accepting viral tRNA-like structures. RNA (NEW YORK, N.Y.) 2021; 27:653-664. [PMID: 33811147 PMCID: PMC8127992 DOI: 10.1261/rna.078550.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/30/2021] [Indexed: 05/12/2023]
Abstract
Structured RNA elements are common in the genomes of RNA viruses, often playing critical roles during viral infection. Some viral RNA elements use forms of tRNA mimicry, but the diverse ways this mimicry can be achieved are poorly understood. Histidine-accepting tRNA-like structures (TLSHis) are examples found at the 3' termini of some positive-sense single-stranded RNA (+ssRNA) viruses where they interact with several host proteins, induce histidylation of the RNA genome, and facilitate processes important for infection, to include genome replication. As only five TLSHis examples had been reported, we explored the possible larger phylogenetic distribution and diversity of this TLS class using bioinformatic approaches. We identified many new examples of TLSHis, yielding a rigorous consensus sequence and secondary structure model that we validated by chemical probing of representative TLSHis RNAs. We confirmed new examples as authentic TLSHis by demonstrating their ability to be histidylated in vitro, then used mutational analyses to imply a tertiary interaction that is likely analogous to the D- and T-loop interaction found in canonical tRNAs. These results expand our understanding of how diverse RNA sequences achieve tRNA-like structure and function in the context of viral RNA genomes and lay the groundwork for high-resolution structural studies of tRNA mimicry by histidine-accepting TLSs.
Collapse
Affiliation(s)
- Conner J Langeberg
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | - Madeline E Sherlock
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | - Andrea MacFadden
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
- RNA BioScience Initiative, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
13
|
Wang X, Vlok M, Flibotte S, Jan E. Resurrection of a Viral Internal Ribosome Entry Site from a 700 Year Old Ancient Northwest Territories Cripavirus. Viruses 2021; 13:v13030493. [PMID: 33802878 PMCID: PMC8002689 DOI: 10.3390/v13030493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 11/16/2022] Open
Abstract
The dicistrovirus intergenic region internal ribosome entry site (IGR IRES) uses an unprecedented, streamlined mechanism whereby the IRES adopts a triple-pseudoknot (PK) structure to directly bind to the conserved core of the ribosome and drive translation from a non-AUG codon. The origin of this IRES mechanism is not known. Previously, a partial fragment of a divergent dicistrovirus RNA genome, named ancient Northwest territories cripavirus (aNCV), was extracted from 700-year-old caribou feces trapped in a subarctic ice patch. The aNCV IGR sequence adopts a secondary structure similar to contemporary IGR IRES structures, however, there are subtle differences including 105 nucleotides upstream of the IRES of unknown function. Using filter binding assays, we showed that the aNCV IRES could bind to purified ribosomes, and toeprinting analysis pinpointed the start site at a GCU alanine codon adjacent to PKI. Using a bicistronic reporter RNA, the aNCV IGR can direct translation in vitro in a PKI-dependent manner. Lastly, a chimeric infectious clone swapping in the aNCV IRES supported translation and virus infection. The characterization and resurrection of a functional IGR IRES from a divergent 700-year-old virus provides a historical framework for the importance of this viral translational mechanism.
Collapse
Affiliation(s)
- Xinying Wang
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (X.W.); (M.V.)
| | - Marli Vlok
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (X.W.); (M.V.)
| | - Stephane Flibotte
- UBC/LSI Bioinformatics Facility, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (X.W.); (M.V.)
- Correspondence: ; Tel.: +1-604-827-4226
| |
Collapse
|
14
|
Sherlock ME, Hartwick EW, MacFadden A, Kieft JS. Structural diversity and phylogenetic distribution of valyl tRNA-like structures in viruses. RNA (NEW YORK, N.Y.) 2021; 27:27-39. [PMID: 33008837 PMCID: PMC7749636 DOI: 10.1261/rna.076968.120] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/26/2020] [Indexed: 05/26/2023]
Abstract
Viruses commonly use specifically folded RNA elements that interact with both host and viral proteins to perform functions important for diverse viral processes. Examples are found at the 3' termini of certain positive-sense ssRNA virus genomes where they partially mimic tRNAs, including being aminoacylated by host cell enzymes. Valine-accepting tRNA-like structures (TLSVal) are an example that share some clear homology with canonical tRNAs but have several important structural differences. Although many examples of TLSVal have been identified, we lacked a full understanding of their structural diversity and phylogenetic distribution. To address this, we undertook an in-depth bioinformatic and biochemical investigation of these RNAs, guided by recent high-resolution structures of a TLSVal We cataloged many new examples in plant-infecting viruses but also in unrelated insect-specific viruses. Using biochemical and structural approaches, we verified the secondary structure of representative TLSVal substrates and tested their ability to be valylated, confirming previous observations of structural heterogeneity within this class. In a few cases, large stem-loop structures are inserted within variable regions located in an area of the TLS distal to known host cell factor binding sites. In addition, we identified one virus whose TLS has switched its anticodon away from valine, causing a loss of valylation activity; the implications of this remain unclear. These results refine our understanding of the structural and functional mechanistic details of tRNA mimicry and how this may be used in viral infection.
Collapse
MESH Headings
- Anticodon/chemistry
- Anticodon/metabolism
- Base Sequence
- Binding Sites
- Computational Biology
- Genetic Variation
- Insect Viruses/classification
- Insect Viruses/genetics
- Insect Viruses/metabolism
- Models, Molecular
- Molecular Mimicry
- Phylogeny
- Plant Viruses/classification
- Plant Viruses/genetics
- Plant Viruses/metabolism
- RNA Folding
- RNA, Transfer, Val/chemistry
- RNA, Transfer, Val/genetics
- RNA, Transfer, Val/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Sequence Homology, Nucleic Acid
- Valine/metabolism
Collapse
Affiliation(s)
- Madeline E Sherlock
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | - Erik W Hartwick
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | - Andrea MacFadden
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
- RNA BioScience Initiative, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
15
|
Abaeva IS, Vicens Q, Bochler A, Soufari H, Simonetti A, Pestova TV, Hashem Y, Hellen CUT. The Halastavi árva Virus Intergenic Region IRES Promotes Translation by the Simplest Possible Initiation Mechanism. Cell Rep 2020; 33:108476. [PMID: 33296660 DOI: 10.1016/j.celrep.2020.108476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/05/2020] [Accepted: 11/12/2020] [Indexed: 01/01/2023] Open
Abstract
Dicistrovirus intergenic region internal ribosomal entry sites (IGR IRESs) do not require initiator tRNA, an AUG codon, or initiation factors and jumpstart translation from the middle of the elongation cycle via formation of IRES/80S complexes resembling the pre-translocation state. eEF2 then translocates the [codon-anticodon]-mimicking pseudoknot I (PKI) from ribosomal A sites to P sites, bringing the first sense codon into the decoding center. Halastavi árva virus (HalV) contains an IGR that is related to previously described IGR IRESs but lacks domain 2, which enables these IRESs to bind to individual 40S ribosomal subunits. By using in vitro reconstitution and cryoelectron microscopy (cryo-EM), we now report that the HalV IGR IRES functions by the simplest initiation mechanism that involves binding to 80S ribosomes such that PKI is placed in the P site, so that the A site contains the first codon that is directly accessible for decoding without prior eEF2-mediated translocation of PKI.
Collapse
Affiliation(s)
- Irina S Abaeva
- Department of Cell Biology, SUNY Downstate Health Sciences University, 450 Clarkson Avenue, MSC 44, Brooklyn, NY 11203, USA
| | - Quentin Vicens
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, 15 rue René Descartes, 67000 Strasbourg, France
| | - Anthony Bochler
- INSERM U1212 Acides Nucléiques: Régulations Naturelle et Artificielle, Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France; Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, 15 rue René Descartes, 67000 Strasbourg, France
| | - Heddy Soufari
- INSERM U1212 Acides Nucléiques: Régulations Naturelle et Artificielle, Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France
| | - Angelita Simonetti
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, 15 rue René Descartes, 67000 Strasbourg, France
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Health Sciences University, 450 Clarkson Avenue, MSC 44, Brooklyn, NY 11203, USA.
| | - Yaser Hashem
- INSERM U1212 Acides Nucléiques: Régulations Naturelle et Artificielle, Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France.
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, 450 Clarkson Avenue, MSC 44, Brooklyn, NY 11203, USA.
| |
Collapse
|
16
|
Walters B, Axhemi A, Jankowsky E, Thompson SR. Binding of a viral IRES to the 40S subunit occurs in two successive steps mediated by eS25. Nucleic Acids Res 2020; 48:8063-8073. [PMID: 32609821 PMCID: PMC7430650 DOI: 10.1093/nar/gkaa547] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 06/08/2020] [Accepted: 06/18/2020] [Indexed: 02/05/2023] Open
Abstract
The mechanism for how internal ribosome entry sites (IRESs) recruit ribosomes to initiate translation of an mRNA is not completely understood. We investigated how a 40S subunit was recruited by the cricket paralysis virus intergenic region (CrPV IGR) IRES to form a stable 40S-IRES complex. Kinetic binding studies revealed that formation of the complex between the CrPV IGR and the 40S subunit consisted of two-steps: an initial fast binding step of the IRES to the 40S ribosomal subunit, followed by a slow unimolecular reaction consistent with a conformational change that stabilized the complex. We further showed that the ribosomal protein S25 (eS25), which is required by functionally and structurally diverse IRESs, impacts both steps of the complex formation. Mutations in eS25 that reduced CrPV IGR IRES activity either decreased 40S-IRES complex formation, or increased the rate of the conformational change that was required to form a stable 40S-IRES complex. Our data are consistent with a model in which eS25 facilitates initial binding of the CrPV IGR IRES to the 40S while ensuring that the conformational change stabilizing the 40S-IRES complex does not occur prematurely.
Collapse
Affiliation(s)
- Beth Walters
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Armend Axhemi
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Eckhard Jankowsky
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sunnie R Thompson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
17
|
Li W, Chang STL, Ward FR, Cate JHD. Selective inhibition of human translation termination by a drug-like compound. Nat Commun 2020; 11:4941. [PMID: 33009412 PMCID: PMC7532171 DOI: 10.1038/s41467-020-18765-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/11/2020] [Indexed: 02/08/2023] Open
Abstract
Methods to directly inhibit gene expression using small molecules hold promise for the development of new therapeutics targeting proteins that have evaded previous attempts at drug discovery. Among these, small molecules including the drug-like compound PF-06446846 (PF846) selectively inhibit the synthesis of specific proteins, by stalling translation elongation. These molecules also inhibit translation termination by an unknown mechanism. Using cryo-electron microscopy (cryo-EM) and biochemical approaches, we show that PF846 inhibits translation termination by arresting the nascent chain (NC) in the ribosome exit tunnel. The arrested NC adopts a compact α-helical conformation that induces 28 S rRNA nucleotide rearrangements that suppress the peptidyl transferase center (PTC) catalytic activity stimulated by eukaryotic release factor 1 (eRF1). These data support a mechanism of action for a small molecule targeting translation that suppresses peptidyl-tRNA hydrolysis promoted by eRF1, revealing principles of eukaryotic translation termination and laying the foundation for new therapeutic strategies.
Collapse
Affiliation(s)
- Wenfei Li
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
- Molecular Biophysics and Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Stacey Tsai-Lan Chang
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
| | - Fred R Ward
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Jamie H D Cate
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA.
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA.
- Molecular Biophysics and Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Department of Chemistry, University of California, Berkeley, CA, USA.
| |
Collapse
|
18
|
Johnson AG, Flynn RA, Lapointe CP, Ooi YS, Zhao ML, Richards CM, Qiao W, Yamada SB, Couthouis J, Gitler AD, Carette JE, Puglisi JD. A memory of eS25 loss drives resistance phenotypes. Nucleic Acids Res 2020; 48:7279-7297. [PMID: 32463448 PMCID: PMC7367175 DOI: 10.1093/nar/gkaa444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/11/2020] [Accepted: 05/24/2020] [Indexed: 12/26/2022] Open
Abstract
In order to maintain cellular protein homeostasis, ribosomes are safeguarded against dysregulation by myriad processes. Remarkably, many cell types can withstand genetic lesions of certain ribosomal protein genes, some of which are linked to diverse cellular phenotypes and human disease. Yet the direct and indirect consequences from these lesions are poorly understood. To address this knowledge gap, we studied in vitro and cellular consequences that follow genetic knockout of the ribosomal proteins RPS25 or RACK1 in a human cell line, as both proteins are implicated in direct translational control. Prompted by the unexpected detection of an off-target ribosome alteration in the RPS25 knockout, we closely interrogated cellular phenotypes. We found that multiple RPS25 knockout clones display viral- and toxin-resistance phenotypes that cannot be rescued by functional cDNA expression, suggesting that RPS25 loss elicits a cell state transition. We characterized this state and found that it underlies pleiotropic phenotypes and has a common rewiring of gene expression. Rescuing RPS25 expression by genomic locus repair failed to correct for the phenotypic and expression hysteresis. Our findings illustrate how the elasticity of cells to a ribosome perturbation can drive specific phenotypic outcomes that are indirectly linked to translation and suggests caution in the interpretation of ribosomal protein gene mutation data.
Collapse
Affiliation(s)
- Alex G Johnson
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA.,Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Ryan A Flynn
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | | | - Yaw Shin Ooi
- Department of Microbiology & Immunology, Stanford University, Stanford, CA 94305, USA
| | - Michael L Zhao
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Wenjie Qiao
- Department of Microbiology & Immunology, Stanford University, Stanford, CA 94305, USA
| | - Shizuka B Yamada
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Julien Couthouis
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Jan E Carette
- Department of Microbiology & Immunology, Stanford University, Stanford, CA 94305, USA
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
19
|
Pernod K, Schaeffer L, Chicher J, Hok E, Rick C, Geslain R, Eriani G, Westhof E, Ryckelynck M, Martin F. The nature of the purine at position 34 in tRNAs of 4-codon boxes is correlated with nucleotides at positions 32 and 38 to maintain decoding fidelity. Nucleic Acids Res 2020; 48:6170-6183. [PMID: 32266934 PMCID: PMC7293025 DOI: 10.1093/nar/gkaa221] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 12/29/2022] Open
Abstract
Translation fidelity relies essentially on the ability of ribosomes to accurately recognize triplet interactions between codons on mRNAs and anticodons of tRNAs. To determine the codon-anticodon pairs that are efficiently accepted by the eukaryotic ribosome, we took advantage of the IRES from the intergenic region (IGR) of the Cricket Paralysis Virus. It contains an essential pseudoknot PKI that structurally and functionally mimics a codon-anticodon helix. We screened the entire set of 4096 possible combinations using ultrahigh-throughput screenings combining coupled transcription/translation and droplet-based microfluidics. Only 97 combinations are efficiently accepted and accommodated for translocation and further elongation: 38 combinations involve cognate recognition with Watson-Crick pairs and 59 involve near-cognate recognition pairs with at least one mismatch. More than half of the near-cognate combinations (36/59) contain a G at the first position of the anticodon (numbered 34 of tRNA). G34-containing tRNAs decoding 4-codon boxes are almost absent from eukaryotic genomes in contrast to bacterial genomes. We reconstructed these missing tRNAs and could demonstrate that these tRNAs are toxic to cells due to their miscoding capacity in eukaryotic translation systems. We also show that the nature of the purine at position 34 is correlated with the nucleotides present at 32 and 38.
Collapse
Affiliation(s)
- Ketty Pernod
- Institut de Biologie Moléculaire et Cellulaire, 'Architecture et Réactivité de l'ARN' CNRS UPR9002, Université de Strasbourg, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Laure Schaeffer
- Institut de Biologie Moléculaire et Cellulaire, 'Architecture et Réactivité de l'ARN' CNRS UPR9002, Université de Strasbourg, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Johana Chicher
- Institut de Biologie Moléculaire et Cellulaire, Plateforme Protéomique Strasbourg - Esplanade, CNRS FRC1589, Université de Strasbourg, 2, allée Konrad Roentgen Descartes, F-67084 Strasbourg, France
| | - Eveline Hok
- Laboratory of tRNA Biology, Department of Biology, Rita Liddy Hollings Science Center, 58 Coming Street, Charleston, SC, USA
| | - Christian Rick
- Institut de Biologie Moléculaire et Cellulaire, 'Architecture et Réactivité de l'ARN' CNRS UPR9002, Université de Strasbourg, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Renaud Geslain
- Laboratory of tRNA Biology, Department of Biology, Rita Liddy Hollings Science Center, 58 Coming Street, Charleston, SC, USA
| | - Gilbert Eriani
- Institut de Biologie Moléculaire et Cellulaire, 'Architecture et Réactivité de l'ARN' CNRS UPR9002, Université de Strasbourg, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Eric Westhof
- Institut de Biologie Moléculaire et Cellulaire, 'Architecture et Réactivité de l'ARN' CNRS UPR9002, Université de Strasbourg, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Michael Ryckelynck
- Institut de Biologie Moléculaire et Cellulaire, 'Architecture et Réactivité de l'ARN' CNRS UPR9002, Université de Strasbourg, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Franck Martin
- Institut de Biologie Moléculaire et Cellulaire, 'Architecture et Réactivité de l'ARN' CNRS UPR9002, Université de Strasbourg, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| |
Collapse
|
20
|
Herrero del Valle A, Innis CA. Prospects for antimicrobial development in the cryo-EM era – a focus on the ribosome. FEMS Microbiol Rev 2020; 44:793-803. [DOI: 10.1093/femsre/fuaa032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/25/2020] [Indexed: 12/12/2022] Open
Abstract
ABSTRACT
Resistance to antimicrobial drugs used to treat bacterial, viral, fungal and parasitic infections is a major health concern requiring a coordinated response across the globe. An important aspect in the fight against antimicrobial resistance is the development of novel drugs that are effective against resistant pathogens. Drug development is a complex trans-disciplinary endeavor, in which structural biology plays a major role by providing detailed functional and mechanistic information on an antimicrobial target and its interactions with small molecule inhibitors. Although X-ray crystallography and nuclear magnetic resonance have until now been the methods of choice to characterize microbial targets and drive structure-based drug development, cryo-electron microscopy is rapidly gaining ground in these areas. In this perspective, we will discuss how cryo-electron microscopy is changing our understanding of an established antimicrobial target, the ribosome, and how methodological developments could help this technique become an integral part of the antimicrobial drug discovery pipeline.
Collapse
Affiliation(s)
- Alba Herrero del Valle
- Institut Européen de Chimie et Biologie, Univ. Bordeaux, Institut National de la Santé et de la Recherche Médicale (U1212) and Centre National de la Recherche Scientifique (UMR 5320), 2 rue Robert Escarpit, 33607 Pessac, France
| | - C Axel Innis
- Institut Européen de Chimie et Biologie, Univ. Bordeaux, Institut National de la Santé et de la Recherche Médicale (U1212) and Centre National de la Recherche Scientifique (UMR 5320), 2 rue Robert Escarpit, 33607 Pessac, France
| |
Collapse
|
21
|
Chen X, Khan NS, Zhang S. LocalSTAR3D: a local stack-based RNA 3D structural alignment tool. Nucleic Acids Res 2020; 48:e77. [PMID: 32496533 PMCID: PMC7367197 DOI: 10.1093/nar/gkaa453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 11/29/2022] Open
Abstract
A fast-growing number of non-coding RNA structures have been resolved and deposited in Protein Data Bank (PDB). In contrast to the wide range of global alignment and motif search tools, there is still a lack of local alignment tools. Among all the global alignment tools for RNA 3D structures, STAR3D has become a valuable tool for its unprecedented speed and accuracy. STAR3D compares the 3D structures of RNA molecules using consecutive base-pairs (stacks) as anchors and generates an optimal global alignment. In this article, we developed a local RNA 3D structural alignment tool, named LocalSTAR3D, which was extended from STAR3D and designed to report multiple local alignments between two RNAs. The benchmarking results show that LocalSTAR3D has better accuracy and coverage than other local alignment tools. Furthermore, the utility of this tool has been demonstrated by rediscovering kink-turn motif instances, conserved domains in group II intron RNAs, and the tRNA mimicry of IRES RNAs.
Collapse
Affiliation(s)
- Xiaoli Chen
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Nabila Shahnaz Khan
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Shaojie Zhang
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
22
|
Miller CM, Selvam S, Fuchs G. Fatal attraction: The roles of ribosomal proteins in the viral life cycle. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1613. [PMID: 32657002 DOI: 10.1002/wrna.1613] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/30/2022]
Abstract
Upon viral infection of a host cell, each virus starts a program to generate many progeny viruses. Although viruses interact with the host cell in numerous ways, one critical step in the virus life cycle is the expression of viral proteins, which are synthesized by the host ribosomes in conjunction with host translation factors. Here we review different mechanisms viruses have evolved to effectively seize host cell ribosomes, the roles of specific ribosomal proteins and their posttranslational modifications on viral RNA translation, or the cellular response to infection. We further highlight ribosomal proteins with extra-ribosomal function during viral infection and put the knowledge of ribosomal proteins during viral infection into the larger context of ribosome-related diseases, known as ribosomopathies. This article is categorized under: Translation > Translation Mechanisms Translation > Translation Regulation.
Collapse
Affiliation(s)
- Clare M Miller
- Department of Biological Sciences, University at Albany, Albany, New York, USA
| | - Sangeetha Selvam
- Department of Biological Sciences, University at Albany, Albany, New York, USA
| | - Gabriele Fuchs
- Department of Biological Sciences, University at Albany, Albany, New York, USA.,The RNA Institute, University at Albany, Albany, New York, USA
| |
Collapse
|
23
|
Neupane R, Pisareva VP, Rodriguez CF, Pisarev AV, Fernández IS. A complex IRES at the 5'-UTR of a viral mRNA assembles a functional 48S complex via an uAUG intermediate. eLife 2020; 9:54575. [PMID: 32286223 PMCID: PMC7190351 DOI: 10.7554/elife.54575] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/13/2020] [Indexed: 01/21/2023] Open
Abstract
Taking control of the cellular apparatus for protein production is a requirement for virus progression. To ensure this control, diverse strategies of cellular mimicry and/or ribosome hijacking have evolved. The initiation stage of translation is especially targeted as it involves multiple steps and the engagement of numerous initiation factors. The use of structured RNA sequences, called Internal Ribosomal Entry Sites (IRES), in viral RNAs is a widespread strategy for the exploitation of eukaryotic initiation. Using a combination of electron cryo-microscopy (cryo-EM) and reconstituted translation initiation assays with native components, we characterized how a novel IRES at the 5'-UTR of a viral RNA assembles a functional initiation complex via an uAUG intermediate. The IRES features a novel extended, multi-domain architecture, that circles the 40S head. The structures and accompanying functional data illustrate the importance of 5'-UTR regions in translation regulation and underline the relevance of the untapped diversity of viral IRESs.
Collapse
Affiliation(s)
- Ritam Neupane
- Department of Biological Sciences, Columbia UniversityNew YorkUnited States,Department of Biochemistry and Molecular Biophysics, Columbia UniversityNew YorkUnited States
| | - Vera P Pisareva
- Department of Cell Biology, SUNY Downstate Medical CenterBrooklynUnited States
| | - Carlos F Rodriguez
- Structural Biology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO)MadridSpain
| | - Andrey V Pisarev
- Department of Cell Biology, SUNY Downstate Medical CenterBrooklynUnited States
| | - Israel S Fernández
- Department of Biochemistry and Molecular Biophysics, Columbia UniversityNew YorkUnited States
| |
Collapse
|
24
|
Mutation of the start codon to enhance Cripavirus internal ribosome entry site-mediated translation in a wheat germ extract. Bioorg Med Chem Lett 2019; 29:126729. [PMID: 31607608 DOI: 10.1016/j.bmcl.2019.126729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 11/22/2022]
Abstract
Wheat germ extract (WGE) is one of the most widely used eukaryotic cell-free translation systems for easy synthesis of a broad range of proteins merely by adding template mRNAs. Its productivity has thus far been improved by removing translational inhibitors from the extract and stabilizing the template with terminal protectors. Nonetheless, there remains room for increasing the yield by designing a terminally protected template with higher susceptibility to translation. Given the fact that a 5' terminal protector is a strong inhibitor of the canonical translation, we herein focused on Cripavirus internal ribosome entry sites (IRESes), which allow for a unique translation initiation from a non-AUG start codon without the help of any initiation factors. We mutated their start codons to enhance the IRES-mediated translation efficiency in WGE. One of the mutants showed considerably higher efficiency, 3-4-fold higher than that of its wild type, and also 3-4-fold higher than the canonical translation efficiency by an IRES-free mRNA having one of the most effective canonical-translation enhancers. Because this mutated IRES is compatible with different types of genes and terminal protectors, we expect it will be widely used to synthesize proteins in WGE.
Collapse
|
25
|
Acosta-Reyes F, Neupane R, Frank J, Fernández IS. The Israeli acute paralysis virus IRES captures host ribosomes by mimicking a ribosomal state with hybrid tRNAs. EMBO J 2019; 38:e102226. [PMID: 31609474 PMCID: PMC6826211 DOI: 10.15252/embj.2019102226] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/02/2019] [Accepted: 09/19/2019] [Indexed: 12/19/2022] Open
Abstract
Colony collapse disorder (CCD) is a multi-faceted syndrome decimating bee populations worldwide, and a group of viruses of the widely distributed Dicistroviridae family have been identified as a causing agent of CCD. This family of viruses employs non-coding RNA sequences, called internal ribosomal entry sites (IRESs), to precisely exploit the host machinery for viral protein production. Using single-particle cryo-electron microscopy (cryo-EM), we have characterized how the IRES of Israeli acute paralysis virus (IAPV) intergenic region captures and redirects translating ribosomes toward viral RNA messages. We reconstituted two in vitro reactions targeting a pre-translocation and a post-translocation state of the IAPV-IRES in the ribosome, allowing us to identify six structures using image processing classification methods. From these, we reconstructed the trajectory of IAPV-IRES from the early small subunit recruitment to the final post-translocated state in the ribosome. An early commitment of IRES/ribosome complexes for global pre-translocation mimicry explains the high efficiency observed for this IRES. Efforts directed toward fighting CCD by targeting the IAPV-IRES using RNA-interference technology are underway, and the structural framework presented here may assist in further refining these approaches.
Collapse
Affiliation(s)
- Francisco Acosta-Reyes
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Ritam Neupane
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.,Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.,Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Israel S Fernández
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|
26
|
A tRNA-mimic Strategy to Explore the Role of G34 of tRNA Gly in Translation and Codon Frameshifting. Int J Mol Sci 2019; 20:ijms20163911. [PMID: 31405256 PMCID: PMC6720975 DOI: 10.3390/ijms20163911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 12/20/2022] Open
Abstract
Decoding of the 61 sense codons of the genetic code requires a variable number of tRNAs that establish codon-anticodon interactions. Thanks to the wobble base pairing at the third codon position, less than 61 different tRNA isoacceptors are needed to decode the whole set of codons. On the tRNA, a subtle distribution of nucleoside modifications shapes the anticodon loop structure and participates to accurate decoding and reading frame maintenance. Interestingly, although the 61 anticodons should exist in tRNAs, a strict absence of some tRNAs decoders is found in several codon families. For instance, in Eukaryotes, G34-containing tRNAs translating 3-, 4- and 6-codon boxes are absent. This includes tRNA specific for Ala, Arg, Ile, Leu, Pro, Ser, Thr, and Val. tRNAGly is the only exception for which in the three kingdoms, a G34-containing tRNA exists to decode C3 and U3-ending codons. To understand why G34-tRNAGly exists, we analysed at the genome wide level the codon distribution in codon +1 relative to the four GGN Gly codons. When considering codon GGU, a bias was found towards an unusual high usage of codons starting with a G whatever the amino acid at +1 codon. It is expected that GGU codons are decoded by G34-containing tRNAGly, decoding also GGC codons. Translation studies revealed that the presence of a G at the first position of the downstream codon reduces the +1 frameshift by stabilizing the G34•U3 wobble interaction. This result partially explains why G34-containing tRNAGly exists in Eukaryotes whereas all the other G34-containing tRNAs for multiple codon boxes are absent.
Collapse
|
27
|
Kerr CH, Wang QS, Moon KM, Keatings K, Allan DW, Foster LJ, Jan E. IRES-dependent ribosome repositioning directs translation of a +1 overlapping ORF that enhances viral infection. Nucleic Acids Res 2019; 46:11952-11967. [PMID: 30418631 PMCID: PMC6294563 DOI: 10.1093/nar/gky1121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022] Open
Abstract
RNA structures can interact with the ribosome to alter translational reading frame maintenance and promote recoding that result in alternative protein products. Here, we show that the internal ribosome entry site (IRES) from the dicistrovirus Cricket paralysis virus drives translation of the 0-frame viral polyprotein and an overlapping +1 open reading frame, called ORFx, via a novel mechanism whereby a subset of ribosomes recruited to the IRES bypasses 37 nucleotides downstream to resume translation at the +1-frame 13th non-AUG codon. A mutant of CrPV containing a stop codon in the +1 frame ORFx sequence, yet synonymous in the 0-frame, is attenuated compared to wild-type virus in a Drosophila infection model, indicating the importance of +1 ORFx expression in promoting viral pathogenesis. This work demonstrates a novel programmed IRES-mediated recoding strategy to increase viral coding capacity and impact virus infection, highlighting the diversity of RNA-driven translation initiation mechanisms in eukaryotes.
Collapse
Affiliation(s)
- Craig H Kerr
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Qing S Wang
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Kyung-Mee Moon
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Kathleen Keatings
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Douglas W Allan
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
28
|
Sanz MA, Almela EG, García-Moreno M, Marina AI, Carrasco L. A viral RNA motif involved in signaling the initiation of translation on non-AUG codons. RNA (NEW YORK, N.Y.) 2019; 25:431-452. [PMID: 30659060 PMCID: PMC6426287 DOI: 10.1261/rna.068858.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
Noncanonical translation, and particularly initiation on non-AUG codons, are frequently used by viral and cellular mRNAs during virus infection and disease. The Sindbis virus (SINV) subgenomic mRNA (sgRNA) constitutes a unique model system to analyze the translation of a capped viral mRNA without the participation of several initiation factors. Moreover, sgRNA can initiate translation even when the AUG initiation codon is replaced by other codons. Using SINV replicons, we examined the efficacy of different codons in place of AUG to direct the synthesis of the SINV capsid protein. The substitution of AUG by CUG was particularly efficient in promoting the incorporation of leucine or methionine in similar percentages at the amino terminus of the capsid protein. Additionally, valine could initiate translation when the AUG is replaced by GUG. The ability of sgRNA to initiate translation on non-AUG codons was dependent on the integrity of a downstream stable hairpin (DSH) structure located in the coding region. The structural requirements of this hairpin to signal the initiation site on the sgRNA were examined in detail. Of interest, a virus bearing CUG in place of AUG in the sgRNA was able to infect cells and synthesize significant amounts of capsid protein. This virus infects the human haploid cell line HAP1 and the double knockout variant that lacks eIF2A and eIF2D. Collectively, these findings indicate that leucine-tRNA or valine-tRNA can participate in the initiation of translation of sgRNA by a mechanism dependent on the DSH. This mechanism does not involve the action of eIF2, eIF2A, or eIF2D.
Collapse
MESH Headings
- Capsid Proteins/biosynthesis
- Capsid Proteins/genetics
- Cell Line, Tumor
- Codon, Initiator/genetics
- Codon, Initiator/metabolism
- Eukaryotic Initiation Factor-2/deficiency
- Eukaryotic Initiation Factor-2/genetics
- Fibroblasts/metabolism
- Fibroblasts/virology
- Gene Expression Regulation
- Haploidy
- Host-Pathogen Interactions/genetics
- Humans
- Inverted Repeat Sequences
- Leucine/genetics
- Leucine/metabolism
- Methionine/genetics
- Methionine/metabolism
- Nucleic Acid Conformation
- Protein Biosynthesis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer, Leu/genetics
- RNA, Transfer, Leu/metabolism
- RNA, Transfer, Val/genetics
- RNA, Transfer, Val/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Replicon
- Signal Transduction/genetics
- Sindbis Virus/genetics
- Sindbis Virus/metabolism
- Valine/genetics
- Valine/metabolism
Collapse
Affiliation(s)
- Miguel Angel Sanz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
| | - Esther González Almela
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
| | - Manuel García-Moreno
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
| | - Ana Isabel Marina
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
| | - Luis Carrasco
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
| |
Collapse
|