1
|
Vora M, Dietz J, Wing Z, George K, Liu J, Rongo C, Savage-Dunn C. Genome-wide analysis of Smad and Schnurri transcription factors in C. elegans demonstrates widespread interaction and a function in collagen secretion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.05.597576. [PMID: 38895257 PMCID: PMC11185707 DOI: 10.1101/2024.06.05.597576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Smads and their transcription factor partners mediate the transcriptional responses of target cells to secreted ligands of the Transforming Growth Factor-β (TGF-β) family, including those of the conserved bone morphogenetic protein (BMP) family, yet only a small number of direct target genes have been well characterized. In C. elegans, the BMP2/4 ortholog DBL-1 regulates multiple biological functions, including body size, via a canonical receptor-Smad signaling cascade. Here, we identify functional binding sites for SMA-3/Smad and its transcriptional partner SMA-9/Schnurri based on ChIP-seq peaks (identified by modEncode) and expression differences of nearby genes identified from RNA-seq analysis of corresponding mutants. We found that SMA-3 and SMA-9 have both overlapping and unique target genes. At a genome-wide scale, SMA-3/Smad acts as a transcriptional activator, whereas SMA-9/Schnurri direct targets include both activated and repressed genes. Mutations in sma-9 partially suppress the small body size phenotype of sma-3, suggesting some level of antagonism between these factors and challenging the prevailing model for Schnurri function. Functional analysis of target genes revealed a novel role in body size for genes involved in one-carbon metabolism and in the endoplasmic reticulum (ER) secretory pathway, including the disulfide reductase dpy-11. Our findings indicate that Smads and SMA-9/Schnurri have previously unappreciated complex genetic and genomic regulatory interactions that in turn regulate the secretion of extracellular components like collagen into the cuticle to mediate body size regulation.
Collapse
Affiliation(s)
- Mehul Vora
- Waksman Institute, Dept. of Genetics, Rutgers University, NJ, USA
- ModOmics Ltd, Southampton, UK
| | - Jonathan Dietz
- Waksman Institute, Dept. of Genetics, Rutgers University, NJ, USA
| | - Zachary Wing
- Department of Biology, Queens College, CUNY, NY, USA
| | - Karen George
- Waksman Institute, Dept. of Genetics, Rutgers University, NJ, USA
| | - Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, NY, USA
| | | | - Cathy Savage-Dunn
- Department of Biology, Queens College, CUNY, NY, USA
- PhD Program in Biology, the Graduate Center, CUNY, NY, USA
| |
Collapse
|
2
|
Dinneen E, Silva-García CG. Universal Single Copy Knock-In System in Caenorhabditis elegans : One Plasmid to Target All Chromosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627295. [PMID: 39713286 PMCID: PMC11661065 DOI: 10.1101/2024.12.06.627295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Successful transgenesis in model organisms has dramatically helped us understand gene function, regulation, genetic networks, and potential applications. Here, we introduce the universal single-copy knock-in system (Universal SKI System or U-SKI), designed for inserting any transgene by CRISPR/Cas9 in the Caenorhabditis elegans genome. The Universal SKI System takes advantage of a plasmid (pSKI), which can also be used for extrachromosomal arrays, to facilitate the insertion of a transgene at specific safe harbor loci on each autosomal chromosome. The pSKI plasmid contains multiple restriction sites for easy cloning and serves as a CRISPR/Cas9-based insertion repair template because it has two synthetic and long homology arms that recombine with the SKI cassettes. This system also uses a single crRNA guide, which acts as a Co-CRISPR enrichment marker. Overall, the Universal SKI System is highly flexible; with the same Universal SKI cassette on each autosome, researchers can select the insertion site and streamline tracking while reducing the complexity of expressing single-copy transgenes in C. elegans .
Collapse
|
3
|
Valera-Alberni M, Yao P, Romero-Sanz S, Lanjuin A, Mair WB. Novel imaging tools to study mitochondrial morphology in Caenorhabditis elegans. Life Sci Alliance 2024; 7:e202402918. [PMID: 39260886 PMCID: PMC11391045 DOI: 10.26508/lsa.202402918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024] Open
Abstract
Mitochondria exhibit a close interplay between their structure and function. Understanding this intricate relationship requires advanced imaging techniques that can capture the dynamic nature of mitochondria and their impact on cellular processes. However, much of the work on mitochondrial dynamics has been performed in single celled organisms or in vitro cell culture. Here, we introduce novel genetic tools for live imaging of mitochondrial morphology in the nematode Caenorhabditis elegans, addressing a pressing need for advanced techniques in studying organelle dynamics within live intact multicellular organisms. Through a comprehensive analysis, we directly compare our tools with existing methods, demonstrating their advantages for visualizing mitochondrial morphology and contrasting their impact on organismal physiology. We reveal limitations of conventional techniques, whereas showcasing the utility and versatility of our approaches, including endogenous CRISPR tags and ectopic labeling. By providing a guide for selecting the most suitable tools based on experimental goals, our work advances mitochondrial research in C. elegans and enhances the strategic integration of diverse imaging modalities for a holistic understanding of organelle dynamics in living organisms.
Collapse
Affiliation(s)
- Miriam Valera-Alberni
- Department of Molecular Metabolism, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Pallas Yao
- Department of Molecular Metabolism, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Silvia Romero-Sanz
- Department of Molecular Metabolism, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Anne Lanjuin
- Department of Molecular Metabolism, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - William B Mair
- Department of Molecular Metabolism, Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
4
|
Cowen MH, Haskell D, Zoga K, Reddy KC, Chalasani SH, Hart MP. Conserved autism-associated genes tune social feeding behavior in C. elegans. Nat Commun 2024; 15:9301. [PMID: 39468047 PMCID: PMC11519495 DOI: 10.1038/s41467-024-53590-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
Animal foraging is an essential and evolutionarily conserved behavior that occurs in social and solitary contexts, but the underlying molecular pathways are not well defined. We discover that conserved autism-associated genes (NRXN1(nrx-1), NLGN3(nlg-1), GRIA1,2,3(glr-1), GRIA2(glr-2), and GLRA2,GABRA3(avr-15)) regulate aggregate feeding in C. elegans, a simple social behavior. NRX-1 functions in chemosensory neurons (ADL and ASH) independently of its postsynaptic partner NLG-1 to regulate social feeding. Glutamate from these neurons is also crucial for aggregate feeding, acting independently of NRX-1 and NLG-1. Compared to solitary counterparts, social animals show faster presynaptic release and more presynaptic release sites in ASH neurons, with only the latter requiring nrx-1. Disruption of these distinct signaling components additively converts behavior from social to solitary. Collectively, we find that aggregate feeding is tuned by conserved autism-associated genes through complementary synaptic mechanisms, revealing molecular principles driving social feeding.
Collapse
Affiliation(s)
- Mara H Cowen
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Autism Spectrum Program of Excellence, Perelman School of Medicine, Philadelphia, PA, USA
| | - Dustin Haskell
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristi Zoga
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kirthi C Reddy
- Molecular Neurobiology Laboratory, Salk Institute, La Jolla, CA, USA
| | | | - Michael P Hart
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Autism Spectrum Program of Excellence, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Liu S, Alexander KD, Francis MM. Neural Circuit Remodeling: Mechanistic Insights from Invertebrates. J Dev Biol 2024; 12:27. [PMID: 39449319 PMCID: PMC11503349 DOI: 10.3390/jdb12040027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
As nervous systems mature, neural circuit connections are reorganized to optimize the performance of specific functions in adults. This reorganization of connections is achieved through a remarkably conserved phase of developmental circuit remodeling that engages neuron-intrinsic and neuron-extrinsic molecular mechanisms to establish mature circuitry. Abnormalities in circuit remodeling and maturation are broadly linked with a variety of neurodevelopmental disorders, including autism spectrum disorders and schizophrenia. Here, we aim to provide an overview of recent advances in our understanding of the molecular processes that govern neural circuit remodeling and maturation. In particular, we focus on intriguing mechanistic insights gained from invertebrate systems, such as the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster. We discuss how transcriptional control mechanisms, synaptic activity, and glial engulfment shape specific aspects of circuit remodeling in worms and flies. Finally, we highlight mechanistic parallels across invertebrate and mammalian systems, and prospects for further advances in each.
Collapse
Affiliation(s)
- Samuel Liu
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Kellianne D. Alexander
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Michael M. Francis
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
6
|
Correa E, Mialon M, Cizeron M, Bessereau JL, Pinan-Lucarre B, Kratsios P. UNC-30/PITX coordinates neurotransmitter identity with postsynaptic GABA receptor clustering. Development 2024; 151:dev202733. [PMID: 39190555 PMCID: PMC11385328 DOI: 10.1242/dev.202733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/10/2024] [Indexed: 08/29/2024]
Abstract
Terminal selectors are transcription factors that control neuronal identity by regulating expression of key effector molecules, such as neurotransmitter biosynthesis proteins and ion channels. Whether and how terminal selectors control neuronal connectivity is poorly understood. Here, we report that UNC-30 (PITX2/3), the terminal selector of GABA nerve cord motor neurons in Caenorhabditis elegans, is required for neurotransmitter receptor clustering, a hallmark of postsynaptic differentiation. Animals lacking unc-30 or madd-4B, the short isoform of the motor neuron-secreted synapse organizer madd-4 (punctin/ADAMTSL), display severe GABA receptor type A (GABAAR) clustering defects in postsynaptic muscle cells. Mechanistically, UNC-30 acts directly to induce and maintain transcription of madd-4B and GABA biosynthesis genes (e.g. unc-25/GAD, unc-47/VGAT). Hence, UNC-30 controls GABAA receptor clustering in postsynaptic muscle cells and GABA biosynthesis in presynaptic cells, transcriptionally coordinating two crucial processes for GABA neurotransmission. Further, we uncover multiple target genes and a dual role for UNC-30 as both an activator and a repressor of gene transcription. Our findings on UNC-30 function may contribute to our molecular understanding of human conditions, such as Axenfeld-Rieger syndrome, caused by PITX2 and PITX3 gene variants.
Collapse
Affiliation(s)
- Edgar Correa
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
- Committee on Cell and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Morgane Mialon
- Melis, Universite Claude Bernard Lyon 1, CNRS UMR5284, INSERM U1314, Institut NeuroMyoGene - Faculte de Medecine et de Pharmacie, 69008 Lyon, France
| | - Mélissa Cizeron
- Melis, Universite Claude Bernard Lyon 1, CNRS UMR5284, INSERM U1314, Institut NeuroMyoGene - Faculte de Medecine et de Pharmacie, 69008 Lyon, France
| | - Jean-Louis Bessereau
- Melis, Universite Claude Bernard Lyon 1, CNRS UMR5284, INSERM U1314, Institut NeuroMyoGene - Faculte de Medecine et de Pharmacie, 69008 Lyon, France
| | - Berangere Pinan-Lucarre
- Melis, Universite Claude Bernard Lyon 1, CNRS UMR5284, INSERM U1314, Institut NeuroMyoGene - Faculte de Medecine et de Pharmacie, 69008 Lyon, France
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
- Committee on Cell and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
- University of Chicago Neuroscience Institute, Chicago, IL 60637, USA
| |
Collapse
|
7
|
Muirhead CS, Reddy KC, Guerra S, Rieger M, Hart MP, Srinivasan J, Chalasani SH. Neurexin drives Caenorhabditis elegans avoidance behavior independently of its post-synaptic binding partner neuroligin. G3 (BETHESDA, MD.) 2024; 14:jkae111. [PMID: 38781440 PMCID: PMC11304965 DOI: 10.1093/g3journal/jkae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Neurexins and their canonical binding partners, neuroligins, are localized to neuronal pre-, and post-synapses, respectively, but less is known about their role in driving behaviors. Here, we use the nematode C. elegans to show that neurexin, but not neuroligin, is required for avoiding specific chemorepellents. We find that adults with knockouts of the entire neurexin locus exhibit a strong avoidance deficit in response to glycerol and a weaker defect in response to copper. Notably, the C. elegans neurexin (nrx-1) locus, like its mammalian homologs, encodes multiple isoforms, α and γ. Using isoform-specific mutations, we find that the γ isoform is selectively required for glycerol avoidance. Next, we used transgenic rescue experiments to show that this isoform functions at least partially in the nervous system. We also confirm that the transgenes are expressed in the neurons and observe protein accumulation in neurites. Furthermore, we tested whether these mutants affect the behavioral responses of juveniles. We find that juveniles (4th larval stages) of mutants knocking out the entire locus or the α-isoforms, but not γ-isoform, are defective in avoiding glycerol. These results suggest that the different neurexin isoforms affect chemosensory avoidance behavior in juveniles and adults, providing a general principle of how isoforms of this conserved gene affect behavior across species.
Collapse
Affiliation(s)
- Caroline S Muirhead
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01605, USA
| | - Kirthi C Reddy
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Sophia Guerra
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01605, USA
| | - Michael Rieger
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Michael P Hart
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jagan Srinivasan
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01605, USA
| | - Sreekanth H Chalasani
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
8
|
Kolli S, Kline CJ, Rad KM, Wehman AM. Phagolysosomes break down the membrane of a non-apoptotic corpse independent of macroautophagy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599770. [PMID: 38948720 PMCID: PMC11212964 DOI: 10.1101/2024.06.19.599770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Cell corpses must be cleared in an efficient manner to maintain tissue homeostasis and regulate immune responses. Ubiquitin-like Atg8/LC3 family proteins promote the degradation of membranes and internal cargo during both macroautophagy and corpse clearance, raising the question how macroautophagy contributes to corpse clearance. Studying the clearance of non-apoptotic dying polar bodies in Caenorhabditis elegans embryos, we show that the LC3 ortholog LGG-2 is enriched in the polar body phagolysosome independent of membrane association or autophagosome formation. We demonstrate that ATG-16.1 and ATG-16.2, which promote membrane association of lipidated Atg8/LC3 proteins, redundantly promote polar body membrane breakdown in phagolysosomes independent of their role in macroautophagy. We also show that the lipid scramblase ATG-9 is needed for autophagosome formation in early embryos but is dispensable for timely polar body membrane breakdown or protein cargo degradation. These findings demonstrate that macroautophagy is not required to promote polar body degradation, in contrast to recent findings with apoptotic corpse clearance in C. elegans embryos. Determining how membrane association of Atg8/LC3 promotes the breakdown of different types of cell corpses in distinct cell types or metabolic states is likely to give insights into the mechanisms of immunoregulation during normal development, physiology, and disease.
Collapse
Affiliation(s)
- Shruti Kolli
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Cassidy J. Kline
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Kimya M. Rad
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Ann M. Wehman
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| |
Collapse
|
9
|
Correa E, Mialon M, Cizeron M, Bessereau JL, Pinan-Lucarre B, Kratsios P. UNC-30/PITX coordinates neurotransmitter identity with postsynaptic GABA receptor clustering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580278. [PMID: 38405977 PMCID: PMC10888783 DOI: 10.1101/2024.02.14.580278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Terminal selectors are transcription factors that control neuronal identity by regulating the expression of key effector molecules, such as neurotransmitter (NT) biosynthesis proteins, ion channels and neuropeptides. Whether and how terminal selectors control neuronal connectivity is poorly understood. Here, we report that UNC-30 (PITX2/3), the terminal selector of GABA motor neuron identity in C. elegans , is required for NT receptor clustering, a hallmark of postsynaptic differentiation. Animals lacking unc-30 or madd-4B, the short isoform of the MN-secreted synapse organizer madd-4 ( Punctin/ADAMTSL ), display severe GABA receptor type A (GABA A R) clustering defects in postsynaptic muscle cells. Mechanistically, UNC-30 acts directly to induce and maintain transcription of madd-4B and GABA biosynthesis genes (e.g., unc-25/GAD , unc-47/VGAT ). Hence, UNC-30 controls GABA A R clustering on postsynaptic muscle cells and GABA biosynthesis in presynaptic cells, transcriptionally coordinating two critical processes for GABA neurotransmission. Further, we uncover multiple target genes and a dual role for UNC-30 both as an activator and repressor of gene transcription. Our findings on UNC-30 function may contribute to our molecular understanding of human conditions, such as Axenfeld-Rieger syndrome, caused by PITX2 and PITX3 gene mutations.
Collapse
|
10
|
Sorensen Turpin CG, Sloan D, LaForest M, Klebanow LU, Mitchell D, Severson AF, Bembenek JN. Securin Regulates the Spatiotemporal Dynamics of Separase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571338. [PMID: 38168402 PMCID: PMC10760073 DOI: 10.1101/2023.12.12.571338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Separase is a key regulator of the metaphase to anaphase transition with multiple functions. Separase cleaves cohesin to allow chromosome segregation and localizes to vesicles to promote exocytosis in mid-anaphase. The anaphase promoting complex/cyclosome (APC/C) activates separase by ubiquitinating its inhibitory chaperone, securin, triggering its degradation. How this pathway controls the exocytic function of separase has not been investigated. During meiosis I, securin is degraded over several minutes, while separase rapidly relocalizes from kinetochore structures at the spindle and cortex to sites of action on chromosomes and vesicles at anaphase onset. The loss of cohesin coincides with the relocalization of separase to the chromosome midbivalent at anaphase onset. APC/C depletion prevents separase relocalization, while securin depletion causes precocious separase relocalization. Expression of non-degradable securin inhibits chromosome segregation, exocytosis, and separase localization to vesicles but not to the anaphase spindle. We conclude that APC/C mediated securin degradation controls separase localization. This spatiotemporal regulation will impact the effective local concentration of separase for more precise targeting of substrates in anaphase.
Collapse
Affiliation(s)
- Christopher G. Sorensen Turpin
- Current Address: Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Dillon Sloan
- Current Address: Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Marian LaForest
- Current Address: Columbia University, Herbert Irving Comprehensive Cancer Center, NYC, New York, United States of America
| | | | - Diana Mitchell
- Current Address: Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Aaron F. Severson
- Current Address: Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio, United States of America
| | - Joshua N. Bembenek
- Current Address: Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| |
Collapse
|
11
|
Cowen MH, Reddy KC, Chalasani SH, Hart MP. Conserved autism-associated genes tune social feeding behavior in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570116. [PMID: 38106124 PMCID: PMC10723370 DOI: 10.1101/2023.12.05.570116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Animal foraging is an essential and evolutionarily conserved behavior that occurs in social and solitary contexts, but the underlying molecular pathways are not well defined. We discover that conserved autism-associated genes (NRXN1(nrx-1), NLGN3(nlg-1), GRIA1,2,3(glr-1), GRIA2(glr-2), and GLRA2,GABRA3(avr-15)) regulate aggregate feeding in C. elegans, a simple social behavior. NRX-1 functions in chemosensory neurons (ADL and ASH) independently of its postsynaptic partner NLG-1 to regulate social feeding. Glutamate from these neurons is also crucial for aggregate feeding, acting independently of NRX-1 and NLG-1. Compared to solitary counterparts, social animals show faster presynaptic release and more presynaptic release sites in ASH neurons, with only the latter requiring nrx-1. Disruption of these distinct signaling components additively converts behavior from social to solitary. Aggregation induced by circuit activation is also dependent on nrx-1. Collectively, we find that aggregate feeding is tuned by conserved autism-associated genes through complementary synaptic mechanisms, revealing molecular principles driving social feeding.
Collapse
Affiliation(s)
- Mara H. Cowen
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
- Autism Spectrum Program of Excellence, Perelman School of Medicine, Philadelphia, PA
| | - Kirthi C. Reddy
- Molecular Neurobiology Laboratory, Salk Institute, La Jolla, CA
| | | | - Michael P. Hart
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
- Autism Spectrum Program of Excellence, Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
12
|
Bastien BL, Cowen MH, Hart MP. Distinct neurexin isoforms cooperate to initiate and maintain foraging activity. Transl Psychiatry 2023; 13:367. [PMID: 38036526 PMCID: PMC10689797 DOI: 10.1038/s41398-023-02668-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/24/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
Neurexins are synaptic adhesion molecules that play diverse roles in synaptic development, function, maintenance, and plasticity. Neurexin genes have been associated with changes in human behavior, where variants in NRXN1 are associated with autism, schizophrenia, and Tourette syndrome. While NRXN1, NRXN2, and NRXN3 all encode major α and β isoforms, NRXN1 uniquely encodes a γ isoform, for which mechanistic roles in behavior have yet to be defined. Here, we show that both α and γ isoforms of neurexin/nrx-1 are required for the C. elegans behavioral response to food deprivation, a sustained period of hyperactivity upon food loss. We find that the γ isoform regulates initiation and the α isoform regulates maintenance of the behavioral response to food deprivation, demonstrating cooperative function of multiple nrx-1 isoforms in regulating a sustained behavior. The γ isoform alters monoamine signaling via octopamine, relies on specific expression of NRX-1 isoforms throughout the relevant circuit, and is independent of neuroligin/nlg-1, the canonical trans-synaptic partner of nrx-1. The α isoform regulates the pre-synaptic structure of the octopamine producing RIC neuron and its maintenance role is conditional on neuroligin/nlg-1. Collectively, these results demonstrate that neurexin isoforms can have separate behavioral roles and act cooperatively across neuronal circuits to modify behavior, highlighting the need to directly analyze and consider all isoforms when defining the contribution of neurexins to behavior.
Collapse
Affiliation(s)
- Brandon L Bastien
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mara H Cowen
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael P Hart
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
13
|
Alexander KD, Ramachandran S, Biswas K, Lambert CM, Russell J, Oliver DB, Armstrong W, Rettler M, Liu S, Doitsidou M, Bénard C, Walker AK, Francis MM. The homeodomain transcriptional regulator DVE-1 directs a program for synapse elimination during circuit remodeling. Nat Commun 2023; 14:7520. [PMID: 37980357 PMCID: PMC10657367 DOI: 10.1038/s41467-023-43281-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/02/2023] [Indexed: 11/20/2023] Open
Abstract
The elimination of synapses during circuit remodeling is critical for brain maturation; however, the molecular mechanisms directing synapse elimination and its timing remain elusive. We show that the transcriptional regulator DVE-1, which shares homology with special AT-rich sequence-binding (SATB) family members previously implicated in human neurodevelopmental disorders, directs the elimination of juvenile synaptic inputs onto remodeling C. elegans GABAergic neurons. Juvenile acetylcholine receptor clusters and apposing presynaptic sites are eliminated during the maturation of wild-type GABAergic neurons but persist into adulthood in dve-1 mutants, producing heightened motor connectivity. DVE-1 localization to GABAergic nuclei is required for synapse elimination, consistent with DVE-1 regulation of transcription. Pathway analysis of putative DVE-1 target genes, proteasome inhibitor, and genetic experiments implicate the ubiquitin-proteasome system in synapse elimination. Together, our findings define a previously unappreciated role for a SATB family member in directing synapse elimination during circuit remodeling, likely through transcriptional regulation of protein degradation processes.
Collapse
Affiliation(s)
- Kellianne D Alexander
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Shankar Ramachandran
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kasturi Biswas
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Christopher M Lambert
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Julia Russell
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Devyn B Oliver
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - William Armstrong
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Monika Rettler
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Samuel Liu
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Maria Doitsidou
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Claire Bénard
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Biological Sciences, Université du Québec à Montréal, Quebec, Canada
| | - Amy K Walker
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Michael M Francis
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
14
|
Frankel EB, Tiroumalechetty A, Henry PS, Su Z, Wu Y, Kurshan PT. Protein-lipid interactions drive presynaptic assembly upstream of cell adhesion molecules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567618. [PMID: 38014115 PMCID: PMC10680821 DOI: 10.1101/2023.11.17.567618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Textbook models of synaptogenesis position cell adhesion molecules such as neurexin as initiators of synapse assembly. Here we discover a mechanism for presynaptic assembly that occurs prior to neurexin recruitment, while supporting a role for neurexin in synapse maintenance. We find that the cytosolic active zone scaffold SYD-1 interacts with membrane phospholipids to promote active zone protein clustering at the plasma membrane, and subsequently recruits neurexin to stabilize those clusters. Employing molecular dynamics simulations to model intrinsic interactions between SYD-1 and lipid bilayers followed by in vivo tests of these predictions, we find that PIP2-interacting residues in SYD-1's C2 and PDZ domains are redundantly necessary for proper active zone assembly. Finally, we propose that the uncharacterized yet evolutionarily conserved short γ isoform of neurexin represents a minimal neurexin sequence that can stabilize previously assembled presynaptic clusters, potentially a core function of this critical protein.
Collapse
Affiliation(s)
- Elisa B Frankel
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | - Parise S Henry
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Zhaoqian Su
- Data Science Institute, Vanderbilt University, 1001 19th Ave S, Nashville, TN, 37212
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Peri T Kurshan
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
- Lead Contact
| |
Collapse
|
15
|
Stevenson ME, Bieri G, Kaletsky R, St Ange J, Remesal L, Pratt KJB, Zhou S, Weng Y, Murphy CT, Villeda SA. Neuronal activation of G αq EGL-30/GNAQ late in life rejuvenates cognition across species. Cell Rep 2023; 42:113151. [PMID: 37713310 PMCID: PMC10627507 DOI: 10.1016/j.celrep.2023.113151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/10/2023] [Accepted: 08/31/2023] [Indexed: 09/17/2023] Open
Abstract
Loss of cognitive function with age is devastating. EGL-30/GNAQ and Gαq signaling pathways are highly conserved between C. elegans and mammals, and murine Gnaq is enriched in hippocampal neurons and declines with age. We found that activation of EGL-30 in aged worms triples memory span, and GNAQ gain of function significantly improved memory in aged mice: GNAQ(gf) in hippocampal neurons of 24-month-old mice (equivalent to 70- to 80-year-old humans) rescued age-related impairments in well-being and memory. Single-nucleus RNA sequencing revealed increased expression of genes regulating synaptic function, axon guidance, and memory in GNAQ-treated mice, and worm orthologs of these genes were required for long-term memory extension in worms. These experiments demonstrate that C. elegans is a powerful model to identify mammalian regulators of memory, leading to the identification of a pathway that improves memory in extremely old mice. To our knowledge, this is the oldest age at which an intervention has improved age-related cognitive decline.
Collapse
Affiliation(s)
- Morgan E Stevenson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Gregor Bieri
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Bakar Aging Research Institute, San Francisco, CA 94143, USA
| | - Rachel Kaletsky
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jonathan St Ange
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - L Remesal
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Bakar Aging Research Institute, San Francisco, CA 94143, USA
| | - Karishma J B Pratt
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Bakar Aging Research Institute, San Francisco, CA 94143, USA
| | - Shiyi Zhou
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yifei Weng
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Coleen T Murphy
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Saul A Villeda
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Bakar Aging Research Institute, San Francisco, CA 94143, USA.
| |
Collapse
|
16
|
Sakai N, Sun P, Kim B, Emmons SW. Function of cell adhesion molecules in differentiation of ray sensory neurons in C. elegans. G3 (BETHESDA, MD.) 2023; 13:jkac338. [PMID: 36573343 PMCID: PMC9997551 DOI: 10.1093/g3journal/jkac338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/29/2022] [Indexed: 12/28/2022]
Abstract
For proper functioning of the nervous system, it is crucial that neurons find their appropriate partners and build the correct neural connection patterns. Although cell adhesion molecules (CAMs) have been studied for many years as essential players in neural connections, we have yet to unravel the code by which CAMs encode synaptic specificity. We analyzed the effects of mutations in CAM genes on the morphology and synapses of a set of sensory neurons in the Caenorhabditis elegans male tail. B-type ray sensory neurons express 10 genes encoding CAMs. We examined the effect on axon trajectory and localization of pre-synaptic components in viable mutants of nine of these. We found axon trajectory defects in mutants of UNC-40/DCC, SAX-3/ROBO, and FMI-1/Flamingo/Celsr1. None of the mutations caused loss of pre-synaptic components in axons, and in several the level even appeared to increase, suggesting possible accumulation of pre-synapses. B-type sensory neurons fasciculate with a second type of ray sensory neuron, the A-type, in axon commissures. We found a CAM expressed in A-type functions additively with a CAM expressed in B-type in axon guidance, and lack of a CAM expressed in B-type affected A-type axon guidance. Overall, single and multiple mutants of CAM genes had limited effects on ray neuron trajectories and accumulation of synaptic components.
Collapse
Affiliation(s)
- Naoko Sakai
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 162-8666, USA
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, Shinjyuku, Tokyo 10326, Japan
| | - Peter Sun
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 162-8666, USA
| | - Byunghyuk Kim
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 162-8666, USA
- Department of Life Science, Dongguk University, Bronx 10461, South Korea
| | - Scott W Emmons
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 162-8666, USA
| |
Collapse
|
17
|
Mizumoto K, Jin Y, Bessereau JL. Synaptogenesis: unmasking molecular mechanisms using Caenorhabditis elegans. Genetics 2023; 223:iyac176. [PMID: 36630525 PMCID: PMC9910414 DOI: 10.1093/genetics/iyac176] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/22/2022] [Indexed: 01/13/2023] Open
Abstract
The nematode Caenorhabditis elegans is a research model organism particularly suited to the mechanistic understanding of synapse genesis in the nervous system. Armed with powerful genetics, knowledge of complete connectomics, and modern genomics, studies using C. elegans have unveiled multiple key regulators in the formation of a functional synapse. Importantly, many signaling networks display remarkable conservation throughout animals, underscoring the contributions of C. elegans research to advance the understanding of our brain. In this chapter, we will review up-to-date information of the contribution of C. elegans to the understanding of chemical synapses, from structure to molecules and to synaptic remodeling.
Collapse
Affiliation(s)
- Kota Mizumoto
- Department of Zoology, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Yishi Jin
- Department of Neurobiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Jean-Louis Bessereau
- Univ Lyon, University Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U 1314, Melis, 69008 Lyon, France
| |
Collapse
|
18
|
Hendi A, Niu LG, Snow AW, Ikegami R, Wang ZW, Mizumoto K. Channel-independent function of UNC-9/Innexin in spatial arrangement of GABAergic synapses in C. elegans. eLife 2022; 11:80555. [PMID: 36378164 PMCID: PMC9665852 DOI: 10.7554/elife.80555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
Precise synaptic connection of neurons with their targets is essential for the proper functioning of the nervous system. A plethora of signaling pathways act in concert to mediate the precise spatial arrangement of synaptic connections. Here we show a novel role for a gap junction protein in controlling tiled synaptic arrangement in the GABAergic motor neurons in Caenorhabditis elegans, in which their axons and synapses overlap minimally with their neighboring neurons within the same class. We found that while EGL-20/Wnt controls axonal tiling, their presynaptic tiling is mediated by a gap junction protein UNC-9/Innexin, that is localized at the presynaptic tiling border between neighboring dorsal D-type GABAergic motor neurons. Strikingly, the gap junction channel activity of UNC-9 is dispensable for its function in controlling tiled presynaptic patterning. While gap junctions are crucial for the proper functioning of the nervous system as channels, our finding uncovered the novel channel-independent role of UNC-9 in synapse patterning.
Collapse
Affiliation(s)
- Ardalan Hendi
- Department of Zoology, University of British Columbia
- Life Sciences Institute, University of British Columbia
| | - Long-Gang Niu
- Department of Neuroscience, University of Connecticut Health Center
| | - Andrew William Snow
- Graduate Program in Cell and Developmental Biology, University of British Columbia
| | | | - Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut Health Center
| | - Kota Mizumoto
- Department of Zoology, University of British Columbia
- Life Sciences Institute, University of British Columbia
- Graduate Program in Cell and Developmental Biology, University of British Columbia
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia
| |
Collapse
|
19
|
Post-embryonic remodeling of the C. elegans motor circuit. Curr Biol 2022; 32:4645-4659.e3. [DOI: 10.1016/j.cub.2022.09.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/28/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
|
20
|
Balseiro-Gómez S, Park J, Yue Y, Ding C, Shao L, Ҫetinkaya S, Kuzoian C, Hammarlund M, Verhey KJ, Yogev S. Neurexin and frizzled intercept axonal transport at microtubule minus ends to control synapse formation. Dev Cell 2022; 57:1802-1816.e4. [PMID: 35809561 PMCID: PMC9378695 DOI: 10.1016/j.devcel.2022.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 02/01/2022] [Accepted: 06/13/2022] [Indexed: 01/29/2023]
Abstract
Synapse formation is locally determined by transmembrane proteins, yet synaptic material is synthesized remotely and undergoes processive transport in axons. How local synaptogenic signals intercept synaptic cargo in transport to promote its delivery and synapse formation is unknown. We found that the control of synaptic cargo delivery at microtubule (MT) minus ends mediates pro- and anti-synaptogenic activities of presynaptic neurexin and frizzled in C. elegans and identified the atypical kinesin VAB-8/KIF26 as a key molecule in this process. VAB-8/KIF26 levels at synaptic MT minus ends are controlled by frizzled and neurexin; loss of VAB-8 mimics neurexin mutants or frizzled hyperactivation, and its overexpression can rescue synapse loss in these backgrounds. VAB-8/KIF26 is required for the synaptic localization of other minus-end proteins and promotes the pausing of retrograde transport to allow delivery to synapses. Consistently, reducing retrograde transport rescues synapse loss in vab-8 and neurexin mutants. These results uncover a mechanistic link between synaptogenic signaling and axonal transport.
Collapse
Affiliation(s)
- Santiago Balseiro-Gómez
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Junhyun Park
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Yang Yue
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chen Ding
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Lin Shao
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Selim Ҫetinkaya
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Caroline Kuzoian
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Marc Hammarlund
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shaul Yogev
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA.
| |
Collapse
|
21
|
Drongitis D, Caterino M, Verrillo L, Santonicola P, Costanzo M, Poeta L, Attianese B, Barra A, Terrone G, Lioi MB, Paladino S, Di Schiavi E, Costa V, Ruoppolo M, Miano MG. Deregulation of microtubule organization and RNA metabolism in Arx models for lissencephaly and developmental epileptic encephalopathy. Hum Mol Genet 2022; 31:1884-1908. [PMID: 35094084 PMCID: PMC9169459 DOI: 10.1093/hmg/ddac028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 11/18/2022] Open
Abstract
X-linked lissencephaly with abnormal genitalia (XLAG) and developmental epileptic encephalopathy-1 (DEE1) are caused by mutations in the Aristaless-related homeobox (ARX) gene, which encodes a transcription factor responsible for brain development. It has been unknown whether the phenotypically diverse XLAG and DEE1 phenotypes may converge on shared pathways. To address this question, a label-free quantitative proteomic approach was applied to the neonatal brain of Arx knockout (ArxKO/Y) and knock-in polyalanine (Arx(GCG)7/Y) mice that are respectively models for XLAG and DEE1. Gene ontology and protein-protein interaction analysis revealed that cytoskeleton, protein synthesis and splicing control are deregulated in an allelic-dependent manner. Decreased α-tubulin content was observed both in Arx mice and Arx/alr-1(KO) Caenorhabditis elegans ,and a disorganized neurite network in murine primary neurons was consistent with an allelic-dependent secondary tubulinopathy. As distinct features of Arx(GCG)7/Y mice, we detected eIF4A2 overexpression and translational suppression in cortex and primary neurons. Allelic-dependent differences were also established in alternative splicing (AS) regulated by PUF60 and SAM68. Abnormal AS repertoires in Neurexin-1, a gene encoding multiple pre-synaptic organizers implicated in synaptic remodelling, were detected in Arx/alr-1(KO) animals and in Arx(GCG)7/Y epileptogenic brain areas and depolarized cortical neurons. Consistent with a conserved role of ARX in modulating AS, we propose that the allelic-dependent secondary synaptopathy results from an aberrant Neurexin-1 repertoire. Overall, our data reveal alterations mirroring the overlapping and variant effects caused by null and polyalanine expanded mutations in ARX. The identification of these effects can aid in the design of pathway-guided therapy for ARX endophenotypes and NDDs with overlapping comorbidities.
Collapse
Affiliation(s)
- Denise Drongitis
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
- CEINGE - Biotecnologie Avanzate s.c.a.r.l., 80145 Naples, Italy
| | - Lucia Verrillo
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Pamela Santonicola
- Institute of Biosciences and BioResources, National Research Council of Italy, 80131, Naples, Italy
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
- CEINGE - Biotecnologie Avanzate s.c.a.r.l., 80145 Naples, Italy
| | - Loredana Poeta
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Benedetta Attianese
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Adriano Barra
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Gaetano Terrone
- Department of Translational Medicine, Child Neurology Unit, University of Naples “Federico II”, 80131 Naples, Italy
| | | | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Elia Di Schiavi
- Institute of Biosciences and BioResources, National Research Council of Italy, 80131, Naples, Italy
| | - Valerio Costa
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
- CEINGE - Biotecnologie Avanzate s.c.a.r.l., 80145 Naples, Italy
| | - Maria Giuseppina Miano
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| |
Collapse
|
22
|
Rapti G. Open Frontiers in Neural Cell Type Investigations; Lessons From Caenorhabditis elegans and Beyond, Toward a Multimodal Integration. Front Neurosci 2022; 15:787753. [PMID: 35321480 PMCID: PMC8934944 DOI: 10.3389/fnins.2021.787753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Nervous system cells, the building blocks of circuits, have been studied with ever-progressing resolution, yet neural circuits appear still resistant to schemes of reductionist classification. Due to their sheer numbers, complexity and diversity, their systematic study requires concrete classifications that can serve reduced dimensionality, reproducibility, and information integration. Conventional hierarchical schemes transformed through the history of neuroscience by prioritizing criteria of morphology, (electro)physiological activity, molecular content, and circuit function, influenced by prevailing methodologies of the time. Since the molecular biology revolution and the recent advents in transcriptomics, molecular profiling gains ground toward the classification of neurons and glial cell types. Yet, transcriptomics entails technical challenges and more importantly uncovers unforeseen spatiotemporal heterogeneity, in complex and simpler nervous systems. Cells change states dynamically in space and time, in response to stimuli or throughout their developmental trajectory. Mapping cell type and state heterogeneity uncovers uncharted terrains in neurons and especially in glial cell biology, that remains understudied in many aspects. Examining neurons and glial cells from the perspectives of molecular neuroscience, physiology, development and evolution highlights the advantage of multifaceted classification schemes. Among the amalgam of models contributing to neuroscience research, Caenorhabditis elegans combines nervous system anatomy, lineage, connectivity and molecular content, all mapped at single-cell resolution, and can provide valuable insights for the workflow and challenges of the multimodal integration of cell type features. This review reflects on concepts and practices of neuron and glial cells classification and how research, in C. elegans and beyond, guides nervous system experimentation through integrated multidimensional schemes. It highlights underlying principles, emerging themes, and open frontiers in the study of nervous system development, regulatory logic and evolution. It proposes unified platforms to allow integrated annotation of large-scale datasets, gene-function studies, published or unpublished findings and community feedback. Neuroscience is moving fast toward interdisciplinary, high-throughput approaches for combined mapping of the morphology, physiology, connectivity, molecular function, and the integration of information in multifaceted schemes. A closer look in mapped neural circuits and understudied terrains offers insights for the best implementation of these approaches.
Collapse
|
23
|
Sneve MA, Piatkevich KD. Towards a Comprehensive Optical Connectome at Single Synapse Resolution via Expansion Microscopy. Front Synaptic Neurosci 2022; 13:754814. [PMID: 35115916 PMCID: PMC8803729 DOI: 10.3389/fnsyn.2021.754814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/17/2021] [Indexed: 12/04/2022] Open
Abstract
Mapping and determining the molecular identity of individual synapses is a crucial step towards the comprehensive reconstruction of neuronal circuits. Throughout the history of neuroscience, microscopy has been a key technology for mapping brain circuits. However, subdiffraction size and high density of synapses in brain tissue make this process extremely challenging. Electron microscopy (EM), with its nanoscale resolution, offers one approach to this challenge yet comes with many practical limitations, and to date has only been used in very small samples such as C. elegans, tadpole larvae, fruit fly brain, or very small pieces of mammalian brain tissue. Moreover, EM datasets require tedious data tracing. Light microscopy in combination with tissue expansion via physical magnification-known as expansion microscopy (ExM)-offers an alternative approach to this problem. ExM enables nanoscale imaging of large biological samples, which in combination with multicolor neuronal and synaptic labeling offers the unprecedented capability to trace and map entire neuronal circuits in fully automated mode. Recent advances in new methods for synaptic staining as well as new types of optical molecular probes with superior stability, specificity, and brightness provide new modalities for studying brain circuits. Here we review advanced methods and molecular probes for fluorescence staining of the synapses in the brain that are compatible with currently available expansion microscopy techniques. In particular, we will describe genetically encoded probes for synaptic labeling in mice, zebrafish, Drosophila fruit flies, and C. elegans, which enable the visualization of post-synaptic scaffolds and receptors, presynaptic terminals and vesicles, and even a snapshot of the synaptic activity itself. We will address current methods for applying these probes in ExM experiments, as well as appropriate vectors for the delivery of these molecular constructs. In addition, we offer experimental considerations and limitations for using each of these tools as well as our perspective on emerging tools.
Collapse
Affiliation(s)
- Madison A. Sneve
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, United States
| | - Kiryl D. Piatkevich
- School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| |
Collapse
|
24
|
Oliver D, Ramachandran S, Philbrook A, Lambert CM, Nguyen KCQ, Hall DH, Francis MM. Kinesin-3 mediated axonal delivery of presynaptic neurexin stabilizes dendritic spines and postsynaptic components. PLoS Genet 2022; 18:e1010016. [PMID: 35089924 PMCID: PMC8827443 DOI: 10.1371/journal.pgen.1010016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/09/2022] [Accepted: 01/03/2022] [Indexed: 12/02/2022] Open
Abstract
The functional properties of neural circuits are defined by the patterns of synaptic connections between their partnering neurons, but the mechanisms that stabilize circuit connectivity are poorly understood. We systemically examined this question at synapses onto newly characterized dendritic spines of C. elegans GABAergic motor neurons. We show that the presynaptic adhesion protein neurexin/NRX-1 is required for stabilization of postsynaptic structure. We find that early postsynaptic developmental events proceed without a strict requirement for synaptic activity and are not disrupted by deletion of neurexin/nrx-1. However, in the absence of presynaptic NRX-1, dendritic spines and receptor clusters become destabilized and collapse prior to adulthood. We demonstrate that NRX-1 delivery to presynaptic terminals is dependent on kinesin-3/UNC-104 and show that ongoing UNC-104 function is required for postsynaptic maintenance in mature animals. By defining the dynamics and temporal order of synapse formation and maintenance events in vivo, we describe a mechanism for stabilizing mature circuit connectivity through neurexin-based adhesion.
Collapse
Affiliation(s)
- Devyn Oliver
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Shankar Ramachandran
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Alison Philbrook
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Christopher M. Lambert
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Ken C. Q. Nguyen
- Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, United States of America
| | - David H. Hall
- Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Michael M. Francis
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
25
|
Cuentas-Condori A, Miller DM. Imaging Dendritic Spines in Caenorhabditis elegans. J Vis Exp 2021:10.3791/62676. [PMID: 34633371 PMCID: PMC11296318 DOI: 10.3791/62676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Dendritic spines are specialized sites of synaptic innervation modulated by activity and serve as substrates for learning and memory. Recently, dendritic spines have been described for DD GABAergic neurons as the input sites from presynaptic cholinergic neurons in the motor circuit of Caenorhabditis elegans. This synaptic circuit can now serve as a powerful new in vivo model of spine morphogenesis and function that exploits the facile genetics and ready accessibility of C. elegans to live-cell imaging. This protocol describes experimental strategies for assessing DD spine structure and function. In this approach, a super-resolution imaging strategy is used to visualize the intricate shapes of actin-rich dendritic spines. To evaluate the DD spine function, the light-activated opsin, Chrimson, stimulates the presynaptic cholinergic neurons, and the calcium indicator, GCaMP, reports the evoked calcium transients in postsynaptic DD spines. Together, these methods comprise powerful approaches for identifying genetic determinants of dendritic spines in C. elegans that could also direct spine morphogenesis and function in the brain.
Collapse
Affiliation(s)
| | - D M Miller
- Department of Cell and Developmental Biology, Vanderbilt University; Program of Neuroscience, Vanderbilt University;
| |
Collapse
|
26
|
Connectomes across development reveal principles of brain maturation. Nature 2021; 596:257-261. [PMID: 34349261 DOI: 10.1038/s41586-021-03778-8] [Citation(s) in RCA: 218] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/29/2021] [Indexed: 01/23/2023]
Abstract
An animal's nervous system changes as its body grows from birth to adulthood and its behaviours mature1-8. The form and extent of circuit remodelling across the connectome is unknown3,9-15. Here we used serial-section electron microscopy to reconstruct the full brain of eight isogenic Caenorhabditis elegans individuals across postnatal stages to investigate how it changes with age. The overall geometry of the brain is preserved from birth to adulthood, but substantial changes in chemical synaptic connectivity emerge on this consistent scaffold. Comparing connectomes between individuals reveals substantial differences in connectivity that make each brain partly unique. Comparing connectomes across maturation reveals consistent wiring changes between different neurons. These changes alter the strength of existing connections and create new connections. Collective changes in the network alter information processing. During development, the central decision-making circuitry is maintained, whereas sensory and motor pathways substantially remodel. With age, the brain becomes progressively more feedforward and discernibly modular. Thus developmental connectomics reveals principles that underlie brain maturation.
Collapse
|
27
|
Rapti G. A perspective on C. elegans neurodevelopment: from early visionaries to a booming neuroscience research. J Neurogenet 2021; 34:259-272. [PMID: 33446023 DOI: 10.1080/01677063.2020.1837799] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The formation of the nervous system and its striking complexity is a remarkable feat of development. C. elegans served as a unique model to dissect the molecular events in neurodevelopment, from its early visionaries to the current booming neuroscience community. Soon after being introduced as a model, C. elegans was mapped at the level of genes, cells, and synapses, providing the first metazoan with a complete cell lineage, sequenced genome, and connectome. Here, I summarize mechanisms underlying C. elegans neurodevelopment, from the generation and diversification of neural components to their navigation and connectivity. I point out recent noteworthy findings in the fields of glia biology, sex dimorphism and plasticity in neurodevelopment, highlighting how current research connects back to the pioneering studies by Brenner, Sulston and colleagues. Multifaceted investigations in model organisms, connecting genes to cell function and behavior, expand our mechanistic understanding of neurodevelopment while allowing us to formulate emerging questions for future discoveries.
Collapse
Affiliation(s)
- Georgia Rapti
- European Molecular Biology Laboratory, Unit of Developmental Biology, Heidelberg, Germany
| |
Collapse
|
28
|
Emmons SW, Yemini E, Zimmer M. Methods for analyzing neuronal structure and activity in Caenorhabditis elegans. Genetics 2021; 218:6303616. [PMID: 34151952 DOI: 10.1093/genetics/iyab072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/20/2021] [Indexed: 11/12/2022] Open
Abstract
The model research animal Caenorhabditis elegans has unique properties making it particularly advantageous for studies of the nervous system. The nervous system is composed of a stereotyped complement of neurons connected in a consistent manner. Here, we describe methods for studying nervous system structure and function. The transparency of the animal makes it possible to visualize and identify neurons in living animals with fluorescent probes. These methods have been recently enhanced for the efficient use of neuron-specific reporter genes. Because of its simple structure, for a number of years, C. elegans has been at the forefront of connectomic studies defining synaptic connectivity by electron microscopy. This field is burgeoning with new, more powerful techniques, and recommended up-to-date methods are here described that encourage the possibility of new work in C. elegans. Fluorescent probes for single synapses and synaptic connections have allowed verification of the EM reconstructions and for experimental approaches to synapse formation. Advances in microscopy and in fluorescent reporters sensitive to Ca2+ levels have opened the way to observing activity within single neurons across the entire nervous system.
Collapse
Affiliation(s)
- Scott W Emmons
- Department of Genetics and Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 1041, USA
| | - Eviatar Yemini
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| | - Manuel Zimmer
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1090, Austria and.,Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna 1030, Austria
| |
Collapse
|
29
|
Rawsthorne H, Calahorro F, Holden-Dye L, O’ Connor V, Dillon J. Investigating autism associated genes in C. elegans reveals candidates with a role in social behaviour. PLoS One 2021; 16:e0243121. [PMID: 34043629 PMCID: PMC8158995 DOI: 10.1371/journal.pone.0243121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/29/2021] [Indexed: 11/18/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterised by a triad of behavioural impairments and includes disruption in social behaviour. ASD has a clear genetic underpinning and hundreds of genes are implicated in its aetiology. However, how single penetrant genes disrupt activity of neural circuits which lead to affected behaviours is only beginning to be understood and less is known about how low penetrant genes interact to disrupt emergent behaviours. Investigations are well served by experimental approaches that allow tractable investigation of the underpinning genetic basis of circuits that control behaviours that operate in the biological domains that are neuro-atypical in autism. The model organism C. elegans provides an experimental platform to investigate the effect of genetic mutations on behavioural outputs including those that impact social biology. Here we use progeny-derived social cues that modulate C. elegans food leaving to assay genetic determinants of social behaviour. We used the SAFRI Gene database to identify C. elegans orthologues of human ASD associated genes. We identified a number of mutants that displayed selective deficits in response to progeny. The genetic determinants of this complex social behaviour highlight the important contribution of synaptopathy and implicates genes within cell signalling, epigenetics and phospholipid metabolism functional domains. The approach overlaps with a growing number of studies that investigate potential molecular determinants of autism in C. elegans. However, our use of a complex, sensory integrative, emergent behaviour provides routes to enrich new or underexplored biology with the identification of novel candidate genes with a definable role in social behaviour.
Collapse
Affiliation(s)
- Helena Rawsthorne
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - Fernando Calahorro
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - Lindy Holden-Dye
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - Vincent O’ Connor
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - James Dillon
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
- * E-mail:
| |
Collapse
|
30
|
Qian KY, Zeng WX, Hao Y, Zeng XT, Liu H, Li L, Chen L, Tian FM, Chang C, Hall Q, Song CX, Gao S, Hu Z, Kaplan JM, Li Q, Tong XJ. Male pheromones modulate synaptic transmission at the C. elegans neuromuscular junction in a sexually dimorphic manner. eLife 2021; 10:e67170. [PMID: 33787493 PMCID: PMC8051947 DOI: 10.7554/elife.67170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/30/2021] [Indexed: 12/24/2022] Open
Abstract
The development of functional synapses in the nervous system is important for animal physiology and behaviors, and its disturbance has been linked with many neurodevelopmental disorders. The synaptic transmission efficacy can be modulated by the environment to accommodate external changes, which is crucial for animal reproduction and survival. However, the underlying plasticity of synaptic transmission remains poorly understood. Here we show that in Caenorhabditis elegans, the male environment increases the hermaphrodite cholinergic transmission at the neuromuscular junction (NMJ), which alters hermaphrodites' locomotion velocity and mating efficiency. We identify that the male-specific pheromones mediate this synaptic transmission modulation effect in a developmental stage-dependent manner. Dissection of the sensory circuits reveals that the AWB chemosensory neurons sense those male pheromones and further transduce the information to NMJ using cGMP signaling. Exposure of hermaphrodites to the male pheromones specifically increases the accumulation of presynaptic CaV2 calcium channels and clustering of postsynaptic acetylcholine receptors at cholinergic synapses of NMJ, which potentiates cholinergic synaptic transmission. Thus, our study demonstrates a circuit mechanism for synaptic modulation and behavioral flexibility by sexual dimorphic pheromones.
Collapse
Affiliation(s)
- Kang-Ying Qian
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghaiChina
| | - Wan-Xin Zeng
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghaiChina
| | - Yue Hao
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghaiChina
| | - Xian-Ting Zeng
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
| | - Haowen Liu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of QueenslandBrisbaneAustralia
| | - Lei Li
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of QueenslandBrisbaneAustralia
| | - Lili Chen
- College of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
| | - Fu-min Tian
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Cindy Chang
- Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Qi Hall
- Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Chun-Xue Song
- Center for Brain Science, Shanghai Children's Medical CenterShanghaiChina
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shangbang Gao
- College of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
| | - Zhitao Hu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of QueenslandBrisbaneAustralia
| | - Joshua M Kaplan
- Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Qian Li
- Center for Brain Science, Shanghai Children's Medical CenterShanghaiChina
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Research Center for Brain Science and Brain-Inspired IntelligenceShanghaiChina
| | - Xia-Jing Tong
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
| |
Collapse
|
31
|
Abstract
The function of neuronal circuits relies on the properties of individual neuronal cells and their synapses. We propose that a substantial degree of synapse formation and function is instructed by molecular codes resulting from transcriptional programmes. Recent studies on the Neurexin protein family and its ligands provide fundamental insight into how synapses are assembled and remodelled, how synaptic properties are specified and how single gene mutations associated with neurodevelopmental and psychiatric disorders might modify the operation of neuronal circuits and behaviour. In this Review, we first summarize insights into Neurexin function obtained from various model organisms. We then discuss the mechanisms and logic of the cell type-specific regulation of Neurexin isoforms, in particular at the level of alternative mRNA splicing. Finally, we propose a conceptual framework for how combinations of synaptic protein isoforms act as 'senders' and 'readers' to instruct synapse formation and the acquisition of cell type-specific and synapse-specific functional properties.
Collapse
|
32
|
Regulation of actin dynamics in dendritic spines: Nanostructure, molecular mobility, and signaling mechanisms. Mol Cell Neurosci 2020; 109:103564. [DOI: 10.1016/j.mcn.2020.103564] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/04/2020] [Indexed: 12/16/2022] Open
|
33
|
GABAergic motor neurons bias locomotor decision-making in C. elegans. Nat Commun 2020; 11:5076. [PMID: 33033264 PMCID: PMC7544903 DOI: 10.1038/s41467-020-18893-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 09/17/2020] [Indexed: 12/18/2022] Open
Abstract
Proper threat-reward decision-making is critical to animal survival. Emerging evidence indicates that the motor system may participate in decision-making but the neural circuit and molecular bases for these functions are little known. We found in C. elegans that GABAergic motor neurons (D-MNs) bias toward the reward behavior in threat-reward decision-making by retrogradely inhibiting a pair of premotor command interneurons, AVA, that control cholinergic motor neurons in the avoidance neural circuit. This function of D-MNs is mediated by a specific ionotropic GABA receptor (UNC-49) in AVA, and depends on electrical coupling between the two AVA interneurons. Our results suggest that AVA are hub neurons where sensory inputs from threat and reward sensory modalities and motor information from D-MNs are integrated. This study demonstrates at single-neuron resolution how motor neurons may help shape threat-reward choice behaviors through interacting with other neurons.
Collapse
|
34
|
Wright EAP, Goltsev AV. Statistical analysis of unidirectional and reciprocal chemical connections in the C. elegans connectome. Eur J Neurosci 2020; 52:4525-4535. [PMID: 33022789 DOI: 10.1111/ejn.14988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 11/29/2022]
Abstract
We analyze unidirectional and reciprocally connected pairs of neurons in the chemical connectomes of the male and hermaphrodite Caenorhabditis elegans, using recently published data. Our analysis reveals that reciprocal connections provide communication between most neurons with chemical synapses, and comprise on average more synapses than both unidirectional connections and the entire connectome. We further reveal that the C. elegans connectome is wired so that afferent connections onto neurons with large numbers of presynaptic neighbors (in-degree) comprise an above-average number of synapses (synaptic multiplicity). Notably, the larger the in-degree of a neuron the larger the synaptic multiplicity of its afferent connections. Finally, we show that the male forms two times fewer reciprocal connections between sex-shared neurons than the hermaphrodite, but a large number of reciprocal connections with male-specific neurons. These observations provide evidence for Hebbian structural plasticity in the C. elegans.
Collapse
Affiliation(s)
- Edgar A P Wright
- Department of Physics & I3N, University of Aveiro, Aveiro, Portugal
| | - Alexander V Goltsev
- Department of Physics & I3N, University of Aveiro, Aveiro, Portugal.,A.F. Ioffe Physico-Technical Institute, St. Petersburg, Russia
| |
Collapse
|
35
|
Cuentas-Condori A, Miller Rd DM. Synaptic remodeling, lessons from C. elegans. J Neurogenet 2020; 34:307-322. [PMID: 32808848 PMCID: PMC7855814 DOI: 10.1080/01677063.2020.1802725] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/07/2020] [Indexed: 02/08/2023]
Abstract
Sydney Brenner's choice of Caenorhabditis elegans as a model organism for understanding the nervous system has accelerated discoveries of gene function in neural circuit development and behavior. In this review, we discuss a striking example of synaptic remodeling in the C. elegans motor circuit in which DD class motor neurons effectively reverse polarity as presynaptic and postsynaptic domains at opposite ends of the DD neurite switch locations. Originally revealed by EM reconstruction conducted over 40 years ago, DD remodeling has since been investigated by live cell imaging methods that exploit the power of C. elegans genetics to reveal key effectors of synaptic plasticity. Although synapses are also extensively rewired in developing mammalian circuits, the underlying remodeling mechanisms are largely unknown. Here, we highlight the possibility that studies in C. elegans can reveal pathways that orchestrate synaptic remodeling in more complex organisms. Specifically, we describe (1) transcription factors that regulate DD remodeling, (2) the cellular and molecular cascades that drive synaptic remodeling and (3) examples of circuit modifications in vertebrate neurons that share some similarities with synaptic remodeling in C. elegans DD neurons.
Collapse
|
36
|
Hart MP. Stress-Induced Neuron Remodeling Reveals Differential Interplay Between Neurexin and Environmental Factors in Caenorhabditis elegans. Genetics 2019; 213:1415-1430. [PMID: 31558583 PMCID: PMC6893388 DOI: 10.1534/genetics.119.302415] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 09/24/2019] [Indexed: 01/30/2023] Open
Abstract
Neurexins are neuronal adhesion molecules important for synapse maturation, function, and plasticity. Neurexins have been genetically associated with neurodevelopmental disorders, including autism spectrum disorders (ASDs) and schizophrenia, but can have variable penetrance and phenotypic severity. Heritability studies indicate that a significant percentage of risk for ASD and schizophrenia includes environmental factors, highlighting a poorly understood interplay between genetic and environmental factors. The singular Caenorhabditis elegans ortholog of human neurexins, nrx-1, controls experience-dependent morphologic remodeling of a GABAergic neuron in adult males. Here, I show remodeling of this neuron's morphology in response to each of three environmental stressors (nutritional, heat, or genotoxic stress) when applied specifically during sexual maturation. Increased outgrowth of axon-like neurites following adolescent stress is the result of an altered morphologic plasticity in adulthood. Despite remodeling being induced by each of the three stressors, only nutritional stress affects downstream behavior and is dependent on neurexin/nrx-1 Heat or genotoxic stress in adolescence does not alter behavior despite inducing GABAergic neuron remodeling, in a neurexin/nrx-1 independent fashion. Starvation-induced remodeling is also dependent on neuroligin/nlg-1, the canonical binding partner for neurexin/nrx-1, and the transcription factors FOXO/daf-16 and HSF1/hsf-1hsf-1 and daf-16, in addition, each have unique roles in remodeling induced by heat and UV stress. The differential molecular mechanisms underlying GABAergic neuron remodeling in response to different stressors, and the disparate effects of stressors on downstream behavior, are a paradigm for understanding how genetics, environmental exposures, and plasticity may contribute to brain dysfunction in ASDs and schizophrenia.
Collapse
Affiliation(s)
- Michael P Hart
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
37
|
Cuentas-Condori A, Mulcahy B, He S, Palumbos S, Zhen M, Miller DM. C. elegans neurons have functional dendritic spines. eLife 2019; 8:e47918. [PMID: 31584430 PMCID: PMC6802951 DOI: 10.7554/elife.47918] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022] Open
Abstract
Dendritic spines are specialized postsynaptic structures that transduce presynaptic signals, are regulated by neural activity and correlated with learning and memory. Most studies of spine function have focused on the mammalian nervous system. However, spine-like protrusions have been reported in C. elegans (Philbrook et al., 2018), suggesting that the experimental advantages of smaller model organisms could be exploited to study the biology of dendritic spines. Here, we used super-resolution microscopy, electron microscopy, live-cell imaging and genetics to show that C. elegans motor neurons have functional dendritic spines that: (1) are structurally defined by a dynamic actin cytoskeleton; (2) appose presynaptic dense projections; (3) localize ER and ribosomes; (4) display calcium transients triggered by presynaptic activity and propagated by internal Ca++ stores; (5) respond to activity-dependent signals that regulate spine density. These studies provide a solid foundation for a new experimental paradigm that exploits the power of C. elegans genetics and live-cell imaging for fundamental studies of dendritic spine morphogenesis and function.
Collapse
Affiliation(s)
| | - Ben Mulcahy
- Lunenfeld-Tanenbaum Research InstituteUniversity of TorontoTorontoCanada
| | - Siwei He
- Neuroscience ProgramVanderbilt UniversityNashvilleUnited States
| | - Sierra Palumbos
- Neuroscience ProgramVanderbilt UniversityNashvilleUnited States
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research InstituteUniversity of TorontoTorontoCanada
| | - David M Miller
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleUnited States
- Neuroscience ProgramVanderbilt UniversityNashvilleUnited States
| |
Collapse
|
38
|
Huang YC, Pirri JK, Rayes D, Gao S, Mulcahy B, Grant J, Saheki Y, Francis MM, Zhen M, Alkema MJ. Gain-of-function mutations in the UNC-2/CaV2α channel lead to excitation-dominant synaptic transmission in Caenorhabditis elegans. eLife 2019; 8:e45905. [PMID: 31364988 PMCID: PMC6713474 DOI: 10.7554/elife.45905] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/30/2019] [Indexed: 01/17/2023] Open
Abstract
Mutations in pre-synaptic voltage-gated calcium channels can lead to familial hemiplegic migraine type 1 (FHM1). While mammalian studies indicate that the migraine brain is hyperexcitable due to enhanced excitation or reduced inhibition, the molecular and cellular mechanisms underlying this excitatory/inhibitory (E/I) imbalance are poorly understood. We identified a gain-of-function (gf) mutation in the Caenorhabditis elegans CaV2 channel α1 subunit, UNC-2, which leads to increased calcium currents. unc-2(zf35gf) mutants exhibit hyperactivity and seizure-like motor behaviors. Expression of the unc-2 gene with FHM1 substitutions R192Q and S218L leads to hyperactivity similar to that of unc-2(zf35gf) mutants. unc-2(zf35gf) mutants display increased cholinergic and decreased GABAergic transmission. Moreover, increased cholinergic transmission in unc-2(zf35gf) mutants leads to an increase of cholinergic synapses and a TAX-6/calcineurin-dependent reduction of GABA synapses. Our studies reveal mechanisms through which CaV2 gain-of-function mutations disrupt excitation-inhibition balance in the nervous system.
Collapse
Affiliation(s)
- Yung-Chi Huang
- Department of NeurobiologyUniversity of Massachusetts Medical SchoolWorcesterUnited States
| | - Jennifer K Pirri
- Department of NeurobiologyUniversity of Massachusetts Medical SchoolWorcesterUnited States
| | - Diego Rayes
- Department of NeurobiologyUniversity of Massachusetts Medical SchoolWorcesterUnited States
| | - Shangbang Gao
- Lunenfeld-Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
| | - Ben Mulcahy
- Lunenfeld-Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
| | - Jeff Grant
- Department of NeurobiologyUniversity of Massachusetts Medical SchoolWorcesterUnited States
| | - Yasunori Saheki
- Lulu and Anthony Wang Laboratory of Neural Circuits and BehaviorThe Rockefeller UniversityNew YorkUnited States
| | - Michael M Francis
- Department of NeurobiologyUniversity of Massachusetts Medical SchoolWorcesterUnited States
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoCanada
- Department of PhysiologyUniversity of TorontoTorontoCanada
| | - Mark J Alkema
- Department of NeurobiologyUniversity of Massachusetts Medical SchoolWorcesterUnited States
| |
Collapse
|
39
|
Hendi A, Kurashina M, Mizumoto K. Intrinsic and extrinsic mechanisms of synapse formation and specificity in C. elegans. Cell Mol Life Sci 2019; 76:2719-2738. [PMID: 31037336 PMCID: PMC11105629 DOI: 10.1007/s00018-019-03109-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/18/2022]
Abstract
Precise neuronal wiring is critical for the function of the nervous system and is ultimately determined at the level of individual synapses. Neurons integrate various intrinsic and extrinsic cues to form synapses onto their correct targets in a stereotyped manner. In the past decades, the nervous system of nematode (Caenorhabditis elegans) has provided the genetic platform to reveal the genetic and molecular mechanisms of synapse formation and specificity. In this review, we will summarize the recent discoveries in synapse formation and specificity in C. elegans.
Collapse
Affiliation(s)
- Ardalan Hendi
- Department of Zoology, The University of British Columbia, 2406-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Mizuki Kurashina
- Department of Zoology, The University of British Columbia, 2406-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Kota Mizumoto
- Department of Zoology, The University of British Columbia, 2406-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
40
|
He S, Cuentas-Condori A, Miller DM. NATF (Native and Tissue-Specific Fluorescence): A Strategy for Bright, Tissue-Specific GFP Labeling of Native Proteins in Caenorhabditis elegans. Genetics 2019; 212:387-395. [PMID: 30952669 PMCID: PMC6553825 DOI: 10.1534/genetics.119.302063] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/28/2019] [Indexed: 12/15/2022] Open
Abstract
GFP labeling by genome editing can reveal the authentic location of a native protein, but is frequently hampered by weak GFP signals and broad expression across a range of tissues that may obscure cell-specific localization. To overcome these problems, we engineered a Native And Tissue-specific Fluorescence (NATF) strategy that combines genome editing and split-GFP to yield bright, cell-specific protein labeling. We use clustered regularly interspaced short palindromic repeats CRISPR/Cas9 to insert a tandem array of seven copies of the GFP11 β-strand (gfp11x7 ) at the genomic locus of each target protein. The resultant gfp11x7 knock-in strain is then crossed with separate reporter lines that express the complementing split-GFP fragment (gfp1-10) in specific cell types, thus affording tissue-specific labeling of the target protein at its native level. We show that NATF reveals the otherwise undetectable intracellular location of the immunoglobulin protein OIG-1 and demarcates the receptor auxiliary protein LEV-10 at cell-specific synaptic domains in the Caenorhabditis elegans nervous system.
Collapse
Affiliation(s)
- Siwei He
- Program in Neuroscience, Vanderbilt University, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37240
| | - Andrea Cuentas-Condori
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37240
| | - David M Miller
- Program in Neuroscience, Vanderbilt University, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37240
| |
Collapse
|
41
|
Zambonino M, Pereira P. The structure of Neurexin 1α (n1α) and its role as synaptic organizer. BIONATURA 2019. [DOI: 10.21931/rb/2019.04.02.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
α - and b-neurexins (NRXNs) are transmembrane adhesion protein complexes localized in presynaptic membranes into neurons and interact with the postsynaptic neuroligins (NLGNs). Our findings indicate that the neurexin 1α (n1α) is a synaptic organizer that directs postsynaptic development in neurons, evidenced in GABAergic neurons and trials with Knock-out Mice. Also, the interactions between hypervariable surfaces of n1α and ligands (neurexophilin, a-dystroglycan, and GABAA) promotes a proper protein-binding recognition, and consequently, a better synaptic adhesion.
There is a direct relationship between mental disorders and the n1α assemblage because NRXN1 gene encodes for n1α proteins which are involved in the transmission of information into the brain. For this reason, damage in this complex-protein or some neurexin gene variations causes pathological abnormalities and neuropsychiatric diseases such as schizophrenia, autism spectrum disorders, and intellectual disabilities.
Collapse
Affiliation(s)
- Marjorie Zambonino
- Universidad de Investigación de Tecnología Experimental Yachay Tech 1,2School of Biological and Applied - Biomedical Engineering Department
| | - Pamela Pereira
- Universidad de Investigación de Tecnología Experimental Yachay Tech 1,2School of Biological and Applied - Biomedical Engineering Department
| |
Collapse
|
42
|
Kurshan PT, Shen K. Synaptogenic pathways. Curr Opin Neurobiol 2019; 57:156-162. [PMID: 30986749 DOI: 10.1016/j.conb.2019.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 11/30/2022]
Abstract
During synaptogenesis, presynaptic and postsynaptic assembly are driven by diverse molecular mechanisms, mediated by intrinsic as well as extrinsic factors. How these processes are initiated and coordinated are open questions. Synapse specificity, or synaptic partner selection, is widely understood to be determined by the trans-synaptic binding of cell adhesion molecules. However, in vivo evidence that cell adhesion molecules subsequently function to initiate synapse assembly, as initially proposed, is lacking. Here, we present a summary of our current understanding of synaptogenic pathways that mediate presynaptic and postsynaptic assembly and the coordination of these processes.
Collapse
Affiliation(s)
| | - Kang Shen
- Stanford University, Department of Biology, United States; Howard Hughes Medical Institute, United States
| |
Collapse
|
43
|
Neuronal identity control by terminal selectors in worms, flies, and chordates. Curr Opin Neurobiol 2019; 56:97-105. [PMID: 30665084 DOI: 10.1016/j.conb.2018.12.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/10/2018] [Accepted: 12/15/2018] [Indexed: 11/21/2022]
Abstract
How do post-mitotic neurons acquire and maintain their terminal identity? Genetic mutant analysis in the nematode Caenorhabditis elegans has revealed common molecular programs that control neuronal identity. Neuron type-specific combinations of transcription factors, called terminal selectors, act as master regulatory factors to initiate and maintain terminal identity programs through direct regulation of neuron type-specific effector genes. We will provide here an update on recent studies that solidify the terminal selector concept in worms, flies and chordates. We will also describe how the terminal selector concept has been expanded by recent work in C. elegans to explain neuronal subtype diversification and plasticity of neuronal identity.
Collapse
|
44
|
Han KA, Um JW, Ko J. Intracellular protein complexes involved in synapse assembly in presynaptic neurons. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 116:347-373. [PMID: 31036296 DOI: 10.1016/bs.apcsb.2018.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The presynaptic active zone, composed of evolutionarily conserved protein complexes, is a specialized area that serves to orchestrate precise and efficient neurotransmitter release by organizing various presynaptic proteins involved in mediating docking and priming of synaptic vesicles, recruiting voltage-gated calcium channels, and modulating presynaptic nerve terminals with aligned postsynaptic structures. Among membrane proteins localized to active zone, presynaptic neurexins and LAR-RPTPs (leukocyte common antigen-related receptor tyrosine phosphatase) have emerged as hubs that orchestrate both shared and distinct extracellular synaptic adhesion pathways. In this chapter, we discuss intracellular signaling cascades involved in recruiting various intracellular proteins at both excitatory and inhibitory synaptic sites. In particular, we highlight recent studies on key active zone proteins that physically and functionally link these cascades with neurexins and LAR-RPTPs in both vertebrate and invertebrate model systems. These studies allow us to build a general, universal view of how presynaptic active zones operate together with postsynaptic structures in neural circuits.
Collapse
Affiliation(s)
- Kyung Ah Han
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea.
| |
Collapse
|
45
|
Oliver D, Alexander K, Francis MM. Molecular Mechanisms Directing Spine Outgrowth and Synaptic Partner Selection in Caenorhabditis elegans. J Exp Neurosci 2018; 12:1179069518816088. [PMID: 30546264 PMCID: PMC6287294 DOI: 10.1177/1179069518816088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 12/20/2022] Open
Abstract
The development of the nervous system requires precise outgrowth, extension, and wiring of both axons and dendrites to generate properly functioning neural circuits. The molecular mechanisms that shape neurite development, in particular dendritic development, remain incompletely understood. Dendrites are often highly branched and coated with actin-filled, thorny protrusions, called dendritic spines, that allow for increased numbers of synaptic contacts with neighboring neurons. Disruptions in dendritic spine development have been implicated in many neurological disorders such as autism, schizophrenia, and Alzheimer’s disease. Although the development of dendritic spines is vital for cognitive function, understanding the mechanisms driving their outgrowth and stabilization in vivo remains a challenge. Our recent work identifies the presence of dendritic spine-like structures in the nematode Caenorhabditis elegans and provides initial insights into mechanisms promoting spine outgrowth in this system. Specifically, we show that neurexin/nrx-1 is a critical molecular component in directing the development of synaptic connections and promoting spine outgrowth. Our investigation provides important insights into the molecular machinery that sculpt synaptic connectivity, and continuing efforts in this system offer the potential for identifying new mechanisms governing both synaptic partner selection and dendritic spine outgrowth.
Collapse
Affiliation(s)
- Devyn Oliver
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Kellianne Alexander
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Michael M Francis
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
46
|
Kurshan PT, Merrill SA, Dong Y, Ding C, Hammarlund M, Bai J, Jorgensen EM, Shen K. γ-Neurexin and Frizzled Mediate Parallel Synapse Assembly Pathways Antagonized by Receptor Endocytosis. Neuron 2018; 100:150-166.e4. [PMID: 30269993 PMCID: PMC6181781 DOI: 10.1016/j.neuron.2018.09.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/30/2018] [Accepted: 09/04/2018] [Indexed: 12/12/2022]
Abstract
Synapse formation defines neuronal connectivity and is thus essential for neuronal circuit assembly. Trans-synaptic interactions of cell adhesion molecules are thought to induce synapse assembly. Here we demonstrate that a recently discovered and conserved short form of neurexin, γ-neurexin, which lacks canonical extracellular domains, is nonetheless sufficient to promote presynaptic assembly in the nematode C. elegans. γ- but not α-neurexin is required for assembling active zone components, recruiting synaptic vesicles, and clustering calcium channels at release sites to promote evoked synaptic transmission. Furthermore, we find that neurexin functions in parallel with the transmembrane receptor Frizzled, as the absence of both proteins leads to an enhanced phenotype-the loss of most synapses. Frizzled's pro-synaptogenic function is independent of its ligand, Wnt. Wnt binding instead eliminates synapses by inducing Frizzled's endocytosis and the downregulation of neurexin. These results reveal how pro- and anti-synaptogenic factors converge to precisely sculpt circuit formation in vivo.
Collapse
Affiliation(s)
- Peri T Kurshan
- Biology Department, Stanford University, Stanford, CA 94305, USA.
| | - Sean A Merrill
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Yongming Dong
- Division of Basic Sciences, Fred Hutchinson Cancer Institute, Seattle, WA 98109, USA
| | - Chen Ding
- Department of Genetics and Neuroscience, Yale University, New Haven, CT 06510, USA
| | - Marc Hammarlund
- Department of Genetics and Neuroscience, Yale University, New Haven, CT 06510, USA
| | - Jihong Bai
- Division of Basic Sciences, Fred Hutchinson Cancer Institute, Seattle, WA 98109, USA
| | - Erik M Jorgensen
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA; Howard Hughes Medical Institute
| | - Kang Shen
- Biology Department, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute
| |
Collapse
|