1
|
Greer EL, Lee SS, Prahlad V. Chromatin and epigenetics in aging biology. Genetics 2025; 230:iyaf055. [PMID: 40202900 DOI: 10.1093/genetics/iyaf055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 02/03/2025] [Indexed: 04/11/2025] Open
Abstract
This book chapter will focus on modifications to chromatin itself, how chromatin modifications are regulated, and how these modifications are deciphered by the cell to impact aging. In this chapter, we will review how chromatin modifications change with age, examine how chromatin-modifying enzymes have been shown to regulate aging and healthspan, discuss how some of these epigenetic changes are triggered and how they can regulate the lifespan of the individual and its naïve descendants, and speculate on future directions for the field.
Collapse
Affiliation(s)
- Eric Lieberman Greer
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Veena Prahlad
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
2
|
Chang HY, McMurry SE, Ma S, Mansour CA, Schwab SMT, Danko CG, Lee SS. Transcriptomic and chromatin accessibility profiling unveils new regulators of heat hormesis in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.642714. [PMID: 40161833 PMCID: PMC11952391 DOI: 10.1101/2025.03.11.642714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Heat hormesis describes the beneficial adaptations from transient exposure to mild heat stress, which enhances stress resilience and promotes healthy aging. It is thought to be the underlying basis of popular wellness practices like sauna therapy. Despite extensive documentation across species, the molecular basis of the long-term protective effects of heat hormesis remain poorly understood. This study bridges that critical gap through a comprehensive multiomic analysis, providing key insights into the transcriptomic and chromatin accessibility landscapes throughout a heat hormesis regimen adapted in C. elegans. We uncover highly dynamic dose-dependent molecular responses to heat stress and reveal that while most initial stress-induced changes revert to baseline, key differences in response to subsequent heat shock challenge are directly linked to physiological benefits. We identify new regulators of heat hormesis, including MARS-1/MARS1, SNPC-4/SNAPc, ELT-2/GATA4, FOS-1/c-Fos, and DPY-27/SMC4, which likely orchestrate gene expression programs that enhance stress resilience through distinct biological pathways. This study advances our understanding of stress resilience mechanisms, points to multiple new avenues of future investigations, and suggests potential strategies for promoting healthy aging through mid-life stress management.
Collapse
Affiliation(s)
- Hsin-Yun Chang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Sarah E. McMurry
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Sicheng Ma
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Christian A. Mansour
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Sophia Marie T. Schwab
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Charles G. Danko
- Department of Biomedical Science, Cornell University, Ithaca, New York, United States of America
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
3
|
Malekpour SA, Kalirad A, Majidian S. Inferring the Selective History of CNVs Using a Maximum Likelihood Model. Genome Biol Evol 2025; 17:evaf050. [PMID: 40100752 PMCID: PMC11950529 DOI: 10.1093/gbe/evaf050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/27/2025] [Accepted: 03/13/2025] [Indexed: 03/20/2025] Open
Abstract
Copy number variations (CNVs)-structural variations generated by deletion and/or duplication that result in a change in DNA dosage-are prevalent in nature. CNVs can drastically affect the phenotype of an organism and have been shown to be both involved in genetic disorders and be used as raw material in adaptive evolution. Unlike single-nucleotide variations, the often large and varied effects of CNVs on phenotype hinders our ability to infer their selective advantage based on the population genetics data. Here, we present a likelihood-based approach, dubbed PoMoCNV (POlymorphism-aware phylogenetic MOdel for CNVs), that estimates the evolutionary parameters such as mutation rates among different copy numbers and relative fitness loss per copy deletion at a genomic locus based on population genetics data. As a case study, we analyze the genomics data of 40 strains of Caenorhabditis elegans, representing four different populations. We take advantage of the data on chromatin accessibility to interpret the mutation rate and fitness of copy numbers, as inferred by PoMoCNV, specifically in open or closed chromatin loci. We further test the reliability of PoMoCNV by estimating the evolutionary parameters of CNVs for mutation-accumulation experiments in C. elegans with varying levels of genetic drift.
Collapse
Affiliation(s)
- Seyed Amir Malekpour
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5746, Iran
| | - Ata Kalirad
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen 72076, Germany
| | - Sina Majidian
- SIB Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
4
|
Purice MD, Lago‐Baldaia I, Fernandes VM, Singhvi A. Molecular profiling of invertebrate glia. Glia 2025; 73:632-656. [PMID: 39415317 PMCID: PMC11784859 DOI: 10.1002/glia.24623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 10/18/2024]
Abstract
Caenorhabditis elegans and Drosophila melanogaster are powerful experimental models for uncovering fundamental tenets of nervous system organization and function. Findings over the last two decades show that molecular and cellular features are broadly conserved between invertebrates and vertebrates, indicating that insights derived from invertebrate models can broadly inform our understanding of glial operating principles across diverse species. In recent years, these model systems have led to exciting discoveries in glial biology and mechanisms of glia-neuron interactions. Here, we summarize studies that have applied current state-of-the-art "-omics" techniques to C. elegans and D. melanogaster glia. Coupled with the remarkable acceleration in the pace of mechanistic studies of glia biology in recent years, these indicate that invertebrate glia also exhibit striking molecular complexity, specificity, and heterogeneity. We provide an overview of these studies and discuss their implications as well as emerging questions where C. elegans and D. melanogaster are well-poised to fill critical knowledge gaps in our understanding of glial biology.
Collapse
Affiliation(s)
- Maria D. Purice
- Division of Basic SciencesFred Hutchinson Cancer CenterSeattleWashingtonUSA
- Department of Biological StructureSchool of Medicine, University of WashingtonSeattleWashingtonUSA
| | - Inês Lago‐Baldaia
- Department of Cell and Developmental BiologyUniversity College LondonLondonUK
| | | | - Aakanksha Singhvi
- Division of Basic SciencesFred Hutchinson Cancer CenterSeattleWashingtonUSA
- Department of Biological StructureSchool of Medicine, University of WashingtonSeattleWashingtonUSA
| |
Collapse
|
5
|
Webster AK, Willis JH, Johnson E, Sarkies P, Phillips PC. Gene expression variation across genetically identical individuals predicts reproductive traits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.10.13.562270. [PMID: 37873136 PMCID: PMC10592811 DOI: 10.1101/2023.10.13.562270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
In recent decades, genome-wide association studies (GWAS) have been the major approach to understand the biological basis of individual differences in traits and diseases. However, GWAS approaches have limited predictive power to explain individual differences, particularly for complex traits and diseases in which environmental factors play a substantial role in their etiology. Indeed, individual differences persist even in genetically identical individuals, although fully separating genetic and environmental causation is difficult in most organisms. To understand the basis of individual differences in the absence of genetic differences, we measured two quantitative reproductive traits in 180 genetically identical young adult Caenorhabditis elegans roundworms in a shared environment and performed single-individual transcriptomics on each worm. We identified hundreds of genes for which expression variation was strongly associated with reproductive traits, some of which depended on individuals' historical environments and some of which was random. Multiple small sets of genes together were highly predictive of reproductive traits, explaining on average over half and over a quarter of variation in the two traits. We manipulated mRNA levels of predictive genes to identify a set of causal genes, demonstrating the utility of this approach for both prediction and understanding underlying biology. Finally, we found that the chromatin environment of predictive genes was enriched for H3K27 trimethylation, suggesting that gene expression variation may be driven in part by chromatin structure. Together, this work shows that individual, non-genetic differences in gene expression are both highly predictive and causal in shaping reproductive traits.
Collapse
|
6
|
Xue F, Yan Y, Jin W, Zhu H, Yang Y, Yu Z, Xu X, Gong J, Niu X. An Integrated Database for Exploring Alternative Promoters in Animals. Sci Data 2025; 12:231. [PMID: 39920194 PMCID: PMC11805906 DOI: 10.1038/s41597-025-04548-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/28/2025] [Indexed: 02/09/2025] Open
Abstract
Alternative promoter (AP) events, as a major pre-transcriptional mechanism, can initiate different transcription start sites to generate distinct mRNA isoforms and regulate their expression. At present, hundreds of thousands of APs have been identified across human tissues, and a considerable number of APs have been demonstrated to be associated with complex traits and diseases. Recent researches have also proven important effects of APs on animals. However, the landscape of APs in animals has not been fully recognized. In this study, 102,349 AP profiles from 23,077 samples across 12 species were systematically characterized. We further identified tissue-specific APs and investigated trait-related promoters among various species. In addition, we analyzed the associations between APs and enhancer RNAs (eRNA)/transcription factors (TF) as a means of identifying potential regulatory factors. Integrating these findings, we finally developed Animal-APdb, a database for the searching, browsing, and downloading of information related to Animal APs. Animal-APdb is expected to serve as a valuable resource for exploring the functions and mechanisms of APs in animals.
Collapse
Affiliation(s)
- Feiyang Xue
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuqin Yan
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weiwei Jin
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haotian Zhu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanbo Yang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhanhui Yu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuewen Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jing Gong
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xiaohui Niu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Smart Farming for Agricultural Animals, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China.
- Hubei Engineering Technology Research Center of Agricultural Big Data, Wuhan, 430070, China.
| |
Collapse
|
7
|
Zhebrun A, Ni JZ, Corveleyn L, Ghosh Roy S, Sidoli S, Gu SG. Two H3K23 histone methyltransferases, SET-32 and SET-21, function synergistically to promote nuclear RNAi-mediated transgenerational epigenetic inheritance in Caenorhabditis elegans. Genetics 2025; 229:iyae206. [PMID: 39661453 PMCID: PMC11796467 DOI: 10.1093/genetics/iyae206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024] Open
Abstract
Nuclear RNAi in Caenorhabditis elegans induces a set of transgenerationally heritable marks of H3K9me3, H3K23me3, and H3K27me3 at the target genes. The function of H3K23me3 in the nuclear RNAi pathway is largely unknown due to the limited knowledge of H3K23 histone methyltransferase (HMT). In this study we identified SET-21 as a novel H3K23 HMT. By taking combined genetic, biochemical, imaging, and genomic approaches, we found that SET-21 functions synergistically with a previously reported H3K23 HMT SET-32 to deposit H3K23me3 at the native targets of germline nuclear RNAi. We identified a subset of native nuclear RNAi targets that are transcriptionally activated in the set-21;set-32 double mutant. SET-21 and SET-32 are also required for robust transgenerational gene silencing induced by exogenous dsRNA. The set-21;set-32 double mutant strain exhibits an enhanced temperature-sensitive mortal germline phenotype compared to the set-32 single mutant, while the set-21 single mutant animals are fertile. We also found that HRDE-1 and SET-32 are required for cosuppression, a transgene-induced gene silencing phenomenon, in C. elegans germline. Together, these results support a model in which H3K23 HMTs SET-21 and SET-32 function cooperatively as germline nuclear RNAi factors and promote the germline immortality under the heat stress.
Collapse
Affiliation(s)
- Anna Zhebrun
- Department of Molecular Biology and Biochemistry, Rutgers The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Julie Z Ni
- Department of Molecular Biology and Biochemistry, Rutgers The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Laura Corveleyn
- Laboratory of Pharmaceutical Biotechnology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Gent 9000, Belgium
| | - Siddharth Ghosh Roy
- Department of Molecular Biology and Biochemistry, Rutgers The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Simone Sidoli
- Department of Chemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Sam G Gu
- Department of Molecular Biology and Biochemistry, Rutgers The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
| |
Collapse
|
8
|
Calarco JA, Taylor SR, Miller DM. Detecting gene expression in Caenorhabditis elegans. Genetics 2025; 229:1-108. [PMID: 39693264 PMCID: PMC11979774 DOI: 10.1093/genetics/iyae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 09/30/2024] [Indexed: 12/20/2024] Open
Abstract
Reliable methods for detecting and analyzing gene expression are necessary tools for understanding development and investigating biological responses to genetic and environmental perturbation. With its fully sequenced genome, invariant cell lineage, transparent body, wiring diagram, detailed anatomy, and wide array of genetic tools, Caenorhabditis elegans is an exceptionally useful model organism for linking gene expression to cellular phenotypes. The development of new techniques in recent years has greatly expanded our ability to detect gene expression at high resolution. Here, we provide an overview of gene expression methods for C. elegans, including techniques for detecting transcripts and proteins in situ, bulk RNA sequencing of whole worms and specific tissues and cells, single-cell RNA sequencing, and high-throughput proteomics. We discuss important considerations for choosing among these techniques and provide an overview of publicly available online resources for gene expression data.
Collapse
Affiliation(s)
- John A Calarco
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada, M5S 3G5
| | - Seth R Taylor
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
- Neuroscience Program, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
9
|
Kudron M, Gevirtzman L, Victorsen A, Lear BC, Gao J, Xu J, Samanta S, Frink E, Tran-Pearson A, Huynh C, Vafeados D, Hammonds A, Fisher W, Wall M, Wesseling G, Hernandez V, Lin Z, Kasparian M, White K, Allada R, Gerstein M, Hillier L, Celniker SE, Reinke V, Waterston RH. Binding profiles for 961 Drosophila and C. elegans transcription factors reveal tissue-specific regulatory relationships. Genome Res 2024; 34:2319-2334. [PMID: 39438113 PMCID: PMC11694743 DOI: 10.1101/gr.279037.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
A catalog of transcription factor (TF) binding sites in the genome is critical for deciphering regulatory relationships. Here, we present the culmination of the efforts of the modENCODE (model organism Encyclopedia of DNA Elements) and modERN (model organism Encyclopedia of Regulatory Networks) consortia to systematically assay TF binding events in vivo in two major model organisms, Drosophila melanogaster (fly) and Caenorhabditis elegans (worm). These data sets comprise 605 TFs identifying 3.6 M sites in the fly and 356 TFs identifying 0.9 M sites in the worm, and represent the majority of the regulatory space in each genome. We demonstrate that TFs associate with chromatin in clusters termed "metapeaks," that larger metapeaks have characteristics of high-occupancy target (HOT) regions, and that the importance of consensus sequence motifs bound by TFs depends on metapeak size and complexity. Combining ChIP-seq data with single-cell RNA-seq data in a machine-learning model identifies TFs with a prominent role in promoting target gene expression in specific cell types, even differentiating between parent-daughter cells during embryogenesis. These data are a rich resource for the community that should fuel and guide future investigations into TF function. To facilitate data accessibility and utility, all strains expressing green fluorescent protein (GFP)-tagged TFs are available at the stock centers for each organism. The chromatin immunoprecipitation sequencing data are available through the ENCODE Data Coordinating Center, GEO, and through a direct interface that provides rapid access to processed data sets and summary analyses, as well as widgets to probe the cell-type-specific TF-target relationships.
Collapse
Affiliation(s)
- Michelle Kudron
- Department of Genetics, Yale University, New Haven, Connecticut 06520, USA
| | - Louis Gevirtzman
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Alec Victorsen
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Bridget C Lear
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Jiahao Gao
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Jinrui Xu
- Department of Biology, Howard University, Washington, District of Columbia 20059, USA
- Center for Applied Data Science and Analytics, Howard University, Washington, District of Columbia 20059, USA
| | - Swapna Samanta
- Department of Genetics, Yale University, New Haven, Connecticut 06520, USA
| | - Emily Frink
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Adri Tran-Pearson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Chau Huynh
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Dionne Vafeados
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Ann Hammonds
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - William Fisher
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Martha Wall
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, Illinois 60637, USA
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Greg Wesseling
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Vanessa Hernandez
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Zhichun Lin
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Mary Kasparian
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Kevin White
- Department of Biochemistry and Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore
| | - Ravi Allada
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
- Department of Statistics and Data Science, Yale University, New Haven, Connecticut 06520, USA
| | - LaDeana Hillier
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Susan E Celniker
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Valerie Reinke
- Department of Genetics, Yale University, New Haven, Connecticut 06520, USA;
| | - Robert H Waterston
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA;
| |
Collapse
|
10
|
Zhebrun A, Ni JZ, Corveleyn L, Roy SG, Sidoli S, Gu SG. Two H3K23 histone methyltransferases, SET-32 and SET-21, function synergistically to promote nuclear RNAi-mediated transgenerational epigenetic inheritance in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.622152. [PMID: 39574755 PMCID: PMC11580914 DOI: 10.1101/2024.11.05.622152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Nuclear RNAi in C. elegans induces a set of transgenerationally heritable marks of H3K9me3, H3K23me3, and H3K27me3 at the target genes. The function of H3K23me3 in the nuclear RNAi pathway is largely unknown due to the limited knowledge of H3K23 histone methyltransferase (HMT). In this study we identified SET-21 as a novel H3K23 HMT. By taking combined genetic, biochemical, imaging, and genomic approaches, we found that SET-21 functions synergistically with a previously reported H3K23 HMT SET-32 to deposit H3K23me3 at the native targets of germline nuclear RNAi. We identified a subset of native nuclear RNAi targets that are transcriptionally activated in the set-21;set-32 double mutant. SET-21 and SET-32 are also required for robust transgenerational gene silencing induced by exogenous dsRNA. The set-21;set-32 double mutant strain exhibits an enhanced temperature-sensitive mortal germline phenotype compared to the set-32 single mutant, while the set-21 single mutant animals are fertile. We also found that HRDE-1 and SET-32 are required for cosuppression, a transgene-induced gene silencing phenomenon, in C. elegans germline. Together, these results support a model in which H3K23 HMTs SET-21 and SET-32 function cooperatively to ensure the robustness of germline nuclear RNAi and promotes the germline immortality under the heat stress.
Collapse
Affiliation(s)
- Anna Zhebrun
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, 604 Allison Road, Piscataway, NJ, USA, 08854
| | - Julie Z. Ni
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, 604 Allison Road, Piscataway, NJ, USA, 08854
| | - Laura Corveleyn
- Laboratory of Pharmaceutical Biotechnology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Gent, Belgium, 9000
| | - Siddharth Ghosh Roy
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, 604 Allison Road, Piscataway, NJ, USA, 08854
| | - Simone Sidoli
- Department of Chemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA10461
| | - Sam G. Gu
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, 604 Allison Road, Piscataway, NJ, USA, 08854
| |
Collapse
|
11
|
Memar N, Sherrard R, Sethi A, Fernandez CL, Schmidt H, Lambie EJ, Poole RJ, Schnabel R, Conradt B. The replicative helicase CMG is required for the divergence of cell fates during asymmetric cell division in vivo. Nat Commun 2024; 15:9399. [PMID: 39477966 PMCID: PMC11525967 DOI: 10.1038/s41467-024-53715-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
We report that the eukaryotic replicative helicase CMG (Cdc45-MCM-GINS) is required for differential gene expression in cells produced by asymmetric cell divisions in C. elegans. We found that the C. elegans CMG component, PSF-2 GINS2, is necessary for transcriptional upregulation of the pro-apoptotic gene egl-1 BH3-only that occurs in cells programmed to die after they are produced through asymmetric cell divisions. We propose that CMG's histone chaperone activity causes epigenetic changes at the egl-1 locus during replication in mother cells, and that these changes are required for egl-1 upregulation in cells programmed to die. We find that PSF-2 is also required for the divergence of other cell fates during C. elegans development, suggesting that this function is not unique to egl-1 expression. Our work uncovers an unexpected role of CMG in cell fate decisions and an intrinsic mechanism for gene expression plasticity in the context of asymmetric cell division.
Collapse
Affiliation(s)
- Nadin Memar
- Research Department Cell and Developmental Biology, Division of Biosciences, University College London, London, UK.
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, South Korea.
| | - Ryan Sherrard
- Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Aditya Sethi
- Research Department Cell and Developmental Biology, Division of Biosciences, University College London, London, UK
| | - Carla Lloret Fernandez
- Research Department Cell and Developmental Biology, Division of Biosciences, University College London, London, UK
| | - Henning Schmidt
- Institute of Genetics, TU Braunschweig, Braunschweig, Germany
| | - Eric J Lambie
- Research Department Cell and Developmental Biology, Division of Biosciences, University College London, London, UK
| | - Richard J Poole
- Research Department Cell and Developmental Biology, Division of Biosciences, University College London, London, UK
| | - Ralf Schnabel
- Institute of Genetics, TU Braunschweig, Braunschweig, Germany
| | - Barbara Conradt
- Research Department Cell and Developmental Biology, Division of Biosciences, University College London, London, UK.
| |
Collapse
|
12
|
Vandenbosch M, van Hove ERA, Mohren R, Vermeulen I, Dijkman H, Heeren RMA, Leonards PEG, Hughes S. Combined matrix-assisted laser desorption/ionisation-mass spectrometry imaging with liquid chromatography-tandem mass spectrometry for observing spatial distribution of lipids in whole Caenorhabditis elegans. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9850. [PMID: 39034751 DOI: 10.1002/rcm.9850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 07/23/2024]
Abstract
RATIONALE Matrix-assisted laser desorption/ionisation-mass spectrometry imaging (MALDI-MSI) is a powerful label-free technique for biomolecule detection (e.g., lipids), within tissue sections across various biological species. However, despite its utility in many applications, the nematode Caenorhabditis elegans is not routinely used in combination with MALDI-MSI. The lack of studies exploring spatial distribution of biomolecules in nematodes is likely due to challenges with sample preparation. METHODS This study developed a sample preparation method for whole intact nematodes, evaluated using cryosectioning of nematodes embedded in a 10% gelatine solution to obtain longitudinal cross sections. The slices were then subjected to MALDI-MSI, using a RapifleX Tissuetyper in positive and negative polarities. Samples were also prepared for liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis using an Exploris 480 coupled to a HPLC Vanquish system to confirm the MALDI-MSI results. RESULTS An optimised embedding method was developed for longitudinal cross-sectioning of individual worms. To obtain longitudinal cross sections, nematodes were frozen at -80°C so that all worms were rod shaped. Then, the samples were defrosted and transferred to a 10% gelatine matrix in a cryomold; the worms aligned, and the whole cryomold submerged in liquid nitrogen. Using MALDI-MSI, we were able to observe the distribution of lipids within C. elegans, with clear differences in their spatial distribution at a resolution of 5 μm. To confirm the lipids from MALDI-MSI, age-matched nematodes were subjected to LC-MS/MS. Here, 520 lipids were identified using LC-MS/MS, indicating overlap with MALDI-MSI data. CONCLUSIONS This optimised sample preparation technique enabled (un)targeted analysis of spatially distributed lipids within individual nematodes. The possibility to detect other biomolecules using this method thus laid the basis for prospective preclinical and toxicological studies on C. elegans.
Collapse
Affiliation(s)
- Michiel Vandenbosch
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University, Maastricht, The Netherlands
| | - Erika R Amstalden van Hove
- Amsterdam Institute for Life and Environment, Chemistry for Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ronny Mohren
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University, Maastricht, The Netherlands
| | - Isabeau Vermeulen
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University, Maastricht, The Netherlands
| | - Henry Dijkman
- HAN University of Applied Sciences, Nijmegen, The Netherlands
| | - Ron M A Heeren
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University, Maastricht, The Netherlands
| | - Pim E G Leonards
- Amsterdam Institute for Life and Environment, Chemistry for Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Samantha Hughes
- Amsterdam Institute for Life and Environment, Environmental Health and Toxicology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Das M, Semple JI, Haemmerli A, Volodkina V, Scotton J, Gitchev T, Annan A, Campos J, Statzer C, Dakhovnik A, Ewald CY, Mozziconacci J, Meister P. Condensin I folds the Caenorhabditis elegans genome. Nat Genet 2024; 56:1737-1749. [PMID: 39039278 DOI: 10.1038/s41588-024-01832-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/13/2024] [Indexed: 07/24/2024]
Abstract
The structural maintenance of chromosome (SMC) complexes-cohesin and condensins-are crucial for chromosome separation and compaction during cell division. During the interphase, mammalian cohesins additionally fold the genome into loops and domains. Here we show that, in Caenorhabditis elegans, a species with holocentric chromosomes, condensin I is the primary, long-range loop extruder. The loss of condensin I and its X-specific variant, condensin IDC, leads to genome-wide decompaction, chromosome mixing and disappearance of X-specific topologically associating domains, while reinforcing fine-scale epigenomic compartments. In addition, condensin I/IDC inactivation led to the upregulation of X-linked genes and unveiled nuclear bodies grouping together binding sites for the X-targeting loading complex of condensin IDC. C. elegans condensin I/IDC thus uniquely organizes holocentric interphase chromosomes, akin to cohesin in mammals, as well as regulates X-chromosome gene expression.
Collapse
Affiliation(s)
- Moushumi Das
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Jennifer I Semple
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Anja Haemmerli
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Valeriia Volodkina
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Janik Scotton
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Todor Gitchev
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Ahrmad Annan
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Julie Campos
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Cyril Statzer
- Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, Schwerzenbach, Switzerland
| | - Alexander Dakhovnik
- Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, Schwerzenbach, Switzerland
| | - Collin Y Ewald
- Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, Schwerzenbach, Switzerland
| | - Julien Mozziconacci
- Laboratoire Structure et Instabilité des Génomes UMR 7196, Muséum National d'Histoire Naturelle, Paris, France
| | - Peter Meister
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland.
| |
Collapse
|
14
|
Paniagua N, Roberts CJ, Gonzalez LE, Monedero-Alonso D, Reinke V. The Upstream Sequence Transcription Complex dictates nucleosome positioning and promoter accessibility at piRNA genes in the C. elegans germ line. PLoS Genet 2024; 20:e1011345. [PMID: 38985845 PMCID: PMC11262695 DOI: 10.1371/journal.pgen.1011345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/22/2024] [Accepted: 06/16/2024] [Indexed: 07/12/2024] Open
Abstract
The piRNA pathway is a conserved germline-specific small RNA pathway that ensures genomic integrity and continued fertility. In C. elegans and other nematodes, Type-I piRNAs are expressed from >10,000 independently transcribed genes clustered within two discrete domains of 1.5 and 3.5 MB on Chromosome IV. Clustering of piRNA genes contributes to their germline-specific expression, but the underlying mechanisms are unclear. We analyze isolated germ nuclei to demonstrate that the piRNA genomic domains are located in a heterochromatin-like environment. USTC (Upstream Sequence Transcription Complex) promotes strong association of nucleosomes throughout piRNA clusters, yet organizes the local nucleosome environment to direct the exposure of individual piRNA genes. Localization of USTC to the piRNA domains depends upon the ATPase chromatin remodeler ISW-1, which maintains high nucleosome density across piRNA clusters and ongoing production of piRNA precursors. Overall, this work provides insight into how chromatin states coordinate transcriptional regulation over large genomic domains, with implications for global genome organization.
Collapse
Affiliation(s)
- Nancy Paniagua
- Department of Genetics, Yale University School of Medicine, New Haven Connecticut, United States of America
| | - C. Jackson Roberts
- Department of Genetics, Yale University School of Medicine, New Haven Connecticut, United States of America
| | - Lauren E. Gonzalez
- Department of Genetics, Yale University School of Medicine, New Haven Connecticut, United States of America
| | - David Monedero-Alonso
- Department of Genetics, Yale University School of Medicine, New Haven Connecticut, United States of America
| | - Valerie Reinke
- Department of Genetics, Yale University School of Medicine, New Haven Connecticut, United States of America
| |
Collapse
|
15
|
Kose C, Lindsey-Boltz LA, Sancar A, Jiang Y. Genome-wide analysis of transcription-coupled repair reveals novel transcription events in Caenorhabditis elegans. PLoS Genet 2024; 20:e1011365. [PMID: 39028758 PMCID: PMC11290646 DOI: 10.1371/journal.pgen.1011365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/31/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024] Open
Abstract
Bulky DNA adducts such as those induced by ultraviolet light are removed from the genomes of multicellular organisms by nucleotide excision repair, which occurs through two distinct mechanisms, global repair, requiring the DNA damage recognition-factor XPC (xeroderma pigmentosum complementation group C), and transcription-coupled repair (TCR), which does not. TCR is initiated when elongating RNA polymerase II encounters DNA damage, and thus analysis of genome-wide excision repair in XPC-mutants only repairing by TCR provides a unique opportunity to map transcription events missed by methods dependent on capturing RNA transcription products and thus limited by their stability and/or modifications (5'-capping or 3'-polyadenylation). Here, we have performed eXcision Repair-sequencing (XR-seq) in the model organism Caenorhabditis elegans to generate genome-wide repair maps in a wild-type strain with normal excision repair, a strain lacking TCR (csb-1), and a strain that only repairs by TCR (xpc-1). Analysis of the intersections between the xpc-1 XR-seq repair maps with RNA-mapping datasets (RNA-seq, long- and short-capped RNA-seq) reveal previously unrecognized sites of transcription and further enhance our understanding of the genome of this important model organism.
Collapse
Affiliation(s)
- Cansu Kose
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Laura A. Lindsey-Boltz
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Yuchao Jiang
- Department of Statistics, College of Arts and Sciences, Texas A&M University, College Station, Texas, United States of America
- Department of Biology, College of Arts and Sciences, Texas A&M University, College Station, Texas, United States of America
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
16
|
Kose C, Lindsey-Boltz LA, Sancar A, Jiang Y. Genome-wide analysis of transcription-coupled repair reveals novel transcription events in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.12.562083. [PMID: 37904932 PMCID: PMC10614815 DOI: 10.1101/2023.10.12.562083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Bulky DNA adducts such as those induced by ultraviolet light are removed from the genomes of multicellular organisms by nucleotide excision repair, which occurs through two distinct mechanisms, global repair, requiring the DNA damage recognition-factor XPC (xeroderma pigmentosum complementation group C), and transcription-coupled repair (TCR), which does not. TCR is initiated when elongating RNA polymerase II encounters DNA damage, and thus analysis of genome-wide excision repair in XPC-mutants only repairing by TCR provides a unique opportunity to map transcription events missed by methods dependent on capturing RNA transcription products and thus limited by their stability and/or modifications (5'-capping or 3'-polyadenylation). Here, we have performed the eXcision Repair-sequencing (XR-seq) in the model organism Caenorhabditis elegans to generate genome-wide repair maps from a wild-type strain with normal excision repair, a strain lacking TCR (csb-1), or one that only repairs by TCR (xpc-1). Analysis of the intersections between the xpc-1 XR-seq repair maps with RNA-mapping datasets (RNA-seq, long- and short-capped RNA-seq) reveal previously unrecognized sites of transcription and further enhance our understanding of the genome of this important model organism.
Collapse
Affiliation(s)
- Cansu Kose
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Laura A. Lindsey-Boltz
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Yuchao Jiang
- Department of Statistics, College of Arts and Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Biology, College of Arts and Sciences, Texas A&M University, College Station, TX 77843
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843
| |
Collapse
|
17
|
Emerson FJ, Chiu C, Lin LY, Riedel CG, Zhu M, Lee SS. The chromatin factors SET-26 and HCF-1 oppose the histone deacetylase HDA-1 in longevity and gene regulation in C. elegans. Nat Commun 2024; 15:2320. [PMID: 38485937 PMCID: PMC10940595 DOI: 10.1038/s41467-024-46510-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/28/2024] [Indexed: 03/18/2024] Open
Abstract
SET-26, HCF-1, and HDA-1 are highly conserved chromatin factors with key roles in development and aging. Here we present mechanistic insights into how these factors regulate gene expression and modulate longevity in C. elegans. We show that SET-26 and HCF-1 cooperate to regulate a common set of genes, and both antagonize the histone deacetylase HDA-1 to limit longevity. HCF-1 localization at chromatin is largely dependent on functional SET-26, whereas SET-26 is only minorly affected by loss of HCF-1, suggesting that SET-26 could recruit HCF-1 to chromatin. HDA-1 opposes SET-26 and HCF-1 on the regulation of a subset of their common target genes and in longevity. Our findings suggest that SET-26, HCF-1, and HDA-1 comprise a mechanism to fine-tune gene expression and longevity and likely have important implications for the mechanistic understanding of how these factors function in diverse organisms, particularly in aging biology.
Collapse
Affiliation(s)
- Felicity J Emerson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Caitlin Chiu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Laura Y Lin
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Christian G Riedel
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Ming Zhu
- National Institute of Biological Sciences, Beijing, China
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
18
|
Saredi G, Carelli FN, Rolland SGM, Furlan G, Piquet S, Appert A, Sanchez-Pulido L, Price JL, Alcon P, Lampersberger L, Déclais AC, Ramakrishna NB, Toth R, Macartney T, Alabert C, Ponting CP, Polo SE, Miska EA, Gartner A, Ahringer J, Rouse J. The histone chaperone SPT2 regulates chromatin structure and function in Metazoa. Nat Struct Mol Biol 2024; 31:523-535. [PMID: 38238586 PMCID: PMC7615752 DOI: 10.1038/s41594-023-01204-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 12/14/2023] [Indexed: 02/15/2024]
Abstract
Histone chaperones control nucleosome density and chromatin structure. In yeast, the H3-H4 chaperone Spt2 controls histone deposition at active genes but its roles in metazoan chromatin structure and organismal physiology are not known. Here we identify the Caenorhabditis elegans ortholog of SPT2 (CeSPT-2) and show that its ability to bind histones H3-H4 is important for germline development and transgenerational epigenetic gene silencing, and that spt-2 null mutants display signatures of a global stress response. Genome-wide profiling showed that CeSPT-2 binds to a range of highly expressed genes, and we find that spt-2 mutants have increased chromatin accessibility at a subset of these loci. We also show that SPT2 influences chromatin structure and controls the levels of soluble and chromatin-bound H3.3 in human cells. Our work reveals roles for SPT2 in controlling chromatin structure and function in Metazoa.
Collapse
Affiliation(s)
- Giulia Saredi
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK.
| | - Francesco N Carelli
- Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Stéphane G M Rolland
- IBS Centre for Genomic Integrity at Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Giulia Furlan
- Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Transine Therapeutics, Babraham Hall, Cambridge, UK
| | - Sandra Piquet
- Laboratory of Epigenome Integrity, Epigenetics and Cell Fate Centre, UMR 7216 CNRS - Université Paris Cité, Paris, France
| | - Alex Appert
- Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Luis Sanchez-Pulido
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Jonathan L Price
- Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Pablo Alcon
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Lisa Lampersberger
- Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Maxion Therapeutics, Unity Campus, Cambridge, UK
| | - Anne-Cécile Déclais
- Molecular Cell and Developmental Biology Division, School of Life Sciences, University of Dundee, Dundee, UK
| | - Navin B Ramakrishna
- Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Rachel Toth
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Thomas Macartney
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Constance Alabert
- Molecular Cell and Developmental Biology Division, School of Life Sciences, University of Dundee, Dundee, UK
| | - Chris P Ponting
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Sophie E Polo
- Laboratory of Epigenome Integrity, Epigenetics and Cell Fate Centre, UMR 7216 CNRS - Université Paris Cité, Paris, France
| | - Eric A Miska
- Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Anton Gartner
- IBS Centre for Genomic Integrity at Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Julie Ahringer
- Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - John Rouse
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
19
|
Mazzetto M, Gonzalez LE, Sanchez N, Reinke V. Characterization of the distribution and dynamics of chromatin states in the C. elegans germline reveals substantial H3K4me3 remodeling during oogenesis. Genome Res 2024; 34:57-69. [PMID: 38164610 PMCID: PMC10903938 DOI: 10.1101/gr.278247.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Chromatin organization in the C. elegans germline is tightly regulated and critical for germ cell differentiation. Although certain germline epigenetic regulatory mechanisms have been identified, how they influence chromatin structure and ultimately gene expression remains unclear, in part because most genomic studies have focused on data collected from intact worms comprising both somatic and germline tissues. We therefore analyzed histone modification and chromatin accessibility data from isolated germ nuclei representing undifferentiated proliferating and meiosis I populations to define chromatin states. We correlated these states with overall transcript abundance, spatiotemporal expression patterns, and the function of small RNA pathways. Because the essential role of the germline is to transmit genetic information and establish gene expression in the early embryo, we compared epigenetic and transcriptomic profiles from undifferentiated germ cells to those of embryos to define the epigenetic changes during this developmental transition. The active histone modification H3K4me3 shows particularly dynamic remodeling as germ cells differentiate into oocytes, which suggests a mechanism for establishing early transcription of essential genes during zygotic genome activation. This analysis highlights the dynamism of the chromatin landscape across developmental transitions and provides a resource for future investigation into epigenetic regulatory mechanisms in germ cells.
Collapse
Affiliation(s)
| | - Lauren E Gonzalez
- Department of Genetics, Yale University, New Haven, Connecticut 06520, USA
| | - Nancy Sanchez
- Department of Genetics, Yale University, New Haven, Connecticut 06520, USA
| | - Valerie Reinke
- Department of Genetics, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
20
|
Bamgbose G, Tulin A. PARP-1 is a transcriptional rheostat of metabolic and bivalent genes during development. Life Sci Alliance 2024; 7:e202302369. [PMID: 38012002 PMCID: PMC10682175 DOI: 10.26508/lsa.202302369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023] Open
Abstract
PARP-1 participates in various cellular processes, including gene regulation. In Drosophila, PARP-1 mutants undergo developmental arrest during larval-to-pupal transition. In this study, we investigated PARP-1 binding and its transcriptional regulatory role at this stage. Our findings revealed that PARP-1 binds and represses active metabolic genes, including glycolytic genes, whereas activating low-expression developmental genes, including a subset of "bivalent" genes in third-instar larvae. These bivalent promoters, characterized by dual enrichment of low H3K4me3 and high H3K27me3, a unimodal H3K4me1 enrichment at the transcription start site (conserved in C. elegans and zebrafish), H2Av depletion, and high accessibility, may persist throughout development. In PARP-1 mutant third-instar larvae, metabolic genes typically down-regulated during the larval-to-pupal transition in response to reduced energy needs were repressed by PARP-1. Simultaneously, developmental and bivalent genes typically active at this stage were activated by PARP-1. In addition, glucose and ATP levels were significantly reduced in PARP-1 mutants, suggesting an imbalance in metabolic regulation. We propose that PARP-1 is essential for maintaining the delicate balance between metabolic and developmental gene expression programs to ensure proper developmental progression.
Collapse
Affiliation(s)
- Gbolahan Bamgbose
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Alexei Tulin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| |
Collapse
|
21
|
Kudron M, Gevirtzman L, Victorsen A, Lear BC, Gao J, Xu J, Samanta S, Frink E, Tran-Pearson A, Huynh C, Vafeados D, Hammonds A, Fisher W, Wall M, Wesseling G, Hernandez V, Lin Z, Kasparian M, White K, Allada R, Gerstein M, Hillier L, Celniker SE, Reinke V, Waterston RH. Binding profiles for 954 Drosophila and C. elegans transcription factors reveal tissue specific regulatory relationships. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576242. [PMID: 38293065 PMCID: PMC10827215 DOI: 10.1101/2024.01.18.576242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
A catalog of transcription factor (TF) binding sites in the genome is critical for deciphering regulatory relationships. Here we present the culmination of the modERN (model organism Encyclopedia of Regulatory Networks) consortium that systematically assayed TF binding events in vivo in two major model organisms, Drosophila melanogaster (fly) and Caenorhabditis elegans (worm). We describe key features of these datasets, comprising 604 TFs identifying 3.6M sites in the fly and 350 TFs identifying 0.9 M sites in the worm. Applying a machine learning model to these data identifies sets of TFs with a prominent role in promoting target gene expression in specific cell types. TF binding data are available through the ENCODE Data Coordinating Center and at https://epic.gs.washington.edu/modERNresource, which provides access to processed and summary data, as well as widgets to probe cell type-specific TF-target relationships. These data are a rich resource that should fuel investigations into TF function during development.
Collapse
Affiliation(s)
- Michelle Kudron
- Department of Genetics, Yale University, New Haven, Connecticut 06520
| | - Louis Gevirtzman
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Alec Victorsen
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, MN 55455
| | - Bridget C. Lear
- Department of Neurobiology, Northwestern University, Evanston IL 60208
| | - Jiahao Gao
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Jinrui Xu
- Department of Biology, Howard University, Washington, District of Columbia 20059, USA
- Center for Applied Data Science and Analytics, Howard University, Washington, District of Columbia 20059, USA
| | - Swapna Samanta
- Department of Genetics, Yale University, New Haven, Connecticut 06520
| | - Emily Frink
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Adri Tran-Pearson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Chau Huynh
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Dionne Vafeados
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Ann Hammonds
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - William Fisher
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Martha Wall
- Institute for Genomics and Systems Biology, Department of Human Genetics, University of Chicago, Illinois 60637
| | - Greg Wesseling
- Department of Neurobiology, Northwestern University, Evanston IL 60208
| | - Vanessa Hernandez
- Department of Neurobiology, Northwestern University, Evanston IL 60208
| | - Zhichun Lin
- Department of Neurobiology, Northwestern University, Evanston IL 60208
| | - Mary Kasparian
- Department of Neurobiology, Northwestern University, Evanston IL 60208
| | - Kevin White
- Department of Biochemistry and Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Ravi Allada
- Department of Neurobiology, Northwestern University, Evanston IL 60208
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
- Department of Statistics and Data Science, Yale University, New Haven, Connecticut 06520, USA
| | - LaDeana Hillier
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Susan E. Celniker
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Valerie Reinke
- Department of Genetics, Yale University, New Haven, Connecticut 06520
| | - Robert H. Waterston
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| |
Collapse
|
22
|
Tian Y, Lautrup S, Law PWN, Dinh ND, Fang EF, Chan WY. WRN loss accelerates abnormal adipocyte metabolism in Werner syndrome. Cell Biosci 2024; 14:7. [PMID: 38184705 PMCID: PMC10770995 DOI: 10.1186/s13578-023-01183-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 12/09/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Metabolic dysfunction is one of the main symptoms of Werner syndrome (WS); however, the underlying mechanisms remain unclear. Here, we report that loss of WRN accelerates adipogenesis at an early stage both in vitro (stem cells) and in vivo (zebrafish). Moreover, WRN depletion causes a transient upregulation of late-stage of adipocyte-specific genes at an early stage. METHODS In an in vivo study, we generated wrn-/- mutant zebrafish and performed histological stain and Oil Red O staining to assess the fat metabolism. In an in vitro study, we used RNA-seq and ATAC-seq to profile the transcriptional features and chromatin accessibility in WRN depleted adipocytes. Moreover, we performed ChIP-seq to further study the regulatory mechanisms of metabolic dysfunction in WS. RESULTS Our findings show that mechanistically WRN deficiency causes SMARCA5 upregulation. SMARCA5 is crucial in chromatin remodeling and gene regulation. Additionally, rescuing WRN could normalize SMARCA5 expression and adipocyte differentiation. Moreover, we find that nicotinamide riboside (NR) supplementation restores adipocyte metabolism in both stem cells and zebrafish models. CONCLUSIONS Our findings unravel a new mechanism for the influence of WRN in the early stage of adipogenesis and provide a possible treatment for metabolic dysfunction in WS. These data provide promising insights into potential therapeutics for ageing and ageing-related diseases.
Collapse
Affiliation(s)
- Yuyao Tian
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Sofie Lautrup
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Patrick Wai Nok Law
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Ngoc-Duy Dinh
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Evandro Fei Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Wai-Yee Chan
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR.
- Hong Kong Branch CAS Center of Excellence for Animal Evolution and Genetics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR.
- CUHK-SDU University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR.
- MOE Key Laboratory of Regenerative Medicine (CUHK-Jinan University), The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR.
| |
Collapse
|
23
|
Zhang J, Peng Q, Ma C, Wang J, Xiao C, Li T, Liu X, Zhou L, Xu X, Zhou WZ, Ding W, An NA, Zhang L, Liu Y, Li CY. 6mA-Sniper: Quantifying 6mA sites in eukaryotes at single-nucleotide resolution. SCIENCE ADVANCES 2023; 9:eadh7912. [PMID: 37862411 PMCID: PMC10588941 DOI: 10.1126/sciadv.adh7912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/18/2023] [Indexed: 10/22/2023]
Abstract
While N6-methyldeoxyadenine (6mA) modification is a fundamental regulation in prokaryotes, its prevalence and functions in eukaryotes are controversial. Here, we report 6mA-Sniper to quantify 6mA sites in eukaryotes at single-nucleotide resolution, and delineate a 6mA profile in Caenorhabditis elegans with 2034 sites. Twenty-six of 39 events with Mnl I restriction endonuclease sites were verified, demonstrating the feasibility of this method. The levels of 6mA sites pinpointed by 6mA-Sniper are generally increased after Pseudomonas aeruginosa infection, but decreased in strains with the removal of METL-9, the dominant 6mA methyltransferase. The enrichment of these sites on specific motif of [GC]GAG, the selective constrains on them, and their coordinated changes with METL-9 levels thus support an active shaping of the 6mA profile by methyltransferase. Moreover, for regions marked by 6mA sites that emerged after infection, an enrichment of up-regulated genes was detected, possibly mediated through a mutual exclusive cross-talk between 6mA and H3K27me3 modification. We thus highlight 6mA regulation as a previously neglected regulator in eukaryotes.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Qi Peng
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Chengchuan Ma
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics, Beijing 100871, China
| | - Jiaxin Wang
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Chunfu Xiao
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Ting Li
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Xiaoge Liu
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Liankui Zhou
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xinwei Xu
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Wei-Zhen Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wanqiu Ding
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Bioinformatics Core, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Ni A. An
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, China
| | - Ying Liu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics, Beijing 100871, China
| | - Chuan-Yun Li
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Chinese Institute for Brain Research, Beijing, China
- Southwest United Graduate School, Kunming 650092, China
| |
Collapse
|
24
|
Freeman TF, Zhao Q, Surya A, Rothe R, Cenik ES. Ribosome biogenesis disruption mediated chromatin structure changes revealed by SRAtac, a customizable end to end analysis pipeline for ATAC-seq. BMC Genomics 2023; 24:512. [PMID: 37658321 PMCID: PMC10472662 DOI: 10.1186/s12864-023-09576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 08/11/2023] [Indexed: 09/03/2023] Open
Abstract
The nucleolus is a large nuclear body that serves as the primary site for ribosome biogenesis. Recent studies have suggested that it also plays an important role in organizing chromatin architecture. However, to establish a causal relationship between nucleolar ribosome assembly and chromatin architecture, genetic tools are required to disrupt nucleolar ribosome biogenesis. In this study, we used ATAC-seq to investigate changes in chromatin accessibility upon specific depletion of two ribosome biogenesis components, RPOA-2 and GRWD-1, in the model organism Caenorhabditis elegans. To facilitate the analysis of ATAC-seq data, we introduced two tools: SRAlign, an extensible NGS data processing workflow, and SRAtac, a customizable end-to-end ATAC-seq analysis pipeline. Our results revealed highly comparable changes in chromatin accessibility following both RPOA-2 and GRWD-1 perturbations. However, we observed a weak correlation between changes in chromatin accessibility and gene expression. While our findings corroborate the idea of a feedback mechanism between ribosomal RNA synthesis, nucleolar ribosome large subunit biogenesis, and chromatin structure during the L1 stage of C. elegans development, they also prompt questions regarding the functional impact of these alterations on gene expression.
Collapse
Affiliation(s)
- Trevor F Freeman
- Department of Molecular Biosciences, University of Texas, Austin, TX, 78712, USA
| | - Qiuxia Zhao
- Department of Molecular Biosciences, University of Texas, Austin, TX, 78712, USA
| | - Agustian Surya
- Department of Molecular Biosciences, University of Texas, Austin, TX, 78712, USA
| | - Reed Rothe
- Department of Molecular Biosciences, University of Texas, Austin, TX, 78712, USA
| | - Elif Sarinay Cenik
- Department of Molecular Biosciences, University of Texas, Austin, TX, 78712, USA.
| |
Collapse
|
25
|
Abay-Nørgaard S, Tapia MC, Zeijdner M, Kim JH, Won KJ, Porse B, Salcini AE. Inter and transgenerational impact of H3K4 methylation in neuronal homeostasis. Life Sci Alliance 2023; 6:e202301970. [PMID: 37225426 PMCID: PMC10209521 DOI: 10.26508/lsa.202301970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023] Open
Abstract
Epigenetic marks and associated traits can be transmitted for one or more generations, phenomena known respectively as inter- or transgenerational epigenetic inheritance. It remains unknown if genetically and conditionally induced aberrant epigenetic states can influence the development of the nervous system across generations. Here, we show, using Caenorhabditis elegans as a model system, that alteration of H3K4me3 levels in the parental generation, caused by genetic manipulation or changes in parental conditions, has, respectively, trans- and intergenerational effects on H3K4 methylome, transcriptome, and nervous system development. Thus, our study reveals the relevance of H3K4me3 transmission and maintenance in preventing long-lasting deleterious effects in nervous system homeostasis.
Collapse
Affiliation(s)
- Steffen Abay-Nørgaard
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marta Cecylia Tapia
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- The Finsen Laboratory, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Mandoh Zeijdner
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jeonghwan Henry Kim
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kyoung Jae Won
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bo Porse
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- The Finsen Laboratory, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna Elisabetta Salcini
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Tabara H, Mitani S, Mochizuki M, Kohara Y, Nagata K. A small RNA system ensures accurate homologous pairing and unpaired silencing of meiotic chromosomes. EMBO J 2023; 42:e105002. [PMID: 37078421 PMCID: PMC10233376 DOI: 10.15252/embj.2020105002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/21/2023] Open
Abstract
During meiosis, chromosomes with homologous partners undergo synaptonemal complex (SC)-mediated pairing, while the remaining unpaired chromosomes are heterochromatinized through unpaired silencing. Mechanisms underlying homolog recognition during SC formation are still unclear. Here, we show that the Caenorhabditis elegans Argonaute proteins, CSR-1 and its paralog CSR-2, interacting with 22G-RNAs, are required for synaptonemal complex formation with accurate homology. CSR-1 in nuclei and meiotic cohesin, constituting the SC lateral elements, were associated with nonsimple DNA repeats, including minisatellites and transposons, and weakly associated with coding genes. CSR-1-associated CeRep55 minisatellites were expressing 22G-RNAs and long noncoding (lnc) RNAs that colocalized with synaptonemal complexes on paired chromosomes and with cohesin regions of unpaired chromosomes. CeRep55 multilocus deletions reduced the efficiencies of homologous pairing and unpaired silencing, which were supported by the csr-1 activity. Moreover, CSR-1 and CSR-2 were required for proper heterochromatinization of unpaired chromosomes. These findings suggest that CSR-1 and CSR-2 play crucial roles in homology recognition, achieving accurate SC formation between chromosome pairs and condensing unpaired chromosomes by targeting repeat-derived lncRNAs.
Collapse
Affiliation(s)
- Hiroaki Tabara
- Advanced Genomics CenterNational Institute of GeneticsShizuokaJapan
- Tokyo Women's Medical UniversityTokyoJapan
- Faculty of MedicineUniversity of TsukubaIbarakiJapan
| | | | | | - Yuji Kohara
- Advanced Genomics CenterNational Institute of GeneticsShizuokaJapan
| | | |
Collapse
|
27
|
Schuster HC, Hirth F. Phylogenetic tracing of midbrain-specific regulatory sequences suggests single origin of eubilaterian brains. SCIENCE ADVANCES 2023; 9:eade8259. [PMID: 37224241 PMCID: PMC10208574 DOI: 10.1126/sciadv.ade8259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 04/18/2023] [Indexed: 05/26/2023]
Abstract
Conserved cis-regulatory elements (CREs) control Engrailed-, Pax2-, and dachshund-related gene expression networks directing the formation and function of corresponding midbrain circuits in arthropods and vertebrates. Polarized outgroup analyses of 31 sequenced metazoan genomes representing all animal clades reveal the emergence of Pax2- and dachshund-related CRE-like sequences in anthozoan Cnidaria. The full complement, including Engrailed-related CRE-like sequences, is only detectable in spiralians, ecdysozoans, and chordates that have a brain; they exhibit comparable genomic locations and extensive nucleotide identities that reveal the presence of a conserved core domain, all of which are absent in non-neural genes and, together, distinguish them from randomly assembled sequences. Their presence concurs with a genetic boundary separating the rostral from caudal nervous systems, demonstrated for the metameric brains of annelids, arthropods, and chordates and the asegmental cycloneuralian and urochordate brain. These findings suggest that gene regulatory networks for midbrain circuit formation evolved within the lineage that led to the common ancestor of protostomes and deuterostomes.
Collapse
Affiliation(s)
- Helen C. Schuster
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, and Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | | |
Collapse
|
28
|
Sanchez N, Gonzalez LE, Reinke V. The Upstream Sequence Transcription Complex Dictates Nucleosome Positioning and Promoter Accessibility at piRNA Genes in the C. elegans Germ Line. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540274. [PMID: 37215016 PMCID: PMC10197682 DOI: 10.1101/2023.05.10.540274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The piRNA pathway is a conserved germline-specific small RNA pathway that ensures genomic integrity and continued fertility. In C. elegans and other nematodes, Type-I piRNA precursor transcripts are expressed from over 10,000 small, independently regulated genes clustered within two discrete domains of 1.5 and 3.5 MB on Chromosome IV. These large clusters likely play a significant role in promoting germline-specific expression of piRNAs, but the underlying mechanisms are unclear. By examining the chromatin environment specifically in isolated germ nuclei, we demonstrate that piRNA clusters are located in closed chromatin, and confirm the enrichment for the inactive histone modification H3K27me3. We further show that the piRNA biogenesis factor USTC (Upstream Sequence Transcription Complex) plays two roles - it promotes a strong association of nucleosomes throughout the piRNA clusters, and it organizes the local nucleosome environment to direct the exposure of individual piRNA genes. Overall, this work reveals new insight into how chromatin state coordinates transcriptional regulation over large genomic domains, which has implications for understanding global genome organization in the germ line.
Collapse
Affiliation(s)
- Nancy Sanchez
- Department of Genetics, Yale University School of Medicine, New Haven CT 06520
| | - Lauren E Gonzalez
- Department of Genetics, Yale University School of Medicine, New Haven CT 06520
| | - Valerie Reinke
- Department of Genetics, Yale University School of Medicine, New Haven CT 06520
| |
Collapse
|
29
|
Dijkman HB, Slaats I, Hughes S. Exposure to silicone breast implant-infused media is detrimental to Caenorhabditis elegans. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000732. [PMID: 36855740 PMCID: PMC9968400 DOI: 10.17912/micropub.biology.000732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/20/2023] [Accepted: 02/07/2023] [Indexed: 03/02/2023]
Abstract
Women are raising concerns about breast implant illness (BII), a collective term for a range of symptoms attributed to gel bleed. To study this, Caenorhabditis elegans was exposed to increasing duration of gel bleed from silicone breast implants (SBI) and the impact on health parameters observed. SBI exposure results in a slight reduction in total brood size with the progeny having impaired mobility. Nematodes displayed stress characteristics and silicones were detected inside the animals, suggesting silicone uptake after exposure to SBI. Our data highlights the need for more investigations into the mechanisms and pathways impacted by SBI.
Collapse
Affiliation(s)
| | - Inca Slaats
- HAN University of Applied Sciences, Nijmegen, the Netherlands
| | - Samantha Hughes
- Amsterdam Institute for Life and Environment, Environmental Health and Toxicology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
,
Correspondence to: Samantha Hughes (
)
| |
Collapse
|
30
|
Wilson R, Le Bourgeois M, Perez M, Sarkies P. Fluctuations in chromatin state at regulatory loci occur spontaneously under relaxed selection and are associated with epigenetically inherited variation in C. elegans gene expression. PLoS Genet 2023; 19:e1010647. [PMID: 36862744 PMCID: PMC10013927 DOI: 10.1371/journal.pgen.1010647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/14/2023] [Accepted: 02/01/2023] [Indexed: 03/03/2023] Open
Abstract
Some epigenetic information can be transmitted between generations without changes in the underlying DNA sequence. Changes in epigenetic regulators, termed epimutations, can occur spontaneously and be propagated in populations in a manner reminiscent of DNA mutations. Small RNA-based epimutations occur in C. elegans and persist for around 3-5 generations on average. Here, we explored whether chromatin states also undergo spontaneous change and whether this could be a potential alternative mechanism for transgenerational inheritance of gene expression changes. We compared the chromatin and gene expression profiles at matched time points from three independent lineages of C. elegans propagated at minimal population size. Spontaneous changes in chromatin occurred in around 1% of regulatory regions each generation. Some were heritable epimutations and were significantly enriched for heritable changes in expression of nearby protein-coding genes. Most chromatin-based epimutations were short-lived but a subset had longer duration. Genes subject to long-lived epimutations were enriched for multiple components of xenobiotic response pathways. This points to a possible role for epimutations in adaptation to environmental stressors.
Collapse
Affiliation(s)
- Rachel Wilson
- MRC London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London, United Kingdom.,Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - Marcos Perez
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Peter Sarkies
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
31
|
Han SK, Muto Y, Wilson PC, Humphreys BD, Sampson MG, Chakravarti A, Lee D. Quality assessment and refinement of chromatin accessibility data using a sequence-based predictive model. Proc Natl Acad Sci U S A 2022; 119:e2212810119. [PMID: 36508674 PMCID: PMC9907136 DOI: 10.1073/pnas.2212810119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/28/2022] [Indexed: 12/15/2022] Open
Abstract
Chromatin accessibility assays are central to the genome-wide identification of gene regulatory elements associated with transcriptional regulation. However, the data have highly variable quality arising from several biological and technical factors. To surmount this problem, we developed a sequence-based machine learning method to evaluate and refine chromatin accessibility data. Our framework, gapped k-mer SVM quality check (gkmQC), provides the quality metrics for a sample based on the prediction accuracy of the trained models. We tested 886 DNase-seq samples from the ENCODE/Roadmap projects to demonstrate that gkmQC can effectively identify "high-quality" (HQ) samples with low conventional quality scores owing to marginal read depths. Peaks identified in HQ samples are more accurately aligned at functional regulatory elements, show greater enrichment of regulatory elements harboring functional variants, and explain greater heritability of phenotypes from their relevant tissues. Moreover, gkmQC can optimize the peak-calling threshold to identify additional peaks, especially for rare cell types in single-cell chromatin accessibility data.
Collapse
Affiliation(s)
- Seong Kyu Han
- Department of Pediatrics, Division of Nephrology, Boston Children’s Hospital, Boston & Harvard Medical School, Boston, MA02115
- Kidney Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA02142
| | - Yoshiharu Muto
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO63130
| | - Parker C. Wilson
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO63130
| | - Benjamin D. Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO63130
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO63130
| | - Matthew G. Sampson
- Department of Pediatrics, Division of Nephrology, Boston Children’s Hospital, Boston & Harvard Medical School, Boston, MA02115
- Kidney Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA02142
| | - Aravinda Chakravarti
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY10016
| | - Dongwon Lee
- Department of Pediatrics, Division of Nephrology, Boston Children’s Hospital, Boston & Harvard Medical School, Boston, MA02115
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
| |
Collapse
|
32
|
Carelli FN, Cerrato C, Dong Y, Appert A, Dernburg A, Ahringer J. Widespread transposon co-option in the Caenorhabditis germline regulatory network. SCIENCE ADVANCES 2022; 8:eabo4082. [PMID: 36525485 PMCID: PMC9757741 DOI: 10.1126/sciadv.abo4082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The movement of selfish DNA elements can lead to widespread genomic alterations with potential to create novel functions. We show that transposon expansions in Caenorhabditis nematodes led to extensive rewiring of germline transcriptional regulation. We find that about one-third of Caenorhabditis elegans germline-specific promoters have been co-opted from two related miniature inverted repeat transposable elements (TEs), CERP2 and CELE2. These promoters are regulated by HIM-17, a THAP domain-containing transcription factor related to a transposase. Expansion of CERP2 occurred before radiation of the Caenorhabditis genus, as did fixation of mutations in HIM-17 through positive selection, whereas CELE2 expanded only in C. elegans. Through comparative analyses in Caenorhabditis briggsae, we find not only evolutionary conservation of most CERP2 co-opted promoters but also a substantial fraction that are species-specific. Our work reveals the emergence and evolutionary conservation of a novel transcriptional network driven by TE co-option with a major impact on regulatory evolution.
Collapse
Affiliation(s)
- Francesco Nicola Carelli
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Chiara Cerrato
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Yan Dong
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Alex Appert
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Abby Dernburg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA
- Biological Sciences and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, Berkeley, CA 94720, USA
| | - Julie Ahringer
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| |
Collapse
|
33
|
Neiro J, Sridhar D, Dattani A, Aboobaker A. Identification of putative enhancer-like elements predicts regulatory networks active in planarian adult stem cells. eLife 2022; 11:79675. [PMID: 35997250 PMCID: PMC9522251 DOI: 10.7554/elife.79675] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Planarians have become an established model system to study regeneration and stem cells, but the regulatory elements in the genome remain almost entirely undescribed. Here, by integrating epigenetic and expression data we use multiple sources of evidence to predict enhancer elements active in the adult stem cell populations that drive regeneration. We have used ChIP-seq data to identify genomic regions with histone modifications consistent with enhancer activity, and ATAC-seq data to identify accessible chromatin. Overlapping these signals allowed for the identification of a set of high-confidence candidate enhancers predicted to be active in planarian adult stem cells. These enhancers are enriched for predicted transcription factor (TF) binding sites for TFs and TF families expressed in planarian adult stem cells. Footprinting analyses provided further evidence that these potential TF binding sites are likely to be occupied in adult stem cells. We integrated these analyses to build testable hypotheses for the regulatory function of TFs in stem cells, both with respect to how pluripotency might be regulated, and to how lineage differentiation programs are controlled. We found that our predicted GRNs were independently supported by existing TF RNAi/RNA-seq datasets, providing further evidence that our work predicts active enhancers that regulate adult stem cells and regenerative mechanisms.
Collapse
Affiliation(s)
- Jakke Neiro
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Divya Sridhar
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Anish Dattani
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Aziz Aboobaker
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
34
|
Garrigues JM, Pasquinelli AE. Caenorhabditis elegans transposable elements harbor diverse transcription factor DNA-binding sites. G3 (BETHESDA, MD.) 2022; 12:jkac009. [PMID: 35088854 PMCID: PMC8896005 DOI: 10.1093/g3journal/jkac009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/07/2022] [Indexed: 11/12/2022]
Abstract
Transposable elements are powerful agents of evolution that can diversify transcriptional programs by distributing transcription factor DNA-binding sites throughout genomes. To investigate the extent that transposable elements provide transcription factor-binding motifs in Caenorhabditis elegans, we determined the genomic positions of DNA-binding motifs for 201 different transcription factors. Surprisingly, we found that almost all examined transcription factors have binding motifs that reside within transposable elements, and all types of transposable elements have at least 1 instance of a transcription factor motif, demonstrating that transposable elements provide previously unappreciated numbers of transcription factor-binding motifs to the C. elegans genome. After determining the occurrence of transcription factor motifs in transposable elements relative to the rest of the genome, we identified DNA-binding motifs for 45 different transcription factors that are greater than 20-fold enriched within transposable elements compared to what would be expected by chance. Consistent with potential functional roles for these transposable element-enriched transcription factor-binding sequences, we determined that all transcription factor motif types found in transposable elements have instances of residing within accessible chromatin sites associated with transcription factor binding. The overwhelming majority of transcription factor-binding motifs located within transposable elements associate with their cognate transcription factors, suggesting extensive binding of transcription factors to sequences within transposable elements. In addition, transposable elements with accessible or transcription factor-bound motifs reside in the putative promoter regions of approximately 12% of all protein-coding genes, providing widespread possibilities for influencing gene expression. This work represents the first comprehensive analysis of transposable element-transcription factor interactions in C. elegans and demonstrates that transposable element-provided transcription factor-binding sites are prevalent in this important model organism.
Collapse
Affiliation(s)
- Jacob M Garrigues
- Section of Molecular Biology, Division of Biology, University of California, San Diego, CA 92093, USA
| | - Amy E Pasquinelli
- Section of Molecular Biology, Division of Biology, University of California, San Diego, CA 92093, USA
| |
Collapse
|
35
|
Katsanos D, Barkoulas M. Targeted DamID in C. elegans reveals a direct role for LIN-22 and NHR-25 in antagonizing the epidermal stem cell fate. SCIENCE ADVANCES 2022; 8:eabk3141. [PMID: 35119932 PMCID: PMC8816332 DOI: 10.1126/sciadv.abk3141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/13/2021] [Indexed: 05/13/2023]
Abstract
Transcription factors are key players in gene networks controlling cell fate specification during development. In multicellular organisms, they display complex patterns of expression and binding to their targets, hence, tissue specificity is required in the characterization of transcription factor-target interactions. We introduce here targeted DamID (TaDa) as a method for tissue-specific transcription factor target identification in intact Caenorhabditis elegans animals. We use TaDa to recover targets in the epidermis for two factors, the HES1 homolog LIN-22, and the NR5A1/2 nuclear hormone receptor NHR-25. We demonstrate a direct link between LIN-22 and the Wnt signaling pathway through repression of the Frizzled receptor lin-17. We report a direct role for NHR-25 in promoting cell differentiation via repressing the expression of stem cell-promoting GATA factors. Our results expand our understanding of the epidermal gene network and highlight the potential of TaDa to dissect the architecture of tissue-specific gene regulatory networks.
Collapse
|
36
|
Huang N, Seow WQ, Appert A, Dong Y, Stempor P, Ahringer J. Accessible Region Conformation Capture (ARC-C) gives high-resolution insights into genome architecture and regulation. Genome Res 2022; 32:357-366. [PMID: 34933938 PMCID: PMC8805715 DOI: 10.1101/gr.275669.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 12/19/2021] [Indexed: 11/25/2022]
Abstract
Nuclear organization and chromatin interactions are important for genome function, yet determining chromatin connections at high resolution remains a major challenge. To address this, we developed Accessible Region Conformation Capture (ARC-C), which profiles interactions between regulatory elements genome-wide without a capture step. Applied to Caenorhabditis elegans, ARC-C identifies approximately 15,000 significant interactions between regulatory elements at 500-bp resolution. Of 105 TFs or chromatin regulators tested, we find that the binding sites of 60 are enriched for interacting with each other, making them candidates for mediating interactions. These include cohesin and condensin II. Applying ARC-C to a mutant of transcription factor BLMP-1 detected changes in interactions between its targets. ARC-C simultaneously profiles domain-level architecture, and we observe that C. elegans chromatin domains defined by either active or repressive modifications form topologically associating domains (TADs) that interact with A/B (active/inactive) compartment-like structure. Furthermore, we discover that inactive compartment interactions are dependent on H3K9 methylation. ARC-C is a powerful new tool to interrogate genome architecture and regulatory interactions at high resolution.
Collapse
Affiliation(s)
- Ni Huang
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Wei Qiang Seow
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Alex Appert
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Yan Dong
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Przemyslaw Stempor
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Julie Ahringer
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| |
Collapse
|
37
|
Cornejo-Paramo P, Roper K, Degnan S, Degnan B, Wong ES. Distal regulation, silencers, and a shared combinatorial syntax are hallmarks of animal embryogenesis. Genome Res 2022; 32:474-487. [PMID: 35045977 PMCID: PMC8896464 DOI: 10.1101/gr.275864.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/12/2022] [Indexed: 11/25/2022]
Abstract
The chromatin environment plays a central role in regulating developmental gene expression in metazoans. Yet, the ancestral regulatory landscape of metazoan embryogenesis is unknown. Here, we generate chromatin accessibility profiles for six embryonic, plus larval and adult stages in the sponge Amphimedon queenslandica. These profiles are reproducible within stages, reflect histone modifications, and identify transcription factor (TF) binding sequence motifs predictive of cis-regulatory elements operating during embryogenesis in other metazoans, but not the unicellular relative Capsaspora. Motif analysis of chromatin accessibility profiles across Amphimedon embryogenesis identifies three major developmental periods. As in bilaterian embryogenesis, early development in Amphimedon involves activating and repressive chromatin in regions both proximal and distal to transcription start sites. Transcriptionally repressive elements (“silencers”) are prominent during late embryogenesis. They coincide with an increase in cis-regulatory regions harboring metazoan TF binding motifs, as well as an increase in the expression of metazoan-specific genes. Changes in chromatin state and gene expression in Amphimedon suggest the conservation of distal enhancers, dynamically silenced chromatin, and TF-DNA binding specificity in animal embryogenesis.
Collapse
|
38
|
Gal C, Carelli FN, Appert A, Cerrato C, Huang N, Dong Y, Murphy J, Frapporti A, Ahringer J. DREAM represses distinct targets by cooperating with different THAP domain proteins. Cell Rep 2021; 37:109835. [PMID: 34686342 PMCID: PMC8552245 DOI: 10.1016/j.celrep.2021.109835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 06/03/2021] [Accepted: 09/24/2021] [Indexed: 01/09/2023] Open
Abstract
The DREAM (dimerization partner [DP], retinoblastoma [Rb]-like, E2F, and MuvB) complex controls cellular quiescence by repressing cell-cycle and other genes, but its mechanism of action is unclear. Here, we demonstrate that two C. elegans THAP domain proteins, LIN-15B and LIN-36, co-localize with DREAM and function by different mechanisms for repression of distinct sets of targets. LIN-36 represses classical cell-cycle targets by promoting DREAM binding and gene body enrichment of H2A.Z, and we find that DREAM subunit EFL-1/E2F is specific for LIN-36 targets. In contrast, LIN-15B represses germline-specific targets in the soma by facilitating H3K9me2 promoter marking. We further find that LIN-36 and LIN-15B differently regulate DREAM binding. In humans, THAP proteins have been implicated in cell-cycle regulation by poorly understood mechanisms. We propose that THAP domain proteins are key mediators of Rb/DREAM function.
Collapse
Affiliation(s)
- Csenge Gal
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Francesco Nicola Carelli
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Alex Appert
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Chiara Cerrato
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Ni Huang
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Yan Dong
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Jane Murphy
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Andrea Frapporti
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Julie Ahringer
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
39
|
Li CL, Pu M, Wang W, Chaturbedi A, Emerson FJ, Lee SS. Region-specific H3K9me3 gain in aged somatic tissues in Caenorhabditis elegans. PLoS Genet 2021; 17:e1009432. [PMID: 34506495 PMCID: PMC8457455 DOI: 10.1371/journal.pgen.1009432] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/22/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetic alterations occur as organisms age, and lead to chromatin deterioration, loss of transcriptional silencing and genomic instability. Dysregulation of the epigenome has been associated with increased susceptibility to age-related disorders. In this study, we aimed to characterize the age-dependent changes of the epigenome and, in turn, to understand epigenetic processes that drive aging phenotypes. We focused on the aging-associated changes in the repressive histone marks H3K9me3 and H3K27me3 in C. elegans. We observed region-specific gain and loss of both histone marks, but the changes are more evident for H3K9me3. We further found alteration of heterochromatic boundaries in aged somatic tissues. Interestingly, we discovered that the most statistically significant changes reflected H3K9me3-marked regions that are formed during aging, and are absent in developing worms, which we termed "aging-specific repressive regions" (ASRRs). These ASRRs preferentially occur in genic regions that are marked by high levels of H3K9me2 and H3K36me2 in larval stages. Maintenance of high H3K9me2 levels in these regions have been shown to correlate with a longer lifespan. Next, we examined whether the changes in repressive histone marks lead to de-silencing of repetitive DNA elements, as reported for several other organisms. We observed increased expression of active repetitive DNA elements but not global re-activation of silent repeats in old worms, likely due to the distributed nature of repetitive elements in the C. elegans genome. Intriguingly, CELE45, a putative short interspersed nuclear element (SINE), was greatly overexpressed at old age and upon heat stress. SINEs have been suggested to regulate transcription in response to various cellular stresses in mammals. It is likely that CELE45 RNAs also play roles in stress response and aging in C. elegans. Taken together, our study revealed significant and specific age-dependent changes in repressive histone modifications and repetitive elements, providing important insights into aging biology.
Collapse
Affiliation(s)
- Cheng-Lin Li
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Mintie Pu
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Wenke Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Amaresh Chaturbedi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Felicity J Emerson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
40
|
Krassovsky K, Ghosh RP, Meyer BJ. Genome-wide profiling reveals functional interplay of DNA sequence composition, transcriptional activity, and nucleosome positioning in driving DNA supercoiling and helix destabilization in C. elegans. Genome Res 2021; 31:1187-1202. [PMID: 34168009 PMCID: PMC8256864 DOI: 10.1101/gr.270082.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 05/25/2021] [Indexed: 12/11/2022]
Abstract
DNA topology and alternative DNA structures are implicated in regulating diverse biological processes. Although biomechanical properties of these structures have been studied extensively in vitro, characterization in vivo, particularly in multicellular organisms, is limited. We devised new methods to map DNA supercoiling and single-stranded DNA in Caenorhabditis elegans embryos and diapause larvae. To map supercoiling, we quantified the incorporation of biotinylated psoralen into DNA using high-throughput sequencing. To map single-stranded DNA, we combined permanganate treatment with genome-wide sequencing of induced double-stranded breaks. We found high levels of negative supercoiling at transcription start sites (TSSs) in embryos. GC-rich regions flanked by a sharp GC-to-AT transition delineate boundaries of supercoil propagation. In contrast to TSSs in embryos, TSSs in diapause larvae showed dramatic reductions in negative supercoiling without concomitant attenuation of transcription, suggesting developmental-stage-specific regulation. To assess whether alternative DNA structures control chromosome architecture and gene expression, we examined DNA supercoiling in the context of X-Chromosome dosage compensation. We showed that the condensin dosage compensation complex creates negative supercoils locally at its highest-occupancy binding sites but found no evidence for large-scale supercoiling domains along X Chromosomes. In contrast to transcription-coupled negative supercoiling, single-strandedness, which is most pronounced at transcript end sites, is dependent on high AT content and symmetrically positioned nucleosomes. We propose that sharp transitions in sequence composition at functional genomic elements constitute a common regulatory code and that DNA structure and propagation of torsional stress at regulatory elements are critical parameters in shaping important developmental events.
Collapse
Affiliation(s)
- Kristina Krassovsky
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3204, USA
| | - Rajarshi P Ghosh
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3204, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720-3204, USA
| | - Barbara J Meyer
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3204, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720-3204, USA
| |
Collapse
|
41
|
Lambert J, Lloret-Fernández C, Laplane L, Poole RJ, Jarriault S. On the origins and conceptual frameworks of natural plasticity-Lessons from single-cell models in C. elegans. Curr Top Dev Biol 2021; 144:111-159. [PMID: 33992151 DOI: 10.1016/bs.ctdb.2021.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
How flexible are cell identities? This problem has fascinated developmental biologists for several centuries and can be traced back to Abraham Trembley's pioneering manipulations of Hydra to test its regeneration abilities in the 1700s. Since the cell theory in the mid-19th century, developmental biology has been dominated by a single framework in which embryonic cells are committed to specific cell fates, progressively and irreversibly acquiring their differentiated identities. This hierarchical, unidirectional and irreversible view of cell identity has been challenged in the past decades through accumulative evidence that many cell types are more plastic than previously thought, even in intact organisms. The paradigm shift introduced by such plasticity calls into question several other key traditional concepts, such as how to define a differentiated cell or more generally cellular identity, and has brought new concepts, such as distinct cellular states. In this review, we want to contribute to this representation by attempting to clarify the conceptual and theoretical frameworks of cell plasticity and identity. In the context of these new frameworks we describe here an atlas of natural plasticity of cell identity in C. elegans, including our current understanding of the cellular and molecular mechanisms at play. The worm further provides interesting cases at the borderlines of cellular plasticity that highlight the conceptual challenges still ahead. We then discuss a set of future questions and perspectives arising from the studies of natural plasticity in the worm that are shared with other reprogramming and plasticity events across phyla.
Collapse
Affiliation(s)
- Julien Lambert
- IGBMC, Development and Stem Cells Department, CNRS UMR7104, INSERM U1258, Université de Strasbourg, Strasbourg, France
| | - Carla Lloret-Fernández
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Lucie Laplane
- CNRS UMR 8590, University Paris I Panthéon-Sorbonne, IHPST, Paris, France
| | - Richard J Poole
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.
| | - Sophie Jarriault
- IGBMC, Development and Stem Cells Department, CNRS UMR7104, INSERM U1258, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
42
|
Durham TJ, Daza RM, Gevirtzman L, Cusanovich DA, Bolonduro O, Noble WS, Shendure J, Waterston RH. Comprehensive characterization of tissue-specific chromatin accessibility in L2 Caenorhabditis elegans nematodes. Genome Res 2021; 31:1952-1969. [PMID: 33888511 DOI: 10.1101/gr.271791.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/13/2021] [Indexed: 11/24/2022]
Abstract
Recently developed single-cell technologies allow researchers to characterize cell states at ever greater resolution and scale. Caenorhabditis elegans is a particularly tractable system for studying development, and recent single-cell RNA-seq studies characterized the gene expression patterns for nearly every cell type in the embryo and at the second larval stage (L2). Gene expression patterns give insight about gene function and into the biochemical state of different cell types; recent advances in other single-cell genomics technologies can now also characterize the regulatory context of the genome that gives rise to these gene expression levels at a single-cell resolution. To explore the regulatory DNA of individual cell types in C. elegans, we collected single-cell chromatin accessibility data using the sci-ATAC-seq assay in L2 larvae to match the available single-cell RNA-seq data set. By using a novel implementation of the latent Dirichlet allocation algorithm, we identify 37 clusters of cells that correspond to different cell types in the worm, providing new maps of putative cell type-specific gene regulatory sites, with promise for better understanding of cellular differentiation and gene regulation.
Collapse
Affiliation(s)
- Timothy J Durham
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Riza M Daza
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Louis Gevirtzman
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Darren A Cusanovich
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona 85721, USA
| | - Olubusayo Bolonduro
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - William Stafford Noble
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA.,Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA.,Brotman Baty Institute for Precision Medicine, Seattle, Washington 98195, USA.,Allen Discovery Center for Cell Lineage Tracing, University of Washington, Seattle, Washington 98195, USA
| | - Robert H Waterston
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
43
|
Froehlich JJ, Uyar B, Herzog M, Theil K, Glažar P, Akalin A, Rajewsky N. Parallel genetics of regulatory sequences using scalable genome editing in vivo. Cell Rep 2021; 35:108988. [PMID: 33852857 DOI: 10.1016/j.celrep.2021.108988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/13/2021] [Accepted: 03/23/2021] [Indexed: 12/27/2022] Open
Abstract
How regulatory sequences control gene expression is fundamental for explaining phenotypes in health and disease. Regulatory elements must ultimately be understood within their genomic environment and development- or tissue-specific contexts. Because this is technically challenging, few regulatory elements have been characterized in vivo. Here, we use inducible Cas9 and multiplexed guide RNAs to create hundreds of mutations in enhancers/promoters and 3' UTRs of 16 genes in C. elegans. Our software crispr-DART analyzes indel mutations in targeted DNA sequencing. We quantify the impact of mutations on expression and fitness by targeted RNA sequencing and DNA sampling. When applying our approach to the lin-41 3' UTR, generating hundreds of mutants, we find that the two adjacent binding sites for the miRNA let-7 can regulate lin-41 expression independently of each other. Finally, we map regulatory genotypes to phenotypic traits for several genes. Our approach enables parallel analysis of regulatory sequences directly in animals.
Collapse
Affiliation(s)
- Jonathan J Froehlich
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Bora Uyar
- Bioinformatics and Omics Data Science Platform, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Margareta Herzog
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Kathrin Theil
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Petar Glažar
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Altuna Akalin
- Bioinformatics and Omics Data Science Platform, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Nikolaus Rajewsky
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany.
| |
Collapse
|
44
|
Fan T, Huang Y. Accessible chromatin reveals regulatory mechanisms underlying cell fate decisions during early embryogenesis. Sci Rep 2021; 11:7896. [PMID: 33846424 PMCID: PMC8042068 DOI: 10.1038/s41598-021-86919-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/22/2021] [Indexed: 02/01/2023] Open
Abstract
This study was conducted to investigate epigenetic landscape across multiple species and identify transcription factors (TFs) and their roles in controlling cell fate decision events during early embryogenesis. We made a comprehensively joint-research of chromatin accessibility of five species during embryogenesis by integration of ATAC-seq and RNA-seq datasets. Regulatory roles of candidate early embryonic TFs were investigated. Widespread accessible chromatin in early embryos overlapped with putative cis-regulatory sequences. Sets of cell-fate-determining TFs were identified. YOX1, a key cell cycle regulator, were found to homologous to clusters of TFs that are involved in neuron and epidermal cell-fate determination. Our research provides an intriguing insight into evolution of cell-fate decision during early embryogenesis among organisms.
Collapse
Affiliation(s)
- Tongqiang Fan
- grid.443483.c0000 0000 9152 7385State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, 311300 People’s Republic of China
| | - Youjun Huang
- grid.443483.c0000 0000 9152 7385State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, 311300 People’s Republic of China
| |
Collapse
|
45
|
Zhao Z, Fan R, Xu W, Kou Y, Wang Y, Ma X, Du Z. Single-cell dynamics of chromatin activity during cell lineage differentiation in Caenorhabditis elegans embryos. Mol Syst Biol 2021; 17:e10075. [PMID: 33900055 PMCID: PMC8073016 DOI: 10.15252/msb.202010075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 11/09/2022] Open
Abstract
Elucidating the chromatin dynamics that orchestrate embryogenesis is a fundamental question in developmental biology. Here, we exploit position effects on expression as an indicator of chromatin activity and infer the chromatin activity landscape in every lineaged cell during Caenorhabditis elegans early embryogenesis. Systems-level analyses reveal that chromatin activity distinguishes cellular states and correlates with fate patterning in the early embryos. As cell lineage unfolds, chromatin activity diversifies in a lineage-dependent manner, with switch-like changes accompanying anterior-posterior fate asymmetry and characteristic landscapes being established in different cell lineages. Upon tissue differentiation, cellular chromatin from distinct lineages converges according to tissue types but retains stable memories of lineage history, contributing to intra-tissue cell heterogeneity. However, the chromatin landscapes of cells organized in a left-right symmetric pattern are predetermined to be analogous in early progenitors so as to pre-set equivalent states. Finally, genome-wide analysis identifies many regions exhibiting concordant chromatin activity changes that mediate the co-regulation of functionally related genes during differentiation. Collectively, our study reveals the developmental and genomic dynamics of chromatin activity at the single-cell level.
Collapse
Affiliation(s)
- Zhiguang Zhao
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Rong Fan
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Weina Xu
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yahui Kou
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yangyang Wang
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Xuehua Ma
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Zhuo Du
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
46
|
Beltran T, Pahita E, Ghosh S, Lenhard B, Sarkies P. Integrator is recruited to promoter-proximally paused RNA Pol II to generate Caenorhabditis elegans piRNA precursors. EMBO J 2021; 40:e105564. [PMID: 33340372 PMCID: PMC7917550 DOI: 10.15252/embj.2020105564] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 12/29/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs) play key roles in germline development and genome defence in metazoans. In C. elegans, piRNAs are transcribed from > 15,000 discrete genomic loci by RNA polymerase II (Pol II), resulting in 28 nt short-capped piRNA precursors. Here, we investigate transcription termination at piRNA loci. We show that the Integrator complex, which terminates snRNA transcription, is recruited to piRNA loci. Moreover, we demonstrate that the catalytic activity of Integrator cleaves nascent capped piRNA precursors associated with promoter-proximal Pol II, resulting in termination of transcription. Loss of Integrator activity, however, does not result in transcriptional readthrough at the majority of piRNA loci. Taken together, our results draw new parallels between snRNA and piRNA biogenesis in nematodes and provide evidence of a role for the Integrator complex as a terminator of promoter-proximal RNA polymerase II during piRNA biogenesis.
Collapse
Affiliation(s)
- Toni Beltran
- MRC London Institute of Medical SciencesLondonUK
- Institute of Clinical SciencesImperial College LondonLondonUK
- Present address:
Centre for Genomic RegulationBarcelonaSpain
| | - Elena Pahita
- MRC London Institute of Medical SciencesLondonUK
- Institute of Clinical SciencesImperial College LondonLondonUK
| | - Subhanita Ghosh
- MRC London Institute of Medical SciencesLondonUK
- Institute of Clinical SciencesImperial College LondonLondonUK
| | - Boris Lenhard
- MRC London Institute of Medical SciencesLondonUK
- Institute of Clinical SciencesImperial College LondonLondonUK
| | - Peter Sarkies
- MRC London Institute of Medical SciencesLondonUK
- Institute of Clinical SciencesImperial College LondonLondonUK
| |
Collapse
|
47
|
Vicencio J, Cerón J. A Living Organism in your CRISPR Toolbox: Caenorhabditis elegans Is a Rapid and Efficient Model for Developing CRISPR-Cas Technologies. CRISPR J 2021; 4:32-42. [PMID: 33538637 DOI: 10.1089/crispr.2020.0103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Cas9 nuclease from Streptococcus pyogenes (SpCas9) is the most popular enzyme for CRISPR technologies. However, considering the wide diversity of microorganisms (discovered and still unknown), a massive number of CRISPR effectors are being and will be identified and characterized in the search of optimal Cas variants for each of the many applications of CRISPR. In this context, a versatile and efficient multicellular system for CRISPR editing such as Caenorhabditis elegans would be of great help in the development of these effectors. Here, we highlight the benefits of using C. elegans for the rapid evaluation of new CRISPR effectors, and for optimizing CRISPR efficiency in animals in several ways such as by modulating the balance between repair pathways, modifying chromatin accessibility, or controlling the expression and activity of nucleases and guide RNAs.
Collapse
Affiliation(s)
- Jeremy Vicencio
- Modeling human diseases in C. elegans Group, Genes, Disease and Therapy Program, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Julián Cerón
- Modeling human diseases in C. elegans Group, Genes, Disease and Therapy Program, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
48
|
An Epigenetic Priming Mechanism Mediated by Nutrient Sensing Regulates Transcriptional Output during C. elegans Development. Curr Biol 2020; 31:809-826.e6. [PMID: 33357451 DOI: 10.1016/j.cub.2020.11.060] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/07/2020] [Accepted: 11/23/2020] [Indexed: 11/23/2022]
Abstract
Although precise tuning of gene expression levels is critical for most developmental pathways, the mechanisms by which the transcriptional output of dosage-sensitive molecules is established or modulated by the environment remain poorly understood. Here, we provide a mechanistic framework for how the conserved transcription factor BLMP-1/Blimp1 operates as a pioneer factor to decompact chromatin near its target loci during embryogenesis (hours prior to major transcriptional activation) and, by doing so, regulates both the duration and amplitude of subsequent target gene transcription during post-embryonic development. This priming mechanism is genetically separable from the mechanisms that establish the timing of transcriptional induction and functions to canalize aspects of cell-fate specification, animal size regulation, and molting. A key feature of the BLMP-1-dependent transcriptional priming mechanism is that chromatin decompaction is initially established during embryogenesis and maintained throughout larval development by nutrient sensing. This anticipatory mechanism integrates transcriptional output with environmental conditions and is essential for resuming normal temporal patterning after animals exit nutrient-mediated developmental arrests.
Collapse
|
49
|
Askjaer P, Harr JC. Genetic approaches to revealing the principles of nuclear architecture. Curr Opin Genet Dev 2020; 67:52-60. [PMID: 33338753 DOI: 10.1016/j.gde.2020.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
The spatial organization of chromosomes inside the eukaryotic nucleus is important for DNA replication, repair and gene expression. During development of multicellular organisms, different compendiums of genes are either repressed or activated to produce specific cell types. Genetic manipulation of tractable organisms is invaluable to elucidate chromosome configuration and the underlying mechanisms. Systematic inhibition of genes through RNA interference and, more recently, CRISPR/Cas9-based screens have identified new proteins with significant roles in nuclear organization. Coupling this with advances in imaging techniques, such as multiplexed DNA fluorescence in situ hybridization, and with tissue-specific genome profiling by DNA adenine methylation identification has increased our knowledge about the immense complexity and dynamics of the nucleus.
Collapse
Affiliation(s)
- Peter Askjaer
- Andalusian Center for Developmental Biology (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Seville 41013, Spain.
| | - Jennifer C Harr
- Department of Biological Sciences, St. Mary's University, One Camino Santa Maria, San Antonio, TX, 78228, USA.
| |
Collapse
|
50
|
Serizay J, Dong Y, Jänes J, Chesney M, Cerrato C, Ahringer J. Distinctive regulatory architectures of germline-active and somatic genes in C. elegans. Genome Res 2020; 30:1752-1765. [PMID: 33093068 PMCID: PMC7706728 DOI: 10.1101/gr.265934.120] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/08/2020] [Indexed: 01/08/2023]
Abstract
RNA profiling has provided increasingly detailed knowledge of gene expression patterns, yet the different regulatory architectures that drive them are not well understood. To address this, we profiled and compared transcriptional and regulatory element activities across five tissues of Caenorhabditis elegans, covering ∼90% of cells. We find that the majority of promoters and enhancers have tissue-specific accessibility, and we discover regulatory grammars associated with ubiquitous, germline, and somatic tissue–specific gene expression patterns. In addition, we find that germline-active and soma-specific promoters have distinct features. Germline-active promoters have well-positioned +1 and −1 nucleosomes associated with a periodic 10-bp WW signal (W = A/T). Somatic tissue–specific promoters lack positioned nucleosomes and this signal, have wide nucleosome-depleted regions, and are more enriched for core promoter elements, which largely differ between tissues. We observe the 10-bp periodic WW signal at ubiquitous promoters in other animals, suggesting it is an ancient conserved signal. Our results show fundamental differences in regulatory architectures of germline and somatic tissue–specific genes, uncover regulatory rules for generating diverse gene expression patterns, and provide a tissue-specific resource for future studies.
Collapse
Affiliation(s)
- Jacques Serizay
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Yan Dong
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Jürgen Jänes
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Michael Chesney
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Chiara Cerrato
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Julie Ahringer
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| |
Collapse
|