1
|
Nguyen QH, Nguyen TVA, Bañuls A. Multi-drug resistance and compensatory mutations in Mycobacterium tuberculosis in Vietnam. Trop Med Int Health 2025; 30:426-436. [PMID: 40078052 PMCID: PMC12050163 DOI: 10.1111/tmi.14104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
BACKGROUND Vietnam is a hotspot for the emergence and spread of multidrug-resistant Mycobacterium tuberculosis. This study aimed to perform a retrospective study on the compensatory evolution in multidrug-resistant M. tuberculosis strains and the association with drug-resistant mutations and M. tuberculosis genotypes. METHODS Hundred and seventy-three strains resistant to rifampicin (n = 126) and/or isoniazid (n = 170) (multidrug-resistant = 123) were selected according to different drug-resistant patterns and genotypes. The genes/promoter regions including rpoA, rpoB, rpoC, katG, inhA, inhA promoter, ahpC, ahpC promoter, gyrA, gyrB, and rrs were sequenced for each strain. RESULTS Frequency of rifampicin- and isoniazid-resistant mutations in multidrug-resistant strains was 99.2% and 97.0%, respectively. Mutations associated with low -high levels of drug resistance with low- or no-fitness costs compared to the wild type, including rpoB_Ser450Leu, katG_Ser315Thr, inhA-15(A-T), gyrA_Asp94Gly, and rrs_A1401GA, accounted for 46.3%, 76.4%, 16.2%, 8.9%, and 11.4%, respectively, in the multidrug-resistant strains. Beijing and Euro-American genotype strains were associated with high-level drug-resistant mutations, rpoB_Ser450Leu, katG_Ser315Thr, and gyrA_Asp94Gly, while East African-Indian genotype strains were associated with low to high-level drug-resistant mutations, rpoB_His445Asp, rpoB_His445Tyr, inhA-15(C-T) and rrs_A1401G. Multidrug-resistant strains (19.5%) harboured compensatory mutations linked to rifampicin resistance in rpoA, rpoB, or rpoC. Notably, the frequency of compensatory mutations in Beijing genotypes was significantly higher than in East African-Indian genotypes (21.1% vs. 3.3%, OR = 7.7; 95% CI = 1.0 to 61.2, p = 0.03). The proportion of multidrug-resistant strains with rpoB_Ser450Leu mutations carrying rpoA-rpoC mutations was higher than that of strains with other rpoB mutations (OR = 5.4; 95% CI = 1.4 to 21.1, p = 0.02) and was associated with Beijing strains. Only 1.2% (2/170) isoniazid-resistant strains carried aphC-52(C-T) mutation in the promoter region of the ahpC gene, which was hypothesised to be the compensatory mutation in isoniazid-resistant strains. Meanwhile, 11 isoniazid-resistant strains carried a katG mutation combined with either inhA-8(T-C) or inhA-15(A-T) mutations and were associated with East African-Indian strains. CONCLUSIONS Mutations associated with high levels of drug resistance without/with low fitness costs (rpoB_Ser450Leu and katG_Ser315Thr) along with compensatory mutations linked to rifampicin resistance were strongly associated with multidrug-resistant M. tuberculosis Beijing strains in Vietnam.
Collapse
Affiliation(s)
- Quang Huy Nguyen
- LMI DRISA, Department of Life SciencesUniversity of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST)HanoiVietnam
| | - Thi Van Anh Nguyen
- Department of BacteriologyNational Institute of Hygiene and Epidemiology (NIHE)HanoiVietnam
- Present address:
Foundation for Innovative New Diagnostics (FIND)HanoiVietnam
| | - Anne‐Laure Bañuls
- LMI DRISA, Department of Life SciencesUniversity of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST)HanoiVietnam
- MIVEGECUniversity of Montpellier, IRD, CNRSMontpellierFrance
| |
Collapse
|
2
|
Goig GA, Windels EM, Loiseau C, Stritt C, Biru L, Borrell S, Brites D, Gagneux S. Ecology, global diversity and evolutionary mechanisms in the Mycobacterium tuberculosis complex. Nat Rev Microbiol 2025:10.1038/s41579-025-01159-w. [PMID: 40133503 DOI: 10.1038/s41579-025-01159-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 03/27/2025]
Abstract
With the COVID-19 pandemic receding, tuberculosis (TB) is again the number one cause of human death to a single infectious agent. TB is caused by bacteria that belong to the Mycobacterium tuberculosis complex (MTBC). Recent advances in genome sequencing have provided new insights into the ecology and evolution of the MTBC. This includes the discovery of new phylogenetic lineages within the MTBC, a deeper understanding of the host tropism among the various animal-adapted lineages, enhanced knowledge on the evolutionary dynamics of antimicrobial resistance and transmission, as well as a better grasp of the within-host MTBC diversity. Moreover, advances in long-read sequencing are increasingly highlighting the relevance of structural genomic variation in the MTBC. These findings not only shed new light on the biology and epidemiology of TB, but also give rise to new questions and research avenues. The purpose of this Review is to summarize these new insights and discuss their implications for global TB control.
Collapse
Affiliation(s)
- Galo A Goig
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Etthel M Windels
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Chloé Loiseau
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Christoph Stritt
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Loza Biru
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Sonia Borrell
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Daniela Brites
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
3
|
Ramanujam H, Refaya AK, Thiruvengadam K, Pazhanivel N, Kandasamy D, Shanmugavel A, Radhakrishnan A, Radhika G, Ravi R, Ravi N, Palanisamy M, Shanmugam S, Stuber TP, Kapur V, Palaniyandi K. Recovery of Mycobacterium tuberculosis Complex Isolates Including Pre-Extensively Drug-Resistant Strains From Cattle at a Slaughterhouse in Chennai, India. Open Forum Infect Dis 2025; 12:ofae733. [PMID: 39822270 PMCID: PMC11736417 DOI: 10.1093/ofid/ofae733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025] Open
Abstract
Background India has the highest global burden of human tuberculosis (TB) and the largest cattle herd with endemic bovine TB (bTB). However, the extent of cross-species transmission and the zoonotic spillover risk, including drug-resistant Mycobacterium tuberculosis complex (MTBC) strains circulating in cattle, remain uncharacterized. Methods To address this major knowledge gap, we investigated tissue samples from 500 apparently healthy cattle at a slaughterhouse in Chennai, India. Whole genome sequencing was performed to characterize the isolates. Results Sixteen animals (32 per 1000 [95% confidence interval, 16-47]) were MTBC-positive, a rate that is nearly an order of magnitude greater than the reported human TB incidence in the region. Thirteen isolates were identified as Mycobacterium orygis and 3 were M tuberculosis: 1 was a mixed infection of M tuberculosis lineage 1 and M orygis, and the other 2 had pure growth of M tuberculosis lineage 2, in both cases pre-extensively drug-resistant (pre-XDR) with identical resistance patterns and separated by 7 single-nucleotide polymorphisms. The results confirm that bTB in this region is primarily due to M orygis and M tuberculosis, and not Mycobacterium bovis. Conclusions The detection of pre-XDR M tuberculosis in cattle highlights a potential public health concern, since controlling human TB alone may be insufficient without addressing bovine TB. Overall, our findings underscore an urgent need for targeted interventions to mitigate zoonotic tuberculosis transmission in regions where bTB is endemic.
Collapse
Affiliation(s)
- Harini Ramanujam
- Department of Immunology, ICMR–National Institute for Research in Tuberculosis, Chennai, India
| | - Ahmed Kabir Refaya
- Department of Immunology, ICMR–National Institute for Research in Tuberculosis, Chennai, India
| | - Kannan Thiruvengadam
- Department of Statistics, ICMR–National Institute for Research in Tuberculosis, Chennai, India
| | | | - Devika Kandasamy
- Department of Bacteriology, ICMR–National Institute for Research in Tuberculosis, Chennai, India
| | - Ashokkumar Shanmugavel
- Department of Bacteriology, ICMR–National Institute for Research in Tuberculosis, Chennai, India
| | - Ammayappan Radhakrishnan
- Department of Bacteriology, ICMR–National Institute for Research in Tuberculosis, Chennai, India
| | - Golla Radhika
- Department of Bacteriology, ICMR–National Institute for Research in Tuberculosis, Chennai, India
| | - Rajkumar Ravi
- Department of Bacteriology, ICMR–National Institute for Research in Tuberculosis, Chennai, India
| | - Neelakandan Ravi
- Corporation Slaughterhouse, Greater Chennai Corporation, Chennai, India
| | | | - Sivakumar Shanmugam
- Department of Bacteriology, ICMR–National Institute for Research in Tuberculosis, Chennai, India
| | - Tod P Stuber
- National Veterinary Services Laboratories, US Department of Agriculture, Ames, Iowa, USA
| | - Vivek Kapur
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kannan Palaniyandi
- Department of Immunology, ICMR–National Institute for Research in Tuberculosis, Chennai, India
| |
Collapse
|
4
|
Mokrousov I, Badleeva M, Mudarisova R, Kozhevnikov V, Markhaev A, Guntupova A, Vyazovaya A. Increasing circulation of multi-drug resistant tuberculosis strains in Buryatia, high-burden and ethnically diverse region in the Russian Far East. Tuberculosis (Edinb) 2024; 149:102555. [PMID: 39241696 DOI: 10.1016/j.tube.2024.102555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Abstract
Buryatia is a multidrug-resistant tuberculosis (MDR-TB) high-burden region in the Russian Far East with ethnically diverse population (30 % Mongoloid Buryats and 65 % Russians). Two hundred M. tuberculosis strains from newly-diagnosed patients were subjected to phenotypic testing and genotyping. The Beijing genotype was more prevalent among Russians than Buryats (68 % vs 53 %; P = 0.055). European non-Beijing genotypes (LAM, Ural, Haarlem) were double more prevalent in Buryats vs Russians (39.2 % vs 20.5 %; P = 0.01). Higher prevalence of Beijing among former prison inmates (79 % vs 61 % in other patients, P = 0.1) suggests its increased transmissibility. The Russian epidemic cluster B0/W148 was in 9.5 %, double smaller than elsewhere in Siberia. The hypervirulent Beijing 14717-15-cluster was endemic in Buryatia but paradoxically enough, it was more frequently isolated from Russians than Buryats (9.1 % vs 3.9 %; P = 0.2). Beijing subtypes B0/W148, CAO, and 14717-15 were associated with poly/multi-drug resistance (P = 0.01-0.0001). HIV coinfection was more frequent in Russians than in Buryats: 35/141 (24.8 %) vs 5/51 (9.8 %), P = 0.03. To conclude, M. tuberculosis population structure in Buryatia retained its singularities compared to other parts of Russia and remains strikingly different from the neighboring Mongolia. A circulation of strongly MDR-associated Beijing subtypes and drug-resistant non-Beijing strains highlights a risk of their broader dissemination.
Collapse
Affiliation(s)
- Igor Mokrousov
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, St. Petersburg, Russia.
| | - Maria Badleeva
- Department of Infectious Diseases, Dorji Banzarov Buryat State University, Ulan-Ude, Buryatia, Russia
| | - Regina Mudarisova
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, St. Petersburg, Russia
| | - Valery Kozhevnikov
- G.D. Dugarova Clinical Anti-tuberculosis Dispensary, Ulan-Ude, Buryatia, Russia
| | - Andrey Markhaev
- Department of Infectious Diseases, Dorji Banzarov Buryat State University, Ulan-Ude, Buryatia, Russia
| | | | - Anna Vyazovaya
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, St. Petersburg, Russia.
| |
Collapse
|
5
|
Naidoo K, Perumal R, Cox H, Mathema B, Loveday M, Ismail N, Omar SV, Georghiou SB, Daftary A, O'Donnell M, Ndjeka N. The epidemiology, transmission, diagnosis, and management of drug-resistant tuberculosis-lessons from the South African experience. THE LANCET. INFECTIOUS DISEASES 2024; 24:e559-e575. [PMID: 38527475 DOI: 10.1016/s1473-3099(24)00144-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 03/27/2024]
Abstract
Drug-resistant tuberculosis (DR-TB) threatens to derail tuberculosis control efforts, particularly in Africa where the disease remains out of control. The dogma that DR-TB epidemics are fueled by unchecked rates of acquired resistance in inadequately treated or non-adherent individuals is no longer valid in most high DR-TB burden settings, where community transmission is now widespread. A large burden of DR-TB in Africa remains undiagnosed due to inadequate access to diagnostic tools that simultaneously detect tuberculosis and screen for resistance. Furthermore, acquisition of drug resistance to new and repurposed drugs, for which diagnostic solutions are not yet available, presents a major challenge for the implementation of novel, all-oral, shortened (6-9 months) treatment. Structural challenges including poverty, stigma, and social distress disrupt engagement in care, promote poor treatment outcomes, and reduce the quality of life for people with DR-TB. We reflect on the lessons learnt from the South African experience in implementing state-of-the-art advances in diagnostic solutions, deploying recent innovations in pharmacotherapeutic approaches for rapid cure, understanding local transmission dynamics and implementing interventions to curtail DR-TB transmission, and in mitigating the catastrophic socioeconomic costs of DR-TB. We also highlight globally relevant and locally responsive research priorities for achieving DR-TB control in South Africa.
Collapse
Affiliation(s)
- Kogieleum Naidoo
- SAMRC-CAPRISA HIV/TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.
| | - Rubeshan Perumal
- SAMRC-CAPRISA HIV/TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Helen Cox
- Institute of Infectious Diseases and Molecular Medicine, Wellcome Centre for Infectious Disease Research and Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa
| | - Barun Mathema
- Mailman School of Public Health, Columbia University, New York City, NY, USA
| | - Marian Loveday
- South African Medical Research Council, Durban, South Africa
| | - Nazir Ismail
- School of Pathology, University of Witwatersrand, Johannesburg, South Africa
| | - Shaheed Vally Omar
- Centre for Tuberculosis, National & WHO Supranational TB Reference Laboratory, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
| | | | - Amrita Daftary
- SAMRC-CAPRISA HIV/TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa; School of Global Health and Dahdaleh Institute of Global Health Research, York University, Toronto, ON, Canada
| | - Max O'Donnell
- SAMRC-CAPRISA HIV/TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa; Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Irving Medical Center, New York City, NY, USA; Department of Epidemiology, Columbia University Irving Medical Center, New York City, NY, USA
| | - Norbert Ndjeka
- TB Control and Management, Republic of South Africa National Department of Health, Pretoria, South Africa
| |
Collapse
|
6
|
Hemez C, Mohler K, Radford F, Moen J, Rinehart J, Isaacs FJ. Genomically recoded Escherichia coli with optimized functional phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610322. [PMID: 39257802 PMCID: PMC11383693 DOI: 10.1101/2024.08.29.610322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Genomically recoded organisms hold promise for many biotechnological applications, but they may exhibit substantial fitness defects relative to their non-recoded counterparts. We used targeted metabolic screens, genetic analysis, and proteomics to identify the origins of fitness impairment in a model recoded organism, Escherichia coli C321.∆A. We found that defects in isoleucine biosynthesis and release factor activity, caused by mutations extant in all K-12 lineage strains, elicited profound fitness impairments in C321.∆A, suggesting that genome recoding exacerbates suboptimal traits present in precursor strains. By correcting these and other C321.∆A-specific mutations, we engineered C321.∆A strains with doubling time reductions of 17% and 42% in rich and minimal medium, respectively, compared to ancestral C321. Strains with improved growth kinetics also demonstrated enhanced ribosomal non-standard amino acid incorporation capabilities. Proteomic analysis indicated that C321.∆A lacks the ability to regulate essential amino acid and nucleotide biosynthesis pathways, and that targeted mutation reversion restored regulatory capabilities. Our work outlines a strategy for the rapid and precise phenotypic optimization of genomically recoded organisms and other engineered microbes.
Collapse
Affiliation(s)
- Colin Hemez
- Systems Biology Institute, Yale University, West Haven, CT 06516
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520
- Department of Biomedical Engineering, Yale University, New Haven CT 06520
| | - Kyle Mohler
- Systems Biology Institute, Yale University, West Haven, CT 06516
- Department of Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
| | - Felix Radford
- Systems Biology Institute, Yale University, West Haven, CT 06516
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520
| | - Jack Moen
- Systems Biology Institute, Yale University, West Haven, CT 06516
- Department of Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
| | - Jesse Rinehart
- Systems Biology Institute, Yale University, West Haven, CT 06516
- Department of Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
| | - Farren J Isaacs
- Systems Biology Institute, Yale University, West Haven, CT 06516
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520
- Department of Biomedical Engineering, Yale University, New Haven CT 06520
| |
Collapse
|
7
|
Dekhil N, Mardassi H. Delineating the evolutionary pathway to multidrug-resistant outbreaks of a Mycobacterium tuberculosis L4.1.2.1/Haarlem sublineage. Int J Infect Dis 2024; 144:107077. [PMID: 38697608 DOI: 10.1016/j.ijid.2024.107077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024] Open
Abstract
OBJECTIVES We sought to capture the evolutionary itinerary of the Mycobacterium tuberculosis L4.1.2.1/Haarlem sublineage in northern Tunisia, where it caused a major multidrug-resistant (MDR) tuberculosis outbreak in a context strictly negative for HIV infection. METHODS We combined whole genome sequencing and Bayesian approaches using a representative collection of drug-susceptible and drug-resistant L4.1.2.1/Haarlem clinical strains (n = 121) recovered from the outbreak region over 16 years. RESULTS In the absence of drug resistance, the L4.1.2.1/Haarlem sublineage showed a propensity for rapid transmission as witnessed by the high clustering (44.6%) and recent transmission rates (25%), as well as the reduced mean distance between genome pairs. The entire pool of L4.1.2.1/Haarlem MDR strains was found to be linked to either the aforementioned major outbreak (68 individuals, 2001-2016) or to a minor, newly uncovered outbreak (six cases, 2001-2011). Strikingly, the two outbreaks descended independently from a common ancestor that can be dated back to 1886. CONCLUSIONS Our data point to the intrinsic propensity for rapid transmission of the M. tuberculosis L4.1.2.1/Haarlem sublineage in northern Tunisia, linking the overall MDR tuberculosis epidemic to a single ancestor. These findings bring out the important role of the bacillus' genetic background in the emergence of successful MDR M. tuberculosis clones.
Collapse
Affiliation(s)
- Naira Dekhil
- Unit of Typing & Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Helmi Mardassi
- Unit of Typing & Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia.
| |
Collapse
|
8
|
Billows N, Phelan J, Xia D, Peng Y, Clark TG, Chang YM. Large-scale statistical analysis of Mycobacterium tuberculosis genome sequences identifies compensatory mutations associated with multi-drug resistance. Sci Rep 2024; 14:12312. [PMID: 38811658 PMCID: PMC11137121 DOI: 10.1038/s41598-024-62946-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, has a significant impact on global health worldwide. The development of multi-drug resistant strains that are resistant to the first-line drugs isoniazid and rifampicin threatens public health security. Rifampicin and isoniazid resistance are largely underpinned by mutations in rpoB and katG respectively and are associated with fitness costs. Compensatory mutations are considered to alleviate these fitness costs and have been observed in rpoC/rpoA (rifampicin) and oxyR'-ahpC (isoniazid). We developed a framework (CompMut-TB) to detect compensatory mutations from whole genome sequences from a large dataset comprised of 18,396 M. tuberculosis samples. We performed association analysis (Fisher's exact tests) to identify pairs of mutations that are associated with drug-resistance, followed by mediation analysis to identify complementary or full mediators of drug-resistance. The analyses revealed several potential mutations in rpoC (N = 47), rpoA (N = 4), and oxyR'-ahpC (N = 7) that were considered either 'highly likely' or 'likely' to confer compensatory effects on drug-resistance, including mutations that have previously been reported and validated. Overall, we have developed the CompMut-TB framework which can assist with identifying compensatory mutations which is important for more precise genome-based profiling of drug-resistant TB strains and to further understanding of the evolutionary mechanisms that underpin drug-resistance.
Collapse
Affiliation(s)
- Nina Billows
- Royal Veterinary College, University of London, London, UK.
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | - Jody Phelan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Dong Xia
- Royal Veterinary College, University of London, London, UK
| | | | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Yu-Mei Chang
- Royal Veterinary College, University of London, London, UK
| |
Collapse
|
9
|
Atavliyeva S, Auganova D, Tarlykov P. Genetic diversity, evolution and drug resistance of Mycobacterium tuberculosis lineage 2. Front Microbiol 2024; 15:1384791. [PMID: 38827149 PMCID: PMC11140050 DOI: 10.3389/fmicb.2024.1384791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/01/2024] [Indexed: 06/04/2024] Open
Abstract
Mycobacterium tuberculosis causes a chronic infectious disease called tuberculosis. Phylogenetic lineage 2 (L2) of M. tuberculosis, also known as the East Asian lineage, is associated with high virulence, increased transmissibility, and the spread of multidrug-resistant strains. This review article examines the genomic characteristics of the M. tuberculosis genome and M. tuberculosis lineage 2, such as the unique insertion sequence and spoligotype patterns, as well as MIRU-VNTR typing, and SNP-based barcoding. The review describes the geographical distribution of lineage 2 and its history of origin. In addition, the article discusses recent studies on drug resistance and compensatory mechanisms of M. tuberculosis lineage 2 and its impact on the pathogen's transmissibility and virulence. This review article discusses the importance of establishing a unified classification for lineage 2 to ensure consistency in terminology and criteria across different studies and settings.
Collapse
Affiliation(s)
- Sabina Atavliyeva
- Genomics and Proteomics Core Facility, National Center for Biotechnology, Astana, Kazakhstan
| | | | - Pavel Tarlykov
- Genomics and Proteomics Core Facility, National Center for Biotechnology, Astana, Kazakhstan
| |
Collapse
|
10
|
Blankson HNA, Kamara RF, Barilar I, Andres S, Conteh OS, Dallenga T, Foray L, Maurer F, Kranzer K, Utpatel C, Niemann S. Molecular determinants of multidrug-resistant tuberculosis in Sierra Leone. Microbiol Spectr 2024; 12:e0240523. [PMID: 38289066 PMCID: PMC10923214 DOI: 10.1128/spectrum.02405-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/28/2023] [Indexed: 03/06/2024] Open
Abstract
Multidrug-resistant tuberculosis (MDR-TB) management has become a serious global health challenge. Understanding its epidemic determinants on the regional level is crucial for developing effective control measures. We used whole genome sequencing data of 238 of Mycobacterium tuberculosis complex (MTBC) strains to determine drug resistance profiles, phylogeny, and transmission dynamics of MDR/rifampicin-resistant (RR) MTBC strains from Sierra Leone. Forty-two strains were classified as RR, 196 as MDR, 5 were resistant to bedaquiline (BDQ) and clofazimine (CFZ), but none was found to be resistant to fluoroquinolones. Sixty-one (26%) strains were resistant to all first-line drugs, three of which had additional resistance to BDQ/CFZ. The strains were classified into six major MTBC lineages (L), with strains of L4 being the most prevalent, 62% (n = 147), followed by L6 (Mycobacterium africanum) strains, (21%, n = 50). The overall clustering rate (using ≤d12 single-nucleotide polymorphism threshold) was 44%, stratified into 31 clusters ranging from 2 to 16 strains. The largest cluster (n = 16) was formed by sublineage 2.2.1 Beijing Ancestral 3 strains, which developed MDR several times. Meanwhile, 10 of the L6 strains had a primary MDR transmission. We observed a high diversity of drug resistance mutations, including borderline resistance mutations to isoniazid and rifampicin, and mutations were not detected by commercial assays. In conclusion, one in five strains investigated was resistant to all first-line drugs, three of which had evidence of BDQ/CFZ resistance. Implementation of interventions such as rapid diagnostics that prevent further resistance development and stop MDR-TB transmission chains in the country is urgently needed. IMPORTANCE A substantial proportion of MDR-TB strains in Sierra Leone were resistant against all first line drugs; however this makes the all-oral-six-month BPaLM regimen or other 6-9 months all oral regimens still viable, mainly because there was no FQ resistance.Resistance to BDQ was detected, as well as RR, due to mutations outside of the hotspot region. While the prevalence of those resistances was low, it is still cause for concern and needs to be closely monitored.
Collapse
Affiliation(s)
- Harriet N. A. Blankson
- Molecular and Experimental Mycobacteriology, Research Center Borstel Leibniz Lung Center, Borstel, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Reims, Borstel, Germany
- School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Korle-Bu, Accra, Ghana
| | - Rashidatu Fouad Kamara
- National Leprosy and Tuberculosis Control Programme Sierra Leone, Freetown, Sierra Leone
| | - Ivan Barilar
- Molecular and Experimental Mycobacteriology, Research Center Borstel Leibniz Lung Center, Borstel, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Reims, Borstel, Germany
| | - Sönke Andres
- National and WHO Supranational Reference Center for Mycobacteria, Research Center Borstel Leibniz Lung Center, Borstel, Germany
| | - Ousman S. Conteh
- National Leprosy and Tuberculosis Control Programme Sierra Leone, Freetown, Sierra Leone
| | - Tobias Dallenga
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Reims, Borstel, Germany
- Cellular Microbiology, Research Center Borstel Leibniz Lung Center, Borstel, Germany
| | - Lynda Foray
- National Leprosy and Tuberculosis Control Programme Sierra Leone, Freetown, Sierra Leone
| | - Florian Maurer
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Reims, Borstel, Germany
- National and WHO Supranational Reference Center for Mycobacteria, Research Center Borstel Leibniz Lung Center, Borstel, Germany
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Kranzer
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Christian Utpatel
- Molecular and Experimental Mycobacteriology, Research Center Borstel Leibniz Lung Center, Borstel, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Reims, Borstel, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel Leibniz Lung Center, Borstel, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Reims, Borstel, Germany
- National and WHO Supranational Reference Center for Mycobacteria, Research Center Borstel Leibniz Lung Center, Borstel, Germany
| |
Collapse
|
11
|
Li YF, Yang Y, Kong XL, Song WM, Li YM, Li YY, Fang WW, Yang JY, Men D, Yu CB, Yang GR, Han WG, Liu WY, Yan K, Li HC, Liu Y. Transmission dynamics and phylogeography of Mycobacterium tuberculosis in China based on whole-genome phylogenetic analysis. Int J Infect Dis 2024; 140:124-131. [PMID: 37863309 DOI: 10.1016/j.ijid.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/30/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
OBJECTIVES This study aimed to describe the lineage-specific transmissibility and epidemiological migration of Mycobacterium tuberculosis in China. METHODS We curated a large set of whole-genome sequences from 3204 M. tuberculosis isolates, including thousands of newly sequenced genomes, and applied a series of metrics to compare the transmissibility of M. tuberculosis strains between lineages and sublineages. The countrywide transmission patterns of major lineages were explored. RESULTS We found that lineage 2 (L2) was the most prevalent lineage in China (85.7%), with the major sublineage 2.2.1 (80.9%), followed by lineage 4 (L4) (13.8%), which comprises major sublineages 4.2 (1.5%), 4.4 (6.2%) and 4.5 (5.8%). We showed evidence for frequent cross-regional spread and large cluster formation of L2.2.1 strains, whereas L4 strains were relatively geographically restricted in China. Next, we applied a series of genomic indices to evaluate M. tuberculosis strain transmissibility and uncovered higher transmissibility of L2.2.1 compared with the L2.2.2 and L4 sublineages. Phylogeographic analysis showed that southern, eastern, and northern China were highly connected regions for countrywide L2.2.1 strain spread. CONCLUSIONS The present study provides insights into the different transmission and migration patterns of the major M. tuberculosis lineages in China and highlights that transmissible L2.2.1 is a threat to tuberculosis control.
Collapse
Affiliation(s)
- Yi-Fan Li
- Department of Respiratory and Critical Care Medicine, the Third Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, PR China
| | - Yang Yang
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, PR China
| | - Xiang-Long Kong
- Xiang-long Kong, Shandong Artificial Intelligence Institute Qilu University of Technology & Shandong Academy of Sciences, Jinan, Shandong, PR China
| | - Wan-Mei Song
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Ya-Meng Li
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China; Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| | - Ying-Ying Li
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China; Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| | - Wei-Wei Fang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Jie-Yu Yang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Dan Men
- College of Geography and Environmental Science, Northwest Normal University, No. 967 Anning East Road, Lanzhou, Gansu Province, China
| | - Chun-Bao Yu
- Center for Integrative and Translational Medicine, Shandong Public Health Clinical Center, Jinan, Shandong, PR China
| | - Guo-Ru Yang
- Department of Respiratory and Critical Care Medicine, Weifang Respiratory Disease Hospital & Weifang No. 2 People's Hospital, Weifang, Shandong, PR China
| | - Wen-Ge Han
- Department of Respiratory and Critical Care Medicine, Weifang Respiratory Disease Hospital & Weifang No. 2 People's Hospital, Weifang, Shandong, PR China
| | - Wen-Yu Liu
- Department of Respiratory and Critical Care Medicine, Weifang Respiratory Disease Hospital & Weifang No. 2 People's Hospital, Weifang, Shandong, PR China
| | - Kun Yan
- Department of Respiratory and Critical Care Medicine, Weifang Respiratory Disease Hospital & Weifang No. 2 People's Hospital, Weifang, Shandong, PR China
| | - Huai-Chen Li
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Yao Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China.
| |
Collapse
|
12
|
Utpatel C, Zavaleta M, Rojas-Bolivar D, Mühlbach A, Picoy J, Portugal W, Esteve-Solé A, Alsina L, Miotto P, Bartholomeu DC, Sanchez J, Cuadros DF, Alarcon JO, Niemann S, Huaman MA. Prison as a driver of recent transmissions of multidrug-resistant tuberculosis in Callao, Peru: a cross-sectional study. LANCET REGIONAL HEALTH. AMERICAS 2024; 31:100674. [PMID: 38500964 PMCID: PMC10945431 DOI: 10.1016/j.lana.2024.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 03/20/2024]
Abstract
Background We sought to identify resistance patterns and key drivers of recent multidrug-resistant tuberculosis (MDR-TB) transmission in a TB-prevalent area in Peru. Methods Cross-sectional study including MDR Mycobacterium tuberculosis complex (Mtbc) strains identified in Callao-Peru between April 2017 and February 2019. Mtbc DNA was extracted for whole genome sequencing which was used for phylogenetic inference, clustering, and resistance mutation analyses. Clusters indicative of recent transmission were defined based on a strain-to-strain distance of ≤5 (D5) single nucleotide polymorphisms (SNPs). Epidemiologic factors linked to MDR-TB clustering were analyzed using Poisson regression. Findings 171 unique MDR-Mtbc strains were included; 22 (13%) had additional fluoroquinolone resistance and were classified as pre-XDR. Six strains (3.5%) harboured bedaquiline (BDQ) resistance mutations and were classified as MDR + BDQ. 158 (92%) Mtbc strains belonged to lineage 4 and 13 (8%) to lineage 2. Using a cluster threshold of ≤5 SNPs, 98 (57%) strains were grouped in one of the 17 D5 clusters indicative of recent transmission, ranging in size from 2 to the largest cluster formed by 53 4.3.3 strains (group_1). Lineage 4.3.3 strains showed the overall highest cluster rate (43%). In multivariate analyses, current or previous imprisonment was independently associated with being part of any MDR-TB transmission clusters (adjusted prevalence ratio [aPR], 1.45; 95% CI, 1.09-1.92). Interpretation Pre-XDR-TB emerged in more than 10% of the MDR-TB strains investigated. Transmission of 4.3.3 Mtbc strains especially of the dominant group_1 clone is a major driver of the MDR-TB epidemic in Callao. Current or previous imprisonment was linked to recent MDR-TB transmissions, indicating an important role of prisons in driving the MDR-TB epidemic. Funding This work was supported in part by the ERANet-LAC Network of the European Union, Latin America and the Caribbean Countries on Joint Innovation and Research Activities, and FONDECYT. Additional support was received from Leibniz Science Campus Evolutionary Medicine of the Lung, the Deutsche Forschungsgemeinschaft (German Research Foundation, under Germany's Excellence Strategy-EXC 2167 Precision Medicine in Inflammation), and the Research Training Group 2501 TransEvo.
Collapse
Affiliation(s)
- Christian Utpatel
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Milagros Zavaleta
- Centro de Investigaciones Tecnológicas, Biomedicas y Medioambientales, Callao, Peru
| | - Daniel Rojas-Bolivar
- Centro de Investigaciones Tecnológicas, Biomedicas y Medioambientales, Callao, Peru
| | - Andreas Mühlbach
- Centro de Investigaciones Tecnológicas, Biomedicas y Medioambientales, Callao, Peru
| | - Janet Picoy
- Direccion Regional de Salud del Callao, Callao, Peru
| | | | - Ana Esteve-Solé
- Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu Institut de Recerca Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - Laia Alsina
- Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu Institut de Recerca Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - Paolo Miotto
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniella C. Bartholomeu
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Jorge Sanchez
- Centro de Investigaciones Tecnológicas, Biomedicas y Medioambientales, Callao, Peru
| | - Diego F. Cuadros
- Department of Geography and GIS, Health Geography and Disease Modeling Laboratory, University of Cincinnati, Cincinnati, USA
| | - Jorge O. Alarcon
- Centro de Investigaciones Tecnológicas, Biomedicas y Medioambientales, Callao, Peru
- Epidemiology Section, Instituto de Medicina Tropical, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Moises A. Huaman
- Centro de Investigaciones Tecnológicas, Biomedicas y Medioambientales, Callao, Peru
- Department of Internal Medicine, Division of Infectious Diseases, University of Cincinnati, Cincinnati, USA
| |
Collapse
|
13
|
Brunner VM, Fowler PW. Compensatory mutations are associated with increased in vitro growth in resistant clinical samples of Mycobacterium tuberculosis. Microb Genom 2024; 10:001187. [PMID: 38315172 PMCID: PMC10926696 DOI: 10.1099/mgen.0.001187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
Mutations in Mycobacterium tuberculosis associated with resistance to antibiotics often come with a fitness cost for the bacteria. Resistance to the first-line drug rifampicin leads to lower competitive fitness of M. tuberculosis populations when compared to susceptible populations. This fitness cost, introduced by resistance mutations in the RNA polymerase, can be alleviated by compensatory mutations (CMs) in other regions of the affected protein. CMs are of particular interest clinically since they could lock in resistance mutations, encouraging the spread of resistant strains worldwide. Here, we report the statistical inference of a comprehensive set of CMs in the RNA polymerase of M. tuberculosis, using over 70 000 M. tuberculosis genomes that were collated as part of the CRyPTIC project. The unprecedented size of this data set gave the statistical tests more power to investigate the association of putative CMs with resistance-conferring mutations. Overall, we propose 51 high-confidence CMs by means of statistical association testing and suggest hypotheses for how they exert their compensatory mechanism by mapping them onto the protein structure. In addition, we were able to show an association of CMs with higher in vitro growth densities, and hence presumably with higher fitness, in resistant samples in the more virulent M. tuberculosis lineage 2. Our results suggest the association of CM presence with significantly higher in vitro growth than for wild-type samples, although this association is confounded with lineage and sub-lineage affiliation. Our findings emphasize the integral role of CMs and lineage affiliation in resistance spread and increases the urgency of antibiotic stewardship, which implies accurate, cheap and widely accessible diagnostics for M. tuberculosis infections to not only improve patient outcomes but also prevent the spread of resistant strains.
Collapse
Affiliation(s)
| | - Philip W. Fowler
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- National Institute of Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Headley Way, Oxford, UK
- Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Conkle-Gutierrez D, Ramirez-Busby SM, Gorman BM, Elghraoui A, Hoffner S, Elmaraachli W, Valafar F. Novel and reported compensatory mutations in rpoABC genes found in drug resistant tuberculosis outbreaks. Front Microbiol 2024; 14:1265390. [PMID: 38260909 PMCID: PMC10800992 DOI: 10.3389/fmicb.2023.1265390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Background Rifampicin (RIF) is a key first-line drug used to treat tuberculosis, a primarily pulmonary disease caused by Mycobacterium tuberculosis. RIF resistance is caused by mutations in rpoB, at the cost of slower growth and reduced transcription efficiency. Antibiotic resistance to RIF is prevalent despite this fitness cost. Compensatory mutations in rpoABC genes have been shown to alleviate the fitness cost of rpoB:S450L, explaining how RIF resistant strains harbor this mutation can spread so rapidly. Unfortunately, the full set of RIF compensatory mutations is still unknown, particularly those compensating for rarer RIF resistance mutations. Objectives We performed an association study on a globally representative set of 4,309 whole genome sequenced clinical M. tuberculosis isolates to identify novel putative compensatory mutations, determine the prevalence of known and previously reported putative compensatory mutations, and determine which RIF resistance markers associate with these compensatory mutations. Results and conclusions Of the 1,079 RIF resistant isolates, 638 carried previously reported putative and high-probability compensatory mutations. Our strict criteria identified 46 additional mutations in rpoABC for which no strong prior evidence of their compensatory role exists. Of these, 35 have previously been reported. As such, our independent corroboration adds to the mounting evidence that these 35 also carry a compensatory role. The remaining 11 are novel putative compensatory markers, reported here for the first time. Six of these 11 novel putative compensatory mutations had two or more mutation events. Most compensatory mutations appear to be specifically compensating for the fitness loss due to rpoB:S450L. However, an outbreak of 22 closely related isolates each carried three rpoB mutations, the rare RIFR markers D435G and L452P and the putative compensatory mutation I1106T. This suggests compensation may require specific combinations of rpoABC mutations. Here, we report only mutations that met our very strict criteria. It is highly likely that many additional rpoABC mutations compensate for rare resistance-causing mutations and therefore did not carry the statistical power to be reported here. These findings aid in the identification of RIF resistant M. tuberculosis strains with restored fitness, which pose a greater risk of causing resistant outbreaks.
Collapse
Affiliation(s)
- Derek Conkle-Gutierrez
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, CA, United States
| | - Sarah M. Ramirez-Busby
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, CA, United States
| | - Bria M. Gorman
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, CA, United States
| | - Afif Elghraoui
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, CA, United States
| | - Sven Hoffner
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, CA, United States
- Department of Global Public Health, Karolinska Institute, Stockholm, Sweden
| | - Wael Elmaraachli
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, San Diego, San Diego, CA, United States
| | - Faramarz Valafar
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, CA, United States
| |
Collapse
|
15
|
Chesov E, Chesov D, Reimann M, Dreyer V, Utpatel C, Gröschel MI, Ciobanu N, Crudu V, Lange C, Heyckendorf J, Merker M. Impact of Mycobacterium tuberculosis strain type on multidrug-resistant tuberculosis severity, Republic of Moldova. J Infect 2023; 87:588-591. [PMID: 37827458 DOI: 10.1016/j.jinf.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Affiliation(s)
- Elena Chesov
- Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova; Chiril Draganiuc Phthisiopneumology Institute, Chisinau, Republic of Moldova; Division of Clinical Infectious Disease, Research Center Borstel, Borstel, Germany
| | - Dumitru Chesov
- Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova; Chiril Draganiuc Phthisiopneumology Institute, Chisinau, Republic of Moldova; Division of Clinical Infectious Disease, Research Center Borstel, Borstel, Germany; German Center for Infection Research, Partner site Hamburg-Lübeck-Riems-Borstel, Borstel, Germany
| | - Maja Reimann
- Division of Clinical Infectious Disease, Research Center Borstel, Borstel, Germany; German Center for Infection Research, Partner site Hamburg-Lübeck-Riems-Borstel, Borstel, Germany; Respiratory Medicine & International Health, University of Lübeck, Germany
| | - Viola Dreyer
- German Center for Infection Research, Partner site Hamburg-Lübeck-Riems-Borstel, Borstel, Germany; Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Christian Utpatel
- German Center for Infection Research, Partner site Hamburg-Lübeck-Riems-Borstel, Borstel, Germany; Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Matthias I Gröschel
- Department of Infectious Diseases and Respiratory Medicine, Charite ́ - Universitaetsmedizin Berlin, Berlin, Germany
| | - Nelly Ciobanu
- Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova; Chiril Draganiuc Phthisiopneumology Institute, Chisinau, Republic of Moldova
| | - Valeriu Crudu
- Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova; Chiril Draganiuc Phthisiopneumology Institute, Chisinau, Republic of Moldova
| | - Christoph Lange
- Division of Clinical Infectious Disease, Research Center Borstel, Borstel, Germany; German Center for Infection Research, Partner site Hamburg-Lübeck-Riems-Borstel, Borstel, Germany; Respiratory Medicine & International Health, University of Lübeck, Germany; Baylor College of Medicine and Texas Children´s Hospital, Houston, TX, USA
| | - Jan Heyckendorf
- Clinic for Internal Medicine I, University Clinic Schleswig-Holstein Campus Kiel, Germany
| | - Matthias Merker
- Evolution of the Resistome, Research Center Borstel, Borstel, Germany.
| |
Collapse
|
16
|
Auganova D, Atavliyeva S, Amirgazin A, Akisheva A, Tsepke A, Tarlykov P. Genomic Characterization of Drug-Resistant Mycobacterium tuberculosis L2/Beijing Isolates from Astana, Kazakhstan. Antibiotics (Basel) 2023; 12:1523. [PMID: 37887224 PMCID: PMC10604462 DOI: 10.3390/antibiotics12101523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
Kazakhstan ranks among the countries with the highest number of MDR-TB patients per 100,000 population worldwide. The successful transmission of local MDR strains of Mycobacterium tuberculosis (Mtb) poses a significant threat to disease control. In this study, we employed whole-genome sequencing to examine drug resistance, compensatory mutations, population structure, and transmission patterns in a sample of 24 clinical isolates of L2/Beijing Mtb collected in Astana, Kazakhstan between 2021 and 2022. The genotypic prediction of Mtb susceptibility to anti-TB agents was consistent with the phenotypic susceptibility, except for bedaquiline. An analysis of resistance-associated genes characterized most of the isolates as pre-extensively drug-resistant tuberculosis (pre-XDR-TB) (n = 15; 62.5%). The phylogenetic analysis grouped the isolates into four transmission clusters; the dominant cluster was assigned to the "aggressive" Central Asia outbreak (CAO) clade of L2/Beijing (n = 15; 62.5%). Thirteen mutations with putative compensatory effects were observed exclusively in Mtb isolates containing the rpoB S450L mutation. The putative compensatory mutations had a stabilizing effect on RpoABC protein stability and dynamics. The high prevalence of the CAO clade in the population structure of Mtb may explain the rapid spread of MDR-TB in Kazakhstan.
Collapse
Affiliation(s)
- Dana Auganova
- National Center for Biotechnology, Astana 010000, Kazakhstan (A.A.)
| | | | | | - Akmaral Akisheva
- City Center for Phthisiopulmonology of the Akimat of Astana, Astana 010000, Kazakhstan
| | - Anna Tsepke
- City Center for Phthisiopulmonology of the Akimat of Astana, Astana 010000, Kazakhstan
| | - Pavel Tarlykov
- National Center for Biotechnology, Astana 010000, Kazakhstan (A.A.)
| |
Collapse
|
17
|
Mokrousov I, Vinogradova T, Dogonadze M, Zabolotnykh N, Vyazovaya A, Vitovskaya M, Solovieva N, Ariel B. A multifaceted interplay between virulence, drug resistance, and the phylogeographic landscape of Mycobacterium tuberculosis. Microbiol Spectr 2023; 11:e0139223. [PMID: 37768091 PMCID: PMC10581221 DOI: 10.1128/spectrum.01392-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/06/2023] [Indexed: 09/29/2023] Open
Abstract
Latin-American Mediterranean (LAM) family is one of the most significant and global genotypes of Mycobacterium tuberculosis. Here, we used the murine model to study the virulence and lethality of the genetically and epidemiologically distinct LAM strains. The pathobiological characteristics of the four LAM strains (three drug resistant and one drug susceptible) and the susceptible reference strain H37Rv were studied in the C57BL/6 mouse model. The whole-genome sequencing was performed using the HiSeq Illumina platform, followed by bioinformatics and phylogenetic analysis. The susceptible strain H37Rv showed the highest virulence. Drug-susceptible LAM strain (spoligotype SIT264) was more virulent than three multidrug-resistant (MDR) strains (SIT252, SIT254, and SIT266). All three MDR isolates were low lethal, while the susceptible isolate and H37Rv were moderately/highly lethal. Putting the genomic, phenotypic, and virulence features of the LAM strains/spoligotypes in the context of their dynamic phylogeography over 20 years reveals three types of relationships between virulence, resistance, and transmission. First, the most virulent and more lethal drug-susceptible SIT264 increased its circulation in parts of Russia. Second, moderately virulent and pre-XDR SIT266 was prevalent in Belarus and continues to be visible in North-West Russia. Third, the low virulent and MDR strain SIT252 previously considered as emerging has disappeared from the population. These findings suggest that strain virulence impacts the transmission, irrespective of drug resistance properties. The increasing circulation of susceptible but more virulent and lethal strains implies that personalized TB treatment should consider not only resistance but also the virulence of the infecting M. tuberculosis strains. IMPORTANCE The study is multidisciplinary and investigates the epidemically/clinically important and global lineage of Mycobacterium tuberculosis, named Latin-American-Mediterranean (LAM), yet insufficiently studied with regard to its pathobiology. We studied different LAM strains (epidemic vs endemic and resistant vs susceptible) in the murine model and using whole-genome analysis. We also collected long-term, 20-year data on their prevalence in Eurasia. The findings are both expected and unexpected. (i) We observe that a drug-susceptible but highly virulent strain increased its prevalence. (ii) By contrast, the multidrug-resistant (MDR) but low-virulent, low-lethal strain (that we considered as emerging 15 years ago) has almost disappeared. (iii) Finally, an intermediate case is the MDR strain with moderate virulence that continues to circulate. We conclude that (i) the former and latter strains are the most hazardous and require close epidemiological monitoring, and (ii) personalized TB treatment should consider not only drug resistance but also the virulence of the infecting strains and development of anti-virulence drugs is warranted.
Collapse
Affiliation(s)
- Igor Mokrousov
- St. Petersburg Pasteur Institute, St. Petersburg, Russia
| | - Tatiana Vinogradova
- St. Petersburg Pasteur Institute, St. Petersburg, Russia
- St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| | - Marine Dogonadze
- St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| | - Natalia Zabolotnykh
- St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| | - Anna Vyazovaya
- St. Petersburg Pasteur Institute, St. Petersburg, Russia
| | - Maria Vitovskaya
- St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| | - Natalia Solovieva
- St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| | - Boris Ariel
- St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| |
Collapse
|
18
|
Hang NTL, Hijikata M, Maeda S, Thuong PH, Huan HV, Hoang NP, Tam DB, Anh PT, Huyen NT, Cuong VC, Kobayashi N, Wakabayashi K, Miyabayashi A, Seto S, Keicho N. Host-pathogen relationship in retreated tuberculosis with major rifampicin resistance-conferring mutations. Front Microbiol 2023; 14:1187390. [PMID: 37469437 PMCID: PMC10352910 DOI: 10.3389/fmicb.2023.1187390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/09/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction It is assumed that host defense systems eliminating the pathogen and regulating tissue damage make a strong impact on the outcome of tuberculosis (TB) disease and that these processes are affected by rifampicin (RIF) resistance-conferring mutations of Mycobacterium tuberculosis (Mtb). However, the host responses to the pathogen harboring different mutations have not been studied comprehensively in clinical settings. We analyzed clinico-epidemiological factors and blood transcriptomic signatures associated with major rpoB mutations conferring RIF resistance in a cohort study. Methods Demographic data were collected from 295 active pulmonary TB patients with treatment history in Hanoi, Vietnam. When recruited, drug resistance-conferring mutations and lineage-specific variations were identified using whole-genome sequencing of clinical Mtb isolates. Before starting retreatment, total RNA was extracted from the whole blood of HIV-negative patients infected with Mtb that carried either the rpoB H445Y or rpoB S450L mutation, and the total RNA was subjected to RNA sequencing after age-gender matching. The individual RNA expression levels in the blood sample set were also measured using real-time RT-PCR. Logistic and linear regression models were used to assess possible associations. Results In our cohort, rpoB S450L and rpoB H445Y were major RIF resistance-conferring mutations [32/87 (36.8%) and 15/87 (17.2%), respectively]. H445Y was enriched in the ancient Beijing genotype and was associated with nonsynonymous mutations of Rv1830 that has been reported to regulate antibiotic resilience. H445Y was also more frequently observed in genetically clustered strains and in samples from patients who had received more than one TB treatment episode. According to the RNA sequencing, gene sets involved in the interferon-γ and-α pathways were downregulated in H445Y compared with S450L. The qRT-PCR analysis also confirmed the low expression levels of interferon-inducible genes, including BATF2 and SERPING1, in the H445Y group, particularly in patients with extensive lesions on chest X-ray. Discussion Our study results showed that rpoB mutations as well as Mtb sublineage with additional genetic variants may have significant effects on host response. These findings strengthen the rationale for investigation of host-pathogen interactions to develop countermeasures against epidemics of drug-resistant TB.
Collapse
Affiliation(s)
| | - Minako Hijikata
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, JATA, Tokyo, Japan
| | - Shinji Maeda
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Hokkaido, Japan
| | | | | | | | - Do Bang Tam
- Department of Biochemistry, Hematology and Blood Transfusion, Hanoi Lung Hospital, Hanoi, Vietnam
| | - Pham Thu Anh
- Tuberculosis Network Management Office, Hanoi Lung Hospital, Hanoi, Vietnam
| | - Nguyen Thu Huyen
- NCGM-BMH Medical Collaboration Center, Hanoi, Vietnam
- Department of Health Policy and Economics, Hanoi University of Public Health, Hanoi, Vietnam
| | | | | | - Keiko Wakabayashi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, JATA, Tokyo, Japan
| | - Akiko Miyabayashi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, JATA, Tokyo, Japan
| | - Shintaro Seto
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, JATA, Tokyo, Japan
| | - Naoto Keicho
- The Research Institute of Tuberculosis, JATA, Tokyo, Japan
- National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
19
|
Goig GA, Menardo F, Salaam-Dreyer Z, Dippenaar A, Streicher EM, Daniels J, Reuter A, Borrell S, Reinhard M, Doetsch A, Beisel C, Warren RM, Cox H, Gagneux S. Effect of compensatory evolution in the emergence and transmission of rifampicin-resistant Mycobacterium tuberculosis in Cape Town, South Africa: a genomic epidemiology study. THE LANCET. MICROBE 2023; 4:e506-e515. [PMID: 37295446 PMCID: PMC10319636 DOI: 10.1016/s2666-5247(23)00110-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/26/2023] [Accepted: 03/01/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Experimental data show that drug-resistance-conferring mutations are often associated with a decrease in the replicative fitness of bacteria in vitro, and that this fitness cost can be mitigated by compensatory mutations; however, the role of compensatory evolution in clinical settings is less clear. We assessed whether compensatory evolution was associated with increased transmission of rifampicin-resistant tuberculosis in Khayelitsha, Cape Town, South Africa. METHODS We did a genomic epidemiological study by analysing available M tuberculosis isolates and their associated clinical data from individuals routinely diagnosed with rifampicin-resistant tuberculosis in primary care and hospitals in Khayelitsha, Cape Town, South Africa. Isolates were collected as part of a previous study. All individuals diagnosed with rifampicin-resistant tuberculosis and with linked biobanked specimens were included in this study. We applied whole-genome sequencing, Bayesian reconstruction of transmission trees, and phylogenetic multivariable regression analysis to identify individual and bacterial factors associated with the transmission of rifampicin-resistant M tuberculosis strains. FINDINGS Between Jan 1, 2008, and Dec 31, 2017, 2161 individuals were diagnosed with multidrug-resistant or rifampicin-resistant tuberculosis in Khayelitsha, Cape Town, South Africa. Whole-genome sequences were available for 1168 (54%) unique individual M tuberculosis isolates. Compensatory evolution was associated with smear-positive pulmonary disease (adjusted odds ratio 1·49, 95% CI 1·08-2·06) and a higher number of drug-resistance-conferring mutations (incidence rate ratio 1·38, 95% CI 1·28-1·48). Compensatory evolution was also associated with increased transmission of rifampicin-resistant disease between individuals (adjusted odds ratio 1·55; 95% CI 1·13-2·12), independent of other patient and bacterial factors. INTERPRETATION Our findings suggest that compensatory evolution enhances the in vivo fitness of drug-resistant M tuberculosis genotypes, both within and between patients, and that the in vitro replicative fitness of rifampicin-resistant M tuberculosis measured in the laboratory correlates with the bacterial fitness measured in clinical settings. These results emphasise the importance of enhancing surveillance and monitoring efforts to prevent the emergence of highly transmissible clones capable of rapidly accumulating new drug resistance mutations. This concern becomes especially crucial at present, because treatment regimens incorporating novel drugs are being implemented. FUNDING Funding for this study was provided by a Swiss and South Africa joint research award (grant numbers 310030_188888, CRSII5_177163, and IZLSZ3_170834), the European Research Council (grant number 883582), and a Wellcome Trust fellowship (to HC; reference number 099818/Z/12/Z). ZS-D was funded through a PhD scholarship from the South African National Research Foundation and RMW was funded through the South African Medical Research Council.
Collapse
Affiliation(s)
- Galo A Goig
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland.
| | - Fabrizio Menardo
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Zubeida Salaam-Dreyer
- Division of Medical Microbiology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Anzaan Dippenaar
- Tuberculosis Omics Research Consortium, Family Medicine and Population Health, Institute of Global Health, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Elizabeth M Streicher
- Department of Science and Innovation - National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Stellenbosch, South Africa; South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Johnny Daniels
- Médecins Sans Frontières, Khayelitsha, Cape Town, South Africa
| | - Anja Reuter
- Médecins Sans Frontières, Khayelitsha, Cape Town, South Africa
| | - Sonia Borrell
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Miriam Reinhard
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Anna Doetsch
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Christian Beisel
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Zürich, Swizterland
| | - Robin M Warren
- Department of Science and Innovation - National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Stellenbosch, South Africa; South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Helen Cox
- Division of Medical Microbiology, Department of Pathology, University of Cape Town, Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine and Wellcome Centre for Infectious Disease Research, University of Cape Town, Cape Town, South Africa
| | - Sebastien Gagneux
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| |
Collapse
|
20
|
Vanacker M, Lenuzza N, Rasigade JP. The fitness cost of horizontally transferred and mutational antimicrobial resistance in Escherichia coli. Front Microbiol 2023; 14:1186920. [PMID: 37455716 PMCID: PMC10348881 DOI: 10.3389/fmicb.2023.1186920] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Antimicrobial resistance (AMR) in bacteria implies a tradeoff between the benefit of resistance under antimicrobial selection pressure and the incurred fitness cost in the absence of antimicrobials. The fitness cost of a resistance determinant is expected to depend on its genetic support, such as a chromosomal mutation or a plasmid acquisition, and on its impact on cell metabolism, such as an alteration in an essential metabolic pathway or the production of a new enzyme. To provide a global picture of the factors that influence AMR fitness cost, we conducted a systematic review and meta-analysis focused on a single species, Escherichia coli. By combining results from 46 high-quality studies in a multilevel meta-analysis framework, we find that the fitness cost of AMR is smaller when provided by horizontally transferable genes such as those encoding beta-lactamases, compared to mutations in core genes such as those involved in fluoroquinolone and rifampicin resistance. We observe that the accumulation of acquired AMR genes imposes a much smaller burden on the host cell than the accumulation of AMR mutations, and we provide quantitative estimates of the additional cost of a new gene or mutation. These findings highlight that gene acquisition is more efficient than the accumulation of mutations to evolve multidrug resistance, which can contribute to the observed dominance of horizontally transferred genes in the current AMR epidemic.
Collapse
Affiliation(s)
- Marie Vanacker
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Natacha Lenuzza
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Jean-Philippe Rasigade
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
21
|
Zhdanova S, Jiao WW, Sinkov V, Khromova P, Solovieva N, Mushkin A, Mokrousov I, Belopolskaya O, Masharsky A, Vyazovaya A, Rychkova L, Kolesnikova L, Zhuravlev V, Shen AD, Ogarkov O. Insight into Population Structure and Drug Resistance of Pediatric Tuberculosis Strains from China and Russia Gained through Whole-Genome Sequencing. Int J Mol Sci 2023; 24:10302. [PMID: 37373451 DOI: 10.3390/ijms241210302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to determine phenotypic and genotypic drug resistance patterns of Mycobacterium tuberculosis strains from children with tuberculosis (TB) in China and Russia, two high-burden countries for multi/extensively-drug resistant (MDR/XDR) TB. Whole-genome sequencing data of M. tuberculosis isolates from China (n = 137) and Russia (n = 60) were analyzed for phylogenetic markers and drug-resistance mutations, followed by comparison with phenotypic susceptibility data. The Beijing genotype was detected in 126 Chinese and 50 Russian isolates. The Euro-American lineage was detected in 10 Russian and 11 Chinese isolates. In the Russian collection, the Beijing genotype and Beijing B0/W148-cluster were dominated by MDR strains (68% and 94%, respectively). Ninety percent of B0/W148 strains were phenotypically pre-XDR. In the Chinese collection, neither of the Beijing sublineages was associated with MDR/pre-XDR status. MDR was mostly caused by low fitness cost mutations (rpoB S450L, katG S315T, rpsL K43R). Chinese rifampicin-resistant strains demonstrated a higher diversity of resistance mutations than Russian isolates (p = 0.003). The rifampicin and isoniazid resistance compensatory mutations were detected in some MDR strains, but they were not widespread. The molecular mechanisms of M. tuberculosis adaptation to anti-TB treatment are not unique to the pediatric strains, but they reflect the general situation with TB in Russia and China.
Collapse
Affiliation(s)
- Svetlana Zhdanova
- Department of Epidemiology and Microbiology, Scientific Centre for Family Health and Human Reproduction Problems, 664003 Irkutsk, Russia
| | - Wei-Wei Jiao
- National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Disease, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Viacheslav Sinkov
- Department of Epidemiology and Microbiology, Scientific Centre for Family Health and Human Reproduction Problems, 664003 Irkutsk, Russia
| | - Polina Khromova
- Department of Epidemiology and Microbiology, Scientific Centre for Family Health and Human Reproduction Problems, 664003 Irkutsk, Russia
| | - Natalia Solovieva
- St. Petersburg Research Institute of Phthisiopulmonology, 191036 St. Petersburg, Russia
| | - Alexander Mushkin
- St. Petersburg Research Institute of Phthisiopulmonology, 191036 St. Petersburg, Russia
| | - Igor Mokrousov
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, 197101 St. Petersburg, Russia
- Henan International Joint Laboratory of Children's Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's Hospital, Zhengzhou 450012, China
| | - Olesya Belopolskaya
- The Bio-Bank Resource Center, Research Park, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Aleksey Masharsky
- The Bio-Bank Resource Center, Research Park, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anna Vyazovaya
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, 197101 St. Petersburg, Russia
| | - Lubov Rychkova
- Department of Epidemiology and Microbiology, Scientific Centre for Family Health and Human Reproduction Problems, 664003 Irkutsk, Russia
| | - Lubov Kolesnikova
- Department of Epidemiology and Microbiology, Scientific Centre for Family Health and Human Reproduction Problems, 664003 Irkutsk, Russia
| | - Viacheslav Zhuravlev
- St. Petersburg Research Institute of Phthisiopulmonology, 191036 St. Petersburg, Russia
| | - A-Dong Shen
- National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Disease, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
- Henan International Joint Laboratory of Children's Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's Hospital, Zhengzhou 450012, China
| | - Oleg Ogarkov
- Department of Epidemiology and Microbiology, Scientific Centre for Family Health and Human Reproduction Problems, 664003 Irkutsk, Russia
| |
Collapse
|
22
|
Srivastava S, Dey S, Mukhopadhyay S. Vaccines against Tuberculosis: Where Are We Now? Vaccines (Basel) 2023; 11:vaccines11051013. [PMID: 37243117 DOI: 10.3390/vaccines11051013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Tuberculosis (TB) is among the top 10 leading causes of death in low-income countries. Statistically, TB kills more than 30,000 people each week and leads to more deaths than any other infectious disease, such as acquired immunodeficiency syndrome (AIDS) and malaria. TB treatment is largely dependent on BCG vaccination and impacted by the inefficacy of drugs, absence of advanced vaccines, misdiagnosis improper treatment, and social stigma. The BCG vaccine provides partial effectiveness in demographically distinct populations and the prevalence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB incidences demands the design of novel TB vaccines. Various strategies have been employed to design vaccines against TB, such as: (a) The protein subunit vaccine; (b) The viral vector vaccine; (c) The inactivation of whole-cell vaccine, using related mycobacteria, (d) Recombinant BCG (rBCG) expressing Mycobacterium tuberculosis (M.tb) protein or some non-essential gene deleted BCG. There are, approximately, 19 vaccine candidates in different phases of clinical trials. In this article, we review the development of TB vaccines, their status and potential in the treatment of TB. Heterologous immune responses generated by advanced vaccines will contribute to long-lasting immunity and might protect us from both drug-sensitive and drug-resistant TB. Therefore, advanced vaccine candidates need to be identified and developed to boost the human immune system against TB.
Collapse
Affiliation(s)
- Shruti Srivastava
- Research and Development Office, Ashoka University, Rajiv Gandhi Education City, Sonipat 131029, Haryana, India
| | - Sajal Dey
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, Telangana, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, Telangana, India
| |
Collapse
|
23
|
Loiseau C, Windels EM, Gygli SM, Jugheli L, Maghradze N, Brites D, Ross A, Goig G, Reinhard M, Borrell S, Trauner A, Dötsch A, Aspindzelashvili R, Denes R, Reither K, Beisel C, Tukvadze N, Avaliani Z, Stadler T, Gagneux S. The relative transmission fitness of multidrug-resistant Mycobacterium tuberculosis in a drug resistance hotspot. Nat Commun 2023; 14:1988. [PMID: 37031225 PMCID: PMC10082831 DOI: 10.1038/s41467-023-37719-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
Multidrug-resistant tuberculosis (MDR-TB) is among the most frequent causes of death due to antimicrobial resistance. Although only 3% of global TB cases are MDR, geographical hotspots with up to 40% of MDR-TB have been observed in countries of the former Soviet Union. While the quality of TB control and patient-related factors are known contributors to such hotspots, the role of the pathogen remains unclear. Here we show that in the country of Georgia, a known hotspot of MDR-TB, MDR Mycobacterium tuberculosis strains of lineage 4 (L4) transmit less than their drug-susceptible counterparts, whereas most MDR strains of L2 suffer no such defect. Our findings further indicate that the high transmission fitness of these L2 strains results from epistatic interactions between the rifampicin resistance-conferring mutation RpoB S450L, compensatory mutations in the RNA polymerase, and other pre-existing genetic features of L2/Beijing clones that circulate in Georgia. We conclude that the transmission fitness of MDR M. tuberculosis strains is heterogeneous, but can be as high as drug-susceptible forms, and that such highly drug-resistant and transmissible strains contribute to the emergence and maintenance of hotspots of MDR-TB. As these strains successfully overcome the metabolic burden of drug resistance, and given the ongoing rollout of new treatment regimens against MDR-TB, proper surveillance should be implemented to prevent these strains from acquiring resistance to the additional drugs.
Collapse
Affiliation(s)
- Chloé Loiseau
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Etthel M Windels
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Sebastian M Gygli
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Levan Jugheli
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- National Center for Tuberculosis and Lung Diseases (NCTLD), Tbilisi, Georgia
| | - Nino Maghradze
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- National Center for Tuberculosis and Lung Diseases (NCTLD), Tbilisi, Georgia
| | - Daniela Brites
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Amanda Ross
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Galo Goig
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Miriam Reinhard
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Andrej Trauner
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Anna Dötsch
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Rebecca Denes
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Klaus Reither
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Nestani Tukvadze
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- National Center for Tuberculosis and Lung Diseases (NCTLD), Tbilisi, Georgia
| | - Zaza Avaliani
- National Center for Tuberculosis and Lung Diseases (NCTLD), Tbilisi, Georgia
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
24
|
Domínguez J, Boeree MJ, Cambau E, Chesov D, Conradie F, Cox V, Dheda K, Dudnyk A, Farhat MR, Gagneux S, Grobusch MP, Gröschel MI, Guglielmetti L, Kontsevaya I, Lange B, van Leth F, Lienhardt C, Mandalakas AM, Maurer FP, Merker M, Miotto P, Molina-Moya B, Morel F, Niemann S, Veziris N, Whitelaw A, Horsburgh CR, Lange C. Clinical implications of molecular drug resistance testing for Mycobacterium tuberculosis: a 2023 TBnet/RESIST-TB consensus statement. THE LANCET. INFECTIOUS DISEASES 2023; 23:e122-e137. [PMID: 36868253 PMCID: PMC11460057 DOI: 10.1016/s1473-3099(22)00875-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 03/05/2023]
Abstract
Drug-resistant tuberculosis is a substantial health-care concern worldwide. Despite culture-based methods being considered the gold standard for drug susceptibility testing, molecular methods provide rapid information about the Mycobacterium tuberculosis mutations associated with resistance to anti-tuberculosis drugs. This consensus document was developed on the basis of a comprehensive literature search, by the TBnet and RESIST-TB networks, about reporting standards for the clinical use of molecular drug susceptibility testing. Review and the search for evidence included hand-searching journals and searching electronic databases. The panel identified studies that linked mutations in genomic regions of M tuberculosis with treatment outcome data. Implementation of molecular testing for the prediction of drug resistance in M tuberculosis is key. Detection of mutations in clinical isolates has implications for the clinical management of patients with multidrug-resistant or rifampicin-resistant tuberculosis, especially in situations when phenotypic drug susceptibility testing is not available. A multidisciplinary team including clinicians, microbiologists, and laboratory scientists reached a consensus on key questions relevant to molecular prediction of drug susceptibility or resistance to M tuberculosis, and their implications for clinical practice. This consensus document should help clinicians in the management of patients with tuberculosis, providing guidance for the design of treatment regimens and optimising outcomes.
Collapse
Affiliation(s)
- José Domínguez
- Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, CIBER Enfermedades Respiratorias, INNOVA4TB Consortium, Barcelona, Spain.
| | - Martin J Boeree
- Department of Lung Diseases, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Emmanuelle Cambau
- Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France, APHP-Hôpital Bichat, Mycobacteriology Laboratory, INSERM, University Paris Cite, IAME UMR1137, Paris, France
| | - Dumitru Chesov
- Department of Pneumology and Allergology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Moldova; Division of Clinical Infectious Diseases, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany; Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany
| | - Francesca Conradie
- Department of Clinical Medicine, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Vivian Cox
- Centre for Infectious Disease Epidemiology and Research, School of Public Health and Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Keertan Dheda
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa; Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| | - Andrii Dudnyk
- Department of Tuberculosis, Clinical Immunology and Allergy, National Pirogov Memorial Medical University, Vinnytsia, Ukraine; Public Health Center, Ministry of Health of Ukraine, Kyiv, Ukraine
| | - Maha R Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sebastien Gagneux
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Martin P Grobusch
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Amsterdam, Netherlands
| | - Matthias I Gröschel
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Lorenzo Guglielmetti
- Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, (Cimi-Paris), APHP Sorbonne Université, Department of Bacteriology Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France
| | - Irina Kontsevaya
- Division of Clinical Infectious Diseases, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany; Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany; Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Berit Lange
- Department for Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany; German Centre for Infection Research, TI BBD, Braunschweig, Germany
| | - Frank van Leth
- Department of Health Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands; Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| | - Christian Lienhardt
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK; UMI 233 IRD-U1175 INSERM - Université de Montpellier, Institut de Recherche pour le Développement, Montpellier, France
| | - Anna M Mandalakas
- Division of Clinical Infectious Diseases, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany; Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany; Global TB Program, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Florian P Maurer
- National and Supranational Reference Center for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany; Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Merker
- Division of Evolution of the Resistome, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany
| | - Paolo Miotto
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Barbara Molina-Moya
- Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, CIBER Enfermedades Respiratorias, INNOVA4TB Consortium, Barcelona, Spain
| | - Florence Morel
- Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, (Cimi-Paris), APHP Sorbonne Université, Department of Bacteriology Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France
| | - Stefan Niemann
- Division of Molecular and Experimental Mycobacteriology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany; Department of Human, Biological and Translational Medical Sciences, School of Medicine, University of Namibia, Windhoek, Namibia
| | - Nicolas Veziris
- Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, (Cimi-Paris), APHP Sorbonne Université, Department of Bacteriology Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France
| | - Andrew Whitelaw
- Division of Medical Microbiology, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa; National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| | - Charles R Horsburgh
- Departments of Epidemiology, Biostatistics, Global Health and Medicine, Boston University Schools of Public Health and Medicine, Boston, MA, USA
| | - Christoph Lange
- Division of Clinical Infectious Diseases, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany; Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany; Global TB Program, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
25
|
Genetic Diversity and Primary Drug Resistance of Mycobacterium tuberculosis Beijing Genotype Strains in Northwestern Russia. Microorganisms 2023; 11:microorganisms11020255. [PMID: 36838219 PMCID: PMC9966048 DOI: 10.3390/microorganisms11020255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
The Beijing genotype is the main family of Mycobacterium tuberculosis in Russia. We analyzed its diversity and drug resistance in provinces across Northwestern Russia to identify the epidemiologically relevant Beijing strains. The study collection included 497 isolates from newly-diagnosed tuberculosis (TB) patients. Bacterial isolates were subjected to drug-susceptibility testing and genotyping. The Beijing genotype was detected in 57.5% (286/497); 50% of the Beijing strains were multidrug-resistant (MDR). Central Asian/Russian and B0/W148 groups included 176 and 77 isolates, respectively. MDR was more frequent among B0/W148 strains compared to Central Asian/Russian strains (85.7% vs. 40.3%, p < 0.0001). Typing of 24 minisatellite loci of Beijing strains revealed 82 profiles; 230 isolates were in 23 clusters. The largest Central Asian/Russian types were 94-32 (n = 75), 1065-32 (n = 17), and 95-32 (n = 12). B0/W148 types were 100-32 (n = 59) and 4737-32 (n = 5). MDR was more frequent in types 1065-32 (88.2%), 100-32 (83.1%), and 4737-32 (100%). In contrast, type 9391-32 (n = 9) included only drug-susceptible strains. To conclude, M. tuberculosis Beijing genotype is dominant in Northwestern Russia, and an active transmission of overwhelmingly MDR B0/W148 types explains the reported increase of MDR-TB. The presence of MDR-associated minor variants (type 1071-32/ancient Beijing and Central Asia Outbreak strain) in some of the studied provinces also requires attention.
Collapse
|
26
|
Skhairia MA, Dekhil N, Mardassi H. Evolutionary history and spread of the Mycobacterium tuberculosis Latin American and Mediterranean (L4.3/LAM) sublineage, Tunisia. Tuberculosis (Edinb) 2023; 138:102297. [PMID: 36584485 DOI: 10.1016/j.tube.2022.102297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/02/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND To infer the origin and spread of the Mycobacterium tuberculosis Latin American and Mediterranean (L4.3/LAM) sublineage in a Mediterranean country, Tunisia, where it predominates. METHODS We combined Bayesian (STRUCTURE) and maximum likelihood (MIGRAINE) estimation approaches based on a global 24-loci mycobacterial interspersed repetitive units-variable numbers of tandem repeats (MIRU-VNTR24) genotyping dataset consisting of 1573 L4.3/LAM clinical strains from four continents, including 252 isolates originating from Tunisia. RESULTS Phylogenetic analyses coupled with Bayesian estimations suggested that the most predominant L4.3/LAM subpopulation in Tunisia (65.07%), which is dominated by a single clonal complex, TUN4.3_CC1 (94.51%), has evolved from an ancestral pool that is restricted to Europe and Africa, contrasting with the remaining L4.3/LAM subpopulations whose ancestry was traced all over the word. Maximum likelihood analysis revealed that TUN4.3_CC1 has been undergoing a demographic expansion since 131 years ago (CI95%: 90.7-205), thus explaining its preponderance relative to the second most predominant CC, TUN4.3_CC2, whose population was found under contraction. CONCLUSIONS The preponderance of L4.3/LAM in Tunisia stems from a 130-year expansion process of a locally evolved clone.
Collapse
Affiliation(s)
- Mohamed Amine Skhairia
- Unit of Typing & Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Naira Dekhil
- Unit of Typing & Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia.
| | - Helmi Mardassi
- Unit of Typing & Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia.
| |
Collapse
|
27
|
Whole-Genome Sequencing for Resistance Prediction and Transmission Analysis of Mycobacterium tuberculosis Complex Strains from Namibia. Microbiol Spectr 2022; 10:e0158622. [PMID: 36165641 PMCID: PMC9603870 DOI: 10.1128/spectrum.01586-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Namibia is among 30 countries with a high burden of tuberculosis (TB), with an estimated incidence of 460 per 100,000 population and around 800 new multidrug-resistant (MDR) TB cases per year. Still, data on the transmission and evolution of drug-resistant Mycobacterium tuberculosis complex (Mtbc) strains are not available. Whole-genome sequencing data of 136 rifampicin-resistant (RIFr) Mtbc strains obtained from 2016 to 2018 were used for phylogenetic classification, resistance prediction, and cluster analysis and linked with phenotypic drug susceptibility testing (pDST) data. Roughly 50% of the strains investigated were resistant to all first-line drugs. Furthermore, 13% of the MDR Mtbc strains were already pre-extensively drug resistant (pre-XDR). The cluster rates were high, at 74.6% among MDR and 85% among pre-XDR strains. A significant proportion of strains had borderline resistance-conferring mutations, e.g., inhA promoter mutations or rpoB L430P. Accordingly, 25% of the RIFr strains tested susceptible by pDST. Finally, we determined a potentially new bedaquiline resistance mutation (Rv0678 D88G) occurring in two independent clusters. High rates of resistance to first-line drugs in line with emerging pre-XDR and likely bedaquiline resistance linked with the ongoing recent transmission of MDR Mtbc clones underline the urgent need for the implementation of interventions that allow rapid diagnostics to break MDR TB transmission chains in the country. A borderline RIFr mutation in the dominant outbreak strain causing discrepancies between phenotypic and genotypic resistance testing results may require breakpoint adjustments but also may allow individualized regimens with high-dose treatment. IMPORTANCE The transmission of drug-resistant tuberculosis (TB) is a major problem for global TB control. Using genome sequencing, we showed that 13% of the multidrug-resistant (MDR) M. tuberculosis complex strains from Namibia are already pre-extensively drug resistant (pre-XDR), which is substantial in an African setting. Our data also indicate that the ongoing transmission of MDR and pre-XDR strains contributes significantly to the problem. In contrast to other settings with higher rates of drug resistance, we found a high proportion of strains having so-called borderline low-level resistance mutations, e.g., inhA promoter mutations or rpoB L430P. This led to the misclassification of 25% of the rifampicin-resistant strains as susceptible by phenotypic drug susceptibility testing. This observation potentially allows individualized regimens with high-dose treatment as a potential option for patients with few treatment options. We also found a potentially new bedaquiline resistance mutation in rv0678.
Collapse
|
28
|
Nimmo C, Millard J, Faulkner V, Monteserin J, Pugh H, Johnson EO. Evolution of Mycobacterium tuberculosis drug resistance in the genomic era. Front Cell Infect Microbiol 2022; 12:954074. [PMID: 36275027 PMCID: PMC9585206 DOI: 10.3389/fcimb.2022.954074] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Mycobacterium tuberculosis has acquired drug resistance to all drugs that have been used against it, including those only recently introduced into clinical practice. Compared to other bacteria, it has a well conserved genome due to its role as an obligate human pathogen that has adapted to a niche over five to ten thousand years. These features facilitate reconstruction and dating of M. tuberculosis phylogenies, giving key insights into how resistance has been acquired and spread globally. Resistance to each new drug has occurred within five to ten years of clinical use and has occurred even more rapidly with recently introduced drugs. In most cases, resistance-conferring mutations come with a fitness cost, but this can be overcome by compensatory mutations which restore fitness to that of wild-type bacteria. It is likely that M. tuberculosis acquires drug resistance while maintaining limited genomic variability due the generation of low frequency within-host variation, combined with ongoing purifying selection causing loss of variants without a clear fitness advantage. However, variants that do confer an advantage, such as drug resistance, can increase in prevalence amongst all bacteria within a host and become the dominant clone. These resistant strains can then be transmitted leading to primary drug resistant infection in a new host. As many countries move towards genomic methods for diagnosis of M. tuberculosis infection and drug resistance, it is important to be aware of the implications for the evolution of resistance. Currently, understanding of resistance-conferring mutations is incomplete, and some targeted genetic diagnostics create their own selective pressures. We discuss an example where a rifampicin resistance-conferring mutation which was not routinely covered by standard testing became dominant. Finally, resistance to new drugs such as bedaquiline and delamanid is caused by individually rare mutations occurring across a large mutational genomic target that have been detected over a short time, and do not provide statistical power for genotype-phenotype correlation – in contrast to longer-established drugs that form the backbone of drug-sensitive antituberculosis therapy. Therefore, we need a different approach to identify resistance-conferring mutations of new drugs before their resistance becomes widespread, abrogating their usefulness.
Collapse
Affiliation(s)
- Camus Nimmo
- Systems Chemical Biology of Infection and Resistance Laboratory, Francis Crick Institute, London, United Kingdom
- *Correspondence: Camus Nimmo,
| | - James Millard
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Valwynne Faulkner
- Systems Chemical Biology of Infection and Resistance Laboratory, Francis Crick Institute, London, United Kingdom
| | - Johana Monteserin
- Systems Chemical Biology of Infection and Resistance Laboratory, Francis Crick Institute, London, United Kingdom
| | - Hannah Pugh
- Systems Chemical Biology of Infection and Resistance Laboratory, Francis Crick Institute, London, United Kingdom
| | - Eachan Oliver Johnson
- Systems Chemical Biology of Infection and Resistance Laboratory, Francis Crick Institute, London, United Kingdom
| |
Collapse
|
29
|
Merker M, Rasigade JP, Barbier M, Cox H, Feuerriegel S, Kohl TA, Shitikov E, Klaos K, Gaudin C, Antoine R, Diel R, Borrell S, Gagneux S, Nikolayevskyy V, Andres S, Crudu V, Supply P, Niemann S, Wirth T. Transcontinental spread and evolution of Mycobacterium tuberculosis W148 European/Russian clade toward extensively drug resistant tuberculosis. Nat Commun 2022; 13:5105. [PMID: 36042200 PMCID: PMC9426364 DOI: 10.1038/s41467-022-32455-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 08/01/2022] [Indexed: 11/09/2022] Open
Abstract
Transmission-driven multi-/extensively drug resistant (M/XDR) tuberculosis (TB) is the largest single contributor to human mortality due to antimicrobial resistance. A few major clades of the Mycobacterium tuberculosis complex belonging to lineage 2, responsible for high prevalence of MDR-TB in Eurasia, show outstanding transnational distributions. Here, we determined factors underlying the emergence and epidemic spread of the W148 clade by genome sequencing and Bayesian demogenetic analyses of 720 isolates from 23 countries. We dated a common ancestor around 1963 and identified two successive epidemic expansions in the late 1980s and late 1990s, coinciding with major socio-economic changes in the post-Soviet Era. These population expansions favored accumulation of resistance mutations to up to 11 anti-TB drugs, with MDR evolving toward additional resistances to fluoroquinolones and second-line injectable drugs within 20 years on average. Timescaled haplotypic density analysis revealed that widespread acquisition of compensatory mutations was associated with transmission success of XDR strains. Virtually all W148 strains harbored a hypervirulence-associated ppe38 gene locus, and incipient recurrent emergence of prpR mutation-mediated drug tolerance was detected. The outstanding genetic arsenal of this geographically widespread M/XDR strain clade represents a “perfect storm” that jeopardizes the successful introduction of new anti-M/XDR-TB antibiotic regimens. An outbreak of the multidrug-resistant Mycobacterium tuberculosis lineage W148 has spread widely across Russia, Central Asia and Europe. Here, the authors use whole genome sequences of ~700 isolates of this lineage collected over ~20 years to analyze its spread, evolution of drug resistance, and impact of compensatory mutations.
Collapse
Affiliation(s)
- Matthias Merker
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research, Partner site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany.,Evolution of the Resistome, Research Center Borstel, Borstel, Germany
| | - Jean-Philippe Rasigade
- EPHE, PSL University, Paris, France.,Institut de Systématique, Evolution, Biodiversité, ISYEB, Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France.,Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, Université Lyon 1, ENS de Lyon, Lyon, France
| | - Maxime Barbier
- EPHE, PSL University, Paris, France.,Institut de Systématique, Evolution, Biodiversité, ISYEB, Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Helen Cox
- Division of Medical Microbiology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Silke Feuerriegel
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research, Partner site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Thomas A Kohl
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research, Partner site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Egor Shitikov
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow, Russian Federation
| | - Kadri Klaos
- SA TUH United Laboratories, Mycobacteriology, Tartu, Estonia
| | | | - Rudy Antoine
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000, Lille, France
| | - Roland Diel
- Institute for Epidemiology, Schleswig-Holstein University Hospital, Kiel, Germany.,Lung Clinic Grosshansdorf, German Center for Lung Research (DZL), Airway Research Center North (ARCN), 22927, Großhansdorf, Germany
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland.,University of Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland.,University of Basel, Basel, Switzerland
| | | | - Sönke Andres
- National and WHO Supranational Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
| | - Valeriu Crudu
- National TB Reference Laboratory, Institute of Phthisiopneumology, Chisinau, Moldova
| | - Philip Supply
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000, Lille, France.
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany. .,German Center for Infection Research, Partner site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany.
| | - Thierry Wirth
- EPHE, PSL University, Paris, France. .,Institut de Systématique, Evolution, Biodiversité, ISYEB, Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France.
| |
Collapse
|
30
|
Hemez C, Clarelli F, Palmer AC, Bleis C, Abel S, Chindelevitch L, Cohen T, Abel zur Wiesch P. Mechanisms of antibiotic action shape the fitness landscapes of resistance mutations. Comput Struct Biotechnol J 2022; 20:4688-4703. [PMID: 36147681 PMCID: PMC9463365 DOI: 10.1016/j.csbj.2022.08.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/15/2022] Open
Abstract
Antibiotic-resistant pathogens are a major public health threat. A deeper understanding of how an antibiotic's mechanism of action influences the emergence of resistance would aid in the design of new drugs and help to preserve the effectiveness of existing ones. To this end, we developed a model that links bacterial population dynamics with antibiotic-target binding kinetics. Our approach allows us to derive mechanistic insights on drug activity from population-scale experimental data and to quantify the interplay between drug mechanism and resistance selection. We find that both bacteriostatic and bactericidal agents can be equally effective at suppressing the selection of resistant mutants, but that key determinants of resistance selection are the relationships between the number of drug-inactivated targets within a cell and the rates of cellular growth and death. We also show that heterogeneous drug-target binding within a population enables resistant bacteria to evolve fitness-improving secondary mutations even when drug doses remain above the resistant strain's minimum inhibitory concentration. Our work suggests that antibiotic doses beyond this "secondary mutation selection window" could safeguard against the emergence of high-fitness resistant strains during treatment.
Collapse
Affiliation(s)
- Colin Hemez
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Graduate Program in Biophysics, Harvard University, Boston, MA 02115, USA
| | - Fabrizio Clarelli
- Department of Pharmacy, UiT – The Arctic University of Norway, 9019 Tromsø, Norway
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Adam C. Palmer
- Department of Pharmacology, Computational Medicine Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christina Bleis
- Department of Pharmacy, UiT – The Arctic University of Norway, 9019 Tromsø, Norway
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Sören Abel
- Department of Pharmacy, UiT – The Arctic University of Norway, 9019 Tromsø, Norway
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Division of Infection Control, Norwegian Institute of Public Health, Oslo 0318, Norway
| | - Leonid Chindelevitch
- Department of Infectious Disease Epidemiology, Imperial College, London SW7 2AZ, UK
| | - Theodore Cohen
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520, USA
| | - Pia Abel zur Wiesch
- Department of Pharmacy, UiT – The Arctic University of Norway, 9019 Tromsø, Norway
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Division of Infection Control, Norwegian Institute of Public Health, Oslo 0318, Norway
| |
Collapse
|
31
|
Dreyer V, Mandal A, Dev P, Merker M, Barilar I, Utpatel C, Nilgiriwala K, Rodrigues C, Crook DW, Crook DW, Peto TEA, Walker AS, Hoosdally SJ, Gibertoni Cruz AL, Carter J, Earle S, Kouchaki S, Yang Y, Walker TM, Fowler PW, Wilson D, Clifton DA, Iqbal Z, Hunt M, Knaggs J, Cirillo DM, Borroni E, Battaglia S, Ghodousi A, Spitaleri A, Cabibbe A, Tahseen S, Nilgiriwala K, Shah S, Rodrigues C, Kambli P, Surve U, Khot R, Niemann S, Kohl T, Merker M, Hoffmann H, Todt K, Plesnik S, Ismail N, Omar SV, Ngcamu LJD, Okozi N, Yao SY, Thwaites G, Thuong TNT, Ngoc NH, Srinivasan V, Moore D, Coronel J, Solano W, Gao GF, He G, Zhao Y, Ma A, Liu C, Zhu B, Laurenson I, Claxton P, Wilkinson RJ, Koch A, Lalvani A, Posey J, Gardy J, Werngren J, Paton N, Jou R, Wu MH, Xiao YX, Ferrazoli L, de Oliveira RS, Millard J, Warren R, Van Rie A, Lapierre SG, Rabodoarivelo MS, Rakotosamimanana N, Nimmo C, Musser K, Escuyer V, Cohen T, Rasigade JP, Wirth T, Mistry N, Niemann S. High fluoroquinolone resistance proportions among multidrug-resistant tuberculosis driven by dominant L2 Mycobacterium tuberculosis clones in the Mumbai Metropolitan Region. Genome Med 2022; 14:95. [PMID: 35989319 PMCID: PMC9394022 DOI: 10.1186/s13073-022-01076-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Multidrug-resistant (MDR) Mycobacterium tuberculosis complex (MTBC) strains are a serious health problem in India, also contributing to one-fourth of the global MDR tuberculosis (TB) burden. About 36% of the MDR MTBC strains are reported fluoroquinolone (FQ) resistant leading to high pre-extensively drug-resistant (pre-XDR) and XDR-TB (further resistance against bedaquiline and/or linezolid) rates. Still, factors driving the MDR/pre-XDR epidemic in India are not well defined.
Methods
In a retrospective study, we analyzed 1852 consecutive MTBC strains obtained from patients from a tertiary care hospital laboratory in Mumbai by whole genome sequencing (WGS). Univariate and multivariate statistics was used to investigate factors associated with pre-XDR. Core genome multi locus sequence typing, time scaled haplotypic density (THD) method and homoplasy analysis were used to analyze epidemiological success, and positive selection in different strain groups, respectively.
Results
In total, 1016 MTBC strains were MDR, out of which 703 (69.2%) were pre-XDR and 45 (4.4%) were XDR. Cluster rates were high among MDR (57.8%) and pre-XDR/XDR (79%) strains with three dominant L2 (Beijing) strain clusters (Cl 1–3) representing half of the pre-XDR and 40% of the XDR-TB cases. L2 strains were associated with pre-XDR/XDR-TB (P < 0.001) and, particularly Cl 1–3 strains, had high first-line and FQ resistance rates (81.6–90.6%). Epidemic success analysis using THD showed that L2 strains outperformed L1, L3, and L4 strains in short- and long-term time scales. More importantly, L2 MDR and MDR + strains had higher THD success indices than their not-MDR counterparts. Overall, compensatory mutation rates were highest in L2 strains and positive selection was detected in genes of L2 strains associated with drug tolerance (prpB and ppsA) and virulence (Rv2828c). Compensatory mutations in L2 strains were associated with a threefold increase of THD indices, suggesting improved transmissibility.
Conclusions
Our data indicate a drastic increase of FQ resistance, as well as emerging bedaquiline resistance which endangers the success of newly endorsed MDR-TB treatment regimens. Rapid changes in treatment and control strategies are required to contain transmission of highly successful pre-XDR L2 strains in the Mumbai Metropolitan region but presumably also India-wide.
Collapse
|
32
|
Lagutkin D, Panova A, Vinokurov A, Gracheva A, Samoilova A, Vasilyeva I. Genome-Wide Study of Drug Resistant Mycobacterium tuberculosis and Its Intra-Host Evolution during Treatment. Microorganisms 2022; 10:1440. [PMID: 35889159 PMCID: PMC9318467 DOI: 10.3390/microorganisms10071440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
The emergence of drug resistant Mycobacterium tuberculosis (MTB) strains has become a global public health problem, while, at the same time, there has been development of new antimicrobial agents. The main goals of this study were to determine new variants associated with drug resistance in MTB and to observe which polymorphisms emerge in MTB genomes after anti-tuberculosis treatment. We performed whole-genome sequencing of 152 MTB isolates including 70 isolates as 32 series of pre- and post-treatment MTB. Based on genotypes and phenotypic drug susceptibility, we conducted phylogenetic convergence-based genome-wide association study (GWAS) with streptomycin-, isoniazid-, rifampicin-, ethambutol-, fluoroquinolones-, and aminoglycosides-resistant MTB against susceptible ones. GWAS revealed statistically significant associations of SNPs within Rv2820c, cyp123 and indels in Rv1269c, Rv1907c, Rv1883c, Rv2407, Rv3785 genes with resistant MTB phenotypes. Comparisons of serial isolates showed that treatment induced different patterns of intra-host evolution. We found indels within Rv1435c and ppsA that were not lineage-specific. In addition, Beijing-specific polymorphisms within Rv0036c, Rv0678, Rv3433c, and dop genes were detected in post-treatment isolates. The appearance of Rv3785 frameshift insertion in 2 post-treatment strains compared to pre-treatment was also observed. We propose that the insertion within Rv3785, which was a GWAS hit, might affect cell wall biosynthesis and probably mediates a compensatory mechanism in response to treatment. These results may shed light on the mechanisms of MTB adaptation to chemotherapy and drug resistance formation.
Collapse
Affiliation(s)
- Denis Lagutkin
- National Medical Research Center of Phthisiopulmonology and Infectious Diseases under the Ministry of Health of the Russian Federation, 127994 Moscow, Russia; (A.P.); (A.V.); (A.G.); (A.S.); (I.V.)
| | | | | | | | | | | |
Collapse
|
33
|
Menardo F. Understanding drivers of phylogenetic clustering and terminal branch lengths distribution in epidemics of Mycobacterium tuberculosis. eLife 2022; 11:76780. [PMID: 35762734 PMCID: PMC9239681 DOI: 10.7554/elife.76780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Detecting factors associated with transmission is important to understand disease epidemics, and to design effective public health measures. Clustering and terminal branch lengths (TBL) analyses are commonly applied to genomic data sets of Mycobacterium tuberculosis (MTB) to identify sub-populations with increased transmission. Here, I used a simulation-based approach to investigate what epidemiological processes influence the results of clustering and TBL analyses, and whether differences in transmission can be detected with these methods. I simulated MTB epidemics with different dynamics (latency, infectious period, transmission rate, basic reproductive number R0, sampling proportion, sampling period, and molecular clock), and found that all considered factors, except for the length of the infectious period, affect the results of clustering and TBL distributions. I show that standard interpretations of this type of analyses ignore two main caveats: (1) clustering results and TBL depend on many factors that have nothing to do with transmission, (2) clustering results and TBL do not tell anything about whether the epidemic is stable, growing, or shrinking, unless all the additional parameters that influence these metrics are known, or assumed identical between sub-populations. An important consequence is that the optimal SNP threshold for clustering depends on the epidemiological conditions, and that sub-populations with different epidemiological characteristics should not be analyzed with the same threshold. Finally, these results suggest that different clustering rates and TBL distributions, that are found consistently between different MTB lineages, are probably due to intrinsic bacterial factors, and do not indicate necessarily differences in transmission or evolutionary success.
Collapse
Affiliation(s)
- Fabrizio Menardo
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
34
|
Origin and Global Expansion of Mycobacterium tuberculosis Complex Lineage 3. Genes (Basel) 2022; 13:genes13060990. [PMID: 35741753 PMCID: PMC9222951 DOI: 10.3390/genes13060990] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/14/2022] [Accepted: 05/19/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Tuberculosis still causes 1.5 million deaths annually and is mainly caused by Mycobacterium tuberculosis complex strains belonging to three evolutionary modern lineages (Lineages 2–4). While Lineage 2 and Lineage 4 virtually conquered the world, Lineage 3 is particularly successful in Northern and Eastern Africa, as well as in Southern Asia, the suspected evolutionary origin of these strains. Here, we sought to understand how Lineage 3 strains came to the African continent. To this end, we performed routine genotyping to characterize over 2500 clinical isolates from 38 countries. We then selected a representative collection of 373 isolates for a whole-genome analysis and a modeling approach to infer the geographic origin of different sublineages. In fact, the origin of Lineage 3 could be located in India, and we found evidence for independent introductions of four distinct sublineages into North/East Africa, in line with known ancient exchanges and migrations between both world regions. Our study illustrates that the evolutionary history of humans and their pathogens are closely connected and further provides a systematic understanding of the genomic diversity of Lineage 3, which could be important for the development of new tuberculosis vaccines or new therapeutics. Abstract Mycobacterium tuberculosis complex (MTBC) Lineage 3 (L3) strains are abundant in world regions with the highest tuberculosis burden. To investigate the population structure and the global diversity of this major lineage, we analyzed a dataset comprising 2682 L3 strains from 38 countries over 5 continents, by employing 24-loci mycobacterial interspersed repetitive unit-variable number of tandem repeats genotyping (MIRU-VNTR) and drug susceptibility testing. We further combined whole-genome sequencing (WGS) and phylogeographic analysis for 373 strains representing the global L3 genetic diversity. Ancestral state reconstruction confirmed that the origin of L3 strains is located in Southern Asia and further revealed multiple independent introduction events into North-East and East Africa. This study provides a systematic understanding of the global diversity of L3 strains and reports phylogenetic variations that could inform clinical trials which evaluate the effectivity of new drugs/regimens or vaccine candidates.
Collapse
|
35
|
Chen Y, Liu Q, Takiff HE, Gao Q. Comprehensive genomic analysis of Mycobacterium tuberculosis reveals limited impact of high-fitness genotypes on MDR-TB transmission. J Infect 2022; 85:49-56. [PMID: 35588941 DOI: 10.1016/j.jinf.2022.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/14/2022] [Accepted: 05/12/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Environmental and host-related factors that contribute to the transmission of multidrug-resistant tuberculosis (MDR-TB) have become an increasing concern, but the impact of bacterial genetic factors associated with bacterial fitness on MDR-TB transmission is poorly understood. Here, we present a global view of the correlation between common fitness-related genotypes and MDR-TB transmission by analyzing a representative number of MDR-TB isolates. METHODS We assembled a global whole genome sequencing (WGS) dataset of MDR-TB strains collected through retrospective cohorts or population-based approaches using public databases and literature curation. WGS-based clusters were defined as groups of strains with genomic difference of ≤ 5 SNPs. RESULTS We curated high-quality WGS data of 4696 MDR-TB isolates from 17 countries with a mean clustering rate of 48% (range 0-100%). Correlational analysis showed that increased risk of MDR-TB strain clustering was not associated with compensatory mutations (OR 1.07, 95% CI 0.72-1.59), low-fitness cost drug-resistant mutations (katG S315T: OR 1.42, 95% CI 0.82-2.47; rpoB S450L: OR 1.26, 95% CI 0.87-1.83) or Lineage 2 (OR 1.50, 95% CI 0.95-2.39). CONCLUSIONS The factors most commonly thought to increase bacterial fitness were not significantly associated with increased MDR-TB transmission, and thus do not appear to be major contributors to the current epidemic of MDR-TB.
Collapse
Affiliation(s)
- Yiwang Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China; National Clinical Research Center for Infectious Diseases, Shenzhen, Guangdong, China
| | - Qingyun Liu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Howard E Takiff
- Department of Tuberculosis Control and Prevention, Shenzhen Nanshan Centre for Chronic Disease Control, Shenzhen, China; Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Qian Gao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China; National Clinical Research Center for Infectious Diseases, Shenzhen, Guangdong, China.
| |
Collapse
|
36
|
Ngabonziza JCS, Rigouts L, Torrea G, Decroo T, Kamanzi E, Lempens P, Rucogoza A, Habimana YM, Laenen L, Niyigena BE, Uwizeye C, Ushizimpumu B, Mulders W, Ivan E, Tzfadia O, Muvunyi CM, Migambi P, Andre E, Mazarati JB, Affolabi D, Umubyeyi AN, Nsanzimana S, Portaels F, Gasana M, de Jong BC, Meehan CJ. Multidrug-resistant tuberculosis control in Rwanda overcomes a successful clone that causes most disease over a quarter century. J Clin Tuberc Other Mycobact Dis 2022; 27:100299. [PMID: 35146133 PMCID: PMC8802117 DOI: 10.1016/j.jctube.2022.100299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
SUMMARY BACKGROUND Multidrug-resistant (MDR) tuberculosis (TB) poses an important challenge in TB management and control. Rifampicin resistance (RR) is a solid surrogate marker of MDR-TB. We investigated the RR-TB clustering rates, bacterial population dynamics to infer transmission dynamics, and the impact of changes to patient management on these dynamics over 27 years in Rwanda. METHODS We analysed whole genome sequences of a longitudinal collection of nationwide RR-TB isolates. The collection covered three important periods: before programmatic management of MDR-TB (PMDT; 1991-2005), the early PMDT phase (2006-2013), in which rifampicin drug-susceptibility testing (DST) was offered to retreatment patients only, and the consolidated phase (2014-2018), in which all bacteriologically confirmed TB patients had rifampicin DST done mostly via Xpert MTB/RIF assay. We constructed clusters based on a 5 SNP cut-off and resistance conferring SNPs. We used Bayesian modelling for dating and population size estimations, TransPhylo to estimate the number of secondary cases infected by each patient, and multivariable logistic regression to assess predictors of being infected by the dominant clone. RESULTS Of 308 baseline RR-TB isolates considered for transmission analysis, the clustering analysis grouped 259 (84.1%) isolates into 13 clusters. Within these clusters, a single dominant clone was discovered containing 213 isolates (82.2% of clustered and 69.1% of all RR-TB), which we named the "Rwanda Rifampicin-Resistant clone" (R3clone). R3clone isolates belonged to Ugandan sub-lineage 4.6.1.2 and its rifampicin and isoniazid resistance were conferred by the Ser450Leu mutation in rpoB and Ser315Thr in katG genes, respectively. All R3clone isolates had Pro481Thr, a putative compensatory mutation in the rpoC gene that likely restored its fitness. The R3clone was estimated to first arise in 1987 and its population size increased exponentially through the 1990s', reaching maximum size (∼84%) in early 2000 s', with a declining trend since 2014. Indeed, the highest proportion of R3clone (129/157; 82·2%, 95%CI: 75·3-87·8%) occurred between 2000 and 13, declining to 64·4% (95%CI: 55·1-73·0%) from 2014 onward. We showed that patients with R3clone detected after an unsuccessful category 2 treatment were more likely to generate secondary cases than patients with R3clone detected after an unsuccessful category 1 treatment regimen. CONCLUSIONS RR-TB in Rwanda is largely transmitted. Xpert MTB/RIF assay as first diagnostic test avoids unnecessary rounds of rifampicin-based TB treatment, thus preventing ongoing transmission of the dominant R3clone. As PMDT was intensified and all TB patients accessed rifampicin-resistance testing, the nationwide R3clone burden declined. To our knowledge, our findings provide the first evidence supporting the impact of universal DST on the transmission of RR-TB.
Collapse
Affiliation(s)
- Jean Claude S. Ngabonziza
- National Reference Laboratory Division, Department of Biomedical Services, Rwanda Biomedical Center, Kigali, Rwanda
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Clinical Biology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Leen Rigouts
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Gabriela Torrea
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Tom Decroo
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Research Foundation Flanders, Brussels, Belgium
| | - Eliane Kamanzi
- National Reference Laboratory Division, Department of Biomedical Services, Rwanda Biomedical Center, Kigali, Rwanda
| | - Pauline Lempens
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Aniceth Rucogoza
- National Reference Laboratory Division, Department of Biomedical Services, Rwanda Biomedical Center, Kigali, Rwanda
| | - Yves M. Habimana
- Tuberculosis and Other Respiratory Diseases Division, Institute of HIV/AIDS Disease Prevention and Control, Rwanda Biomedical Center, Kigali, Rwanda
| | - Lies Laenen
- Clinical Department of Laboratory Medicine and National Reference Center for Respiratory Pathogens, University Hospitals Leuven, Leuven, Belgium
| | - Belamo E. Niyigena
- National Reference Laboratory Division, Department of Biomedical Services, Rwanda Biomedical Center, Kigali, Rwanda
| | - Cécile Uwizeye
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Bertin Ushizimpumu
- National Reference Laboratory Division, Department of Biomedical Services, Rwanda Biomedical Center, Kigali, Rwanda
| | - Wim Mulders
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Emil Ivan
- National Reference Laboratory Division, Department of Biomedical Services, Rwanda Biomedical Center, Kigali, Rwanda
| | - Oren Tzfadia
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Claude Mambo Muvunyi
- Department of Clinical Biology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | | | - Emmanuel Andre
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Clinical Department of Laboratory Medicine and National Reference Center for Respiratory Pathogens, University Hospitals Leuven, Leuven, Belgium
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Bacteriology and Mycology, Leuven, Belgium
| | | | | | | | | | - Françoise Portaels
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Michel Gasana
- Tuberculosis and Other Respiratory Diseases Division, Institute of HIV/AIDS Disease Prevention and Control, Rwanda Biomedical Center, Kigali, Rwanda
| | - Bouke C. de Jong
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Conor J. Meehan
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- School of Chemistry and Biosciences, University of Bradford, UK
| |
Collapse
|
37
|
Gisch N, Utpatel C, Gronbach LM, Kohl TA, Schombel U, Malm S, Dobos KM, Hesser DC, Diel R, Götsch U, Gerdes S, Shuaib YA, Ntinginya NE, Khosa C, Viegas S, Kerubo G, Ali S, Al-Hajoj SA, Ndung'u PW, Rachow A, Hoelscher M, Maurer FP, Schwudke D, Niemann S, Reiling N, Homolka S. Sub-Lineage Specific Phenolic Glycolipid Patterns in the Mycobacterium tuberculosis Complex Lineage 1. Front Microbiol 2022; 13:832054. [PMID: 35350619 PMCID: PMC8957993 DOI: 10.3389/fmicb.2022.832054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/20/2022] [Indexed: 12/01/2022] Open
Abstract
“Ancestral” Mycobacterium tuberculosis complex (MTBC) strains of Lineage 1 (L1, East African Indian) are a prominent tuberculosis (TB) cause in countries around the Indian Ocean. However, the pathobiology of L1 strains is insufficiently characterized. Here, we used whole genome sequencing (WGS) of 312 L1 strains from 43 countries to perform a characterization of the global L1 population structure and correlate this to the analysis of the synthesis of phenolic glycolipids (PGL) – known MTBC polyketide-derived virulence factors. Our results reveal the presence of eight major L1 sub-lineages, whose members have specific mutation signatures in PGL biosynthesis genes, e.g., pks15/1 or glycosyltransferases Rv2962c and/or Rv2958c. Sub-lineage specific PGL production was studied by NMR-based lipid profiling and strains with a completely abolished phenolphthiocerol dimycoserosate biosynthesis showed in average a more prominent growth in human macrophages. In conclusion, our results show a diverse population structure of L1 strains that is associated with the presence of specific PGL types. This includes the occurrence of mycoside B in one sub-lineage, representing the first description of a PGL in an M. tuberculosis lineage other than L2. Such differences may be important for the evolution of L1 strains, e.g., allowing adaption to different human populations.
Collapse
Affiliation(s)
- Nicolas Gisch
- Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Christian Utpatel
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Lisa M Gronbach
- Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Thomas A Kohl
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Ursula Schombel
- Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Sven Malm
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Karen M Dobos
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Danny C Hesser
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Roland Diel
- Lung Clinic Grosshansdorf, Airway Disease Center North (ARCN), German Center for Lung Research (DZL), Großhansdorf, Germany
| | - Udo Götsch
- Municipal Health Authority Frankfurt am Main, Frankfurt am Main, Germany
| | - Silke Gerdes
- Municipal Health Authority Hannover, Hanover, Germany
| | - Yassir A Shuaib
- College of Veterinary Medicine, Sudan University of Science and Technology, Khartoum, Sudan.,WHO-Supranational Reference Laboratory of Tuberculosis, Institute of Microbiology and Laboratory Medicine (IML Red), Gauting, Germany
| | - Nyanda E Ntinginya
- National Institute for Medical Research Tanzania - Mbeya Medical Research Center, Mbeya, Tanzania
| | - Celso Khosa
- Instituto Nacional de Saúde (INS), Marracuene, Mozambique
| | - Sofia Viegas
- Instituto Nacional de Saúde (INS), Marracuene, Mozambique
| | - Glennah Kerubo
- Department of Medical Microbiology and Parasitology, School of Medicine, Kenyatta University, Nairobi, Kenya
| | - Solomon Ali
- Department of Microbiology, Immunology, and Parasitology, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Sahal A Al-Hajoj
- Mycobacteriology Research Section, Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Perpetual W Ndung'u
- Institute of Tropical Medicine and Infectious Diseases (ITROMID), Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Andrea Rachow
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Florian P Maurer
- National and WHO Supranational Reference Centre for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.,Institute of Medical Microbiology, Virology, and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dominik Schwudke
- Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany.,Airway Research Center North, Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Norbert Reiling
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany.,Microbial Interface Biology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Susanne Homolka
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| |
Collapse
|
38
|
Yokobori N, López B, Ritacco V. The host-pathogen-environment triad: Lessons learned through the study of the multidrug-resistant Mycobacterium tuberculosis M strain. Tuberculosis (Edinb) 2022; 134:102200. [PMID: 35339874 DOI: 10.1016/j.tube.2022.102200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/13/2022] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
Abstract
Multidrug-resistant tuberculosis is one of the major obstacles that face the tuberculosis eradication efforts. Drug-resistant Mycobacterium tuberculosis clones were initially disregarded as a public health threat, because they were assumed to have paid a high fitness cost in exchange of resistance acquisition. However, some genotypes manage to overcome the impact of drug-resistance conferring mutations, retain transmissibility and cause large outbreaks. In Argentina, the HIV-AIDS epidemics fuelled the expansion of the so-called M strain in the early 1990s, which is responsible for the largest recorded multidrug-resistant tuberculosis cluster of Latin America. The aim of this work is to review the knowledge gathered after nearly three decades of multidisciplinary research on epidemiological, microbiological and immunological aspects of this highly successful strain. Collectively, our results indicate that the successful transmission of the M strain could be ascribed to its unaltered virulence, low Th1/Th17 response, a low fitness cost imposed by the resistance conferring mutations and a high resistance to host-related stress. In the early 2000s, the incident cases due to the M strain steadily declined and stabilized in the latest years. Improvements in the management, diagnosis and treatment of multidrug-resistant tuberculosis along with societal factors such as the low domestic and international mobility of the patients affected by this strain probably contributed to the outbreak containment. This stresses the importance of sustaining the public health interventions to avoid the resurgence of this conspicuous multidrug-resistant strain.
Collapse
Affiliation(s)
- Noemí Yokobori
- Servicio de Micobacterias, Instituto Nacional de Enfermedades Infecciosas, ANLIS "Dr. C. G. Malbrán", Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
| | - Beatriz López
- Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas, ANLIS "Dr. C. G. Malbrán", Buenos Aires, Argentina.
| | - Viviana Ritacco
- Servicio de Micobacterias, Instituto Nacional de Enfermedades Infecciosas, ANLIS "Dr. C. G. Malbrán", Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
| |
Collapse
|
39
|
Molecular Epidemiology of Mycobacterium tuberculosis Complex Strains in Urban and Slum Settings of Nairobi, Kenya. Genes (Basel) 2022; 13:genes13030475. [PMID: 35328028 PMCID: PMC8953814 DOI: 10.3390/genes13030475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 12/28/2022] Open
Abstract
Kenya is a country with a high tuberculosis (TB) burden. However, knowledge on the genetic diversity of Mycobacterium tuberculosis complex (MTBC) strains and their transmission dynamics is sparsely available. Hence, we used whole-genome sequencing (WGS) to depict the genetic diversity, molecular markers of drug resistance, and possible transmission clusters among MTBC strains in urban and slum settings of Nairobi. We analyzed 385 clinical MTBC isolates collected between 2010 and 2015 in combination with patients’ demographics. We showed that the MTBC population mainly comprises strains of four lineages (L1–L4). The two dominating lineages were L4 with 55.8% (n = 215) and L3 with 25.7% (n = 99) of all strains, respectively. Genome-based cluster analysis showed that 30.4% (117/385) of the strains were clustered using a ≤5 single-nucleotide polymorphism (SNP) threshold as a surrogate marker for direct patient-to-patient MTBC transmission. Moreover, 5.2% (20/385) of the strains were multidrug-resistant (MDR), and 50.0% (n = 10) were part of a genome-based cluster (i.e., direct MDR MTBC transmission). Notably, 30.0% (6/20) of the MDR strains were resistant to all first-line drugs and are part of one molecular cluster. Moreover, TB patients in urban living setting had 3.8 times the odds of being infected with a drug-resistant strain as compared to patients from slums (p-value = 0.002). Our results show that L4 strains are the main causative agent of TB in Nairobi and MDR strain transmission is an emerging concern in urban settings. This emphasizes the need for more focused infection control measures and contact tracing of patients with MDR TB to break the transmission chains.
Collapse
|
40
|
Swain SS, Pati S, Hussain T. Quinoline heterocyclic containing plant and marine candidates against drug-resistant Mycobacterium tuberculosis: A systematic drug-ability investigation. Eur J Med Chem 2022; 232:114173. [DOI: 10.1016/j.ejmech.2022.114173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 12/22/2022]
|
41
|
Yang C, Sobkowiak B, Naidu V, Codreanu A, Ciobanu N, Gunasekera KS, Chitwood MH, Alexandru S, Bivol S, Russi M, Havumaki J, Cudahy P, Fosburgh H, Allender CJ, Centner H, Engelthaler DM, Menzies NA, Warren JL, Crudu V, Colijn C, Cohen T. Phylogeography and transmission of M. tuberculosis in Moldova: A prospective genomic analysis. PLoS Med 2022; 19:e1003933. [PMID: 35192619 PMCID: PMC8903246 DOI: 10.1371/journal.pmed.1003933] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 03/08/2022] [Accepted: 01/31/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The incidence of multidrug-resistant tuberculosis (MDR-TB) remains critically high in countries of the former Soviet Union, where >20% of new cases and >50% of previously treated cases have resistance to rifampin and isoniazid. Transmission of resistant strains, as opposed to resistance selected through inadequate treatment of drug-susceptible tuberculosis (TB), is the main driver of incident MDR-TB in these countries. METHODS AND FINDINGS We conducted a prospective, genomic analysis of all culture-positive TB cases diagnosed in 2018 and 2019 in the Republic of Moldova. We used phylogenetic methods to identify putative transmission clusters; spatial and demographic data were analyzed to further describe local transmission of Mycobacterium tuberculosis. Of 2,236 participants, 779 (36%) had MDR-TB, of whom 386 (50%) had never been treated previously for TB. Moreover, 92% of multidrug-resistant M. tuberculosis strains belonged to putative transmission clusters. Phylogenetic reconstruction identified 3 large clades that were comprised nearly uniformly of MDR-TB: 2 of these clades were of Beijing lineage, and 1 of Ural lineage, and each had additional distinct clade-specific second-line drug resistance mutations and geographic distributions. Spatial and temporal proximity between pairs of cases within a cluster was associated with greater genomic similarity. Our study lasted for only 2 years, a relatively short duration compared with the natural history of TB, and, thus, the ability to infer the full extent of transmission is limited. CONCLUSIONS The MDR-TB epidemic in Moldova is associated with the local transmission of multiple M. tuberculosis strains, including distinct clades of highly drug-resistant M. tuberculosis with varying geographic distributions and drug resistance profiles. This study demonstrates the role of comprehensive genomic surveillance for understanding the transmission of M. tuberculosis and highlights the urgency of interventions to interrupt transmission of highly drug-resistant M. tuberculosis.
Collapse
Affiliation(s)
- Chongguang Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | | | - Vijay Naidu
- Department of Mathematics, Simon Fraser University, Burnaby, Canada
| | | | - Nelly Ciobanu
- Phthisiopneumology Institute, Chisinau, Republic of Moldova
| | - Kenneth S. Gunasekera
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Melanie H. Chitwood
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | | | - Stela Bivol
- Center for Health Policies and Studies, Chisinau, Republic of Moldova
| | - Marcus Russi
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Joshua Havumaki
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Patrick Cudahy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Heather Fosburgh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | | | - Heather Centner
- Translational Genomics Research Institute, Flagstaff, Arizona, United States of America
| | - David M. Engelthaler
- Translational Genomics Research Institute, Flagstaff, Arizona, United States of America
| | - Nicolas A. Menzies
- Department of Global Health and Population, and Center for Health Decision Science, Harvard TH Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Joshua L. Warren
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Valeriu Crudu
- Phthisiopneumology Institute, Chisinau, Republic of Moldova
| | - Caroline Colijn
- Department of Mathematics, Simon Fraser University, Burnaby, Canada
| | - Ted Cohen
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| |
Collapse
|
42
|
Bhattacharjee A, Sarma S, Sen T, Singh AK. Alterations in molecular response of Mycobacterium tuberculosis against anti-tuberculosis drugs. Mol Biol Rep 2022; 49:3987-4002. [PMID: 35066765 DOI: 10.1007/s11033-021-07095-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis, has plagued humans since the early middle-ages. More than one million deaths are recorded annually due to TB, even in present times. These deaths are primarily attributed to the constant appearance of resistant TB strains. Even with the advent of new therapeutics and diagnostics techniques, tuberculosis remains challenging to control due to resistant M. tuberculosis strains. Aided by various molecular changes, these strains adapt to stress created by anti-tuberculosis drugs. MATERIALS AND METHODS The review thus is an overview of ongoing research in the genome and transcriptome of antibiotic-resistant TB. It explores omics-based research to identify mutation and utilization of differential gene expression. CONCLUSIONS This study shows several mutations distinctive in the first- and second-line drug-resistant M. tuberculosis strains. It also explores the expressional differences of genes involved in the fundamental process of the cells and how they help in drug resistance. With the development of transcriptomics-based studies, a new insight has developed to inquire about gene expression changes in drug resistance. This information on expressional pattern changes can be utilized to design the basic platform of anti-TB treatments and therapeutic approaches. These novel insights can be instrumental in disease diagnosis and global containment of resistant TB.
Collapse
Affiliation(s)
- Abhilash Bhattacharjee
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sangita Sarma
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Tejosmita Sen
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anil Kumar Singh
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
43
|
Guyeux C, Senelle G, Refrégier G, Bretelle-Establet F, Cambau E, Sola C. Connection between two historical tuberculosis outbreak sites in Japan, Honshu, by a new ancestral Mycobacterium tuberculosis L2 sublineage. Epidemiol Infect 2022; 150:1-25. [PMID: 35042579 PMCID: PMC8931808 DOI: 10.1017/s0950268822000048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/24/2021] [Accepted: 01/03/2022] [Indexed: 11/07/2022] Open
Abstract
By gathering 680 publicly available Sequence Read Archives from isolates of Mycobacterium tuberculosis complex (MTBC) including 190 belonging to the lineage 2 Beijing , and using an in-house bioinformatical pipeline, the TB-Annotator , that analyses more than 50 000 characters, we describe herein a new L2 sublineage from 20 isolates found in the Tochigi province, (Japan), that we designate as asia ancestral 5 (AAnc5). These isolates harbour a number of specific criteria (42 SNPs) and their intra-cluster pairwise distance suggests historical and not epidemiological transmission. These isolates harbour a mutation in rpoC , and do not fulfil, any of the modern Beijing lineage criteria, nor any of the other ancestral Beijing lineages described so far. Asia ancestral 5 isolates do not possess mutT2 58 and ogt 12 characteristics of modern Beijing , but possess ancestral Beijing SNPs characteristics. By looking into the literature, we found a reference isolate ID381, described in Kobe and Osaka belonging to the ‘G3’ group, sharing 36 out of the 42 specific SNPs found in AAnc5. We also assessed the intermediate position of the asia ancestral 4 (AAnc4) sublineage recently described in Thailand and propose an improved classification of the L2 that now includes AAnc4 and AAnc5. By increasing the recruitment into TB-Annotator to around 3000 genomes (including 642 belonging to L2), we confirmed our results and discovered additional historical ancestral L2 branches that remain to be investigated in more detail. We also present, in addition, some anthropological and historical data from Chinese and Japan history of tuberculosis, as well as from Korea, that could support our results on L2 evolution. This study shows that the reconstruction of the early history of tuberculosis in Asia is likely to reveal complex patterns since its emergence.
Collapse
Affiliation(s)
- Christophe Guyeux
- DISC Computer Science Department, FEMTO-ST Institute, UMR 6174 CNRS, Univ. Bourgogne Franche-Comté (UBFC), 16 Route de Gray, 25000Besançon, France
| | - Gaetan Senelle
- DISC Computer Science Department, FEMTO-ST Institute, UMR 6174 CNRS, Univ. Bourgogne Franche-Comté (UBFC), 16 Route de Gray, 25000Besançon, France
| | - Guislaine Refrégier
- Université Paris-Saclay, Saint-Aubin, France
- Université Paris-Saclay, CNRS, AgroParisTech, UMR ESE, 91405, Orsay, France
| | | | - Emmanuelle Cambau
- Université de Paris, IAME, UMR1137, INSERM, Paris, France
- AP-HP, GHU Nord, service de mycobactériologie spécialisée et de référence, Laboratoire associé du Centre National de Référence des mycobactéries et résistance des mycobactéries aux antituberculeux (CNR-MyRMA), Paris, France
| | - Christophe Sola
- Université Paris-Saclay, Saint-Aubin, France
- Université de Paris, IAME, UMR1137, INSERM, Paris, France
| |
Collapse
|
44
|
Thawornwattana Y, Mahasirimongkol S, Yanai H, Maung HMW, Cui Z, Chongsuvivatwong V, Palittapongarnpim P. Revised nomenclature and SNP barcode for Mycobacterium tuberculosis lineage 2. Microb Genom 2021; 7. [PMID: 34787541 PMCID: PMC8743535 DOI: 10.1099/mgen.0.000697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) lineage 2 (L2) strains are present globally, contributing to a widespread tuberculosis (TB) burden, particularly in Asia where both prevalence of TB and numbers of drug resistant TB are highest. The increasing availability of whole-genome sequencing (WGS) data worldwide provides an opportunity to improve our understanding of the global genetic diversity of Mtb L2 and its association with the disease epidemiology and pathogenesis. However, existing L2 sublineage classification schemes leave >20 % of the Modern Beijing isolates unclassified. Here, we present a revised SNP-based classification scheme of L2 in a genomic framework based on phylogenetic analysis of >4000 L2 isolates from 34 countries in Asia, Eastern Europe, Oceania and Africa. Our scheme consists of over 30 genotypes, many of which have not been described before. In particular, we propose six main genotypes of Modern Beijing strains, denoted L2.2.M1–L2.2.M6. We also provide SNP markers for genotyping L2 strains from WGS data. This fine-scale genotyping scheme, which can classify >98 % of the studied isolates, serves as a basis for more effective monitoring and reporting of transmission and outbreaks, as well as improving genotype-phenotype associations such as disease severity and drug resistance. This article contains data hosted by Microreact.
Collapse
Affiliation(s)
- Yuttapong Thawornwattana
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | | | - Hideki Yanai
- Fukujuji Hospital and Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose 204-8533, Japan
| | - Htet Myat Win Maung
- National TB Control Programme, Department of Public Health, Ministry of Health and Sports, Naypyitaw 15011, Myanmar.,Epidemiology Unit, Faculty of Medicine, Prince of Songkla University, Had Yai 90110, Thailand
| | - Zhezhe Cui
- Epidemiology Unit, Faculty of Medicine, Prince of Songkla University, Had Yai 90110, Thailand.,Department of Tuberculosis Control, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, Guangxi, 530028, PR China
| | | | - Prasit Palittapongarnpim
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.,National Science and Technology Development Agency, Pathumthani 12120, Thailand
| |
Collapse
|
45
|
Abstract
Microbes are constantly evolving. Laboratory studies of bacterial evolution increase our understanding of evolutionary dynamics, identify adaptive changes, and answer important questions that impact human health. During bacterial infections in humans, however, the evolutionary parameters acting on infecting populations are likely to be much more complex than those that can be tested in the laboratory. Nonetheless, human infections can be thought of as naturally occurring in vivo bacterial evolution experiments, which can teach us about antibiotic resistance, pathogenesis, and transmission. Here, we review recent advances in the study of within-host bacterial evolution during human infection and discuss practical considerations for conducting such studies. We focus on 2 possible outcomes for de novo adaptive mutations, which we have termed "adapt-and-live" and "adapt-and-die." In the adapt-and-live scenario, a mutation is long lived, enabling its transmission on to other individuals, or the establishment of chronic infection. In the adapt-and-die scenario, a mutation is rapidly extinguished, either because it carries a substantial fitness cost, it arises within tissues that block transmission to new hosts, it is outcompeted by more fit clones, or the infection resolves. Adapt-and-die mutations can provide rich information about selection pressures in vivo, yet they can easily elude detection because they are short lived, may be more difficult to sample, or could be maladaptive in the long term. Understanding how bacteria adapt under each of these scenarios can reveal new insights about the basic biology of pathogenic microbes and could aid in the design of new translational approaches to combat bacterial infections.
Collapse
Affiliation(s)
- Matthew J. Culyba
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Daria Van Tyne
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
46
|
Merker M, Egbe NF, Ngangue YR, Vuchas C, Kohl TA, Dreyer V, Kuaban C, Noeske J, Niemann S, Sander MS. Transmission patterns of rifampicin resistant Mycobacterium tuberculosis complex strains in Cameroon: a genomic epidemiological study. BMC Infect Dis 2021; 21:891. [PMID: 34465301 PMCID: PMC8406724 DOI: 10.1186/s12879-021-06593-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/17/2021] [Indexed: 11/29/2022] Open
Abstract
Background Determining factors affecting the transmission of rifampicin (RR) and multidrug-resistant (MDR) Mycobacterium tuberculosis complex strains under standardized tuberculosis (TB) treatment is key to control TB and prevent the evolution of drug resistance. Methods We combined bacterial whole genome sequencing (WGS) and epidemiological investigations for 37% (n = 195) of all RR/MDR-TB patients in Cameroon (2012–2015) to identify factors associated with recent transmission. Results Patients infected with a strain resistant to high-dose isoniazid, and ethambutol had 7.4 (95% CI 2.6–21.4), and 2.4 (95% CI 1.2–4.8) times increased odds of being in a WGS-cluster, a surrogate for recent transmission. Furthermore, age between 30 and 50 was positively correlated with recent transmission (adjusted OR 3.8, 95% CI 1.3–11.4). We found high drug-resistance proportions against three drugs used in the short standardized MDR-TB regimen in Cameroon, i.e. high-dose isoniazid (77.4%), ethambutol (56.9%), and pyrazinamide (43.1%). Virtually all strains were susceptible to fluoroquinolones, kanamycin, and clofazimine, and treatment outcomes were mostly favourable (87.5%). Conclusion Pre-existing resistance to high-dose isoniazid, and ethambutol is associated with recent transmission of RR/MDR strains in our study. A possible contributing factor for this observation is the absence of universal drug susceptibility testing in Cameroon, likely resulting in prolonged exposure of new RR/MDR-TB patients to sub-optimal or failing first-line drug regimens. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06593-8.
Collapse
Affiliation(s)
- Matthias Merker
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany. .,Evolution of the Resistome, Research Center Borstel, Borstel, Germany. .,German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany.
| | - Nkongho F Egbe
- Tuberculosis Reference Laboratory Bamenda, Center for Health Promotion and Research, Bamenda, Cameroon.,School of Life Sciences, College of Science, University of Lincoln, Lincoln, England, UK
| | - Yannick R Ngangue
- Tuberculosis Reference Laboratory Bamenda, Center for Health Promotion and Research, Bamenda, Cameroon
| | - Comfort Vuchas
- Tuberculosis Reference Laboratory Bamenda, Center for Health Promotion and Research, Bamenda, Cameroon
| | - Thomas A Kohl
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Viola Dreyer
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | | | | | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Melissa S Sander
- Tuberculosis Reference Laboratory Bamenda, Center for Health Promotion and Research, Bamenda, Cameroon
| |
Collapse
|
47
|
Fursov MV, Shitikov EA, Lagutkin DA, Fursova AD, Ganina EA, Kombarova TI, Grishenko NS, Rudnitskaya TI, Bespiatykh DA, Kolupaeva NV, Firstova VV, Domotenko LV, Panova AE, Vinokurov AS, Gushchin VA, Tkachuk AP, Vasilyeva IA, Potapov VD, Dyatlov IA. MDR and Pre-XDR Clinical Mycobacterium tuberculosis Beijing Strains: Assessment of Virulence and Host Cytokine Response in Mice Infectious Model. Microorganisms 2021; 9:1792. [PMID: 34442871 PMCID: PMC8400193 DOI: 10.3390/microorganisms9081792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/05/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium tuberculosis Beijing genotype associated with drug resistance is a growing public health problem worldwide. The aim of this study was the assessment of virulence for C57BL/6 mice after infection by clinical M. tuberculosis strains 267/47 and 120/26, which belong to the modern sublineages B0/W148 and Central Asia outbreak of the Beijing genotype, respectively. The sublineages were identified by the analysis of the strains' whole-genomes. The strains 267/47 and 120/26 were characterized as agents of pre-extensively drug-resistant (pre-XDR) and multidrug-resistant (MDR) tuberculosis, respectively. Both clinical strains were slow-growing in 7H9 broth compared to the M. tuberculosis H37Rv strain. The survival rates of C57BL/6 mice infected by 267/47, 120/26, and H37Rv on the 150th day postinfection were 10%, 40%, and 70%, respectively. Mycobacterial load in the lungs, spleen, and liver was higher and histopathological changes were more expressed for mice infected by the 267/47 strain compared to those infected by the 120/26 and H37Rv strains. The cytokine response in the lungs of C57BL/6 mice after infection with the 267/47, 120/26, and H37Rv strains was different. Notably, proinflammatory cytokine genes Il-1α, Il-6, Il-7, and Il-17, as well as anti-inflammatory genes Il-6 and Il-13, were downregulated after an infection caused by the 267/47 strain compared to those after infection with the H37Rv strain.
Collapse
Affiliation(s)
- Mikhail V. Fursov
- State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Serpukhov, Russia; (A.D.F.); (E.A.G.); (T.I.K.); (N.S.G.); (T.I.R.); (N.V.K.); (V.V.F.); (L.V.D.); (V.D.P.); (I.A.D.)
| | - Egor A. Shitikov
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia; (E.A.S.); (D.A.B.)
| | - Denis A. Lagutkin
- National Medical Research Center for Phthisiopulmonology and Infectious Diseases of the Ministry of Health of the Russian Federation, 127473 Moscow, Russia; (D.A.L.); (A.E.P.); (A.S.V.); (I.A.V.)
| | - Anastasiia D. Fursova
- State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Serpukhov, Russia; (A.D.F.); (E.A.G.); (T.I.K.); (N.S.G.); (T.I.R.); (N.V.K.); (V.V.F.); (L.V.D.); (V.D.P.); (I.A.D.)
| | - Elena A. Ganina
- State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Serpukhov, Russia; (A.D.F.); (E.A.G.); (T.I.K.); (N.S.G.); (T.I.R.); (N.V.K.); (V.V.F.); (L.V.D.); (V.D.P.); (I.A.D.)
| | - Tatiana I. Kombarova
- State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Serpukhov, Russia; (A.D.F.); (E.A.G.); (T.I.K.); (N.S.G.); (T.I.R.); (N.V.K.); (V.V.F.); (L.V.D.); (V.D.P.); (I.A.D.)
| | - Natalia S. Grishenko
- State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Serpukhov, Russia; (A.D.F.); (E.A.G.); (T.I.K.); (N.S.G.); (T.I.R.); (N.V.K.); (V.V.F.); (L.V.D.); (V.D.P.); (I.A.D.)
| | - Tatiana I. Rudnitskaya
- State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Serpukhov, Russia; (A.D.F.); (E.A.G.); (T.I.K.); (N.S.G.); (T.I.R.); (N.V.K.); (V.V.F.); (L.V.D.); (V.D.P.); (I.A.D.)
| | - Dmitry A. Bespiatykh
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia; (E.A.S.); (D.A.B.)
| | - Nadezhda V. Kolupaeva
- State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Serpukhov, Russia; (A.D.F.); (E.A.G.); (T.I.K.); (N.S.G.); (T.I.R.); (N.V.K.); (V.V.F.); (L.V.D.); (V.D.P.); (I.A.D.)
| | - Viktoria V. Firstova
- State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Serpukhov, Russia; (A.D.F.); (E.A.G.); (T.I.K.); (N.S.G.); (T.I.R.); (N.V.K.); (V.V.F.); (L.V.D.); (V.D.P.); (I.A.D.)
| | - Lubov V. Domotenko
- State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Serpukhov, Russia; (A.D.F.); (E.A.G.); (T.I.K.); (N.S.G.); (T.I.R.); (N.V.K.); (V.V.F.); (L.V.D.); (V.D.P.); (I.A.D.)
| | - Anna E. Panova
- National Medical Research Center for Phthisiopulmonology and Infectious Diseases of the Ministry of Health of the Russian Federation, 127473 Moscow, Russia; (D.A.L.); (A.E.P.); (A.S.V.); (I.A.V.)
| | - Anatoliy S. Vinokurov
- National Medical Research Center for Phthisiopulmonology and Infectious Diseases of the Ministry of Health of the Russian Federation, 127473 Moscow, Russia; (D.A.L.); (A.E.P.); (A.S.V.); (I.A.V.)
| | - Vladimir A. Gushchin
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (V.A.G.); (A.P.T.)
| | - Artem P. Tkachuk
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (V.A.G.); (A.P.T.)
| | - Irina A. Vasilyeva
- National Medical Research Center for Phthisiopulmonology and Infectious Diseases of the Ministry of Health of the Russian Federation, 127473 Moscow, Russia; (D.A.L.); (A.E.P.); (A.S.V.); (I.A.V.)
| | - Vasiliy D. Potapov
- State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Serpukhov, Russia; (A.D.F.); (E.A.G.); (T.I.K.); (N.S.G.); (T.I.R.); (N.V.K.); (V.V.F.); (L.V.D.); (V.D.P.); (I.A.D.)
| | - Ivan A. Dyatlov
- State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Serpukhov, Russia; (A.D.F.); (E.A.G.); (T.I.K.); (N.S.G.); (T.I.R.); (N.V.K.); (V.V.F.); (L.V.D.); (V.D.P.); (I.A.D.)
| |
Collapse
|
48
|
Castro RAD, Borrell S, Gagneux S. The within-host evolution of antimicrobial resistance in Mycobacterium tuberculosis. FEMS Microbiol Rev 2021; 45:fuaa071. [PMID: 33320947 PMCID: PMC8371278 DOI: 10.1093/femsre/fuaa071] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) has been responsible for the greatest number of human deaths due to an infectious disease in general, and due to antimicrobial resistance (AMR) in particular. The etiological agents of human TB are a closely-related group of human-adapted bacteria that belong to the Mycobacterium tuberculosis complex (MTBC). Understanding how MTBC populations evolve within-host may allow for improved TB treatment and control strategies. In this review, we highlight recent works that have shed light on how AMR evolves in MTBC populations within individual patients. We discuss the role of heteroresistance in AMR evolution, and review the bacterial, patient and environmental factors that likely modulate the magnitude of heteroresistance within-host. We further highlight recent works on the dynamics of MTBC genetic diversity within-host, and discuss how spatial substructures in patients' lungs, spatiotemporal heterogeneity in antimicrobial concentrations and phenotypic drug tolerance likely modulates the dynamics of MTBC genetic diversity in patients during treatment. We note the general characteristics that are shared between how the MTBC and other bacterial pathogens evolve in humans, and highlight the characteristics unique to the MTBC.
Collapse
Affiliation(s)
- Rhastin A D Castro
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Basel, Switzerland
| |
Collapse
|
49
|
Expression Dysregulation as a Mediator of Fitness Costs in Antibiotic Resistance. Antimicrob Agents Chemother 2021; 65:e0050421. [PMID: 34228548 PMCID: PMC8370218 DOI: 10.1128/aac.00504-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Antimicrobial resistance (AMR) poses a threat to global health and the economy. Rifampicin-resistant Mycobacterium tuberculosis accounts for a third of the global AMR burden. Gaining the upper hand on AMR requires a deeper understanding of the physiology of resistance. AMR often results in a fitness cost in the absence of drug. Identifying the molecular mechanisms underpinning this cost could help strengthen future treatment regimens. Here, we used a collection of M. tuberculosis strains that provide an evolutionary and phylogenetic snapshot of rifampicin resistance and subjected them to genome-wide transcriptomic and proteomic profiling to identify key perturbations of normal physiology. We found that the clinically most common rifampicin resistance-conferring mutation, RpoB Ser450Leu, imparts considerable gene expression changes, many of which are mitigated by the compensatory mutation in RpoC Leu516Pro. However, our data also provide evidence for pervasive epistasis—the same resistance mutation imposed a different fitness cost and functionally distinct changes to gene expression in genetically unrelated clinical strains. Finally, we report a likely posttranscriptional modulation of gene expression that is shared in most of the tested strains carrying RpoB Ser450Leu, resulting in an increased abundance of proteins involved in central carbon metabolism. These changes contribute to a more general trend in which the disruption of the composition of the proteome correlates with the fitness cost of the RpoB Ser450Leu mutation in different strains.
Collapse
|
50
|
Ma P, Luo T, Ge L, Chen Z, Wang X, Zhao R, Liao W, Bao L. Compensatory effects of M. tuberculosis rpoB mutations outside the rifampicin resistance-determining region. Emerg Microbes Infect 2021; 10:743-752. [PMID: 33775224 PMCID: PMC8057087 DOI: 10.1080/22221751.2021.1908096] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mycobacterium tuberculosis has been observed to develop resistance to the frontline anti-tuberculosis drug rifampicin, primarily through mutations in the rifampicin resistance-determining region (RRDR) of rpoB. While these mutations have been determined to confer a fitness cost, compensatory mutations in rpoA and rpoC that may enhance the fitness of resistant strains have been demonstrated. Recent genomic studies identified several rpoB non-RRDR mutations that co-occurred with RRDR mutations in clinical isolates without rpoA/rpoC mutations and may confer fitness compensation. In this study, we identified 33 evolutionarily convergent rpoB non-RRDR mutations through phylogenomic analysis of public genomic data for clinical M. tuberculosis isolates. We found that none of these mutations, except V170F and I491F, can cause rifampin resistance in Mycolicibacterium smegmatis. The compensatory effects of five representative mutations across rpoB were evaluated by an in vitro competition assay, through which we observed that each of these mutations can significantly improve the relative fitness of the initial S450L mutant (0.97–1.08 vs 0.87). Furthermore, we observed that the decreased RNAP transcription efficiency introduced by S450L was significantly alleviated by each of the five mutations. Structural analysis indicated that the fitness compensation observed for the non-RRDR mutations might be achieved by modification of the RpoB active centre or by changes in interactions between RNAP subunits. Our results provide experimental evidence supporting that compensatory effects are exerted by several rpoB non-RRDR mutations, which could be utilized as additional molecular markers for predicting the fitness of clinical rifampin-resistant M. tuberculosis strains.
Collapse
Affiliation(s)
- Pengjiao Ma
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Tao Luo
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Liang Ge
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Zonghai Chen
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Xinyan Wang
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Rongchuan Zhao
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Wei Liao
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Lang Bao
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|