1
|
Marchese D, Evrard L, Bergiers I, Boas L, Duphénieux J, Hermant M, Pringels T, Zeqiri F, Pirson M, Twizere JC, Gofflot F, Rezsohazy R, Bridoux L. Homeodomain Involvement in Nuclear HOX Protein Homo- and Heterodimerization. Int J Mol Sci 2025; 26:423. [PMID: 39796276 PMCID: PMC11721573 DOI: 10.3390/ijms26010423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/13/2025] Open
Abstract
HOX genes play essential roles in patterning the anteroposterior axis of animal embryos and in the formation of various organs. In mammals, there are 39 HOX genes organized into four clusters (HOXA-D) located on different chromosomes. In relationship with their orderly arrangement along the chromosomes, these genes show nested expression patterns which imply that embryonic territories co-express multiple HOX genes along the main body axis. Interactomic database entries, as well as a handful of publications, support that some HOX proteins can form homodimers or interact with other HOX proteins. However, the consequences of HOX protein interactions have been poorly investigated and remain largely elusive. In this study, we compiled a repository of all HOX-HOX interactions from available databases, and taking HOXA1, HOXA2, and HOXA5 as examples, we investigated the capacity of HOX proteins to form homo- and heterodimers. We revealed that while the DNA-binding domain, the homeodomain, is not necessary for HOXA1 homodimerization, the nuclear localization of the dimerization is dependent on the homeodomain, particularly the integrity of the third helix of HOXA1. Furthermore, we demonstrated that HOXA1 can influence the localization of HOXA1 when it is deprived of the homeodomain, increasing its abundance in the chromatin-containing fraction. Moreover, HOXA1 nuclear homodimerization occurs independently of the integrity of the hexapeptide and, consequently, of its well-known interactor, the homeodomain protein PBX. These results hint at a potential involvement of dimerization in the complex landscape of HOX regulatory mechanisms.
Collapse
Affiliation(s)
- Damien Marchese
- Louvain Institute of Molecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium
| | - Laetitia Evrard
- Louvain Institute of Molecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium
| | - Isabelle Bergiers
- Louvain Institute of Molecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium
| | - Ludovic Boas
- Louvain Institute of Molecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium
| | - Justine Duphénieux
- Louvain Institute of Molecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium
| | - Maryse Hermant
- Louvain Institute of Molecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium
| | - Tamara Pringels
- Louvain Institute of Molecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium
| | - Fisnik Zeqiri
- Louvain Institute of Molecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium
| | - Marc Pirson
- Louvain Institute of Molecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium
| | - Jean-Claude Twizere
- Gembloux Agro-Bio Tech, University of Liège, Avenue de la Faculté de Gembloux, 5030 Gembloux, Belgium
| | - Françoise Gofflot
- Louvain Institute of Molecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium
| | - René Rezsohazy
- Louvain Institute of Molecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium
| | - Laure Bridoux
- Louvain Institute of Molecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
2
|
Curt JR, Martín P, Foronda D, Hudry B, Kannan R, Shetty S, Merabet S, Saurin AJ, Graba Y, Sánchez- Herrero E. Ambivalent partnership of the Drosophila posterior class Hox protein Abdominal-B with Extradenticle and Homothorax. PLoS Genet 2025; 21:e1011355. [PMID: 39804927 PMCID: PMC11759358 DOI: 10.1371/journal.pgen.1011355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/24/2025] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Hox proteins, a sub-group of the homeodomain (HD) transcription factor family, provide positional information for axial patterning in development and evolution. Hox protein functional specificity is reached, at least in part, through interactions with Pbc (Extradenticle (Exd) in Drosophila) and Meis/Prep (Homothorax (Hth) in Drosophila) proteins. Most of our current knowledge of Hox protein specificity stems from the study of anterior and central Hox proteins, identifying the molecular and structural bases for Hox/Pbc/Meis-Prep cooperative action. Posterior Hox class proteins, Abdominal-B (Abd-B) in Drosophila and Hox9-13 in vertebrates, have been comparatively less studied. They strongly diverge from anterior and central class Hox proteins, with a low degree of HD sequence conservation and the absence of a core canonical Pbc interaction motif. Here we explore how Abd-B function interface with that of Exd/Hth using several developmental contexts, studying mutual expression control, functional dependency and intrinsic protein requirements. Results identify cross-regulatory interactions setting relative expression and activity levels required for proper development. They also reveal organ-specific requirement and a binary functional interplay with Exd and Hth, either antagonistic, as previously reported, or synergistic. This highlights context specific use of Exd/Hth, and a similar context specific use of Abd-B intrinsic protein requirements.
Collapse
Affiliation(s)
- Jesús R. Curt
- Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Paloma Martín
- Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - David Foronda
- Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
- Departamento de Medicina, Facultad de Ciencias Biomédicas y de la Salud, Universidad Europea de Madrid, Madrid, Spain
| | - Bruno Hudry
- Aix-Marseille Univ., CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Parc Scientifique de Luminy, Marseille, France
- Institut de Biologie Valrose, Université Nice Sophia Antipolis, Faculté des Sciences Parc Valrose, Nice, France
| | - Ramakrishnan Kannan
- Molecular Genetics lab, Neurobiology Research Center (NRC), National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Srividya Shetty
- Molecular Genetics lab, Neurobiology Research Center (NRC), National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Samir Merabet
- Aix-Marseille Univ., CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Parc Scientifique de Luminy, Marseille, France
- Institut de Génétique Fonctionnelle, UMR 5242 CNRS/ENS Lyon, Lyon, France
| | - Andrew J. Saurin
- Aix-Marseille Univ., CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Parc Scientifique de Luminy, Marseille, France
| | - Yacine Graba
- Aix-Marseille Univ., CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Parc Scientifique de Luminy, Marseille, France
| | - Ernesto Sánchez- Herrero
- Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| |
Collapse
|
3
|
Gest AM, Sahan AZ, Zhong Y, Lin W, Mehta S, Zhang J. Molecular Spies in Action: Genetically Encoded Fluorescent Biosensors Light up Cellular Signals. Chem Rev 2024; 124:12573-12660. [PMID: 39535501 PMCID: PMC11613326 DOI: 10.1021/acs.chemrev.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/07/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024]
Abstract
Cellular function is controlled through intricate networks of signals, which lead to the myriad pathways governing cell fate. Fluorescent biosensors have enabled the study of these signaling pathways in living systems across temporal and spatial scales. Over the years there has been an explosion in the number of fluorescent biosensors, as they have become available for numerous targets, utilized across spectral space, and suited for various imaging techniques. To guide users through this extensive biosensor landscape, we discuss critical aspects of fluorescent proteins for consideration in biosensor development, smart tagging strategies, and the historical and recent biosensors of various types, grouped by target, and with a focus on the design and recent applications of these sensors in living systems.
Collapse
Affiliation(s)
- Anneliese
M. M. Gest
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Ayse Z. Sahan
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, California 92093, United States
| | - Yanghao Zhong
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Wei Lin
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Sohum Mehta
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Jin Zhang
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
- Shu
Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
4
|
Villarreal-Puente A, Altamirano-Torres C, Jiménez-Mejía G, Hernández-Bautista C, Montalvo-Méndez R, Vázquez M, Zurita M, Reséndez-Pérez D. Novel Antennapedia and Ultrabithorax trimeric complexes with TBP and Exd regulate transcription. Hereditas 2024; 161:25. [PMID: 39080786 PMCID: PMC11290222 DOI: 10.1186/s41065-024-00327-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Hox proteins interact with DNA and many other proteins, co-factors, transcriptional factors, chromatin remodeling components, non-coding RNAs and even the extracellular matrix that assembles the Hox complexes. The number of interacting partners continues to grow with diverse components and more transcriptional factors than initially thought. Hox complexes present many activities, but their molecular mechanisms to modulate their target genes remain unsolved. RESULTS In this paper we showed the protein-protein interaction of Antp with Ubx through the homeodomain using BiFC in Drosophila. Analysis of Antp-deletional mutants showed that AntpHD helixes 1 and 2 are required for the interaction with Ubx. Also, we found a novel interaction of Ubx with TBP, in which the PolyQ domain of TBP is required for the interaction. Moreover, we also detected the formation of two new trimeric complexes of Antp with Ubx, TBP and Exd using BiFC-FRET; these proteins, however, do not form a trimeric interaction with BIP2 or TFIIEβ. The novel trimeric complexes reduced Antp transcriptional activity, indicating that they could confer specificity for repression. CONCLUSIONS Our results increase the number of transcriptional factors in the Antp and Ubx interactomes that form two novel trimeric complexes with TBP and Exd. We also report a new Ubx interaction with TBP. These novel interactions provide important clues of the dynamics of Hox-interacting complexes involved in transcriptional regulation, contributing to better understand Hox function.
Collapse
Affiliation(s)
- Alely Villarreal-Puente
- Facultad de Ciencias Biológicas, Departamento de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
- Facultad de Ciencias Biológicas, Departamento de Biología Celular y Genética, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Claudia Altamirano-Torres
- Facultad de Ciencias Biológicas, Departamento de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
- Facultad de Ciencias Biológicas, Departamento de Biología Celular y Genética, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Gustavo Jiménez-Mejía
- Facultad de Ciencias Biológicas, Departamento de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
- Facultad de Ciencias Biológicas, Departamento de Biología Celular y Genética, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Carolina Hernández-Bautista
- Facultad de Ciencias Biológicas, Departamento de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
- Facultad de Ciencias Biológicas, Departamento de Biología Celular y Genética, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Rubén Montalvo-Méndez
- Facultad de Ciencias Biológicas, Departamento de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
- Facultad de Ciencias Biológicas, Departamento de Biología Celular y Genética, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Martha Vázquez
- Instituto de Biotecnología, Departamento de Fisiología Molecular y Genética del Desarrollo, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Mario Zurita
- Instituto de Biotecnología, Departamento de Fisiología Molecular y Genética del Desarrollo, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Diana Reséndez-Pérez
- Facultad de Ciencias Biológicas, Departamento de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México.
- Facultad de Ciencias Biológicas, Departamento de Biología Celular y Genética, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México.
| |
Collapse
|
5
|
Ren H, Ou Q, Pu Q, Lou Y, Yang X, Han Y, Liu S. Comprehensive Review on Bimolecular Fluorescence Complementation and Its Application in Deciphering Protein-Protein Interactions in Cell Signaling Pathways. Biomolecules 2024; 14:859. [PMID: 39062573 PMCID: PMC11274695 DOI: 10.3390/biom14070859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Signaling pathways are responsible for transmitting information between cells and regulating cell growth, differentiation, and death. Proteins in cells form complexes by interacting with each other through specific structural domains, playing a crucial role in various biological functions and cell signaling pathways. Protein-protein interactions (PPIs) within cell signaling pathways are essential for signal transmission and regulation. The spatiotemporal features of PPIs in signaling pathways are crucial for comprehending the regulatory mechanisms of signal transduction. Bimolecular fluorescence complementation (BiFC) is one kind of imaging tool for the direct visualization of PPIs in living cells and has been widely utilized to uncover novel PPIs in various organisms. BiFC demonstrates significant potential for application in various areas of biological research, drug development, disease diagnosis and treatment, and other related fields. This review systematically summarizes and analyzes the technical advancement of BiFC and its utilization in elucidating PPIs within established cell signaling pathways, including TOR, PI3K/Akt, Wnt/β-catenin, NF-κB, and MAPK. Additionally, it explores the application of this technology in revealing PPIs within the plant hormone signaling pathways of ethylene, auxin, Gibberellin, and abscisic acid. Using BiFC in conjunction with CRISPR-Cas9, live-cell imaging, and ultra-high-resolution microscopy will enhance our comprehension of PPIs in cell signaling pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shiping Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (H.R.); (Q.O.); (Q.P.); (Y.L.); (X.Y.); (Y.H.)
| |
Collapse
|
6
|
Lv P, Zhao Z, Hirano Y, Du J. The CoREST complex regulates multiple histone modifications temporal-specifically in clock neurons. Open Biol 2024; 14:230355. [PMID: 38981515 DOI: 10.1098/rsob.230355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 07/11/2024] Open
Abstract
Epigenetic regulation is important for circadian rhythm. In previous studies, multiple histone modifications were found at the Period (Per) locus. However, most of these studies were not conducted in clock neurons. In our screen, we found that a CoREST mutation resulted in defects in circadian rhythm by affecting Per transcription. Based on previous studies, we hypothesized that CoREST regulates circadian rhythm by regulating multiple histone modifiers at the Per locus. Genetic and physical interaction experiments supported these regulatory relationships. Moreover, through tissue-specific chromatin immunoprecipitation assays in clock neurons, we found that the CoREST mutation led to time-dependent changes in corresponding histone modifications at the Per locus. Finally, we proposed a model indicating the role of the CoREST complex in the regulation of circadian rhythm. This study revealed the dynamic changes of histone modifications at the Per locus specifically in clock neurons. Importantly, it provides insights into the role of epigenetic factors in the regulation of dynamic gene expression changes in circadian rhythm.
Collapse
Affiliation(s)
- Pengfei Lv
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zhangwu Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yukinori Hirano
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Juan Du
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
7
|
Hemba-Waduge RUS, Liu M, Li X, Sun JL, Budslick EA, Bondos SE, Ji JY. Metabolic control by the Bithorax Complex-Wnt signaling crosstalk in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596851. [PMID: 38853890 PMCID: PMC11160800 DOI: 10.1101/2024.05.31.596851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Adipocytes distributed throughout the body play crucial roles in lipid metabolism and energy homeostasis. Regional differences among adipocytes influence normal function and disease susceptibility, but the mechanisms driving this regional heterogeneity remain poorly understood. Here, we report a genetic crosstalk between the Bithorax Complex ( BX-C ) genes and Wnt/Wingless signaling that orchestrates regional differences among adipocytes in Drosophila larvae. Abdominal adipocytes, characterized by the exclusive expression of abdominal A ( abd-A ) and Abdominal B ( Abd-B ), exhibit distinct features compared to thoracic adipocytes, with Wnt signaling further amplifying these disparities. Depletion of BX-C genes in adipocytes reduces fat accumulation, delays larval-pupal transition, and eventually leads to pupal lethality. Depleting Abd-A or Abd-B reduces Wnt target gene expression, thereby attenuating Wnt signaling-induced lipid mobilization. Conversely, Wnt signaling stimulated abd-A transcription, suggesting a feedforward loop that amplifies the interplay between Wnt signaling and BX-C in adipocytes. These findings elucidate how the crosstalk between cell-autonomous BX-C gene expression and Wnt signaling define unique metabolic behaviors in adipocytes in different anatomical regions of fat body, delineating larval adipose tissue domains.
Collapse
|
8
|
Vanderperre S, Merabet S. Visualization of the Association of Dimeric Protein Complexes on Specific Enhancers in the Salivary Gland Nuclei of Drosophila Larva. Cells 2024; 13:613. [PMID: 38607052 PMCID: PMC11012150 DOI: 10.3390/cells13070613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
Transcription factors (TFs) regulate gene expression by recognizing specific target enhancers in the genome. The DNA-binding and regulatory activity of TFs depend on the presence of additional protein partners, leading to the formation of versatile and dynamic multimeric protein complexes. Visualizing these protein-protein interactions (PPIs) in the nucleus is key for decrypting the molecular cues underlying TF specificity in vivo. Over the last few years, Bimolecular Fluorescence Complementation (BiFC) has been developed in several model systems and applied in the analysis of different types of PPIs. In particular, BiFC has been applied when analyzing PPIs with hundreds of TFs in the nucleus of live Drosophila embryos. However, the visualization of PPIs at the level of specific target enhancers or genomic regions of interest awaits the advent of DNA-labelling methods that can be coupled with BiFC. Here, we present a novel experimental strategy that we have called BiFOR and that is based on the coupling of BiFC with the bacterial ANCHOR DNA-labelling system. We demonstrate that BiFOR enables the precise quantification of the enrichment of specific dimeric protein complexes on target enhancers in Drosophila salivary gland nuclei. Given its versatility and sensitivity, BiFOR could be applied more widely to other tissues during Drosophila development. Our work sets up the experimental basis for future applications of this strategy.
Collapse
Affiliation(s)
| | - Samir Merabet
- Institut de Génomique Fonctionnelle de Lyon (IGFL), UMR5242, Ecole Normale Supérieure de Lyon (ENSL), CNRS, Université de Lyon, 69007 Lyon, France;
| |
Collapse
|
9
|
Fu X, Zhu X. Key homeobox transcription factors regulate the development of the firefly's adult light organ and bioluminescence. Nat Commun 2024; 15:1736. [PMID: 38443352 PMCID: PMC10914744 DOI: 10.1038/s41467-024-45559-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 01/26/2024] [Indexed: 03/07/2024] Open
Abstract
Adult fireflies exhibit unique flashing courtship signals, emitted by specialized light organs, which develop mostly independently from larval light organs during the pupal stage. The mechanisms of adult light organ development have not been thoroughly studied until now. Here we show that key homeobox transcription factors AlABD-B and AlUNC-4 regulate the development of adult light organs and bioluminescence in the firefly Aquatica leii. Interference with the expression of AlAbd-B and AlUnc-4 genes results in undeveloped or non-luminescent adult light organs. AlABD-B regulates AlUnc-4, and they interact with each other. AlABD-B and AlUNC-4 activate the expression of the luciferase gene AlLuc1 and some peroxins. Four peroxins are involved in the import of AlLUC1 into peroxisomes. Our study provides key insights into the development of adult light organs and flash signal control in fireflies.
Collapse
Affiliation(s)
- Xinhua Fu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xinlei Zhu
- Firefly Conservation Research Centre, Wuhan, 430070, China
| |
Collapse
|
10
|
Salomone J, Farrow E, Gebelein B. Homeodomain complex formation and biomolecular condensates in Hox gene regulation. Semin Cell Dev Biol 2024; 152-153:93-100. [PMID: 36517343 PMCID: PMC10258226 DOI: 10.1016/j.semcdb.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/21/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
Hox genes are a family of homeodomain transcription factors that regulate specialized morphological structures along the anterior-posterior axis of metazoans. Over the past few decades, researchers have focused on defining how Hox factors with similar in vitro DNA binding activities achieve sufficient target specificity to regulate distinct cell fates in vivo. In this review, we highlight how protein interactions with other transcription factors, many of which are also homeodomain proteins, result in the formation of transcription factor complexes with enhanced DNA binding specificity. These findings suggest that Hox-regulated enhancers utilize distinct combinations of homeodomain binding sites, many of which are low-affinity, to recruit specific Hox complexes. However, low-affinity sites can only yield reproducible responses with high transcription factor concentrations. To overcome this limitation, recent studies revealed how transcription factors, including Hox factors, use intrinsically disordered domains (IDRs) to form biomolecular condensates that increase protein concentrations. Moreover, Hox factors with altered IDRs have been associated with altered transcriptional activity and human disease states, demonstrating the importance of IDRs in mediating essential Hox output. Collectively, these studies highlight how Hox factors use their DNA binding domains, protein-protein interaction domains, and IDRs to form specific transcription factor complexes that yield accurate gene expression.
Collapse
Affiliation(s)
- Joseph Salomone
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA; Medical-Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Edward Farrow
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA; Medical-Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 7007, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
11
|
Jia Y, Reboulet J, Gillet B, Hughes S, Forcet C, Tribollet V, Hajj Sleiman N, Kundlacz C, Vanacker JM, Bleicher F, Merabet S. A Live Cell Protein Complementation Assay for ORFeome-Wide Probing of Human HOX Interactomes. Cells 2023; 12:cells12010200. [PMID: 36611993 PMCID: PMC9818449 DOI: 10.3390/cells12010200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023] Open
Abstract
Biological pathways rely on the formation of intricate protein interaction networks called interactomes. Getting a comprehensive map of interactomes implies the development of tools that allow one to capture transient and low-affinity protein-protein interactions (PPIs) in live conditions. Here we presented an experimental strategy: the Cell-PCA (cell-based protein complementation assay), which was based on bimolecular fluorescence complementation (BiFC) for ORFeome-wide screening of proteins that interact with different bait proteins in the same live cell context, by combining high-throughput sequencing method. The specificity and sensitivity of the Cell-PCA was established by using a wild-type and a single-amino-acid-mutated HOXA9 protein, and the approach was subsequently applied to seven additional human HOX proteins. These proof-of-concept experiments revealed novel molecular properties of HOX interactomes and led to the identification of a novel cofactor of HOXB13 that promoted its proliferative activity in a cancer cell context. Taken together, our work demonstrated that the Cell-PCA was pertinent for revealing and, importantly, comparing the interactomes of different or highly related bait proteins in the same cell context.
Collapse
Affiliation(s)
- Yunlong Jia
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Jonathan Reboulet
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
- LiPiCs, 46 Allée d’Italie, 69007 Lyon, France
| | - Benjamin Gillet
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
| | - Sandrine Hughes
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
| | - Christelle Forcet
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
| | - Violaine Tribollet
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
| | - Nawal Hajj Sleiman
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
| | - Cindy Kundlacz
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
| | - Jean-Marc Vanacker
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
| | - Françoise Bleicher
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
- Correspondence: franç (F.B.); (S.M.)
| | - Samir Merabet
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
- Correspondence: franç (F.B.); (S.M.)
| |
Collapse
|
12
|
Pinto PB, Domsch K, Lohmann I. Hox function and specificity – A tissue centric view. Semin Cell Dev Biol 2022:S1084-9521(22)00353-6. [PMID: 36517344 DOI: 10.1016/j.semcdb.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/11/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
Since their discovery, the Hox genes, with their incredible power to reprogram the identity of complete body regions, a phenomenon called homeosis, have captured the fascination of many biologists. Recent research has provided new insights into the function of Hox proteins in different germ layers and the mechanisms they employ to control tissue morphogenesis. We focus in this review on the ectoderm and mesoderm to highlight new findings and discuss them with regards to established concepts of Hox target gene regulation. Furthermore, we highlight the molecular mechanisms involved the transcriptional repression of specific groups of Hox target genes, and summarize the role of Hox mediated gene silencing in tissue development. Finally, we reflect on recent findings identifying a large number of tissue-specific Hox interactor partners, which open up new avenues and directions towards a better understanding of Hox function and specificity in different tissues.
Collapse
|
13
|
Clarembaux‐Badell L, Baladrón‐de‐Juan P, Gabilondo H, Rubio‐Ferrera I, Millán I, Estella C, Valverde‐Ortega FS, Cobeta IM, Thor S, Benito‐Sipos J. Dachshund acts with Abdominal-B to trigger programmed cell death in the Drosophila central nervous system at the frontiers of Abd-B expression. Dev Neurobiol 2022; 82:495-504. [PMID: 35796156 PMCID: PMC9544350 DOI: 10.1002/dneu.22894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 11/22/2022]
Abstract
A striking feature of the nervous system pertains to the appearance of different neural cell subtypes at different axial levels. Studies in the Drosophila central nervous system reveal that one mechanism underlying such segmental differences pertains to the segment-specific removal of cells by programmed cell death (PCD). One group of genes involved in segment-specific PCD is the Hox homeotic genes. However, while segment-specific PCD is highly precise, Hox gene expression is evident in gradients, raising the issue of how the Hox gene function is precisely gated to trigger PCD in specific segments at the outer limits of Hox expression. The Drosophila Va neurons are initially generated in all nerve cord segments but removed by PCD in posterior segments. Va PCD is triggered by the posteriorly expressed Hox gene Abdominal-B (Abd-B). However, Va PCD is highly reproducible despite exceedingly weak Abd-B expression in the anterior frontiers of its expression. Here, we found that the transcriptional cofactor Dachshund supports Abd-B-mediated PCD in its anterior domain. In vivo bimolecular fluorescence complementation analysis lends support to the idea that the Dachshund/Abd-B interplay may involve physical interactions. These findings provide an example of how combinatorial codes of transcription factors ensure precision in Hox-mediated PCD in specific segments at the outer limits of Hox expression.
Collapse
Affiliation(s)
- Luis Clarembaux‐Badell
- Departamento de Biología, Facultad de CienciasUniversidad Autónoma de MadridCantoblancoMadridSpain
| | - Pablo Baladrón‐de‐Juan
- Departamento de Biología, Facultad de CienciasUniversidad Autónoma de MadridCantoblancoMadridSpain
| | - Hugo Gabilondo
- Departamento de Biología, Facultad de CienciasUniversidad Autónoma de MadridCantoblancoMadridSpain
| | - Irene Rubio‐Ferrera
- Departamento de Biología, Facultad de CienciasUniversidad Autónoma de MadridCantoblancoMadridSpain
| | - Irene Millán
- Departamento de Biología, Facultad de CienciasUniversidad Autónoma de MadridCantoblancoMadridSpain
| | - Carlos Estella
- Departamento de Biología Molecular and Centro de Biología Molecular Severo OchoaConsejo Superior de Investigaciones Científicas‐Universidad Autónoma de Madrid (CSIC‐UAM)Nicolás Cabrera 1MadridSpain
| | - Félix S. Valverde‐Ortega
- Departamento de Biología, Facultad de CienciasUniversidad Autónoma de MadridCantoblancoMadridSpain
| | - Ignacio Monedero Cobeta
- Departamento de Biología, Facultad de CienciasUniversidad Autónoma de MadridCantoblancoMadridSpain
- Departamento de Fisiología, Facultad de MedicinaUniversidad Autónoma de MadridCantoblancoMadridSpain
| | - Stefan Thor
- School of Biomedical SciencesThe University of QueenslandBrisbaneAustralia
| | - Jonathan Benito‐Sipos
- Departamento de Biología, Facultad de CienciasUniversidad Autónoma de MadridCantoblancoMadridSpain
| |
Collapse
|
14
|
Sipani R, Joshi R. Hox genes collaborate with helix-loop-helix factor Grainyhead to promote neuroblast apoptosis along the anterior-posterior axis of the Drosophila larval central nervous system. Genetics 2022; 222:6632667. [DOI: 10.1093/genetics/iyac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/21/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Hox genes code for a family of a homeodomain (HD) containing transcription factors that use TALE-HD containing factors Pbx/Exd and Meis/Hth to specify the development of the anterior-posterior (AP) axis of an organism. However, the absence of TALE-HD containing factors from specific tissues emphasizes the need to identify and validate new Hox cofactors. In Drosophila central nervous system (CNS), Hox execute segment-specific apoptosis of neural stem cells (neuroblasts-NBs) and neurons. In abdominal segments of larval CNS, Hox gene Abdominal-A (AbdA) mediates NB apoptosis with the help of Exd and bHLH factor Grainyhead (Grh) using a 717 bp apoptotic enhancer. In this study, we show that this enhancer is critical for abdominal NB apoptosis and relies on two separable set of DNA binding motifs responsible for its initiation and maintenance. Our results also show that AbdA and Grh interact through their highly conserved DNA binding domains, and the DNA binding specificity of AbdA-HD is important for it to interact with Grh and essential for it to execute NB apoptosis in CNS. We also establish that Grh is required for Hox-dependent NB apoptosis in Labial and Sex Combs Reduced (Scr) expressing regions of the CNS, and it can physically interact with all the Hox proteins in vitro. Our biochemical and functional data collectively support the idea that Grh can function as a Hox cofactor and help them carry out their in vivo roles during development.
Collapse
Affiliation(s)
- Rashmi Sipani
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD) , Inner Ring Road, Uppal, Hyderabad-500039. India
- Graduate Studies, Manipal Academy of Higher Education , Manipal 576104, India
| | - Rohit Joshi
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD) , Inner Ring Road, Uppal, Hyderabad-500039. India
| |
Collapse
|
15
|
Velay F, Soula M, Mehrez M, Belbachir C, D'Alessandro S, Laloi C, Crete P, Field B. MoBiFC: development of a modular bimolecular fluorescence complementation toolkit for the analysis of chloroplast protein-protein interactions. PLANT METHODS 2022; 18:69. [PMID: 35619173 PMCID: PMC9134606 DOI: 10.1186/s13007-022-00902-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The bimolecular fluorescence complementation (BiFC) assay has emerged as one of the most popular methods for analysing protein-protein interactions (PPIs) in plant biology. This includes its increasing use as a tool for dissecting the molecular mechanisms of chloroplast function. However, the construction of chloroplast fusion proteins for BiFC can be difficult, and the availability and selection of appropriate controls is not trivial. Furthermore, the challenges of performing BiFC in restricted cellular compartments has not been specifically addressed. RESULTS Here we describe the development of a flexible modular cloning-based toolkit for BiFC (MoBiFC) and proximity labelling in the chloroplast and other cellular compartments using synthetic biology principles. We used pairs of chloroplast proteins previously shown to interact (HSP21/HSP21 and HSP21/PTAC5) and a negative control (HSP21/ΔPTAC5) to develop standardised Goldengate-compatible modules for the assembly of protein fusions with fluorescent protein (FP) fragments for BiFC expressed from a single multigenic T-DNA. Using synthetic biology principles and transient expression in Nicotiana benthamiana, we iteratively improved the approach by testing different FP fragments, promoters, reference FPs for ratiometric quantification, and cell types. A generic negative control (mCHERRY) was also tested, and modules for the identification of proximal proteins by Turbo-ID labelling were developed and validated. CONCLUSIONS MoBiFC facilitates the cloning process for organelle-targeted proteins, allows robust ratiometric quantification, and makes available model positive and negative controls. Development of MoBiFC underlines how Goldengate cloning approaches accelerate the development and enrichment of new toolsets, and highlights several potential pitfalls in designing BiFC experiments including the choice of FP split, negative controls, cell type, and reference FP. We discuss how MoBiFC could be further improved and extended to other compartments of the plant cell and to high throughput cloning approaches.
Collapse
Affiliation(s)
- Florent Velay
- Aix-Marseille Univ, CEA, CNRS, BIAM, UMR7265, 13009, Marseille, France
| | - Mélanie Soula
- Aix-Marseille Univ, CEA, CNRS, BIAM, UMR7265, 13009, Marseille, France
| | - Marwa Mehrez
- Aix-Marseille Univ, CEA, CNRS, BIAM, UMR7265, 13009, Marseille, France
- Laboratory of Molecular Genetics, Immunology and Biotechnology, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Clément Belbachir
- Aix-Marseille Univ, CEA, CNRS, BIAM, UMR7265, 13009, Marseille, France
| | - Stefano D'Alessandro
- Aix-Marseille Univ, CEA, CNRS, BIAM, UMR7265, 13009, Marseille, France
- Dipartimento Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, 10135, Torino, Italy
| | - Christophe Laloi
- Aix-Marseille Univ, CEA, CNRS, BIAM, UMR7265, 13009, Marseille, France
| | - Patrice Crete
- Aix-Marseille Univ, CEA, CNRS, BIAM, UMR7265, 13009, Marseille, France.
| | - Ben Field
- Aix-Marseille Univ, CEA, CNRS, BIAM, UMR7265, 13009, Marseille, France.
| |
Collapse
|
16
|
Banzai K, Izumi S. Cis-regulatory elements of the cholinergic gene locus in the silkworm Bombyx mori. INSECT MOLECULAR BIOLOGY 2022; 31:73-84. [PMID: 34549831 DOI: 10.1111/imb.12739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Genes of choline acetyltransferase (ChAT) and vesicular acetylcholine transporter are encoded in the same gene locus, called the cholinergic gene locus. They are essential in cholinergic neurons to maintain their functional phenotype. The genomic structure of the cholinergic gene locus is conserved among invertebrates to mammals. However, the cholinergic gene expression in a specific subset of neurons is unknown in insects except for Drosophila melanogaster. In this study, we analysed the upstream sequence of cholinergic gene locus in the silkworm Bombyx mori to identify specific cis-regulatory regions. We found multiple enhancer regions that are localized within 1 kb upstream of the cholinergic gene locus. The combination of promoter assays using small deletions and bioinformatic analysis among insect species illuminates two conserved sequences in the cis-regulatory region: TGACGTA and CCAAT, which are known as the cAMP response element and CAAT box, respectively. We found that dibutyryl-cAMP, an analogue of cAMP, influences the expression of ChAT in B. mori. Tissue-specific expression analysis of transcriptional factors identified potential candidates that control the cholinergic gene locus expression. Our investigation provides new insight into the regulation mechanism of cholinergic neuron-specific gene machinery in this lepidopteran insect.
Collapse
Affiliation(s)
- K Banzai
- Department of Biological Sciences, Kanagawa University, Hiratsuka, Kanagawa, Japan
| | - S Izumi
- Department of Biological Sciences, Kanagawa University, Hiratsuka, Kanagawa, Japan
| |
Collapse
|
17
|
Joshi R, Sipani R, Bakshi A. Roles of Drosophila Hox Genes in the Assembly of Neuromuscular Networks and Behavior. Front Cell Dev Biol 2022; 9:786993. [PMID: 35071230 PMCID: PMC8777297 DOI: 10.3389/fcell.2021.786993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Hox genes have been known for specifying the anterior-posterior axis (AP) in bilaterian body plans. Studies in vertebrates have shown their importance in developing region-specific neural circuitry and diversifying motor neuron pools. In Drosophila, they are instrumental for segment-specific neurogenesis and myogenesis early in development. Their robust expression in differentiated neurons implied their role in assembling region-specific neuromuscular networks. In the last decade, studies in Drosophila have unequivocally established that Hox genes go beyond their conventional functions of generating cellular diversity along the AP axis of the developing central nervous system. These roles range from establishing and maintaining the neuromuscular networks to controlling their function by regulating the motor neuron morphology and neurophysiology, thereby directly impacting the behavior. Here we summarize the limited knowledge on the role of Drosophila Hox genes in the assembly of region-specific neuromuscular networks and their effect on associated behavior.
Collapse
Affiliation(s)
- Rohit Joshi
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | - Rashmi Sipani
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Asif Bakshi
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
18
|
Lee A, Bogoyevitch MA, Jans DA. Bimolecular Fluorescence Complementation: Quantitative Analysis of In Cell Interaction of Nuclear Transporter Importin α with Cargo Proteins. Methods Mol Biol 2022; 2502:215-233. [PMID: 35412241 DOI: 10.1007/978-1-0716-2337-4_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bimolecular fluorescence complementation utilizes the ability of two complementary nonfluorescent fragments to reconstitute and emit fluorescence when brought together through specific interaction of attached protein fragments of interest. It has been used in several different contexts to study protein-protein interaction. Here we apply the method for the first time to study interaction of the nuclear transporter importin α and its cargoes in a cellular context. By using image analysis to quantify the extent of nuclear complexation, it is possible to gain insight into the strength of interaction in cells.
Collapse
Affiliation(s)
- Alexander Lee
- Nuclear Signalling Laboratory, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia
| | - Marie A Bogoyevitch
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia
| | - David A Jans
- Nuclear Signalling Laboratory, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
19
|
Kroll JR, Remmelzwaal S, Boxem M. CeLINC, a fluorescence-based protein-protein interaction assay in Caenorhabditis elegans. Genetics 2021; 219:6380436. [PMID: 34849800 PMCID: PMC8664570 DOI: 10.1093/genetics/iyab163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022] Open
Abstract
Interactions among proteins are fundamental for life and determining whether two particular proteins physically interact can be essential for fully understanding a protein’s function. We present Caenorhabditis elegans light-induced coclustering (CeLINC), an optical binary protein–protein interaction assay to determine whether two proteins interact in vivo. Based on CRY2/CIB1 light-dependent oligomerization, CeLINC can rapidly and unambiguously identify protein–protein interactions between pairs of fluorescently tagged proteins. A fluorescently tagged bait protein is captured using a nanobody directed against the fluorescent protein (GFP or mCherry) and brought into artificial clusters within the cell. Colocalization of a fluorescently tagged prey protein in the cluster indicates a protein interaction. We tested the system with an array of positive and negative reference protein pairs. Assay performance was extremely robust with no false positives detected in the negative reference pairs. We then used the system to test for interactions among apical and basolateral polarity regulators. We confirmed interactions seen between PAR-6, PKC-3, and PAR-3, but observed no physical interactions among the basolateral Scribble module proteins LET-413, DLG-1, and LGL-1. We have generated a plasmid toolkit that allows use of custom promoters or CRY2 variants to promote flexibility of the system. The CeLINC assay is a powerful and rapid technique that can be widely applied in C. elegans due to the universal plasmids that can be used with existing fluorescently tagged strains without need for additional cloning or genetic modification of the genome.
Collapse
Affiliation(s)
- Jason R Kroll
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Sanne Remmelzwaal
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Mike Boxem
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
20
|
Cain B, Gebelein B. Mechanisms Underlying Hox-Mediated Transcriptional Outcomes. Front Cell Dev Biol 2021; 9:787339. [PMID: 34869389 PMCID: PMC8635045 DOI: 10.3389/fcell.2021.787339] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Metazoans differentially express multiple Hox transcription factors to specify diverse cell fates along the developing anterior-posterior axis. Two challenges arise when trying to understand how the Hox transcription factors regulate the required target genes for morphogenesis: First, how does each Hox factor differ from one another to accurately activate and repress target genes required for the formation of distinct segment and regional identities? Second, how can a Hox factor that is broadly expressed in many tissues within a segment impact the development of specific organs by regulating target genes in a cell type-specific manner? In this review, we highlight how recent genomic, interactome, and cis-regulatory studies are providing new insights into answering these two questions. Collectively, these studies suggest that Hox factors may differentially modify the chromatin of gene targets as well as utilize numerous interactions with additional co-activators, co-repressors, and sequence-specific transcription factors to achieve accurate segment and cell type-specific transcriptional outcomes.
Collapse
Affiliation(s)
- Brittany Cain
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
21
|
Giraud G, Paul R, Duffraisse M, Khan S, Shashidhara LS, Merabet S. Developmental Robustness: The Haltere Case in Drosophila. Front Cell Dev Biol 2021; 9:713282. [PMID: 34368162 PMCID: PMC8343187 DOI: 10.3389/fcell.2021.713282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/30/2021] [Indexed: 11/24/2022] Open
Abstract
Developmental processes have to be robust but also flexible enough to respond to genetic and environmental variations. Different mechanisms have been described to explain the apparent antagonistic nature of developmental robustness and plasticity. Here, we present a “self-sufficient” molecular model to explain the development of a particular flight organ that is under the control of the Hox gene Ultrabithorax (Ubx) in the fruit fly Drosophila melanogaster. Our model is based on a candidate RNAi screen and additional genetic analyses that all converge to an autonomous and cofactor-independent mode of action for Ubx. We postulate that this self-sufficient molecular mechanism is possible due to an unusually high expression level of the Hox protein. We propose that high dosage could constitute a so far poorly investigated molecular strategy for allowing Hox proteins to both innovate and stabilize new forms during evolution.
Collapse
Affiliation(s)
| | | | | | - Soumen Khan
- Indian Institute of Science Education and Research (IISER), Pune, India
| | - L S Shashidhara
- Indian Institute of Science Education and Research (IISER), Pune, India.,Ashoka University, Sonipat, India
| | | |
Collapse
|
22
|
Vo TN, Malo Pueyo J, Wahni K, Ezeriņa D, Bolduc J, Messens J. Prdx1 Interacts with ASK1 upon Exposure to H 2O 2 and Independently of a Scaffolding Protein. Antioxidants (Basel) 2021; 10:antiox10071060. [PMID: 34209102 PMCID: PMC8300624 DOI: 10.3390/antiox10071060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 01/02/2023] Open
Abstract
Hydrogen peroxide (H2O2) is a key redox signaling molecule that selectively oxidizes cysteines on proteins. It can accomplish this even in the presence of highly efficient and abundant H2O2 scavengers, peroxiredoxins (Prdxs), as it is the Prdxs themselves that transfer oxidative equivalents to specific protein thiols on target proteins via their redox-relay functionality. The first evidence of a mammalian cytosolic Prdx-mediated redox-relay—Prdx1 with the kinase ASK1—was presented a decade ago based on the outcome of a co-immunoprecipitation experiment. A second such redox-relay—Prdx2:STAT3—soon followed, for which further studies provided insights into its specificity, organization, and mechanism. The Prdx1:ASK1 redox-relay, however, has never undergone such a characterization. Here, we combine cellular and in vitro protein–protein interaction methods to investigate the Prdx1:ASK1 interaction more thoroughly. We show that, contrary to the Prdx2:STAT3 redox-relay, Prdx1 interacts with ASK1 at elevated H2O2 concentrations, and that this interaction can happen independently of a scaffolding protein. We also provide evidence of a Prdx2:ASK1 interaction, and demonstrate that it requires a facilitator that, however, is not annexin A2. Our results reveal that cytosolic Prdx redox-relays can be organized in different ways and yet again highlight the differentiated roles of Prdx1 and Prdx2.
Collapse
Affiliation(s)
- Trung Nghia Vo
- VIB-VUB Center for Structural Biology, Vlaams Instituut Voor Biotechnologie, B-1050 Brussels, Belgium; (T.N.V.); (J.M.P.); (K.W.); (D.E.); (J.B.)
- Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Julia Malo Pueyo
- VIB-VUB Center for Structural Biology, Vlaams Instituut Voor Biotechnologie, B-1050 Brussels, Belgium; (T.N.V.); (J.M.P.); (K.W.); (D.E.); (J.B.)
- Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Khadija Wahni
- VIB-VUB Center for Structural Biology, Vlaams Instituut Voor Biotechnologie, B-1050 Brussels, Belgium; (T.N.V.); (J.M.P.); (K.W.); (D.E.); (J.B.)
- Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Daria Ezeriņa
- VIB-VUB Center for Structural Biology, Vlaams Instituut Voor Biotechnologie, B-1050 Brussels, Belgium; (T.N.V.); (J.M.P.); (K.W.); (D.E.); (J.B.)
- Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Jesalyn Bolduc
- VIB-VUB Center for Structural Biology, Vlaams Instituut Voor Biotechnologie, B-1050 Brussels, Belgium; (T.N.V.); (J.M.P.); (K.W.); (D.E.); (J.B.)
- Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Joris Messens
- VIB-VUB Center for Structural Biology, Vlaams Instituut Voor Biotechnologie, B-1050 Brussels, Belgium; (T.N.V.); (J.M.P.); (K.W.); (D.E.); (J.B.)
- Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Correspondence:
| |
Collapse
|
23
|
Blaszczak E, Lazarewicz N, Sudevan A, Wysocki R, Rabut G. Protein-fragment complementation assays for large-scale analysis of protein-protein interactions. Biochem Soc Trans 2021; 49:1337-1348. [PMID: 34156434 PMCID: PMC8286835 DOI: 10.1042/bst20201058] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 12/25/2022]
Abstract
Protein-protein interactions (PPIs) orchestrate nearly all biological processes. They are also considered attractive drug targets for treating many human diseases, including cancers and neurodegenerative disorders. Protein-fragment complementation assays (PCAs) provide a direct and straightforward way to study PPIs in living cells or multicellular organisms. Importantly, PCAs can be used to detect the interaction of proteins expressed at endogenous levels in their native cellular environment. In this review, we present the principle of PCAs and discuss some of their advantages and limitations. We describe their application in large-scale experiments to investigate PPI networks and to screen or profile PPI targeting compounds.
Collapse
Affiliation(s)
- Ewa Blaszczak
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, Kanonia 6/8, 50-328 Wroclaw, Poland
| | - Natalia Lazarewicz
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, Kanonia 6/8, 50-328 Wroclaw, Poland
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes) – UMR 6290, F-35000 Rennes, France
| | - Aswani Sudevan
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes) – UMR 6290, F-35000 Rennes, France
| | - Robert Wysocki
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, Kanonia 6/8, 50-328 Wroclaw, Poland
| | - Gwenaël Rabut
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes) – UMR 6290, F-35000 Rennes, France
| |
Collapse
|
24
|
Yin J, Spillman E, Cheng ES, Short J, Chen Y, Lei J, Gibbs M, Rosenthal JS, Sheng C, Chen YX, Veerasammy K, Choetso T, Abzalimov R, Wang B, Han C, He Y, Yuan Q. Brain-specific lipoprotein receptors interact with astrocyte derived apolipoprotein and mediate neuron-glia lipid shuttling. Nat Commun 2021; 12:2408. [PMID: 33893307 PMCID: PMC8065144 DOI: 10.1038/s41467-021-22751-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/29/2021] [Indexed: 02/08/2023] Open
Abstract
Lipid shuttling between neurons and glia contributes to the development, function, and stress responses of the nervous system. To understand how a neuron acquires its lipid supply from specific lipoproteins and their receptors, we perform combined genetic, transcriptome, and biochemical analyses in the developing Drosophila larval brain. Here we report, the astrocyte-derived secreted lipocalin Glial Lazarillo (GLaz), a homolog of human Apolipoprotein D (APOD), and its neuronal receptor, the brain-specific short isoforms of Drosophila lipophorin receptor 1 (LpR1-short), cooperatively mediate neuron-glia lipid shuttling and support dendrite morphogenesis. The isoform specificity of LpR1 defines its distribution, binding partners, and ability to support proper dendrite growth and synaptic connectivity. By demonstrating physical and functional interactions between GLaz/APOD and LpR1, we elucidate molecular pathways mediating lipid trafficking in the fly brain, and provide in vivo evidence indicating isoform-specific expression of lipoprotein receptors as a key mechanism for regulating cell-type specific lipid recruitment.
Collapse
Affiliation(s)
- Jun Yin
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Emma Spillman
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Department of Neurosciences, University of California, San Diego, San Diego, CA, USA
| | - Ethan S Cheng
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jacob Short
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Yang Chen
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jingce Lei
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mary Gibbs
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Justin S Rosenthal
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Chengyu Sheng
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yuki X Chen
- The City University of New York, Graduate Center-Advanced Science Research Center, New York, NY, USA
- The City College of New York, CUNY, New York, NY, USA
| | - Kelly Veerasammy
- The City University of New York, Graduate Center-Advanced Science Research Center, New York, NY, USA
- The City College of New York, CUNY, New York, NY, USA
| | - Tenzin Choetso
- The City University of New York, Graduate Center-Advanced Science Research Center, New York, NY, USA
- The City College of New York, CUNY, New York, NY, USA
| | - Rinat Abzalimov
- The City University of New York, Graduate Center-Advanced Science Research Center, New York, NY, USA
| | - Bei Wang
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Chun Han
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Ye He
- The City University of New York, Graduate Center-Advanced Science Research Center, New York, NY, USA
| | - Quan Yuan
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
25
|
In Vivo Imaging of Protein Interactions in the Germplasm with Bimolecular Fluorescent Complementation. Methods Mol Biol 2021; 2218:303-317. [PMID: 33606241 DOI: 10.1007/978-1-0716-0970-5_24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Protein-protein interactions (PPIs) play a central role in all cellular processes. The discovery of green fluorescent protein (GFP) and split varieties, which are functionally reconstituted by complementation, led to the development of the bimolecular fluorescence complementation (BiFC) assay for the investigation of PPI in vivo. BiFC became a popular tool, as it is a convenient and quick technology to directly visualize PPI in a wide variety of living cells. In combination with the transparency of the early zebrafish embryo, it also permits detection of PPI in the context of an entire living organism, which performs all spatial and temporal regulations missing in in vitro systems like tissue culture. However, the application of BiFC in some research areas including the study of zebrafish is limited due to the lack of efficient and convenient BiFC expression vectors. Here, we describe the engineering of a novel set of Gateway®-adapted BiFC destination vectors to investigate PPI with all possible permutations for BiFC experiments. Moreover, we demonstrate the versatility of these destination vectors by confirming the interaction between zebrafish Bucky ball and RNA helicase Vasa in living embryos.
Collapse
|
26
|
A Trypanosoma brucei ORFeome-Based Gain-of-Function Library Identifies Genes That Promote Survival during Melarsoprol Treatment. mSphere 2020; 5:5/5/e00769-20. [PMID: 33028684 PMCID: PMC7568655 DOI: 10.1128/msphere.00769-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trypanosoma brucei is an early branching protozoan parasite that causes human and animal African trypanosomiasis. Forward genetics approaches are powerful tools for uncovering novel aspects of trypanosomatid biology, pathogenesis, and therapeutic approaches against trypanosomiasis. Here, we have generated a T. brucei cloned ORFeome consisting of >90% of the targeted 7,245 genes and used it to make an inducible gain-of-function parasite library broadly applicable to large-scale forward genetic screens. We conducted a proof-of-principle genetic screen to identify genes whose expression promotes survival in melarsoprol, a critical drug of last resort. The 57 genes identified as overrepresented in melarsoprol survivor populations included the gene encoding the rate-limiting enzyme for the biosynthesis of an established drug target (trypanothione), validating the tool. In addition, novel genes associated with gene expression, flagellum localization, and mitochondrion localization were identified, and a subset of those genes increased melarsoprol resistance upon overexpression in culture. These findings offer new insights into trypanosomatid basic biology, implications for drug targets, and direct or indirect drug resistance mechanisms. This study generated a T. brucei ORFeome and gain-of-function parasite library, demonstrated the library's usefulness in forward genetic screening, and identified novel aspects of melarsoprol resistance that will be the subject of future investigations. These powerful genetic tools can be used to broadly advance trypanosomatid research.IMPORTANCE Trypanosomatid parasites threaten the health of more than 1 billion people worldwide. Because their genomes are highly diverged from those of well-established eukaryotes, conservation is not always useful in assigning gene functions. However, it is precisely among the trypanosomatid-specific genes that ideal therapeutic targets might be found. Forward genetics approaches are an effective way to identify novel gene functions. We used an ORFeome approach to clone a large percentage of Trypanosoma brucei genes and generate a gain-of-function parasite library. This library was used in a genetic screen to identify genes that promote resistance to the clinically significant yet highly toxic drug melarsoprol. Hits arising from the screen demonstrated the library's usefulness in identifying known pathways and uncovered novel aspects of resistance mediated by proteins localized to the flagellum and mitochondrion. The powerful new genetic tools generated herein are expected to promote advances in trypanosomatid biology and therapeutic development in the years to come.
Collapse
|
27
|
Meyer-Nava S, Nieto-Caballero VE, Zurita M, Valadez-Graham V. Insights into HP1a-Chromatin Interactions. Cells 2020; 9:E1866. [PMID: 32784937 PMCID: PMC7465937 DOI: 10.3390/cells9081866] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022] Open
Abstract
Understanding the packaging of DNA into chromatin has become a crucial aspect in the study of gene regulatory mechanisms. Heterochromatin establishment and maintenance dynamics have emerged as some of the main features involved in genome stability, cellular development, and diseases. The most extensively studied heterochromatin protein is HP1a. This protein has two main domains, namely the chromoshadow and the chromodomain, separated by a hinge region. Over the years, several works have taken on the task of identifying HP1a partners using different strategies. In this review, we focus on describing these interactions and the possible complexes and subcomplexes associated with this critical protein. Characterization of these complexes will help us to clearly understand the implications of the interactions of HP1a in heterochromatin maintenance, heterochromatin dynamics, and heterochromatin's direct relationship to gene regulation and chromatin organization.
Collapse
Affiliation(s)
| | | | | | - Viviana Valadez-Graham
- Instituto de Biotecnología, Departamento de Genética del Desarrollo y Fisiología Molecular, Universidad Nacional Autónoma de México, Cuernavaca Morelos 62210, Mexico; (S.M.-N.); (V.E.N.-C.); (M.Z.)
| |
Collapse
|
28
|
Dobbelaere J, Schmidt Cernohorska M, Huranova M, Slade D, Dammermann A. Cep97 Is Required for Centriole Structural Integrity and Cilia Formation in Drosophila. Curr Biol 2020; 30:3045-3056.e7. [PMID: 32589908 DOI: 10.1016/j.cub.2020.05.078] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/25/2020] [Accepted: 05/26/2020] [Indexed: 01/19/2023]
Abstract
Centrioles are highly elaborate microtubule-based structures responsible for the formation of centrosomes and cilia. Despite considerable variation across species and tissues within any given tissue, their size is essentially constant [1, 2]. While the diameter of the centriole cylinder is set by the dimensions of the inner scaffolding structure of the cartwheel [3], how centriole length is set so precisely and stably maintained over many cell divisions is not well understood. Cep97 and CP110 are conserved proteins that localize to the distal end of centrioles and have been reported to limit centriole elongation in vertebrates [4, 5]. Here, we examine Cep97 function in Drosophila melanogaster. We show that Cep97 is essential for formation of full-length centrioles in multiple tissues of the fly. We further identify the microtubule deacetylase Sirt2 as a Cep97 interactor. Deletion of Sirt2 likewise affects centriole size. Interestingly, so does deletion of the acetylase Atat1, indicating that loss of stabilizing acetyl marks impairs centriole integrity. Cep97 and CP110 were originally identified as inhibitors of cilia formation in vertebrate cultured cells [6], and loss of CP110 is a widely used marker of basal body maturation. In contrast, in Drosophila, Cep97 appears to be only transiently removed from basal bodies and loss of Cep97 strongly impairs ciliogenesis. Collectively, our results support a model whereby Cep97 functions as part of a protective cap that acts together with the microtubule acetylation machinery to maintain centriole stability, essential for proper function in cilium biogenesis.
Collapse
Affiliation(s)
- Jeroen Dobbelaere
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr Bohr-Gasse 9, 1030 Vienna, Austria.
| | - Marketa Schmidt Cernohorska
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic
| | - Martina Huranova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic
| | - Dea Slade
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr Bohr-Gasse 9, 1030 Vienna, Austria
| | - Alexander Dammermann
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr Bohr-Gasse 9, 1030 Vienna, Austria.
| |
Collapse
|
29
|
Marescal O, Schӧck F, González-Morales N. Bimolecular Fluorescence Complementation (BiFC) for Studying Sarcomeric Protein Interactions in Drosophila. Bio Protoc 2020; 10:e3569. [PMID: 33659539 DOI: 10.21769/bioprotoc.3569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 11/02/2022] Open
Abstract
Protein-protein interactions in Drosophila myofibrils are essential for their function and formation. Bimolecular Fluorescence Complementation (BiFC) is an effective method for studying protein interactions and localization. BiFC relies on the reconstitution of a monomeric fluorescent protein from two half-fragments when in proximity. Two proteins tagged with the different half-fragments emit a fluorescent signal when they are in physical contact, thus revealing a protein interaction and its spatial distribution. Because myofibrils are large networks of interconnected proteins, BIFC is an ideal method to study protein-protein interactions in myofibrils. Here we present a protocol for generating transgenic flies compatible with BiFC and a method for analyzing protein-protein interactions based on the fluorescent BiFC signal in myofibrils. Our protocol is applicable to the majority of Drosophila proteins and with few modifications may be used to study any tissue.
Collapse
|
30
|
Moustaqil M, Gambin Y, Sierecki E. Biophysical Techniques for Target Validation and Drug Discovery in Transcription-Targeted Therapy. Int J Mol Sci 2020; 21:E2301. [PMID: 32225120 PMCID: PMC7178067 DOI: 10.3390/ijms21072301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 01/10/2023] Open
Abstract
In the post-genome era, pathologies become associated with specific gene expression profiles and defined molecular lesions can be identified. The traditional therapeutic strategy is to block the identified aberrant biochemical activity. However, an attractive alternative could aim at antagonizing key transcriptional events underlying the pathogenesis, thereby blocking the consequences of a disorder, irrespective of the original biochemical nature. This approach, called transcription therapy, is now rendered possible by major advances in biophysical technologies. In the last two decades, techniques have evolved to become key components of drug discovery platforms, within pharmaceutical companies as well as academic laboratories. This review outlines the current biophysical strategies for transcription manipulation and provides examples of successful applications. It also provides insights into the future development of biophysical methods in drug discovery and personalized medicine.
Collapse
Affiliation(s)
- Mehdi Moustaqil
- EMBL Australia Node in Single Molecule Science and School of Medical Sciences, UNSW Sydney, NSW 2052, Australia;
| | | | - Emma Sierecki
- EMBL Australia Node in Single Molecule Science and School of Medical Sciences, UNSW Sydney, NSW 2052, Australia;
| |
Collapse
|
31
|
Multi-level and lineage-specific interactomes of the Hox transcription factor Ubx contribute to its functional specificity. Nat Commun 2020; 11:1388. [PMID: 32170121 PMCID: PMC7069958 DOI: 10.1038/s41467-020-15223-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 02/21/2020] [Indexed: 12/21/2022] Open
Abstract
Transcription factors (TFs) control cell fates by precisely orchestrating gene expression. However, how individual TFs promote transcriptional diversity remains unclear. Here, we use the Hox TF Ultrabithorax (Ubx) as a model to explore how a single TF specifies multiple cell types. Using proximity-dependent Biotin IDentification in Drosophila, we identify Ubx interactomes in three embryonic tissues. We find that Ubx interacts with largely non-overlapping sets of proteins with few having tissue-specific RNA expression. Instead most interactors are active in many cell types, controlling gene expression from chromatin regulation to the initiation of translation. Genetic interaction assays in vivo confirm that they act strictly lineage- and process-specific. Thus, functional specificity of Ubx seems to play out at several regulatory levels and to result from the controlled restriction of the interaction potential by the cellular environment. Thereby, it challenges long-standing assumptions such as differential RNA expression as determinant for protein complexes. Many transcription factors regulate gene expression in a lineage- and process-specific manner, despite being expressed in several cell types. Here, the authors show that the Hox transcription factor Ubx has lineage-specific interactomes, which contribute to its cell context-dependent functions.
Collapse
|
32
|
Pedelacq JD, Cabantous S. Development and Applications of Superfolder and Split Fluorescent Protein Detection Systems in Biology. Int J Mol Sci 2019; 20:ijms20143479. [PMID: 31311175 PMCID: PMC6678664 DOI: 10.3390/ijms20143479] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 01/08/2023] Open
Abstract
Molecular engineering of the green fluorescent protein (GFP) into a robust and stable variant named Superfolder GFP (sfGFP) has revolutionized the field of biosensor development and the use of fluorescent markers in diverse area of biology. sfGFP-based self-associating bipartite split-FP systems have been widely exploited to monitor soluble expression in vitro, localization, and trafficking of proteins in cellulo. A more recent class of split-FP variants, named « tripartite » split-FP, that rely on the self-assembly of three GFP fragments, is particularly well suited for the detection of protein–protein interactions. In this review, we describe the different steps and evolutions that have led to the diversification of superfolder and split-FP reporter systems, and we report an update of their applications in various areas of biology, from structural biology to cell biology.
Collapse
Affiliation(s)
- Jean-Denis Pedelacq
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France.
| | - Stéphanie Cabantous
- Centre de Recherche en Cancérologie de Toulouse (CRCT), Inserm, Université Paul Sabatier-Toulouse III, CNRS, 31037 Toulouse, France.
| |
Collapse
|
33
|
2C-BioID: An Advanced Two Component BioID System for Precision Mapping of Protein Interactomes. iScience 2018; 10:40-52. [PMID: 30500481 PMCID: PMC6263017 DOI: 10.1016/j.isci.2018.11.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/26/2018] [Accepted: 11/12/2018] [Indexed: 12/31/2022] Open
Abstract
The modulation of protein-protein interactions (PPIs) is an essential regulatory activity defining diverse cell functions in development and disease. BioID is an unbiased proximity-dependent biotinylation method making use of a biotin-protein ligase fused to a protein of interest and has become an important tool for mapping of PPIs within cellular contexts. We devised an advanced method, 2C-BioID, in which the biotin-protein ligase is kept separate from the protein of interest, until the two are induced to associate by the addition of a dimerizing agent. As proof of principle, we compared the interactomes of lamina-associated polypeptide 2β (LAP2β) with those of lamins A and C, using 2C- and conventional BioID. 2C-BioID greatly enhanced data robustness by facilitating the in silico elimination of non-specific interactors as well as overcoming the problems associated with aberrant protein localization. 2C-BioID therefore significantly strengthens the specificity and reliability of BioID-based interactome analysis, by the more stringent exclusion of false-positives and more efficient intracellular targeting.
Collapse
|