1
|
Bågenholm V, Nordlin KP, Pasquadibisceglie A, Belinskiy A, Holm CM, Hotiana HA, Gotfryd K, Delemotte L, Nour-Eldin HH, Pedersen PA, Gourdon P. Cryo-EM structure of the human monocarboxylate transporter 10. Structure 2025; 33:891-902.e4. [PMID: 40112803 DOI: 10.1016/j.str.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/31/2025] [Accepted: 03/19/2025] [Indexed: 03/22/2025]
Abstract
The monocarboxylate transporter (MCT) membrane protein family has 14 human members that perform key cellular functions, such as regulating metabolism. MCT8 and MCT10 have unique cargo specificity, transporting thyroid hormone and, in the case of MCT10, aromatic amino acids. Dysfunctional MCT8 causes the severe Allan-Herndon-Dudley syndrome, yet the (patho)physiology and function of MCT8 and MCT10 are not clearly understood, especially at a structural level. We present the cryoelectron microscopy (cryo-EM) structure of MCT10, displaying the classical major facilitator superfamily fold, caught in an inward-open configuration. Together with cargo docking models, the outward-open MCT10 AlphaFold model and validating functional analysis, cargo specificity and transport principles are proposed. These findings significantly enhance our understanding of the structure and function of MCTs, information that also may be valuable for the development of novel treatments against MCT-related disorders to address global challenges such as diabetes, obesity, and cancer.
Collapse
Affiliation(s)
- Viktoria Bågenholm
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Karl Patric Nordlin
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Andrea Pasquadibisceglie
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna, 17165 Stockholm, Sweden
| | - Andrey Belinskiy
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Caroline Marcher Holm
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Hajira Ahmed Hotiana
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kamil Gotfryd
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Lucie Delemotte
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna, 17165 Stockholm, Sweden
| | - Hussam Hassan Nour-Eldin
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | | | - Pontus Gourdon
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden.
| |
Collapse
|
2
|
Liziczai M, Fuchs A, Manatschal C, Dutzler R. Structural basis for metal ion transport by the human SLC11 proteins DMT1 and NRAMP1. Nat Commun 2025; 16:761. [PMID: 39824808 PMCID: PMC11742427 DOI: 10.1038/s41467-024-54705-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 11/19/2024] [Indexed: 01/30/2025] Open
Abstract
Iron and manganese are essential nutrients whose transport across membranes is catalyzed by members of the SLC11 family. In humans, this protein family contains two paralogs, the ubiquitously expressed DMT1, which is involved in the uptake and distribution of Fe2+ and Mn2+, and NRAMP1, which participates in the resistance against infections and nutrient recycling. Despite previous studies contributing to our mechanistic understanding of the family, the structures of human SLC11 proteins and their relationship to functional properties have remained elusive. Here we describe the cryo-electron microscopy structures of DMT1 and NRAMP1 and relate them to their functional properties. We show that both proteins catalyze selective metal ion transport coupled to the symport of H+, but additionally also mediate uncoupled H+ flux. Their structures, while sharing general properties with known prokaryotic homologs, display distinct features that lead to stronger transition metal ion selectivity.
Collapse
Affiliation(s)
- Márton Liziczai
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Ariane Fuchs
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | | | - Raimund Dutzler
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Xu J, Wang Y. Generating Multistate Conformations of P-type ATPases with a Conditional Diffusion Model. J Chem Inf Model 2024; 64:9227-9239. [PMID: 39480276 DOI: 10.1021/acs.jcim.4c01519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Understanding and predicting the diverse conformational states of membrane proteins is essential for elucidating their biological functions. Despite advancements in computational methods, accurately capturing these complex structural changes remains a significant challenge. Here, we introduce a computational approach to generate diverse and biologically relevant conformations of membrane proteins using a conditional diffusion model. Our approach integrates forward and backward diffusion processes, incorporating state classifiers and additional conditioners to control the generation gradient of conformational states. We specifically targeted the P-type ATPases, a critical family of membrane transporters, and constructed a comprehensive data set through a combination of experimental structures and molecular dynamics simulations. Our model, incorporating a graph neural network with specialized membrane constraints, demonstrates exceptional accuracy in generating a wide range of P-type ATPase conformations associated with different functional states. This approach represents a meaningful step forward in the computational generation of membrane protein conformations using AI and holds promise for studying the dynamics of other membrane proteins.
Collapse
Affiliation(s)
- Jingtian Xu
- College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
4
|
Yang C, Cui C, Deng F. The mntH gene of Burkholderia cenocepacia influences motility and quorum sensing to control virulence. Braz J Microbiol 2024; 55:3769-3780. [PMID: 39230636 PMCID: PMC11711592 DOI: 10.1007/s42770-024-01506-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/25/2024] [Indexed: 09/05/2024] Open
Abstract
Quorum sensing (QS) signals widely exist in bacteria to control biological functions in response to populations of cells. Burkholderia cenocepacia, an important opportunistic pathogen in patients with cystic fibrosis (CF), is commonly found in the environment and mostly utilizes the N-acylhomoserine lactone (AHL) and cis-2-dodecenoic acid (BDSF) QS systems to control biological functions. Our previous study illuminated the detailed mechanism by which B.cenocepacia integrates BDSF and cyclic diguanosine monophosphate (c-di-GMP) signals to control virulence. Here, we employed Tn5 transposon mutagenesis to identify genes related to the BDSF QS system. One of the most significantly attenuated mutants had an insertion in the mntH gene. Here, we showed that MntH (Bcam0836), a manganese transport protein, controls QS-regulated phenotypes, including motility, biofilm formation and virulence. We also found that. BDSF production was attenuated at both the gene and signaling levels in the Bcam0836 mutant, and that Bcam0836 influenced the expression of some genes regulated by the BDSF receptor RpfR and the downstream regulator GtrR. These results show that the manganese transport protein. MntH modulates a subset of genes and functions regulated by the QS system in B. cenocepacia.
Collapse
Affiliation(s)
- Chunxi Yang
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, China.
| | - Chaoyu Cui
- Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Fengyi Deng
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
5
|
Licht JA, Berry SP, Gutierrez MA, Gaudet R. They all rock: A systematic comparison of conformational movements in LeuT-fold transporters. Structure 2024; 32:1528-1543.e3. [PMID: 39025067 PMCID: PMC11380583 DOI: 10.1016/j.str.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/30/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024]
Abstract
Many membrane transporters share the LeuT fold-two five-helix repeats inverted across the membrane plane. Despite hundreds of structures, whether distinct conformational mechanisms are supported by the LeuT fold has not been systematically determined. After annotating published LeuT-fold structures, we analyzed distance difference matrices (DDMs) for nine proteins with multiple available conformations. We identified rigid bodies and relative movements of transmembrane helices (TMs) during distinct steps of the transport cycle. In all transporters, the bundle (first two TMs of each repeat) rotates relative to the hash (third and fourth TMs). Motions of the arms (fifth TM) to close or open the intracellular and outer vestibules are common, as is a TM1a swing, with notable variations in the opening-closing motions of the outer vestibule. Our analyses suggest that LeuT-fold transporters layer distinct motions on a common bundle-hash rock and demonstrate that systematic analyses can provide new insights into large structural datasets.
Collapse
Affiliation(s)
- Jacob A Licht
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Samuel P Berry
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Michael A Gutierrez
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
6
|
Ongey EL, Banerjee A. In vitro reconstitution of transition metal transporters. J Biol Chem 2024; 300:107589. [PMID: 39032653 PMCID: PMC11381811 DOI: 10.1016/j.jbc.2024.107589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024] Open
Abstract
Transition metal ions are critically important across all kingdoms of life. The chemical properties of iron, copper, zinc, manganese, cobalt, and nickel make them very attractive for use as cofactors in metalloenzymes and/or metalloproteins. Their versatile chemistry in aqueous solution enables them to function both as electron donors and acceptors, and thus participate in both reduction and oxidation reactions respectively. Transition metal ions can also function as nonredox multidentate coordination sites that play essential roles in macromolecular structure and function. Malfunction in transition metal transport and homeostasis has been linked to a wide number of human diseases including cancer, diabetes, and neurodegenerative disorders. Transition metal transporters are central players in the physiology of transition metals whereby they move transition metals in and out of cellular compartments. In this review, we provide a comprehensive overview of in vitro reconstitution of the activity of integral membrane transition metal transporters and discuss strategies that have been successfully implemented to overcome the challenges. We also discuss recent advances in our understanding of transition metal transport mechanisms and the techniques that are currently used to decipher the molecular basis of transport activities of these proteins. Deep mechanistic insights into transition metal transport systems will be essential to understand their malfunction in human diseases and target them for potential therapeutic strategies.
Collapse
Affiliation(s)
- Elvis L Ongey
- Cell Biology and Neurobiology Branch, National Institutes of Child Health and Human, Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Anirban Banerjee
- Cell Biology and Neurobiology Branch, National Institutes of Child Health and Human, Development, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
7
|
Sharma R, Mishanina TV. A riboswitch-controlled TerC family transporter Alx tunes intracellular manganese concentration in Escherichia coli at alkaline pH. J Bacteriol 2024; 206:e0016824. [PMID: 38869303 PMCID: PMC11270866 DOI: 10.1128/jb.00168-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/11/2024] [Indexed: 06/14/2024] Open
Abstract
Cells use transition metal ions as structural components of biomolecules and cofactors in enzymatic reactions, making transition metal ions integral cellular components. Organisms optimize metal ion concentration to meet cellular needs by regulating the expression of proteins that import and export that metal ion, often in a metal ion concentration-dependent manner. One such regulation mechanism is via riboswitches, which are 5'-untranslated regions of an mRNA that undergo conformational changes to promote or inhibit the expression of the downstream gene, commonly in response to a ligand. The yybP-ykoY family of bacterial riboswitches shares a conserved aptamer domain that binds manganese ions (Mn2+). In Escherichia coli, the yybP-ykoY riboswitch precedes and regulates the expression of two different genes: mntP, which based on genetic evidence encodes an Mn2+ exporter, and alx, which encodes a putative metal ion transporter whose cognate ligand is currently in question. The expression of alx is upregulated by both elevated concentrations of Mn2+ and alkaline pH. With metal ion measurements and gene expression studies, we demonstrate that the alkalinization of media increases the cytoplasmic manganese pool, which, in turn, enhances alx expression. The Alx-mediated Mn2+ export prevents the toxic buildup of the cellular manganese, with the export activity maximal at alkaline pH. We pinpoint a set of acidic residues in the predicted transmembrane segments of Alx that play a critical role in Mn2+ export. We propose that Alx-mediated Mn2+ export serves as a primary protective mechanism that fine tunes the cytoplasmic manganese content, especially during alkaline stress.IMPORTANCEBacteria use clever ways to tune gene expression upon encountering certain environmental stresses, such as alkaline pH in parts of the human gut and high concentration of a transition metal ion manganese. One way by which bacteria regulate the expression of their genes is through the 5'-untranslated regions of messenger RNA called riboswitches that bind ligands to turn expression of genes on/off. In this work, we have investigated the roles and regulation of alx and mntP, the two genes in Escherichia coli regulated by the yybP-ykoY riboswitches, in alkaline pH and high concentration of Mn2+. This work highlights the intricate ways through which bacteria adapt to their surroundings, utilizing riboregulatory mechanisms to maintain Mn2+ levels amidst varying environmental factors.
Collapse
Affiliation(s)
- Ravish Sharma
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Tatiana V. Mishanina
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
8
|
Lin L, Wu X, Deng X, Lin Z, Liu C, Zhang J, He T, Yi Y, Liu H, Wang Y, Sun W, Xu Z. Mechanisms of low cadmium accumulation in crops: A comprehensive overview from rhizosphere soil to edible parts. ENVIRONMENTAL RESEARCH 2024; 245:118054. [PMID: 38157968 DOI: 10.1016/j.envres.2023.118054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Cadmium (Cd) is a toxic heavy metal often found in soil and agricultural products. Due to its high mobility, Cd poses a significant health risk when absorbed by crops, a crucial component of the human diet. This absorption primarily occurs through roots and leaves, leading to Cd accumulation in edible parts of the plant. Our research aimed to understand the mechanisms behind the reduced Cd accumulation in certain crop cultivars through an extensive review of the literature. Crops employ various strategies to limit Cd influx from the soil, including rhizosphere microbial fixation and altering root cell metabolism. Additional mechanisms include membrane efflux, specific transport, chelation, and detoxification, facilitated by metalloproteins such as the natural resistance-associated macrophage protein (Nramp) family, heavy metal P-type ATPases (HMA), zinc-iron permease (ZIP), and ATP-binding cassette (ABC) transporters. This paper synthesizes differences in Cd accumulation among plant varieties, presents methods for identifying cultivars with low Cd accumulation, and explores the unique molecular biology of Cd accumulation. Overall, this review provides a comprehensive resource for managing agricultural lands with lower contamination levels and supports the development of crops engineered to accumulate minimal amounts of Cd.
Collapse
Affiliation(s)
- Lihong Lin
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xinyue Wu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xingying Deng
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Zheng Lin
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Chunguang Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300350, China
| | - Jiexiang Zhang
- GRG Metrology& Test Group Co., Ltd., Guangzhou, 510656, China
| | - Tao He
- College of Chemical and Environmental Engineering, Hanjiang Normal University, Shiyan, 442000, China
| | - Yunqiang Yi
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Hui Liu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yifan Wang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Weimin Sun
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Zhimin Xu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| |
Collapse
|
9
|
Drew D, Boudker O. Ion and lipid orchestration of secondary active transport. Nature 2024; 626:963-974. [PMID: 38418916 DOI: 10.1038/s41586-024-07062-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/12/2024] [Indexed: 03/02/2024]
Abstract
Transporting small molecules across cell membranes is an essential process in cell physiology. Many structurally diverse, secondary active transporters harness transmembrane electrochemical gradients of ions to power the uptake or efflux of nutrients, signalling molecules, drugs and other ions across cell membranes. Transporters reside in lipid bilayers on the interface between two aqueous compartments, where they are energized and regulated by symported, antiported and allosteric ions on both sides of the membrane and the membrane bilayer itself. Here we outline the mechanisms by which transporters couple ion and solute fluxes and discuss how structural and mechanistic variations enable them to meet specific physiological needs and adapt to environmental conditions. We then consider how general bilayer properties and specific lipid binding modulate transporter activity. Together, ion gradients and lipid properties ensure the effective transport, regulation and distribution of small molecules across cell membranes.
Collapse
Affiliation(s)
- David Drew
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| | - Olga Boudker
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- Howard Hughes Medical Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
10
|
Licht JA, Berry SP, Gutierrez MA, Gaudet R. They all rock: A systematic comparison of conformational movements in LeuT-fold transporters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577062. [PMID: 38352416 PMCID: PMC10862720 DOI: 10.1101/2024.01.24.577062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Many membrane transporters share the LeuT fold-two five-helix repeats inverted across the membrane plane. Despite hundreds of structures, whether distinct conformational mechanisms are supported by the LeuT fold has not been systematically determined. After annotating published LeuT-fold structures, we analyzed distance difference matrices (DDMs) for nine proteins with multiple available conformations. We identified rigid bodies and relative movements of transmembrane helices (TMs) during distinct steps of the transport cycle. In all transporters the bundle (first two TMs of each repeat) rotates relative to the hash (third and fourth TMs). Motions of the arms (fifth TM) to close or open the intracellular and outer vestibules are common, as is a TM1a swing, with notable variations in the opening-closing motions of the outer vestibule. Our analyses suggest that LeuT-fold transporters layer distinct motions on a common bundle-hash rock and demonstrate that systematic analyses can provide new insights into large structural datasets.
Collapse
Affiliation(s)
- Jacob A. Licht
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Samuel P. Berry
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Michael A. Gutierrez
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Present address: Novartis Biomedical Research, Cambridge, MA, USA
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Lead contact
| |
Collapse
|
11
|
Okazaki Y. Iron from the gut: the role of divalent metal transporter 1. J Clin Biochem Nutr 2024; 74:1-8. [PMID: 38292117 PMCID: PMC10822759 DOI: 10.3164/jcbn.23-47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/10/2023] [Indexed: 02/01/2024] Open
Abstract
Mammalian cells contain thousands of metalloproteins and evolved systems to correctly incorporate metal cofactors into their designated sites. Among the transient metals in living cells, iron is the most abundant element that present as an iron sulfur cluster, mono- and dinuclear iron centers or heme for catalytic reactions. Iron homeostasis is tightly regulated by intestinal iron absorption in mammals owing to the lack of an iron excretive transport system, apart from superficial epithelial cell detachment and urinary outflow reabsorptive impairment. In mammals, the central site for iron absorption is in the duodenum, where the divalent metal transporter 1 is essential for iron uptake. The most notable manifestation of mutated divalent metal transporter 1 presents as iron deficiency anemia in humans. In contrast, the mutation of ferroportin, which exports iron, causes iron overload by either gain or loss of function. Furthermore, hepcidin secretion from the liver suppresses iron efflux by internalizing and degrading ferroportin; thus, the hepcidin/ferroportin axis is extensively investigated for its potential as a therapeutic target to treat iron overload. This review focuses on the divalent metal transporter 1-mediated intestinal iron uptake and hepcidin/ferroportin axis that regulate systemic iron homeostasis.
Collapse
Affiliation(s)
- Yasumasa Okazaki
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
12
|
Cellier MFM. Slc11 Synapomorphy: A Conserved 3D Framework Articulating Carrier Conformation Switch. Int J Mol Sci 2023; 24:15076. [PMID: 37894758 PMCID: PMC10606218 DOI: 10.3390/ijms242015076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Transmembrane carriers of the Slc11 family catalyze proton (H+)-dependent uptake of divalent metal ions (Me2+) such as manganese and iron-vital elements coveted during infection. The Slc11 mechanism of high-affinity Me2+ cell import is selective and conserved between prokaryotic (MntH) and eukaryotic (Nramp) homologs, though processes coupling the use of the proton motive force to Me2+ uptake evolved repeatedly. Adding bacterial piracy of Nramp genes spread in distinct environmental niches suggests selective gain of function that may benefit opportunistic pathogens. To better understand Slc11 evolution, Alphafold (AF2)/Colabfold (CF) 3D predictions for bacterial sequences from sister clades of eukaryotic descent (MCb and MCg) were compared using both native and mutant templates. AF2/CF model an array of native MCb intermediates spanning the transition from outwardly open (OO) to inwardly open (IO) carriers. In silico mutagenesis targeting (i) a set of (evolutionarily coupled) sites that may define Slc11 function (putative synapomorphy) and (ii) residues from networked communities evolving during MCb transition indicates that Slc11 synapomorphy primarily instructs a Me2+-selective conformation switch which unlocks carrier inner gate and contributes to Me2+ binding site occlusion and outer gate locking. Inner gate opening apparently proceeds from interaction between transmembrane helix (h) h5, h8 and h1a. MCg1 xenologs revealed marked differences in carrier shape and plasticity, owing partly to an altered intramolecular H+ network. Yet, targeting Slc11 synapomorphy also converted MCg1 IO models to an OO state, apparently mobilizing the same residues to control gates. But MCg1 response to mutagenesis differed, with extensive divergence within this clade correlating with MCb-like modeling properties. Notably, MCg1 divergent epistasis marks the emergence of the genus Bordetella-Achromobacter. Slc11 synapomorphy localizes to the 3D areas that deviate least among MCb and MCg1 models (either IO or OO) implying that it constitutes a 3D network of residues articulating a Me2+-selective carrier conformation switch which is maintained in fast-evolving clades at the cost of divergent epistatic interactions impacting carrier shape and dynamics.
Collapse
Affiliation(s)
- Mathieu F M Cellier
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC H7V 1B7, Canada
| |
Collapse
|
13
|
Ray S, Gaudet R. Structures and coordination chemistry of transporters involved in manganese and iron homeostasis. Biochem Soc Trans 2023; 51:897-923. [PMID: 37283482 PMCID: PMC10330786 DOI: 10.1042/bst20210699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023]
Abstract
A repertoire of transporters plays a crucial role in maintaining homeostasis of biologically essential transition metals, manganese, and iron, thus ensuring cell viability. Elucidating the structure and function of many of these transporters has provided substantial understanding into how these proteins help maintain the optimal cellular concentrations of these metals. In particular, recent high-resolution structures of several transporters bound to different metals enable an examination of how the coordination chemistry of metal ion-protein complexes can help us understand metal selectivity and specificity. In this review, we first provide a comprehensive list of both specific and broad-based transporters that contribute to cellular homeostasis of manganese (Mn2+) and iron (Fe2+ and Fe3+) in bacteria, plants, fungi, and animals. Furthermore, we explore the metal-binding sites of the available high-resolution metal-bound transporter structures (Nramps, ABC transporters, P-type ATPase) and provide a detailed analysis of their coordination spheres (ligands, bond lengths, bond angles, and overall geometry and coordination number). Combining this information with the measured binding affinity of the transporters towards different metals sheds light into the molecular basis of substrate selectivity and transport. Moreover, comparison of the transporters with some metal scavenging and storage proteins, which bind metal with high affinity, reveal how the coordination geometry and affinity trends reflect the biological role of individual proteins involved in the homeostasis of these essential transition metals.
Collapse
Affiliation(s)
- Shamayeeta Ray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, U.S.A
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, U.S.A
| |
Collapse
|
14
|
Chen X, Zhao Y, Zhong Y, Chen J, Qi X. Deciphering the functional roles of transporter proteins in subcellular metal transportation of plants. PLANTA 2023; 258:17. [PMID: 37314548 DOI: 10.1007/s00425-023-04170-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023]
Abstract
MAIN CONCLUSION The role of transporters in subcellular metal transport is of great significance for plants in coping with heavy metal stress and maintaining their proper growth and development. Heavy metal toxicity is a serious long-term threat to plant growth and agricultural production, becoming a global environmental concern. Excessive heavy metal accumulation not only damages the biochemical and physiological functions of plants but also causes chronic health hazard to human beings through the food chain. To deal with heavy metal stress, plants have evolved a series of elaborate mechanisms, especially a variety of spatially distributed transporters, to strictly regulate heavy metal uptake and distribution. Deciphering the subcellular role of transporter proteins in controlling metal absorption, transport and separation is of great significance for understanding how plants cope with heavy metal stress and improving their adaptability to environmental changes. Hence, we herein introduce the detrimental effects of excessive common essential and non-essential heavy metals on plant growth, and describe the structural and functional characteristics of transporter family members, with a particular emphasis on their roles in maintaining heavy metal homeostasis in various organelles. Besides, we discuss the potential of controlling transporter gene expression by transgenic approaches in response to heavy metal stress. This review will be valuable to researchers and breeders for enhancing plant tolerance to heavy metal contamination.
Collapse
Affiliation(s)
- Xingqi Chen
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Yuanchun Zhao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Yuqing Zhong
- Environmental Monitoring Station of Suzhou City, Suzhou, 215004, China
| | - Jiajia Chen
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Xin Qi
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China.
| |
Collapse
|
15
|
Ray S, Berry SP, Wilson EA, Zhang CH, Shekhar M, Singharoy A, Gaudet R. High-resolution structures with bound Mn 2+ and Cd 2+ map the metal import pathway in an Nramp transporter. eLife 2023; 12:e84006. [PMID: 37039477 PMCID: PMC10185341 DOI: 10.7554/elife.84006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 04/06/2023] [Indexed: 04/12/2023] Open
Abstract
Transporters of the Nramp (Natural resistance-associated macrophage protein) family import divalent transition metal ions into cells of most organisms. By supporting metal homeostasis, Nramps prevent diseases and disorders related to metal insufficiency or overload. Previous studies revealed that Nramps take on a LeuT fold and identified the metal-binding site. We present high-resolution structures of Deinococcus radiodurans (Dra)Nramp in three stable conformations of the transport cycle revealing that global conformational changes are supported by distinct coordination geometries of its physiological substrate, Mn2+, across conformations, and by conserved networks of polar residues lining the inner and outer gates. In addition, a high-resolution Cd2+-bound structure highlights differences in how Cd2+ and Mn2+ are coordinated by DraNramp. Complementary metal binding studies using isothermal titration calorimetry with a series of mutated DraNramp proteins indicate that the thermodynamic landscape for binding and transporting physiological metals like Mn2+ is different and more robust to perturbation than for transporting the toxic Cd2+ metal. Overall, the affinity measurements and high-resolution structural information on metal substrate binding provide a foundation for understanding the substrate selectivity of essential metal ion transporters like Nramps.
Collapse
Affiliation(s)
- Shamayeeta Ray
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Samuel P Berry
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Eric A Wilson
- School of Molecular Sciences, Arizona State UniversityTempeUnited States
| | - Casey H Zhang
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | | | - Abhishek Singharoy
- School of Molecular Sciences, Arizona State UniversityTempeUnited States
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
16
|
Lehmann EF, Liziczai M, Drożdżyk K, Altermatt P, Langini C, Manolova V, Sundstrom H, Dürrenberger F, Dutzler R, Manatschal C. Structures of ferroportin in complex with its specific inhibitor vamifeport. eLife 2023; 12:e83053. [PMID: 36943194 PMCID: PMC10030120 DOI: 10.7554/elife.83053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
A central regulatory mechanism of iron homeostasis in humans involves ferroportin (FPN), the sole cellular iron exporter, and the peptide hormone hepcidin, which inhibits Fe2+ transport and induces internalization and degradation of FPN. Dysregulation of the FPN/hepcidin axis leads to diverse pathological conditions, and consequently, pharmacological compounds that inhibit FPN-mediated iron transport are of high clinical interest. Here, we describe the cryo-electron microscopy structures of human FPN in complex with synthetic nanobodies and vamifeport (VIT-2763), the first clinical-stage oral FPN inhibitor. Vamifeport competes with hepcidin for FPN binding and is currently in clinical development for β-thalassemia and sickle cell disease. The structures display two distinct conformations of FPN, representing outward-facing and occluded states of the transporter. The vamifeport site is located in the center of the protein, where the overlap with hepcidin interactions underlies the competitive relationship between the two molecules. The introduction of point mutations in the binding pocket of vamifeport reduces its affinity to FPN, emphasizing the relevance of the structural data. Together, our study reveals conformational rearrangements of FPN that are of potential relevance for transport, and it provides initial insight into the pharmacological targeting of this unique iron efflux transporter.
Collapse
Affiliation(s)
| | - Márton Liziczai
- Department of Biochemistry, University of ZurichZürichSwitzerland
| | | | | | - Cassiano Langini
- Department of Biochemistry, University of ZurichZürichSwitzerland
| | | | | | | | - Raimund Dutzler
- Department of Biochemistry, University of ZurichZürichSwitzerland
| | | |
Collapse
|
17
|
Wu C, Xiao S, Zuo D, Cheng H, Zhang Y, Wang Q, Lv L, Song G. Genome-wide analysis elucidates the roles of GhHMA genes in different abiotic stresses and fiber development in upland cotton. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:281-301. [PMID: 36442360 DOI: 10.1016/j.plaphy.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/12/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
The heavy metal-binding domain is involved in heavy metal transporting and plays a significant role in plant detoxification. However, the functions of HMAs are less well known in cotton. In this study, a total of 143 GhHMAs (heavy metal-binding domain) were detected by genome-wide identification in G. hirsutum L. All the GhHMAs were classified into four groups via phylogenetic analysis. The exon/intron structure and protein motifs indicated that each branch of the GhHMA genes was highly conserved. 212 paralogous GhHMA gene pairs were identified, and the segmental duplications were the main role to the expansion of GhHMAs. The Ka/Ks values suggested that the GhHMA gene family has undergone purifying selection during the long-term evolutionary process. GhHMA3 and GhHMA75 were located in the plasma membrane, while GhHMA26, GhHMA117 and GhHMA121 were located in the nucleus, respectively. Transcriptomic data and qRT-PCR showed that GhHMA26 exhibited different expression patterns in each tissue and during fiber development or under different abiotic stresses. Overexpressing GhHMA26 significantly promoted the elongation of leaf trichomes and also improved the tolerance to salt stress. Therefore, GhHMA26 may positively regulate fiber elongation and abiotic stress. Yeast two-hybrid assays indicated that GhHMA26 and GhHMA75 participated in multiple biological functions. Our results suggest some genes in the GhHMAs might be associated with fiber development and the abiotic stress response, which could promote further research involving functional analysis of GhHMA genes in cotton.
Collapse
Affiliation(s)
- Cuicui Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China; Cotton Research Institute of Shanxi Agricultural University, Yuncheng, 044000, China
| | - Shuiping Xiao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China; Cotton Research Institute of Jiangxi Province, Jiujiang, 332105, China
| | - Dongyun Zuo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Hailiang Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Youping Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Qiaolian Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Limin Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Guoli Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
18
|
Spreacker PJ, Brousseau M, Hisao GS, Soltani M, Davis JH, Henzler-Wildman KA. Charge neutralization of the active site glutamates does not limit substrate binding and transport by small multidrug resistance transporter EmrE. J Biol Chem 2022; 299:102805. [PMID: 36529287 PMCID: PMC9860125 DOI: 10.1016/j.jbc.2022.102805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
EmrE, a small multidrug resistance transporter from Escherichia coli, confers broad-spectrum resistance to polyaromatic cations and quaternary ammonium compounds. Previous transport assays demonstrate that EmrE transports a +1 and a +2 substrate with the same stoichiometry of two protons:one cationic substrate. This suggests that EmrE substrate binding capacity is limited to neutralization of the two essential glutamates, E14A and E14B (one from each subunit in the antiparallel homodimer), in the primary binding site. Here, we explicitly test this hypothesis, since EmrE has repeatedly broken expectations for membrane protein structure and transport mechanism. We previously showed that EmrE can bind a +1 cationic substrate and proton simultaneously, with cationic substrate strongly associated with one E14 residue, whereas the other remains accessible to bind and transport a proton. Here, we demonstrate that EmrE can bind a +2 cation substrate and a proton simultaneously using NMR pH titrations of EmrE saturated with divalent substrates, for a net +1 charge in the transport pore. Furthermore, we find that EmrE can alternate access and transport a +2 substrate and proton at the same time. Together, these results lead us to conclude that E14 charge neutralization does not limit the binding and transport capacity of EmrE.
Collapse
Affiliation(s)
- Peyton J. Spreacker
- Department of Biochemistry, University of Wisconsin – Madison, Madison, Wisconsin, USA
| | - Merissa Brousseau
- Department of Biochemistry, University of Wisconsin – Madison, Madison, Wisconsin, USA
| | - Grant S. Hisao
- Department of Biochemistry, University of Wisconsin – Madison, Madison, Wisconsin, USA
| | - Mohammad Soltani
- Department of Chemistry, University of South Alabama, Mobile, Alabama, USA
| | - James H. Davis
- Department of Chemistry, University of South Alabama, Mobile, Alabama, USA
| | - Katherine A. Henzler-Wildman
- Department of Biochemistry, University of Wisconsin – Madison, Madison, Wisconsin, USA,For correspondence: Katherine A. Henzler-Wildman
| |
Collapse
|
19
|
Spreacker PJ, Thomas NE, Beeninga WF, Brousseau M, Porter CJ, Hibbs KM, Henzler-Wildman KA. Activating alternative transport modes in a multidrug resistance efflux pump to confer chemical susceptibility. Nat Commun 2022; 13:7655. [PMID: 36496486 PMCID: PMC9741644 DOI: 10.1038/s41467-022-35410-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Small multidrug resistance (SMR) transporters contribute to antibiotic resistance through proton-coupled efflux of toxic compounds. Previous biophysical studies of the E. coli SMR transporter EmrE suggest that it should also be able to perform proton/toxin symport or uniport, leading to toxin susceptibility rather than resistance in vivo. Here we show EmrE does confer susceptibility to several previously uncharacterized small-molecule substrates in E. coli, including harmane. In vitro electrophysiology assays demonstrate that harmane binding triggers uncoupled proton flux through EmrE. Assays in E. coli are consistent with EmrE-mediated dissipation of the transmembrane pH gradient as the mechanism underlying the in vivo phenotype of harmane susceptibility. Furthermore, checkerboard assays show this alternative EmrE transport mode can synergize with some existing antibiotics, such as kanamycin. These results demonstrate that it is possible to not just inhibit multidrug efflux, but to activate alternative transport modes detrimental to bacteria, suggesting a strategy to address antibiotic resistance.
Collapse
Affiliation(s)
- Peyton J Spreacker
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53703, USA
| | - Nathan E Thomas
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53703, USA
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA, 92093, USA
| | - Will F Beeninga
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53703, USA
| | - Merissa Brousseau
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53703, USA
| | - Colin J Porter
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53703, USA
| | - Kylie M Hibbs
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53703, USA
| | - Katherine A Henzler-Wildman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53703, USA.
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53703, USA.
| |
Collapse
|
20
|
Hao X, Mo Y, Ji W, Yang X, Xie Z, Huang D, Li D, Tian L. The OsNramp4 aluminum transporter is involved in cadmium accumulation in rice grains. REPRODUCTION AND BREEDING 2022. [DOI: 10.1016/j.repbre.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
21
|
Cellier MFM. Nramp: Deprive and conquer? Front Cell Dev Biol 2022; 10:988866. [PMID: 36313567 PMCID: PMC9606685 DOI: 10.3389/fcell.2022.988866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Solute carriers 11 (Slc11) evolved from bacterial permease (MntH) to eukaryotic antibacterial defense (Nramp) while continuously mediating proton (H+)-dependent manganese (Mn2+) import. Also, Nramp horizontal gene transfer (HGT) toward bacteria led to mntH polyphyly. Prior demonstration that evolutionary rate-shifts distinguishing Slc11 from outgroup carriers dictate catalytic specificity suggested that resolving Slc11 family tree may provide a function-aware phylogenetic framework. Hence, MntH C (MC) subgroups resulted from HGTs of prototype Nramp (pNs) parologs while archetype Nramp (aNs) correlated with phagocytosis. PHI-Blast based taxonomic profiling confirmed MntH B phylogroup is confined to anaerobic bacteria vs. MntH A (MA)’s broad distribution; suggested niche-related spread of MC subgroups; established that MA-variant MH, which carries ‘eukaryotic signature’ marks, predominates in archaea. Slc11 phylogeny shows MH is sister to Nramp. Site-specific analysis of Slc11 charge network known to interact with the protonmotive force demonstrates sequential rate-shifts that recapitulate Slc11 evolution. 3D mapping of similarly coevolved sites across Slc11 hydrophobic core revealed successive targeting of discrete areas. The data imply that pN HGT could advantage recipient bacteria for H+-dependent Mn2+ acquisition and Alphafold 3D models suggest conformational divergence among MC subgroups. It is proposed that Slc11 originated as a bacterial stress resistance function allowing Mn2+-dependent persistence in conditions adverse for growth, and that archaeal MH could contribute to eukaryogenesis as a Mn2+ sequestering defense perhaps favoring intracellular growth-competent bacteria.
Collapse
|
22
|
Salustros N, Grønberg C, Abeyrathna NS, Lyu P, Orädd F, Wang K, Andersson M, Meloni G, Gourdon P. Structural basis of ion uptake in copper-transporting P 1B-type ATPases. Nat Commun 2022; 13:5121. [PMID: 36045128 PMCID: PMC9433437 DOI: 10.1038/s41467-022-32751-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
Copper is essential for living cells, yet toxic at elevated concentrations. Class 1B P-type (P1B-) ATPases are present in all kingdoms of life, facilitating cellular export of transition metals including copper. P-type ATPases follow an alternating access mechanism, with inward-facing E1 and outward-facing E2 conformations. Nevertheless, no structural information on E1 states is available for P1B-ATPases, hampering mechanistic understanding. Here, we present structures that reach 2.7 Å resolution of a copper-specific P1B-ATPase in an E1 conformation, with complementing data and analyses. Our efforts reveal a domain arrangement that generates space for interaction with ion donating chaperones, and suggest a direct Cu+ transfer to the transmembrane core. A methionine serves a key role by assisting the release of the chaperone-bound ion and forming a cargo entry site together with the cysteines of the CPC signature motif. Collectively, the findings provide insights into P1B-mediated transport, likely applicable also to human P1B-members.
Collapse
Affiliation(s)
- Nina Salustros
- Department of Biomedical Sciences, Copenhagen University, Maersk Tower 7-9, Nørre Allé 14, DK-2200, Copenhagen, Denmark
| | - Christina Grønberg
- Department of Biomedical Sciences, Copenhagen University, Maersk Tower 7-9, Nørre Allé 14, DK-2200, Copenhagen, Denmark
| | - Nisansala S Abeyrathna
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800W Campbell Rd., Richardson, TX, 75080, USA
| | - Pin Lyu
- Department of Biomedical Sciences, Copenhagen University, Maersk Tower 7-9, Nørre Allé 14, DK-2200, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark
| | - Fredrik Orädd
- Department of Chemistry, Umeå University, Linneaus Väg 10, SE-901 87, Umeå, Sweden
| | - Kaituo Wang
- Department of Biomedical Sciences, Copenhagen University, Maersk Tower 7-9, Nørre Allé 14, DK-2200, Copenhagen, Denmark
| | - Magnus Andersson
- Department of Chemistry, Umeå University, Linneaus Väg 10, SE-901 87, Umeå, Sweden
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800W Campbell Rd., Richardson, TX, 75080, USA
| | - Pontus Gourdon
- Department of Biomedical Sciences, Copenhagen University, Maersk Tower 7-9, Nørre Allé 14, DK-2200, Copenhagen, Denmark.
- Department of Experimental Medical Science, Lund University, Sölvegatan 19, SE-221 84, Lund, Sweden.
| |
Collapse
|
23
|
del Alamo D, DeSousa L, Nair RM, Rahman S, Meiler J, Mchaourab HS. Integrated AlphaFold2 and DEER investigation of the conformational dynamics of a pH-dependent APC antiporter. Proc Natl Acad Sci U S A 2022; 119:e2206129119. [PMID: 35969794 PMCID: PMC9407458 DOI: 10.1073/pnas.2206129119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
The Amino Acid-Polyamine-Organocation (APC) transporter GadC contributes to the survival of pathogenic bacteria under extreme acid stress by exchanging extracellular glutamate for intracellular γ-aminobutyric acid (GABA). Its structure, determined in an inward-facing conformation at alkaline pH, consists of the canonical LeuT-fold with a conserved five-helix inverted repeat, thereby resembling functionally divergent transporters such as the serotonin transporter SERT and the glucose-sodium symporter SGLT1. However, despite this structural similarity, it is unclear if the conformational dynamics of antiporters such as GadC follow the blueprint of these or other LeuT-fold transporters. Here, we used double electron-electron resonance (DEER) spectroscopy to monitor the conformational dynamics of GadC in lipid bilayers in response to acidification and substrate binding. To guide experimental design and facilitate the interpretation of the DEER data, we generated an ensemble of structural models in multiple conformations using a recently introduced modification of AlphaFold2 . Our experimental results reveal acid-induced conformational changes that dislodge the Cterminus from the permeation pathway coupled with rearrangement of helices that enables isomerization between inward- and outward-facing states. The substrate glutamate, but not GABA, modulates the dynamics of an extracellular thin gate without shifting the equilibrium between inward- and outward-facing conformations. In addition to introducing an integrated methodology for probing transporter conformational dynamics, the congruence of the DEER data with patterns of structural rearrangements deduced from ensembles of AlphaFold2 models illuminates the conformational cycle of GadC underpinning transport and exposes yet another example of the divergence between the dynamics of different families in the LeuT-fold.
Collapse
Affiliation(s)
- Diego del Alamo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37212
- Department of Chemistry, Vanderbilt University, Nashville, TN 37212
| | - Lillian DeSousa
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37212
| | - Rahul M. Nair
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37212
| | - Suhaila Rahman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37212
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN 37212
- Institute for Drug Discovery, Leipzig University, Leipzig, Germany 04109
| | - Hassane S. Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37212
| |
Collapse
|
24
|
Del Alamo D, Meiler J, Mchaourab HS. Principles of Alternating Access in LeuT-fold Transporters: Commonalities and Divergences. J Mol Biol 2022; 434:167746. [PMID: 35843285 DOI: 10.1016/j.jmb.2022.167746] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/15/2022]
Abstract
Found in all domains of life, transporters belonging to the LeuT-fold class mediate the import and exchange of hydrophilic and charged compounds such as amino acids, metals, and sugar molecules. Nearly two decades of investigations on the eponymous bacterial transporter LeuT have yielded a library of high-resolution snapshots of its conformational cycle linked by solution-state experimental data obtained from multiple techniques. In parallel, its topology has been observed in symporters and antiporters characterized by a spectrum of substrate specificities and coupled to gradients of distinct ions. Here we review and compare mechanistic models of transport for LeuT, its well-studied homologs, as well as functionally distant members of the fold, emphasizing the commonalities and divergences in alternating access and the corresponding energy landscapes. Our integrated summary illustrates how fold conservation, a hallmark of the LeuT fold, coincides with divergent choreographies of alternating access that nevertheless capitalize on recurrent structural motifs. In addition, it highlights the knowledge gap that hinders the leveraging of the current body of research into detailed mechanisms of transport for this important class of membrane proteins.
Collapse
Affiliation(s)
- Diego Del Alamo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, USA. https://twitter.com/DdelAlamo
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA; Institute for Drug Discovery, Leipzig University, Leipzig, DE, USA. https://twitter.com/MeilerLab
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
25
|
Wiuf A, Steffen JH, Becares ER, Grønberg C, Mahato DR, Rasmussen SGF, Andersson M, Croll T, Gotfryd K, Gourdon P. The two-domain elevator-type mechanism of zinc-transporting ZIP proteins. SCIENCE ADVANCES 2022; 8:eabn4331. [PMID: 35857505 PMCID: PMC9278863 DOI: 10.1126/sciadv.abn4331] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/27/2022] [Indexed: 05/13/2023]
Abstract
Zinc is essential for all organisms and yet detrimental at elevated levels. Hence, homeostasis of this metal is tightly regulated. The Zrt/Irt-like proteins (ZIPs) represent the only zinc importers in metazoans. Mutations in human ZIPs cause serious disorders, but the mechanism by which ZIPs transfer zinc remains elusive. Hitherto, structural information is only available for a model member, BbZIP, and as a single, ion-bound conformation, precluding mechanistic insights. Here, we elucidate an inward-open metal-free BbZIP structure, differing substantially in the relative positions of the two separate domains of ZIPs. With accompanying coevolutional analyses, mutagenesis, and uptake assays, the data point to an elevator-type transport mechanism, likely shared within the ZIP family, unifying earlier functional data. Moreover, the structure reveals a previously unknown ninth transmembrane segment that is important for activity in vivo. Our findings outline the mechanistic principles governing ZIP-protein transport and enhance the molecular understanding of ZIP-related disorders.
Collapse
Affiliation(s)
- Anders Wiuf
- Department of Biomedical Sciences, University of Copenhagen, Mærsk Tower 7-9, Nørre Allé 14, DK-2200 Copenhagen, Denmark
| | - Jonas Hyld Steffen
- Department of Biomedical Sciences, University of Copenhagen, Mærsk Tower 7-9, Nørre Allé 14, DK-2200 Copenhagen, Denmark
| | - Eva Ramos Becares
- Department of Biomedical Sciences, University of Copenhagen, Mærsk Tower 7-9, Nørre Allé 14, DK-2200 Copenhagen, Denmark
| | - Christina Grønberg
- Department of Biomedical Sciences, University of Copenhagen, Mærsk Tower 7-9, Nørre Allé 14, DK-2200 Copenhagen, Denmark
| | - Dhani Ram Mahato
- Department of Chemistry, Umeå University, Linnaeus Väg 10, SE-901 87 Umeå, Sweden
| | - Søren G. F. Rasmussen
- Department of Neuroscience, University of Copenhagen, Maersk Tower 7-5, Nørre Allé 14, DK-2200 Copenhagen, Denmark
| | - Magnus Andersson
- Department of Chemistry, Umeå University, Linnaeus Väg 10, SE-901 87 Umeå, Sweden
| | - Tristan Croll
- Cambridge Institute for Medical Research, Department of Haematology, University of Cambridge, Keith Peters Building, Hills Rd., Cambridge CB2 0XY, UK
| | - Kamil Gotfryd
- Department of Biomedical Sciences, University of Copenhagen, Mærsk Tower 7-9, Nørre Allé 14, DK-2200 Copenhagen, Denmark
| | - Pontus Gourdon
- Department of Biomedical Sciences, University of Copenhagen, Mærsk Tower 7-9, Nørre Allé 14, DK-2200 Copenhagen, Denmark
- Department of Experimental Medical Science, Lund University, Sölvegatan 19, SE-221 84 Lund, Sweden
| |
Collapse
|
26
|
Yu W, Deng S, Chen X, Cheng Y, Li Z, Wu J, Zhu D, Zhou J, Cao Y, Fayyaz P, Shi W, Luo Z. PcNRAMP1 Enhances Cadmium Uptake and Accumulation in Populus × canescens. Int J Mol Sci 2022; 23:ijms23147593. [PMID: 35886940 PMCID: PMC9316961 DOI: 10.3390/ijms23147593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 12/10/2022] Open
Abstract
Poplars are proposed for the phytoremediation of heavy metal (HM) polluted soil. Characterization of genes involved in HM uptake and accumulation in poplars is crucial for improving the phytoremediation efficiency. Here, Natural Resistance-Associated Macrophage Protein 1 (NRAMP1) encoding a transporter involved in cadmium (Cd) uptake and transport was functionally characterized in Populus × canescens. Eight putative PcNRAMPs were identified in the poplar genome and most of them were primarily expressed in the roots. The expression of PcNRAMP1 was induced in Cd-exposed roots and it encoded a plasma membrane-localized protein. PcNRAMP1 showed transport activity for Cd2+ when expressed in yeast. The PcNRAMP1-overexpressed poplars enhanced net Cd2+ influxes by 39–52% in the roots and Cd accumulation by 25–29% in aerial parts compared to the wildtype (WT). However, Cd-induced biomass decreases were similar between the transgenics and WT. Further analysis displayed that the two amino acid residues of PcNRAMP1, i.e., M236 and P405, play pivotal roles in regulating its transport activity for Cd2+. These results suggest that PcNRAMP1 is a plasma membrane-localized transporter involved in Cd uptake and transporting Cd from the roots to aerial tissues, and that the conserved residues in PcNRAMP1 are essential for its Cd transport activity in poplars.
Collapse
Affiliation(s)
- Wenjian Yu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Shurong Deng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Xin Chen
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Yao Cheng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Zhuorong Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Jiangting Wu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Dongyue Zhu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Jing Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Yuan Cao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Payam Fayyaz
- Forest, Range and Watershed Management Department, Agriculture and Natural Resources Faculty, Yasouj University, Yasuj 75919-63179, Iran;
| | - Wenguang Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
- Correspondence: (W.S.); (Z.L.)
| | - Zhibin Luo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
- Correspondence: (W.S.); (Z.L.)
| |
Collapse
|
27
|
Structural and Functional Characterization of the Holliday Junction Resolvase RuvC from Deinococcus radiodurans. Microorganisms 2022; 10:microorganisms10061160. [PMID: 35744678 PMCID: PMC9228767 DOI: 10.3390/microorganisms10061160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 12/04/2022] Open
Abstract
Holliday junctions (HJs) are four-way DNA structures, which are an important intermediate in the process of homologous recombination. In most bacteria, HJs are cleaved by specific nucleases called RuvC resolvases at the end of homologous recombination. Deinococcus radiodurans is an extraordinary radiation-resistant bacterium and is known as an ideal model organism for elucidating DNA repair processes. Here, we described the biochemical properties and the crystal structure of RuvC from D. radiodurans (DrRuvC). DrRuvC exhibited an RNase H fold that belonged to the retroviral integrase family. Among many DNA substrates, DrRuvC specifically bound to HJ DNA and cleaved it. In particular, Mn2+ was the preferred bivalent metal co-factor for HJ cleavage, whereas high concentrations of Mg2+ inhibited the binding of DrRuvC to HJ. In addition, DrRuvC was crystallized and the crystals diffracted to 1.6 Å. The crystal structure of DrRuvC revealed essential amino acid sites for cleavage and binding activities, indicating that DrRuvC was a typical resolvase with a characteristic choice for metal co-factor.
Collapse
|
28
|
Beckstein O, Naughton F. General principles of secondary active transporter function. BIOPHYSICS REVIEWS 2022; 3:011307. [PMID: 35434715 PMCID: PMC8984959 DOI: 10.1063/5.0047967] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 02/23/2022] [Indexed: 04/13/2023]
Abstract
Transport of ions and small molecules across the cell membrane against electrochemical gradients is catalyzed by integral membrane proteins that use a source of free energy to drive the energetically uphill flux of the transported substrate. Secondary active transporters couple the spontaneous influx of a "driving" ion such as Na+ or H+ to the flux of the substrate. The thermodynamics of such cyclical non-equilibrium systems are well understood, and recent work has focused on the molecular mechanism of secondary active transport. The fact that these transporters change their conformation between an inward-facing and outward-facing conformation in a cyclical fashion, called the alternating access model, is broadly recognized as the molecular framework in which to describe transporter function. However, only with the advent of high resolution crystal structures and detailed computer simulations, it has become possible to recognize common molecular-level principles between disparate transporter families. Inverted repeat symmetry in secondary active transporters has shed light onto how protein structures can encode a bi-stable two-state system. Based on structural data, three broad classes of alternating access transitions have been described as rocker-switch, rocking-bundle, and elevator mechanisms. More detailed analysis indicates that transporters can be understood as gated pores with at least two coupled gates. These gates are not just a convenient cartoon element to illustrate a putative mechanism but map to distinct parts of the transporter protein. Enumerating all distinct gate states naturally includes occluded states in the alternating access picture and also suggests what kind of protein conformations might be observable. By connecting the possible conformational states and ion/substrate bound states in a kinetic model, a unified picture emerges in which the symporter, antiporter, and uniporter functions are extremes in a continuum of functionality. As usual with biological systems, few principles and rules are absolute and exceptions are discussed as well as how biological complexity may be integrated in quantitative kinetic models that may provide a bridge from the structure to function.
Collapse
Affiliation(s)
- Oliver Beckstein
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | | |
Collapse
|
29
|
Liu W, Huo C, He L, Ji X, Yu T, Yuan J, Zhou Z, Song L, Yu Q, Chen J, Chen N. The NtNRAMP1 transporter is involved in cadmium and iron transport in tobacco (Nicotiana tabacum). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 173:59-67. [PMID: 35101795 DOI: 10.1016/j.plaphy.2022.01.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Plant natural resistance-associated macrophage protein (NRAMP) plays an important role in maintaining intracellular metal homeostasis and coping with environmental heavy metal stress. Until now, studies on NRAMP in tobacco have been limited. In this study, NtNRAMP1 was cloned from tobacco cultivar TN90, and the highest expression level was observed in the roots, which was strongly induced by Fe deficiency. Heterologously expressed NtNRAMP1 significantly increased the Cd sensitivity of the yeast Δycf1 mutant. Three overexpressed NtNRAMP1 lines were generated to reveal the biofunction of NtNRAMP1. In the soil pot experiments under natural conditions, the contents of Fe and total chlorophyll were increased in the leaves of transgenic tobacco compared with the WT. To reveal the characteristics of NtNRAMP1 in metal transport, transgenic plants were cultured in hydroponic solution with 50 μM Cd and 200 μM Fe. Compared with the WT, the Cd concentrations in transgenic plants increased by 1.26-2.02-fold in the roots. Interestingly, the Cd content in the shoots of transgenic plants was slightly reduced compared with that of the WT. Overexpression of NtNRAMP1 did not promote Fe uptake from the external environment into the roots but enhanced the transfer of Fe from the roots to shoots. Additionally, Fe overload in the leaves of transgenic tobacco resulted in increased levels of MDA and H2O2 while Fe toxicity may be relieved by POD. In conclusion, overexpression of NtNRAMP1 in tobacco could promote Cd uptake and Fe transport from the roots to shoots while disturbing Fe homeostasis in the leaves of transgenic tobacco.
Collapse
Affiliation(s)
- Wanhong Liu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China; Chongqing Key Laboratory of Industrial Fermentation Microorganism, Chongqing University of Science and Technology, Chongqing, 401331, China.
| | - Chunsong Huo
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Linshen He
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Xue Ji
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Ting Yu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Jinwei Yuan
- College of Resources and Environment Science, Southwest University, Chongqing, 400715, China
| | - Ziyi Zhou
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Lingrong Song
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Qin Yu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Ji Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Nan Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| |
Collapse
|
30
|
Ramanadane K, Straub MS, Dutzler R, Manatschal C. Structural and functional properties of a magnesium transporter of the SLC11/NRAMP family. eLife 2022; 11:74589. [PMID: 35001872 PMCID: PMC8806188 DOI: 10.7554/elife.74589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Members of the ubiquitous SLC11/NRAMP family catalyze the uptake of divalent transition metal ions into cells. They have evolved to efficiently select these trace elements from a large pool of Ca2+ and Mg2+, which are both orders of magnitude more abundant, and to concentrate them in the cytoplasm aided by the cotransport of H+ serving as energy source. In the present study, we have characterized a member of a distant clade of the family found in prokaryotes, termed NRMTs, that were proposed to function as transporters of Mg2+. The protein transports Mg2+ and Mn2+ but not Ca2+ by a mechanism that is not coupled to H+. Structures determined by cryo-EM and X-ray crystallography revealed a generally similar protein architecture compared to classical NRAMPs, with a restructured ion binding site whose increased volume provides suitable interactions with ions that likely have retained much of their hydration shell.
Collapse
Affiliation(s)
| | - Monique S Straub
- Department of Biochemistry, University of Zurich, Zürich, Switzerland
| | - Raimund Dutzler
- Department of Biochemistry, University of Zurich, Zürich, Switzerland
| | | |
Collapse
|
31
|
Brown JB, Lee MA, Smith AT. Ins and Outs: Recent Advancements in Membrane Protein-Mediated Prokaryotic Ferrous Iron Transport. Biochemistry 2021; 60:3277-3291. [PMID: 34670078 DOI: 10.1021/acs.biochem.1c00586] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Iron is an essential nutrient for virtually every living organism, especially pathogenic prokaryotes. Despite its importance, however, both the acquisition and the export of this element require dedicated pathways that are dependent on oxidation state. Due to its solubility and kinetic lability, reduced ferrous iron (Fe2+) is useful to bacteria for import, chaperoning, and efflux. Once imported, ferrous iron may be loaded into apo and nascent enzymes and even sequestered into storage proteins under certain conditions. However, excess labile ferrous iron can impart toxicity as it may spuriously catalyze Fenton chemistry, thereby generating reactive oxygen species and leading to cellular damage. In response, it is becoming increasingly evident that bacteria have evolved Fe2+ efflux pumps to deal with conditions of ferrous iron excess and to prevent intracellular oxidative stress. In this work, we highlight recent structural and mechanistic advancements in our understanding of prokaryotic ferrous iron import and export systems, with a focus on the connection of these essential transport systems to pathogenesis. Given the connection of these pathways to the virulence of many increasingly antibiotic resistant bacterial strains, a greater understanding of the mechanistic details of ferrous iron cycling in pathogens could illuminate new pathways for future therapeutic developments.
Collapse
Affiliation(s)
- Janae B Brown
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Mark A Lee
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Aaron T Smith
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
32
|
The conserved serine transporter SdaC moonlights to enable self recognition. J Bacteriol 2021; 204:e0034721. [PMID: 34662238 DOI: 10.1128/jb.00347-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells can use self recognition to achieve cooperative behaviors. Self-recognition genes are thought to principally evolve in tandem with partner self-recognition alleles. However, other constraints on protein evolution could exist. Here, we have identified an interaction outside of self-recognition loci that could constrain the sequence variation of a self-recognition protein. We show that during collective swarm expansion in Proteus mirabilis, self-recognition signaling co-opts SdaC, a serine transporter. Serine uptake is crucial for bacterial survival and colonization. Single-residue variants of SdaC reveal that self recognition requires an open conformation of the protein; serine transport is dispensable. A distant ortholog from Escherichia coli is sufficient for self recognition; however, a paralogous serine transporter, YhaO, is not. Thus, SdaC couples self recognition and serine transport, likely through a shared molecular interface. Self recognition proteins may follow the framework of a complex interaction network rather than an isolated two-protein system. Understanding molecular and ecological constraints on self-recognition proteins lays the groundwork for insights into the evolution of self recognition and emergent collective behaviors. Importance Bacteria can receive secret messages from kin during migration. For Proteus mirabilis, these messages are necessary for virulence in multi-species infections. We show that a serine transporter-conserved among gamma-enterobacteria- enables self recognition. Molecular co-option of nutrient uptake could limit the sequence variation of these message proteins. SdaC is the primary transporter for L-serine, a vital metabolite for colonization during disease. Unlike many self-recognition receptors, SdaC is sufficiently conserved between species to achieve recognition. The predicted open conformation is shared by transport and recognition. SdaC reveals the interdependence of communication and nutrient acquisition. As the broader interactions of self-recognition proteins are studied, features shared among microbial self-recognition systems, such as Dictyostelium spp. and Neurospora spp., could emerge.
Collapse
|
33
|
Thomas NE, Feng W, Henzler-Wildman KA. A solid-supported membrane electrophysiology assay for efficient characterization of ion-coupled transport. J Biol Chem 2021; 297:101220. [PMID: 34562455 PMCID: PMC8517846 DOI: 10.1016/j.jbc.2021.101220] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 12/03/2022] Open
Abstract
Transport stoichiometry determination can provide great insight into the mechanism and function of ion-coupled transporters. Traditional reversal potential assays are a reliable, general method for determining the transport stoichiometry of ion-coupled transporters, but the time and material costs of this technique hinder investigations of transporter behavior under multiple experimental conditions. Solid-supported membrane electrophysiology (SSME) allows multiple recordings of liposomal or membrane samples adsorbed onto a sensor and is sensitive enough to detect transport currents from moderate-flux transporters that are inaccessible to traditional electrophysiology techniques. Here, we use SSME to develop a new method for measuring transport stoichiometry with greatly improved throughput. Using this technique, we were able to verify the recent report of a fixed 2:1 stoichiometry for the proton:guanidinium antiporter Gdx, reproduce the 1H+:2Cl- antiport stoichiometry of CLC-ec1, and confirm loose proton:nitrate coupling for CLC-ec1. Furthermore, we were able to demonstrate quantitative exchange of internal contents of liposomes adsorbed onto SSME sensors to allow multiple experimental conditions to be tested on a single sample. Our SSME method provides a fast, easy, general method for measuring transport stoichiometry, which will facilitate future mechanistic and functional studies of ion-coupled transporters.
Collapse
Affiliation(s)
- Nathan E Thomas
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Wei Feng
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA
| | | |
Collapse
|
34
|
Sachla AJ, Luo Y, Helmann JD. Manganese impairs the QoxABCD terminal oxidase leading to respiration-associated toxicity. Mol Microbiol 2021; 116:729-742. [PMID: 34097790 DOI: 10.1111/mmi.14767] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 11/29/2022]
Abstract
Cell physiology relies on metalloenzymes and can be easily disrupted by imbalances in metal ion pools. Bacillus subtilis requires manganese for growth and has highly regulated mechanisms for import and efflux that help maintain homeostasis. Cells defective for manganese (Mn) efflux are highly sensitive to intoxication, but the processes impaired by Mn excess are often unknown. Here, we employed a forward genetics approach to identify pathways affected by manganese intoxication. Our results highlight a central role for the membrane-localized electron transport chain in metal intoxication during aerobic growth. In the presence of elevated manganese, there is an increased generation of reactive radical species associated with dysfunction of the major terminal oxidase, the cytochrome aa3 heme-copper menaquinol oxidase (QoxABCD). Intoxication is suppressed by diversion of menaquinol to alternative oxidases or by a mutation affecting heme A synthesis that is known to convert QoxABCD from an aa3 to a bo3 -type oxidase. Manganese sensitivity is also reduced by derepression of the MhqR regulon, which protects cells against reactive quinones. These results suggest that dysfunction of the cytochrome aa3 -type quinol oxidase contributes to metal-induced intoxication.
Collapse
Affiliation(s)
- Ankita J Sachla
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - Yuanchan Luo
- Department of Microbiology, Cornell University, Ithaca, NY, USA.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
35
|
Molecular Mechanism of Nramp-Family Transition Metal Transport. J Mol Biol 2021; 433:166991. [PMID: 33865868 DOI: 10.1016/j.jmb.2021.166991] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
The Natural resistance-associated macrophage protein (Nramp) family of transition metal transporters enables uptake and trafficking of essential micronutrients that all organisms must acquire to survive. Two decades after Nramps were identified as proton-driven, voltage-dependent secondary transporters, multiple Nramp crystal structures have begun to illustrate the fine details of the transport process and provide a new framework for understanding a wealth of preexisting biochemical data. Here we review the relevant literature pertaining to Nramps' biological roles and especially their conserved molecular mechanism, including our updated understanding of conformational change, metal binding and transport, substrate selectivity, proton transport, proton-metal coupling, and voltage dependence. We ultimately describe how the Nramp family has adapted the LeuT fold common to many secondary transporters to provide selective transition-metal transport with a mechanism that deviates from the canonical model of symport.
Collapse
|
36
|
Sassa M, Takagi T, Kinjo A, Yoshioka Y, Zayasu Y, Shinzato C, Kanda S, Murakami-Sugihara N, Shirai K, Inoue K. Divalent metal transporter-related protein restricts animals to marine habitats. Commun Biol 2021; 4:463. [PMID: 33846549 PMCID: PMC8041893 DOI: 10.1038/s42003-021-01984-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/12/2021] [Indexed: 12/30/2022] Open
Abstract
Utilization and regulation of metals from seawater by marine organisms are important physiological processes. To better understand metal regulation, we searched the crown-of-thorns starfish genome for the divalent metal transporter (DMT) gene, a membrane protein responsible for uptake of divalent cations. We found two DMT-like sequences. One is an ortholog of vertebrate DMT, but the other is an unknown protein, which we named DMT-related protein (DMTRP). Functional analysis using a yeast expression system demonstrated that DMT transports various metals, like known DMTs, but DMTRP does not. In contrast, DMTRP reduced the intracellular concentration of some metals, especially zinc, suggesting its involvement in negative regulation of metal uptake. Phylogenetic distribution of the DMTRP gene in various metazoans, including sponges, protostomes, and deuterostomes, indicates that it originated early in metazoan evolution. However, the DMTRP gene is only retained in marine species, and its loss seems to have occurred independently in ecdysozoan and vertebrate lineages from which major freshwater and land animals appeared. DMTRP may be an evolutionary and ecological limitation, restricting organisms that possess it to marine habitats, whereas its loss may have allowed other organisms to invade freshwater and terrestrial habitats. Mieko Sassa et al. report a novel divalent metal transporter protein (DMTRP) in the crown-of-thorns starfish genome and determine that all organisms with a DMTRP gene are located in marine habitats. They also show in a functional yeast system that DMTRP can prevent uptake of certain metals, bringing insight into the evolution of metal regulation for marine organisms.
Collapse
Affiliation(s)
- Mieko Sassa
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-shi, Chiba, Japan. .,Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa-shi, Chiba, Japan.
| | - Toshiyuki Takagi
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa-shi, Chiba, Japan
| | - Azusa Kinjo
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa-shi, Chiba, Japan
| | - Yuki Yoshioka
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-shi, Chiba, Japan.,Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa-shi, Chiba, Japan
| | - Yuna Zayasu
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan
| | - Chuya Shinzato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa-shi, Chiba, Japan
| | - Shinji Kanda
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa-shi, Chiba, Japan
| | | | - Kotaro Shirai
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa-shi, Chiba, Japan
| | - Koji Inoue
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-shi, Chiba, Japan.,Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa-shi, Chiba, Japan
| |
Collapse
|
37
|
Fairweather SJ, Shah N, Brӧer S. Heteromeric Solute Carriers: Function, Structure, Pathology and Pharmacology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 21:13-127. [PMID: 33052588 DOI: 10.1007/5584_2020_584] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solute carriers form one of three major superfamilies of membrane transporters in humans, and include uniporters, exchangers and symporters. Following several decades of molecular characterisation, multiple solute carriers that form obligatory heteromers with unrelated subunits are emerging as a distinctive principle of membrane transporter assembly. Here we comprehensively review experimentally established heteromeric solute carriers: SLC3-SLC7 amino acid exchangers, SLC16 monocarboxylate/H+ symporters and basigin/embigin, SLC4A1 (AE1) and glycophorin A exchanger, SLC51 heteromer Ost α-Ost β uniporter, and SLC6 heteromeric symporters. The review covers the history of the heteromer discovery, transporter physiology, structure, disease associations and pharmacology - all with a focus on the heteromeric assembly. The cellular locations, requirements for complex formation, and the functional role of dimerization are extensively detailed, including analysis of the first complete heteromer structures, the SLC7-SLC3 family transporters LAT1-4F2hc, b0,+AT-rBAT and the SLC6 family heteromer B0AT1-ACE2. We present a systematic analysis of the structural and functional aspects of heteromeric solute carriers and conclude with common principles of their functional roles and structural architecture.
Collapse
Affiliation(s)
- Stephen J Fairweather
- Research School of Biology, Australian National University, Canberra, ACT, Australia. .,Resarch School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | - Nishank Shah
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Stefan Brӧer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
38
|
He G, Qin L, Tian W, Meng L, He T, Zhao D. Heavy Metal Transporters-Associated Proteins in S. tuberosum: Genome-Wide Identification, Comprehensive Gene Feature, Evolution and Expression Analysis. Genes (Basel) 2020; 11:genes11111269. [PMID: 33126505 PMCID: PMC7694169 DOI: 10.3390/genes11111269] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/20/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023] Open
Abstract
Plants have evolved a number of defense and adaptation responses to protect themselves against challenging environmental stresses. Genes containing a heavy metal associated (HMA) domain are required for the spatiotemporal transportation of metal ions that bind with various enzymes and co-factors within the cell. To uncover the underlying mechanisms mediated by StHMA genes, we identified 36 gene members in the StHMA family and divided them into six subfamilies by phylogenetic analysis. The StHMAs had high collinearity and were segmentally duplicated. Structurally, most StHMAs had one HMA domain, StHIPPc and StRNA1 subfamilies had two, and 13 StHMAs may be genetically variable. The StHMA gene structures and motifs varied considerably among the various classifications, this suggests the StHMA family is diverse in genetic functions. The promoter analysis showed that the StHMAs had six main cis-acting elements with abiotic stress. An expression pattern analysis revealed that the StHMAs were expressed tissue specifically, and a variety of abiotic stresses may induce the expression of StHMA family genes. The HMA transporter family may be regulated and expressed by a series of complex signal networks under abiotic stress. The results of this study may help to establish a theoretical foundation for further research investigating the functions of HMA genes in Solanum tuberosum to elucidate their regulatory role in the mechanism governing the response of plants to abiotic stress.
Collapse
Affiliation(s)
- Guandi He
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.H.); (L.Q.)
| | - Lijun Qin
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.H.); (L.Q.)
| | - Weijun Tian
- Agricultural College, Guizhou University, Guiyang 550025, China; (W.T.); (L.M.)
| | - Lulu Meng
- Agricultural College, Guizhou University, Guiyang 550025, China; (W.T.); (L.M.)
| | - Tengbing He
- Agricultural College, Guizhou University, Guiyang 550025, China; (W.T.); (L.M.)
- Institute of New Rural Development of Guizhou University, Guiyang 550025, China
- Correspondence: (T.H.); (D.Z.)
| | - Degang Zhao
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.H.); (L.Q.)
- Guizhou Academy of Agricultural Science, Guiyang 550025, China
- Correspondence: (T.H.); (D.Z.)
| |
Collapse
|
39
|
Chen Z, Tang Y, Hua Y, Zhao Y. Structural features and functional implications of proteins enabling the robustness of Deinococcus radiodurans. Comput Struct Biotechnol J 2020; 18:2810-2817. [PMID: 33133422 PMCID: PMC7575645 DOI: 10.1016/j.csbj.2020.09.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/21/2022] Open
Abstract
Deinococcus radiodurans can survive under extreme conditions, including high doses of DNA damaging agents and ionizing radiation, desiccation, and oxidative stress. Both the efficient cellular DNA repair machinery and antioxidation systems contribute to the extreme resistance of this bacterium, making it an ideal organism for studying the cellular mechanisms of environmental adaptation. The number of stress-related proteins identified in this bacterium has mushroomed in the past two decades. The newly identified proteins reveal both commonalities and diversity of structure, mechanism, and function, which impact a wide range of cellular functions. Here, we review the unique and general structural features of these proteins and discuss how these studies improve our understanding of the environmental stress adaptation mechanisms of D. radiodurans.
Collapse
Affiliation(s)
- Zijing Chen
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuyue Tang
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuejin Hua
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ye Zhao
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
40
|
Electrophysiology Measurements of Metal Transport by MntH2 from Enterococcus faecalis. MEMBRANES 2020; 10:membranes10100255. [PMID: 32987882 PMCID: PMC7599946 DOI: 10.3390/membranes10100255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/30/2022]
Abstract
Transition metals are essential trace elements and their high-affinity uptake is required for many organisms. Metal transporters are often characterised using metal-sensitive fluorescent dyes, limiting the metals and experimental conditions that can be studied. Here, we have tested whether metal transport by Enterococcus faecalis MntH2 can be measured with an electrophysiology method that is based on the solid-supported membrane technology. E. faecalis MntH2 belongs to the Natural Resistance-Associated Macrophage Protein (Nramp) family of proton-coupled transporters, which transport divalent transition metals and do not transport the earth metals. Electrophysiology confirms transport of Mn(II), Co(II), Zn(II) and Cd(II) by MntH2. However, no uptake responses for Cu(II), Fe(II) and Ni(II) were observed, while the presence of these metals abolishes the uptake signals for Mn(II). Fluorescence assays confirm that Ni(II) is transported. The data are discussed with respect to properties and structures of Nramp-type family members and the ability of electrophysiology to measure charge transport and not directly substrate transport.
Collapse
|
41
|
Xu L, Zhang F, Tang M, Wang Y, Dong J, Ying J, Chen Y, Hu B, Li C, Liu L. Melatonin confers cadmium tolerance by modulating critical heavy metal chelators and transporters in radish plants. J Pineal Res 2020; 69:e12659. [PMID: 32323337 DOI: 10.1111/jpi.12659] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/02/2020] [Accepted: 04/18/2020] [Indexed: 12/18/2022]
Abstract
Cadmium (Cd) is an environmental pollutant that causes health hazard to living organisms. Melatonin (MT) has emerged as a ubiquitous pleiotropic molecule capable of coordinating heavy metal (HM) stresses in plants. However, it remains unclear how melatonin mediates Cd homeostasis and detoxification at transcriptional and/or post-transcriptional levels in radish. Herein, the activities of five key antioxidant enzymes were increased, while root and shoot Cd contents were dramatically decreased by melatonin. A combined small RNA and transcriptome sequencing analysis showed that 14 differentially expressed microRNAs (DEMs) and 966 differentially expressed genes (DEGs) were shared between the Cd and Cd + MT conditions. In all, 23 and ten correlated miRNA-DEG pairs were identified in Con vs. Cd and Con vs. Cd + MT comparisons, respectively. Several DEGs encoding yellow stripe 1-like (YSL), heavy metal ATPases (HMA), and ATP-binding cassette (ABC) transporters were involved in Cd transportation and sequestration in radish. Root exposure to Cd2+ induced several specific signaling molecules, which consequently trigger some HM chelators, transporters, and antioxidants to achieve reactive oxygen species (ROS) scavenging and detoxification and eliminate Cd toxicity in radish plants. Notably, transgenic analysis revealed that overexpression of the RsMT1 (Metallothionein 1) gene could enhance Cd tolerance of tobacco plants, indicating that the exogenous melatonin confers Cd tolerance, which might be attributable to melatonin-mediated upregulation of RsMT1 gene in radish plants. These results could contribute to dissecting the molecular basis governing melatonin-mediated Cd stress response in plants and pave the way for high-efficient genetically engineering low-Cd-content cultivars in radish breeding programs.
Collapse
Affiliation(s)
- Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Fei Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Mingjia Tang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Junhui Dong
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiali Ying
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yinglong Chen
- School of Agriculture and Environment, The UWA's Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Bing Hu
- College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Cui Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
42
|
Bozzi AT, McCabe AL, Barnett BC, Gaudet R. Transmembrane helix 6b links proton and metal release pathways and drives conformational change in an Nramp-family transition metal transporter. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49881-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
43
|
Bozzi AT, McCabe AL, Barnett BC, Gaudet R. Transmembrane helix 6b links proton and metal release pathways and drives conformational change in an Nramp-family transition metal transporter. J Biol Chem 2019; 295:1212-1224. [PMID: 31882536 DOI: 10.1074/jbc.ra119.011336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/10/2019] [Indexed: 12/15/2022] Open
Abstract
The natural resistance-associated macrophage protein (Nramp) family encompasses transition metal and proton cotransporters that are present in many organisms from bacteria to humans. Recent structures of Deinococcus radiodurans Nramp (DraNramp) in multiple conformations revealed the intramolecular rearrangements required for alternating access of the metal-binding site to the external or cytosolic environment. Here, using recombinant proteins and metal transport and cysteine accessibility assays, we demonstrate that two parallel cytoplasm-accessible networks of conserved hydrophilic residues in DraNramp, one lining the wide intracellular vestibule for metal release and the other forming a narrow proton transport pathway, are essential for metal transport. We further show that mutagenic or posttranslational modifications of transmembrane helix (TM) 6b, which structurally links these two pathways, impede normal conformational cycling and metal transport. TM6b contains two highly conserved histidines, His232 and His237 We found that different mutagenic perturbations of His232, just below the metal-binding site along the proton exit route, differentially affect DraNramp's conformational state, suggesting that His232 serves as a pivot point for conformational changes. In contrast, any replacement of His237, lining the metal exit route, locked the transporter in a transport-inactive outward-closed state. We conclude that these two histidines, and TM6b more broadly, help trigger the bulk rearrangement of DraNramp to the inward-open state upon metal binding and facilitate return of the empty transporter to an outward-open state upon metal release.
Collapse
Affiliation(s)
- Aaron T Bozzi
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Anne L McCabe
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Benjamin C Barnett
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
44
|
Manatschal C, Pujol-Giménez J, Poirier M, Reymond JL, Hediger MA, Dutzler R. Mechanistic basis of the inhibition of SLC11/NRAMP-mediated metal ion transport by bis-isothiourea substituted compounds. eLife 2019; 8:51913. [PMID: 31804182 PMCID: PMC6917499 DOI: 10.7554/elife.51913] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/22/2019] [Indexed: 12/23/2022] Open
Abstract
In humans, the divalent metal ion transporter-1 (DMT1) mediates the transport of ferrous iron across the apical membrane of enterocytes. Hence, its inhibition could be beneficial for the treatment of iron overload disorders. Here we characterize the interaction of aromatic bis-isothiourea-substituted compounds with human DMT1 and its prokaryotic homologue EcoDMT. Both transporters are inhibited by a common competitive mechanism with potencies in the low micromolar range. The crystal structure of EcoDMT in complex with a brominated derivative defines the binding of the inhibitor to an extracellular pocket of the transporter in direct contact with residues of the metal ion coordination site, thereby interfering with substrate loading and locking the transporter in its outward-facing state. Mutagenesis and structure-activity relationships further support the observed interaction mode and reveal species-dependent differences between pro- and eukaryotic transporters. Together, our data provide the first detailed mechanistic insight into the pharmacology of SLC11/NRAMP transporters.
Collapse
Affiliation(s)
| | - Jonai Pujol-Giménez
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.,Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, Inselspital, University of Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Marion Poirier
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Matthias A Hediger
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.,Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, Inselspital, University of Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Raimund Dutzler
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
45
|
Bozzi AT, Bane LB, Zimanyi CM, Gaudet R. Unique structural features in an Nramp metal transporter impart substrate-specific proton cotransport and a kinetic bias to favor import. J Gen Physiol 2019; 151:1413-1429. [PMID: 31619456 PMCID: PMC6888756 DOI: 10.1085/jgp.201912428] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/26/2019] [Indexed: 01/01/2023] Open
Abstract
Natural resistance-associated macrophage protein (Nramp) transporters enable uptake of essential transition metal micronutrients in numerous biological contexts. These proteins are believed to function as secondary transporters that harness the electrochemical energy of proton gradients by "coupling" proton and metal transport. Here we use the Deinococcus radiodurans (Dra) Nramp homologue, for which we have determined crystal structures in multiple conformations, to investigate mechanistic details of metal and proton transport. We untangle the proton-metal coupling behavior of DraNramp into two distinct phenomena: ΔpH stimulation of metal transport rates and metal stimulation of proton transport. Surprisingly, metal type influences substrate stoichiometry, leading to manganese-proton cotransport but cadmium uniport, while proton uniport also occurs. Additionally, a physiological negative membrane potential is required for high-affinity metal uptake. To begin to understand how Nramp's structure imparts these properties, we target a conserved salt-bridge network that forms a proton-transport pathway from the metal-binding site to the cytosol. Mutations to this network diminish voltage and ΔpH dependence of metal transport rates, alter substrate selectivity, perturb or eliminate metal-stimulated proton transport, and erode the directional bias favoring outward-to-inward metal transport under physiological-like conditions. Thus, this unique salt-bridge network may help Nramp-family transporters maximize metal uptake and reduce deleterious back-transport of acquired metals. We provide a new mechanistic model for Nramp proton-metal cotransport and propose that functional advantages may arise from deviations from the traditional model of symport.
Collapse
Affiliation(s)
- Aaron T Bozzi
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA
| | - Lukas B Bane
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA
| | - Christina M Zimanyi
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA
| |
Collapse
|
46
|
Abstract
Rudnick highlights a kinetic analysis of a bacterial Nramp transporter that focuses on how H+ gradients are coupled to metal transport.
Collapse
Affiliation(s)
- Gary Rudnick
- Department of Pharmacology, Yale University, New Haven, CT
| |
Collapse
|